CN104300015A - AlGaAs/GaInAs/Ge连续光谱太阳能电池 - Google Patents

AlGaAs/GaInAs/Ge连续光谱太阳能电池 Download PDF

Info

Publication number
CN104300015A
CN104300015A CN201410539502.1A CN201410539502A CN104300015A CN 104300015 A CN104300015 A CN 104300015A CN 201410539502 A CN201410539502 A CN 201410539502A CN 104300015 A CN104300015 A CN 104300015A
Authority
CN
China
Prior art keywords
layer
battery
algaas
type
gainas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410539502.1A
Other languages
English (en)
Other versions
CN104300015B (zh
Inventor
王智勇
张杨
杨光辉
陈丙振
尧舜
张奇灵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201410539502.1A priority Critical patent/CN104300015B/zh
Publication of CN104300015A publication Critical patent/CN104300015A/zh
Application granted granted Critical
Publication of CN104300015B publication Critical patent/CN104300015B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic Table, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

AlGaAs/GaInAs/Ge连续光谱太阳能电池,包括底电池、中间电池、顶电池以及连接各子电池的隧道结;所述底电池是Gepn结电池,所述中间电池Base层由晶格匹配的GaIn0.01As和In组分渐变的应变Ga1-xInxAs量子阱构成,所述顶电池是Base层为Al组分渐变的AlGaAs结构,所述多结太阳电池各子电池短路电流相等,并用隧道结相连接。同时,各子电池和其间的隧道结均与衬底实现晶格匹配。各子电池及其间的隧道结均用MOCVD在衬底上生长而成。该电池壳充分利用太阳光不同波段的光子能量,提高太阳电池的光电转换效率。

Description

AlGaAs/GaInAs/Ge连续光谱太阳能电池
技术领域
本发明涉及一种高效率多结太阳能电池,属半导体材料技术领域。
背景技术
随着现代工业的发展,全球能源危机和大气污染问题日益突出,太阳能作为理想的可再生能源受到了越来越多国家的重视,开展太阳能电池研究、发展光伏发电产业对国家能源的可持续发展具有非常重要的意义。目前,太阳能电池的面临的主要问题为光电转换效率较低,性价比不高,不能满足大规模民用的需求。商用太阳能电池中,单晶硅和多晶硅电池约占90%的市场份额。商用单晶硅电池的转化效率约为16%-20%,多晶硅电池约为14%-16%。其光电转换效率均有待提高。
将多种不同带隙的半导体材料搭配,组成多结太阳电池,可以充分利用太阳光不同波段的光子能量,提高太阳电池的光电转换效率。美国波音公司子公司Spectrolab研制的晶格匹配Ga0.5In0.5P/Ga0.99In0.01As/Ge三结太阳电池在无聚光条件下光电转换效率达32%(AM1.5,25℃),在135倍聚光条件下,光电转化效率达40.1%。对于三结或三结以上的太阳电池,最高效率材料组合均需要带隙在1.0eV附近的材料来满足电流匹配条件,遗憾的是迄今为止未找到同时满足晶格匹配和电流匹配的三结或三结以上的太阳电池组合。电流匹配而晶格不匹配结构虽然可以使得叠层太阳电池效率略有提高,但是由于外延层晶格与衬底匹配较大,电池材料质量难于保障,成品率较低。
发明内容
本发明要解决的技术问题是克服现有多结太阳电池电流匹配和晶格匹配不相容的缺点,通过In组分渐变的Ga1-xInxAs量子阱中电池Base层,Al组分渐变的AlGaAs顶电池Base层,实现一种AlGaAs/GaInAs/Ge连续光谱太阳能电池,且与Ge衬底晶格匹配,适合构造电流匹配的三结及以上太阳电池。
本发明的技术问题是通过以下解决方案实现的:AlGaAs/GaInAs/Ge连续光谱太阳能电池,包括底电池、中间电池、顶电池以及连接各子电池的隧道结;具体而言,底电池包括p型Ge衬底(1)、n型GeEmitter层(2)、n型GaInP2Window层(3);中间电池包括P-AlGaAsBSF层(6)、P-GaInAs/GaIn0.1AsBase渐变MQWs层(7)、N-GaInAsEmitter层(8)、N-AlGaAsWindow层(9);、顶电池包括P-AlGaInPBSF层(12)、P-AlGaAsBase渐变层(13)、N-GaInPEmitter层(14)、N-AlInPWindow层(15);隧道结包括N++GaInP层(4)、P++AlGaAs层(5)、N++GaInP层(10)、P++AlGaAs层(11);
所述底电池是Gepn结电池,所述中间电池Base层由晶格匹配的GaIn0.01As和In组分渐变的应变Ga1-xInxAs量子阱构成,所述顶电池是Base层为Al组分渐变的AlGaAs结构,所述多结太阳电池各子电池短路电流相等,并用隧道结相连接。同时,各子电池和其间的隧道结均与衬底实现晶格匹配。各子电池及其间的隧道结均用MOCVD在衬底上生长而成。
其中,所述p型Ge衬底(1)、n型GeEmitter层(2)、n型GaInP2Window层(3)、N++GaInP层(4)、P++AlGaAs层(5)、P-AlGaAsBSF层(6)、P-GaInAs/GaIn0.1AsBase渐变MQWs层(7)、N-GaInAsEmitter层(8)、N-AlGaAsWindow层(9)、N++GaInP层(10)、P++AlGaAs层(11)、P-AlGaInPBSF层(12)、P-AlGaAsBase渐变层(13)、N-GaInPEmitter层(14)、N-AlInPWindow层(15)、N++GaInAsContact层(16),从上至下依次层叠放置。N++GaInAsContact层(16)作为接触层。
上述Ge底电池p-GeBase层掺杂浓度为1×1017cm-3-1×1018cm-3,n型Emitter层通过MOCVD中PH3的P扩散获得,Emitter层厚度60-200nm,掺杂浓度为6×1018cm-3-3×1019cm-3
上述底电池和中间电池、以及中间电池和底电池之间有一层p型高掺杂的AlGaAs和n型高掺杂的GaInP组成的隧道结,隧道结各层厚度为5-15nm,掺杂浓度1×1019cm-3-2×1020cm-3
上述底电池和隧道结之间有一层n型GaInAs缓冲层。
室温下GaInAs的带隙与In的组分关系的计算公式如下:
EGaInAs=1.42-1.49xIn+0.43xIn 2(eV)      (1)
其中,EGaInAs为GaInAs带隙,xIn为In的组分。
中电池Base层掺杂浓度为1×1016cm-3-1×1017cm-3;中电池Emitter层n型GaAs掺杂浓度1×1018cm-3-5×1018cm-3
上述中电池和顶电池的材料结构和带隙可根据电池工作条件调整以便满足晶格匹配和电流匹配条件。
与现有技术相比,本发明的优点有:中间电池Base层由晶格匹配的GaIn0.01As和In组分渐变的应变Ga1-xInxAs量子阱构成,顶电池Base层采用Al组分渐变AlGaAs结构,禁带宽度在0.67eV-1.98eV连续可调,且晶格匹配、技术成熟,可以充分利用太阳光不同波段的光子能量,提高太阳电池的光电转换效率。
附图说明
图1是本发明的一个优选三结太阳电池结构示意图。
图2是晶格应变原理示意图。
图中:1、p型Ge衬底,2、n型GeEmitter层,3、n型GaInP2Window层,4、N++GaInP层,5、P++AlGaAs层,6、P-AlGaAsBSF层,7、P-GaInAs/GaIn0.1AsBase渐变MQWs层,8、N-GaInAsEmitter层,9、N-AlGaAsWindow层,10、N++GaInP层,11、P++AlGaAs层,12、P-AlGaInPBSF层,13、P-AlGaAsBase渐变层,14、N-GaInPEmitter层,15、N-AlInPWindow层,16、N++GaInAsContact层。
具体实施方式
下面结合实施例对本发明作进一步描述,但不应以此限制本发明的保护范围。
实施例一:参见附图1所示,AlGaAs/GaInAs/Ge连续光谱太阳能电池的制备方法,包括下列步骤:
S1采用p型Ge衬底1,厚度130-230un,掺杂浓度1×1017cm-3-1×1018cm-3,作为Ge底电池Base层。
S2Ge衬底表面P扩散形成n型GeEmitter层2,以获得底电池,Emitter层厚度60-200nm,掺杂浓度为6×1018cm-3-3×1019cm-3
S3生长200-300nmn型GaInP2Window层3,掺杂浓度为5×1018cm-3
S4生长简并n型掺杂浓度大于1×1019cm-3、厚度为10nm的AlGaAs层4,形成隧道结,以连接中间电池与底电池。
S5生长简并p型掺杂大于6×1019cm-3、厚度为8nm的GaInP层5,形成隧道结,以连接中间电池与底电池。
S6生长90nmp型掺杂浓度约为1×1018cm-3的Al0.3Ga0.7As层6,作为中间电池的背场。
S7生长80nmp型掺杂浓度约为1×1017cm-3的GaIn0.01As层,生长5-20nmp型掺杂浓度约为1×1017cm-3的In组分逐渐变小的p型Ga1-xInxAs层,共50周期构成中电池Base层7。
其中,中间电池Base层由晶格匹配的p型GaIn0.01As和In组分渐变的p型应变Ga1-xInxAs量子阱构成,中间电池Emitter层由100-200nm晶格匹配的n型GaIn0.01As构成。调节In组分,使得Ga1-xInxAs的禁带宽度沿生长方向从0.67eV递增至1.42eV。其中,Base层晶格匹配的GaIn0.01As厚度为50-100nm,In组分渐变的Ga1-xInxAs厚度为5-20nm,Base层量子阱总周期数大于50,Base层总厚度大于3um。晶格应力释放原理如图2所示。
S8生长150nmn型掺杂浓度约为5×1017cm-3的GaIn0.01As层,构成中电池Emitter层8。
S9生长80nm厚的n型AlInP2层,作为中间电池的Window层9,掺杂浓度为5×1018cm-3
S10生长简并n型掺杂浓度大于1×1019cm-3、厚度为10nm的AlGaAs层10,形成隧道结,以连接中间电池与底电池。
S11生长简并p型掺杂大于6×1019cm-3、厚度为8nm的GaInP层11,形成隧道结,以连接中间电池与底电池。
S12生长80nm厚的p型AlGaInP层12,作为顶电池的背场层,掺杂浓度为5×1017cm-3
S13生长800nm掺杂浓度为的p型1×1018cm-3的组分逐渐变大的AlGaAs层13,构成顶电池Base层。
其中,顶电池Base层为Al组分渐变的AlGaAs结构,调节Al组分,使AlGaAs的禁带宽度沿生长方向从1.42eV递增至1.98eV,晶格应力释放原理如图2所示。
S14生长100nm,掺杂浓度为5×1018cm-3的n型AlGaAs层14,构成顶电池的Emitter层。
S15生长50nmn型AlInP2层15,作为顶电池的Window层,掺杂浓度为5×1018cm-3
S16生长100nm掺杂浓度5×1018cm-3的n型GaIn0.01As层16,作为接触层。
所述中间电池Base层由晶格匹配的p型GaIn0.01As和In组分渐变的p型应变Ga1-xInxAs量子阱构成,调节In组分,使得Ga1-xInxAs的禁带宽度沿生长方向从0.67eV递增至1.42eV。其中,Base层晶格匹配的GaIn0.01As厚度为50-100nm,In组分渐变的Ga1-xInxAs厚度为5-20nm,Base层量子阱总周期数大于50,Base层总厚度大于3um。
顶电池Base层为约800nm掺杂浓度为的p型1×1018cm-3的组分逐渐变大的AlGaAs层。调节Al组分,使AlGaAs的禁带宽度沿生长方向从1.42eV递增至1.98eV。
衬底可为Si、Ge、SiC、GaAs中的一种。
接触层可为Ti/Au、Ti/Pt/Au、Ti/Al/Au、Ni、Ni/Au、Cr/Au、Pd、Ti/Pd/Au、Pd/Au中的一种。

Claims (6)

1.AlGaAs/GaInAs/Ge连续光谱太阳能电池,其特征在于:包括底电池、中间电池、顶电池以及连接各子电池的隧道结;具体而言,底电池包括p型Ge衬底(1)、n型Ge Emitter层(2)、n型GaInP2Window层(3);中间电池包括P-AlGaAs BSF层(6)、P-GaInAs/GaIn0.1As Base渐变MQWs层(7)、N-GaInAs Emitter层(8)、N-AlGaAs Window层(9);、顶电池包括P-AlGaInP BSF层(12)、P-AlGaAs Base渐变层(13)、N-GaInP Emitter层(14)、N-AlInPWindow层(15);隧道结包括N++GaInP层(4)、P++AlGaAs层(5)、N++GaInP层(10)、P++AlGaAs层(11);
所述底电池是Ge pn结电池,所述中间电池Base层由晶格匹配的GaIn0.01As和In组分渐变的应变Ga1-xInxAs量子阱构成,所述顶电池是Base层为Al组分渐变的AlGaAs结构,所述多结太阳电池各子电池短路电流相等,并用隧道结相连接;同时,各子电池和其间的隧道结均与衬底实现晶格匹配;各子电池及其间的隧道结均用MOCVD在衬底上生长而成;
其中,所述p型Ge衬底(1)、n型Ge Emitter层(2)、n型GaInP2Window层(3)、N++GaInP层(4)、P++AlGaAs层(5)、P-AlGaAsBSF层(6)、P-GaInAs/GaIn0.1As Base渐变MQWs层(7)、N-GaInAsEmitter层(8)、N-AlGaAs Window层(9)、N++GaInP层(10)、P++AlGaAs层(11)、P-AlGaInP BSF层(12)、P-AlGaAs Base渐变层(13)、N-GaInP Emitter层(14)、N-AlInP Window层(15)、N++GaInAs Contact层(16),从上至下依次层叠放置;N++GaInAsContact层(16)作为接触层。
2.根据权利要求1所述的AlGaAs/GaInAs/Ge连续光谱太阳能电池,其特征在于:AlGaAs/GaInAs/Ge连续光谱太阳能电池的制备方法,包括下列步骤,
S1采用p型Ge衬底(1),厚度130-230un,掺杂浓度1×1017cm-3-1×1018cm-3,作为Ge底电池Base层;
S2Ge衬底表面P扩散形成n型Ge Emitter层(2),以获得底电池,Emitter层厚度60-200nm,掺杂浓度为6×1018cm-3-3×1019cm-3
S3生长200-300nmn型GaInP2Window层(3),掺杂浓度为5×1018cm-3
S4生长简并n型掺杂浓度大于1×1019cm-3、厚度为10nm的AlGaAs层(4),形成隧道结,以连接中间电池与底电池;
S5生长简并p型掺杂大于6×1019cm-3、厚度为8nm的GaInP层(5),形成隧道结,以连接中间电池与底电池;
S6生长90nm p型掺杂浓度约为1×1018cm-3的Al0.3Ga0.7As层(6),作为中间电池的背场;
S7生长80nm p型掺杂浓度约为1×1017cm-3的GaIn0.01As层,生长5-20nm p型掺杂浓度约为1×1017cm-3的In组分逐渐变小的p型Ga1-xInxAs层,共50周期构成中电池Base层(7);
其中,中间电池Base层由晶格匹配的p型GaIn0.01As和In组分渐变的p型应变Ga1-xInxAs量子阱构成,中间电池Emitter层由100-200nm晶格匹配的n型GaIn0.01As构成;调节In组分,使得Ga1-xInxAs的禁带宽度沿生长方向从0.67eV递增至1.42eV;其中,Base层晶格匹配的GaIn0.01As厚度为50-100nm,In组分渐变的Ga1-xInxAs厚度为5-20nm,Base层量子阱总周期数大于50,Base层总厚度大于3um;
S8生长150nm n型掺杂浓度约为5×1017cm-3的GaIn0.01As层,构成中电池Emitter层(8);
S9生长80nm厚的n型AlInP2层,作为中间电池的Window层(9),掺杂浓度为5×1018cm-3
S10生长简并n型掺杂浓度大于1×1019cm-3、厚度为10nm的AlGaAs层(10),形成隧道结,以连接中间电池与底电池;
S11生长简并p型掺杂大于6×1019cm-3、厚度为8nm的GaInP层(11),形成隧道结,以连接中间电池与底电池;
S12生长80nm厚的p型AlGaInP层(12),作为顶电池的背场层,掺杂浓度为5×1017cm-3
S13生长800nm掺杂浓度为的p型1×1018cm-3的组分逐渐变大的AlGaAs层(13),构成顶电池Base层;
其中,顶电池Base层为Al组分渐变的AlGaAs结构,调节Al组分,使AlGaAs的禁带宽度沿生长方向从1.42eV递增至1.98eV;
S14生长100nm,掺杂浓度为5×1018cm-3的n型AlGaAs层(14),构成顶电池的Emitter层;
S15生长50nm n型AlInP2层(15),作为顶电池的Window层,掺杂浓度为5×1018cm-3
S16生长100nm掺杂浓度5×1018cm-3的n型GaIn0.01As层(16),作为接触层。
3.根据权利要求1所述的AlGaAs/GaInAs/Ge连续光谱太阳能电池,其特征在于:所述中间电池Base层由晶格匹配的p型GaIn0.01As和In组分渐变的p型应变Ga1-xInxAs量子阱构成,调节In组分,使得Ga1-xInxAs的禁带宽度沿生长方向从0.67eV递增至1.42eV;其中,Base层晶格匹配的GaIn0.01As厚度为50-100nm,In组分渐变的Ga1-xInxAs厚度为5-20nm,Base层量子阱总周期数大于50,Base层总厚度大于3um。
4.根据权利要求1所述的AlGaAs/GaInAs/Ge连续光谱太阳能电池,其特征在于:顶电池Base层为约800nm掺杂浓度为的p型1×1018cm-3的组分逐渐变大的AlGaAs层;调节Al组分,使AlGaAs的禁带宽度沿生长方向从1.42eV递增至1.98eV。
5.根据权利要求1所述的AlGaAs/GaInAs/Ge连续光谱太阳能电池,其特征在于:其衬底可为Si、Ge、SiC、GaAs中的一种。
6.根据权利要求1所述的AlGaAs/GaInAs/Ge连续光谱太阳能电池,其特征在于:接触层可为Ti/Au、Ti/Pt/Au、Ti/Al/Au、Ni、Ni/Au、Cr/Au、Pd、Ti/Pd/Au、Pd/Au中的一种。
CN201410539502.1A 2014-10-13 2014-10-13 AlGaAs/GaInAs/Ge连续光谱太阳能电池 Expired - Fee Related CN104300015B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410539502.1A CN104300015B (zh) 2014-10-13 2014-10-13 AlGaAs/GaInAs/Ge连续光谱太阳能电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410539502.1A CN104300015B (zh) 2014-10-13 2014-10-13 AlGaAs/GaInAs/Ge连续光谱太阳能电池

Publications (2)

Publication Number Publication Date
CN104300015A true CN104300015A (zh) 2015-01-21
CN104300015B CN104300015B (zh) 2017-01-18

Family

ID=52319675

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410539502.1A Expired - Fee Related CN104300015B (zh) 2014-10-13 2014-10-13 AlGaAs/GaInAs/Ge连续光谱太阳能电池

Country Status (1)

Country Link
CN (1) CN104300015B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355683A (zh) * 2015-12-11 2016-02-24 上海空间电源研究所 一种基于p型掺杂量子阱结构的正向三结太阳能电池
CN106067493A (zh) * 2016-07-26 2016-11-02 中山德华芯片技术有限公司 一种微晶格失配量子阱太阳能电池及其制备方法
CN107316909A (zh) * 2017-08-11 2017-11-03 南昌凯迅光电有限公司 一种多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法
CN111834471A (zh) * 2019-04-19 2020-10-27 波音公司 用于改善低温下性能的太阳能电池设计
CN111834474A (zh) * 2019-04-19 2020-10-27 东泰高科装备科技有限公司 一种三结太阳能电池的制备方法和三结太阳能电池
CN111834485A (zh) * 2019-04-19 2020-10-27 波音公司 用于改善低温下性能的太阳能电池设计
CN112447868A (zh) * 2020-11-24 2021-03-05 中山德华芯片技术有限公司 一种高质量四结空间太阳电池及其制备方法
WO2022116894A1 (zh) * 2020-12-03 2022-06-09 隆基绿能科技股份有限公司 太阳电池及电池组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050155641A1 (en) * 2004-01-20 2005-07-21 Cyrium Technologies Incorporated Solar cell with epitaxially grown quantum dot material
CN101499493A (zh) * 2009-02-23 2009-08-05 东南大学 一种三结太阳能电池
CN101533862A (zh) * 2009-03-18 2009-09-16 厦门市三安光电科技有限公司 一种电流匹配和晶格匹配的高效率三结太阳电池
CN201311936Y (zh) * 2008-10-27 2009-09-16 厦门乾照光电股份有限公司 具有反射层的三结太阳电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050155641A1 (en) * 2004-01-20 2005-07-21 Cyrium Technologies Incorporated Solar cell with epitaxially grown quantum dot material
CN201311936Y (zh) * 2008-10-27 2009-09-16 厦门乾照光电股份有限公司 具有反射层的三结太阳电池
CN101499493A (zh) * 2009-02-23 2009-08-05 东南大学 一种三结太阳能电池
CN101533862A (zh) * 2009-03-18 2009-09-16 厦门市三安光电科技有限公司 一种电流匹配和晶格匹配的高效率三结太阳电池

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355683A (zh) * 2015-12-11 2016-02-24 上海空间电源研究所 一种基于p型掺杂量子阱结构的正向三结太阳能电池
CN106067493A (zh) * 2016-07-26 2016-11-02 中山德华芯片技术有限公司 一种微晶格失配量子阱太阳能电池及其制备方法
CN106067493B (zh) * 2016-07-26 2018-05-22 中山德华芯片技术有限公司 一种微晶格失配量子阱太阳能电池及其制备方法
CN107316909A (zh) * 2017-08-11 2017-11-03 南昌凯迅光电有限公司 一种多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法
CN111834471A (zh) * 2019-04-19 2020-10-27 波音公司 用于改善低温下性能的太阳能电池设计
CN111834474A (zh) * 2019-04-19 2020-10-27 东泰高科装备科技有限公司 一种三结太阳能电池的制备方法和三结太阳能电池
CN111834485A (zh) * 2019-04-19 2020-10-27 波音公司 用于改善低温下性能的太阳能电池设计
CN112447868A (zh) * 2020-11-24 2021-03-05 中山德华芯片技术有限公司 一种高质量四结空间太阳电池及其制备方法
WO2022116894A1 (zh) * 2020-12-03 2022-06-09 隆基绿能科技股份有限公司 太阳电池及电池组件

Also Published As

Publication number Publication date
CN104300015B (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
CN104300015B (zh) AlGaAs/GaInAs/Ge连续光谱太阳能电池
CN101859813B (zh) 四结GaInP/GaAs/InGaAs/Ge太阳电池的制作方法
CN104465843B (zh) 一种双面生长的GaAs四结太阳电池
CN100573923C (zh) 硅基高效多结太阳电池及其制备方法
CN101950774A (zh) 四结GaInP/GaAs/InGaAsP/InGaAs太阳电池的制作方法
CN106067493A (zh) 一种微晶格失配量子阱太阳能电池及其制备方法
CN101901854A (zh) 一种InGaP/GaAs/InGaAs三结薄膜太阳能电池的制备方法
CN103928539A (zh) 多结iii-v太阳能电池及其制造方法
CN109755340A (zh) 一种正向晶格失配三结太阳电池
CN102790116B (zh) 倒装GaInP/GaAs/Ge/Ge四结太阳能电池及其制备方法
CN103219414B (zh) GaInP/GaAs/InGaAsP/InGaAs四结级联太阳电池的制作方法
CN102790117B (zh) GaInP/GaAs/InGaNAs/Ge四结太阳能电池及其制备方法
CN101533862A (zh) 一种电流匹配和晶格匹配的高效率三结太阳电池
CN109148621B (zh) 一种双面生长的高效六结太阳能电池及其制备方法
CN202503000U (zh) 高效三结太阳能电池
CN103077983A (zh) 多结太阳能电池及其制备方法
CN103199142B (zh) GaInP/GaAs/InGaAs/Ge四结太阳能电池及其制备方法
CN105810760A (zh) 一种晶格匹配的五结太阳能电池及其制作方法
CN110556445A (zh) 一种叠层并联太阳能电池
CN102779865B (zh) 一种以锗为隧穿结的硅基三结太阳能电池
CN206584943U (zh) 一种正向生长的匹配四结太阳能电池
CN210692559U (zh) 一种倒装生长的双异质结四结柔性太阳能电池
CN104241416A (zh) 一种含量子阱结构的三结太阳能电池
CN110797427B (zh) 倒装生长的双异质结四结柔性太阳能电池及其制备方法
CN204118094U (zh) 一种带隙结构优化的三结太阳电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170118

Termination date: 20191013

CF01 Termination of patent right due to non-payment of annual fee