CN107316909A - 一种多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法 - Google Patents

一种多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法 Download PDF

Info

Publication number
CN107316909A
CN107316909A CN201710683629.4A CN201710683629A CN107316909A CN 107316909 A CN107316909 A CN 107316909A CN 201710683629 A CN201710683629 A CN 201710683629A CN 107316909 A CN107316909 A CN 107316909A
Authority
CN
China
Prior art keywords
layers
gainp
thickness
layer
doping concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710683629.4A
Other languages
English (en)
Inventor
万智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Kaixun Photoelectric Co Ltd
Original Assignee
Nanchang Kaixun Photoelectric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Kaixun Photoelectric Co Ltd filed Critical Nanchang Kaixun Photoelectric Co Ltd
Priority to CN201710683629.4A priority Critical patent/CN107316909A/zh
Publication of CN107316909A publication Critical patent/CN107316909A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法,它是分别在中电池和顶电池的基区和发射区中间加入多量子阱层结构,即:本发明通过在中电池的p‑GaInAs基区层和n‑GaInAs发射区层之间、顶电池的p‑GaInP基区层和n‑GaInP发射区层之间分别引入GaAsP/GaInAs量子阱层和GaInP/AlGaInP量子阱层,因而能加宽电池的吸收光谱宽度,使电池的耗尽层变宽,改善电池的抗辐照性能,少数光生载流子的扩散长度增大,光生载流子的收集效率提升,减少光生载流子的辐射复合,从而提高了空间GaInP/InGaAs/Ge电池外延片的光电转化效率,使电池性能进一步改善。

Description

一种多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法
技术领域
本发明涉及电池外延片的制造方法,尤其是涉及一种多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法。
背景技术
GaInP/InGaAs/Ge 三结太阳能电池由于光电转化效率高、抗辐照性能好等特点目前已成为空间飞行器的主要能源。目前空间用GaInP/InGaAs/Ge 三结太阳能电池基本采用晶格匹配的的GaInP/InGaAs/Ge结构,由于需要GaInP、InGaAs、Ge材料晶格参数匹配,三种材料的禁带宽度就固定了。GaInP/InGaAs/Ge三结电池中Ge材料禁带宽度较小,覆盖的光谱较宽,导致其电流密度较大,与InGaAs和GaInP构成的电池电流不匹配,这就降低了太阳光的利用率。目前,常规GaInP/InGaAs/Ge三结太阳能电池达到的最高效率32%~33%和理论极限值49%还有很大的差距,提高常规GaInP/InGaAs/Ge三结太阳能电池的效率还有很大的空间。
为了改善常规GaInP/InGaAs/Ge三结太阳能电池电流不匹配的情况,在电池材料晶格匹配的情况下,引入新材料层,改善带隙组合是提高常规GaInP/InGaAs/Ge 三结太阳能电池效率的一种方法。
发明内容
本发明的目的在于提供一种能加宽中电池和顶电池的吸收光谱宽度、改善电池的抗辐照性能、减少复合、从而提高空间GaInP/InGaAs/Ge外延片的光电转化效率的多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法。
本发明的目的是这样实现的:
一种多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法,特征是:在由GaInAs基区层、发射区层、AlGaAs背场层、AlInP窗口层构成的中电池中引入GaAsP/GaInAs量子阱层,在由GaInP基区层、发射区层、AlGaInP背场层、AlInP窗口层构成的顶电池中引入GaInP/AlGaInP量子阱层,具体步骤如下:
提供一p-Ge衬底,在p-Ge衬底上依次外延生长n-AlGaInP成核层,n-GaAs/ n-GaInAs缓冲层,n++-GaAs/p++-GaAs隧穿结层,p-AlGaAs/p-AlGaInAs (DBR)反射层,p-AlGaAs 背场层,p-GaInAs基区层,GaAsP/GaInAs量子阱层,n-GaInAs发射区层,n-AlInP窗口层,n++-GaInP/p++-AlGaAs隧穿结层,p-AlGaInP背场层,p-GaInP基区层,GaInP/AlGaInP量子阱层,n-GaInP发射区层,n-AlInP窗口层和n+-GaAs欧姆接触层。
衬底材料为p-Ge;n-AlGaInP成核层的厚度为0.01μm,掺杂浓度为1~2×1018cm-3
n-GaAs/GaInAs缓冲层的厚度为0.5μm,掺杂浓度为≥1×1018cm-3
n++-GaAs/p++-GaAs隧穿结层,其中n++-GaAs层的厚度为0.01-003μm,掺杂浓度为≥5×1018cm-3,p++-GaAs层的厚度为0.01-003μm,掺杂浓度为≥1×1019cm-3
p-AlGaAs/p-AlGaInAs (DBR)反射层的厚度为1.8μm,掺杂浓度为1×1018 cm-3
p-AlGaAs 背场层的厚度为0.1μm,掺杂浓度为1~2×1018 cm-3
p-GaInAs基区层的厚度为0.6μm,掺杂浓度为2~8×1016cm-3
GaAsP/GaInAs 量子阱层结构共30对,总厚度为1μm。
n-GaInAs发射区层的厚度为0.1μm,掺杂浓度为1×1018cm-3
n-AlInP窗口层的厚度为0.1μm,掺杂浓度为1×1018cm-3
n++-GaInP/p++-AlGaAs隧穿结层,其中n++- GaInP层的厚度为0.01-003μm,掺杂浓度为≥5×1018cm-3,p++-AlGaAs层的厚度为0.01-003μm,掺杂浓度为≥5×1019cm-3
p-AlGaInP 背场层的厚度为0.1μm,掺杂浓度为1~2×1018 cm-3
p-GaInP基区层的厚度为0.25μm,掺杂浓度为1~8×1016cm-3
GaInP/AlGaInP量子阱层共15对,总厚度为0.45μm。
n-GaInP发射区层的厚度为0.1μm,掺杂浓度为1×1018cm-3
n-AlInP窗口层的厚度为0.1μm,掺杂浓度为1×1018cm-3
n+-GaAs欧姆接触层厚度为0.5μm,掺杂浓度大于5×1018cm-3
由于量子阱层结构中的阱层相对于基区层具有更小的禁带宽度,从而加大了中电池和顶电池的吸收光谱宽度,增加电池的电流密度。再由于量子阱层的辐照性能优于基区层材料,引入量子阱层,能使电池基区层的厚度减薄,可使电池的抗辐照性能得到提升。
和常规结构相比,本发明是分别在中电池和顶电池的基区和发射区中间加入多量子阱层结构,即:本发明通过在中电池的p-GaInAs基区层和n-GaInAs发射区层之间、顶电池的p-GaInP基区层和n-GaInP发射区层之间分别引入GaAsP/GaInAs量子阱层和GaInP/AlGaInP量子阱层(如图2所示),因而能加宽电池的吸收光谱宽度,使电池的耗尽层变宽,改善电池的的抗辐照性能,少数光生载流子的扩散长度增大,光生载流子的收集效率提升,减少光生载流子的辐射复合,从而提高了空间GaInP/InGaAs/Ge电池外延片的光电转化效率,使电池性能进一步改善。
附图说明
图1是本发明涉及到的外延层结构的示意图;
图2是本发明涉及的中电池和顶电池量子阱层结构设计示意图;量子阱结构由阱层和垒层交叉组成;
附图标识如下:
100:P型Ge衬底; 101:n-AlGaInP成核层;
102:n-GaAs/GaInAs缓冲层; 103:n++-GaAs/p++-GaAs隧穿结层;
104:p-AlGaAs/p-AlGaInAs (DBR)反射层;
105:p-AlGaAs 背场层; 106:p-GaInAs基区层;
107:GaAsP/GaInAs量子阱层; 108:n-GaInAs发射区层;
109:n-AlInP窗口层; 110:n++-GaInP/p++-AlGaAs隧穿结层;
111:p-AlGaInP背场层; 112:p-GaInP基区层;
113:GaInP/AlGaInP量子阱层 114:n-GaInP发射区层;
115:n-AlInP窗口层; 116:n+-GaAs欧姆接触层。
具体实施方式
下面结合实施例并对照附图对本发明作进一步详细说明。
一种多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法,采用的衬底为p-Ge衬底,设备为MOCVD,使用的MO源为TMGa、TMAl和TMIn,使用的掺杂源为CCl4、DEZn和SiH4,使用的特气为AsH3和PH3
具体步骤如下:
A、在p-Ge衬底上以620℃温度生长n-AlGaInP成核层,n-AlGaInP成核层的厚度为0.01μm,掺杂浓度为1~2×1018cm-3
B、在n-AlGaInP成核层上以650℃温度生长n-GaAs/GaInAs缓冲层,n-GaAs/GaInAs缓冲层的厚度为0.5μm,掺杂浓度为≥1×1018cm-3
C、在GaAs/GaInAs缓冲层上以650℃温度生长n++-GaAs层,其中n++-GaAs层的厚度为0.01-003μm,掺杂浓度为≥5×1018cm-3,在n++-GaAs层上以620℃温度生长p++-GaAs层,p++-GaAs层的厚度为0.01-003μm,掺杂浓度为≥1×1019cm-3
D、在p++-GaAs层上以650℃温度生长p-AlGaAs/p-AlGaInAs (DBR)反射层,p-AlGaAs/p-AlGaInAs反射层的厚度为1.8μm,掺杂浓度为1×1018 cm-3
E、在AlGaAs/AlGaInAs反射层上以650℃温度生长p-AlGaAs 背场层,p-AlGaAs 背场层的厚度为0.1μm,掺杂浓度为1~2×1018 cm-3
F、在AlGaAs 背场层上以650℃温度生长p-GaInAs基区层,p-GaInAs基区层的厚度为0.6μm,掺杂浓度为2~8×1016cm-3
G、在GaInAs基区层上以650℃温度生长GaAsP/GaInAs量子阱层,量子阱结构由阱层和垒层交叉组成,阱层材料为Ga0.94In0.06As,垒层的材料为GaAs0.5P0.5;量子阱层的厚度为1μm,阱层和垒层交叉的对数为30对;
H、在GaAsP/GaInAs量子阱层上以650℃温度生长在n-GaInAs发射区层,n-GaInAs发射区层的厚度为0.1μm,掺杂浓度为1×1018 cm-3
I、在GaInAs发射区层上以650℃温度生长n-AlInP窗口层,n-AlInP窗口层的厚度为0.1μm,掺杂浓度为1×1018cm-3
J、在AlInP窗口层上以620℃温度生长n++-GaInP/p++-AlGaAs隧穿结层,其中:n++-GaInP层的厚度为0.01-003μm,掺杂浓度为≥5×1018cm-3,p++-AlGaAs层的厚度为0.01-003μm,掺杂浓度为≥5×1019cm-3
K、在GaInP/AlGaAs隧穿结层上以620℃温度生长p-AlGaInP 背场层,p-AlGaInP 背场层的厚度为0.1μm,掺杂浓度为1~2×1018 cm-3
L、在AlGaInP 背场层上以630℃温度生长p-GaInP基区层,p-GaInP基区层的厚度为0.25μm,掺杂浓度为1~8×1016cm-3
M、在GaInP基区层上以630℃温度生长GaInP/AlGaInP量子阱层,阱层材料为Ga0.45In0.55P,垒层材料为(Al0.1Ga0.9)0.5In0.5P;量子阱层的厚度为0.45μm;阱层和垒层交叉的对数为15对;
N、在GaInP/AlGaInP量子阱层上以630℃温度生长n-GaInP发射区层,n-GaInP发射区层的厚度为0.1μm,掺杂浓度为1×1018cm-3
O、在GaInP发射区层上以630℃温度生长n-AlInP窗口层,n-AlInP窗口层的厚度为0.1μm,掺杂浓度为1×1018cm-3
P、在AlInP窗口层上以630℃温度生长n+-GaAs欧姆接触层,n+-GaAs欧姆接触层的厚度为0.5μm,掺杂浓度大于5×1018cm-3

Claims (4)

1.一种多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法,其特征在于:在由GaInAs基区层、发射区层、AlGaAs背场层、AlInP窗口层构成的中电池中引入GaAsP/GaInAs量子阱层,在由GaInP基区层、发射区层、AlGaInP背场层、AlInP窗口层构成的顶电池中引入GaInP/AlGaInP量子阱层,具体步骤如下:
提供一p-Ge衬底,在p-Ge衬底上依次外延生长n-AlGaInP成核层,n-GaAs/ n-GaInAs缓冲层,n++-GaAs/p++-GaAs隧穿结层,p-AlGaAs/p-AlGaInAs (DBR)反射层,p-AlGaAs 背场层,p-GaInAs基区层,GaAsP/GaInAs量子阱层,n-GaInAs发射区层,n-AlInP窗口层,n++-GaInP/p++-AlGaAs隧穿结层,p-AlGaInP背场层,p-GaInP基区层,GaInP/AlGaInP量子阱层,n-GaInP发射区层,n-AlInP窗口层和n+-GaAs欧姆接触层。
2.根据权利要求1所述的多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法,其特征在于:衬底材料为p-Ge;n-AlGaInP成核层的厚度为0.01μm,掺杂浓度为1~2×1018cm-3
n-GaAs/GaInAs缓冲层的厚度为0.5μm,掺杂浓度为≥1×1018cm-3
n++-GaAs/p++-GaAs隧穿结层,其中n++-GaAs层的厚度为0.01-003μm,掺杂浓度为≥5×1018cm-3,p++-GaAs层的厚度为0.01-003μm,掺杂浓度为≥1×1019cm-3
p-AlGaAs/p-AlGaInAs反射层的厚度为1.8μm,掺杂浓度为1×1018 cm-3
p-AlGaAs 背场层的厚度为0.1μm,掺杂浓度为1~2×1018 cm-3
p-GaInAs基区层的厚度为0.6μm,掺杂浓度为2~8×1016cm-3
n-GaInAs发射区层的厚度为0.1μm,掺杂浓度为1×1018cm-3
n-AlInP窗口层的厚度为0.1μm,掺杂浓度为1×1018cm-3
n++-GaInP/p++-AlGaAs隧穿结层,其中n++- GaInP层的厚度为0.01-003μm,掺杂浓度为≥5×1018cm-3,p++-AlGaAs层的厚度为0.01-003μm,掺杂浓度为≥5×1019cm-3
p-AlGaInP 背场层的厚度为0.1μm,掺杂浓度为1~2×1018 cm-3
p-GaInP基区层的厚度为0.25μm,掺杂浓度为1~8×1016cm-3
n-GaInP发射区层的厚度为0.1μm,掺杂浓度为1×1018cm-3
n-AlInP窗口层的厚度为0.1μm,掺杂浓度为1×1018cm-3
n+-GaAs欧姆接触层厚度为0.5μm,掺杂浓度大于5×1018cm-3
3.根据权利要求1所述的多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法,其特征在于:在GaAsP/GaInAs量子阱层中,阱层材料为Ga0.94In0.06As,垒层的材料为GaAs0.5P0.5;量子阱层的厚度为1μm,阱层和垒层交叉的对数为30对。
4.根据权利要求1所述的多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法,其特征在于:在GaInP/AlGaInP量子阱层中,阱层材料为Ga0.45In0.55P, 垒层材料为Al0.1Ga0.9) 0.5In0.5P;量子阱层的厚度为0.45μm,阱层和垒层交叉的对数为15对。
CN201710683629.4A 2017-08-11 2017-08-11 一种多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法 Pending CN107316909A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710683629.4A CN107316909A (zh) 2017-08-11 2017-08-11 一种多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710683629.4A CN107316909A (zh) 2017-08-11 2017-08-11 一种多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法

Publications (1)

Publication Number Publication Date
CN107316909A true CN107316909A (zh) 2017-11-03

Family

ID=60170861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710683629.4A Pending CN107316909A (zh) 2017-08-11 2017-08-11 一种多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法

Country Status (1)

Country Link
CN (1) CN107316909A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109524492A (zh) * 2018-11-13 2019-03-26 中山德华芯片技术有限公司 一种提高多结太阳能电池少数载流子收集的方法
DE102018001592A1 (de) * 2018-03-01 2019-09-05 Azur Space Solar Power Gmbh Mehrfachsolarzelle
CN113594285A (zh) * 2021-09-30 2021-11-02 南昌凯迅光电有限公司 一种正向四结砷化镓太阳电池及其制作方法
CN113990977A (zh) * 2021-10-26 2022-01-28 扬州乾照光电有限公司 一种多结太阳电池结构及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1929153A (zh) * 2005-09-07 2007-03-14 中国科学院物理研究所 一种含有多量子阱结构的InGaN系宽谱太阳能电池
CN101388419A (zh) * 2008-10-27 2009-03-18 厦门乾照光电有限公司 具有反射层的三结太阳电池及其制造方法
CN101499493A (zh) * 2009-02-23 2009-08-05 东南大学 一种三结太阳能电池
CN102509742A (zh) * 2011-10-31 2012-06-20 傲普托通讯技术有限公司 一种晶格失配三结太阳电池外延生长方法
CN102832285A (zh) * 2012-09-07 2012-12-19 天津三安光电有限公司 一种三结太阳能电池及其制备方法
CN103915522A (zh) * 2013-01-03 2014-07-09 安科太阳能公司 在中间电池中具有低带隙吸收层的多结太阳能电池和其制备方法
CN203721752U (zh) * 2013-12-11 2014-07-16 天津中环新光科技有限公司 带有分布布拉格反射器的三结太阳能电池
CN104300015A (zh) * 2014-10-13 2015-01-21 北京工业大学 AlGaAs/GaInAs/Ge连续光谱太阳能电池
CN105355683A (zh) * 2015-12-11 2016-02-24 上海空间电源研究所 一种基于p型掺杂量子阱结构的正向三结太阳能电池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1929153A (zh) * 2005-09-07 2007-03-14 中国科学院物理研究所 一种含有多量子阱结构的InGaN系宽谱太阳能电池
CN101388419A (zh) * 2008-10-27 2009-03-18 厦门乾照光电有限公司 具有反射层的三结太阳电池及其制造方法
CN101499493A (zh) * 2009-02-23 2009-08-05 东南大学 一种三结太阳能电池
CN102509742A (zh) * 2011-10-31 2012-06-20 傲普托通讯技术有限公司 一种晶格失配三结太阳电池外延生长方法
CN102832285A (zh) * 2012-09-07 2012-12-19 天津三安光电有限公司 一种三结太阳能电池及其制备方法
CN103915522A (zh) * 2013-01-03 2014-07-09 安科太阳能公司 在中间电池中具有低带隙吸收层的多结太阳能电池和其制备方法
CN203721752U (zh) * 2013-12-11 2014-07-16 天津中环新光科技有限公司 带有分布布拉格反射器的三结太阳能电池
CN104300015A (zh) * 2014-10-13 2015-01-21 北京工业大学 AlGaAs/GaInAs/Ge连续光谱太阳能电池
CN105355683A (zh) * 2015-12-11 2016-02-24 上海空间电源研究所 一种基于p型掺杂量子阱结构的正向三结太阳能电池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018001592A1 (de) * 2018-03-01 2019-09-05 Azur Space Solar Power Gmbh Mehrfachsolarzelle
CN109524492A (zh) * 2018-11-13 2019-03-26 中山德华芯片技术有限公司 一种提高多结太阳能电池少数载流子收集的方法
CN109524492B (zh) * 2018-11-13 2021-07-02 中山德华芯片技术有限公司 一种提高多结太阳能电池少数载流子收集的方法
CN113594285A (zh) * 2021-09-30 2021-11-02 南昌凯迅光电有限公司 一种正向四结砷化镓太阳电池及其制作方法
CN113594285B (zh) * 2021-09-30 2021-12-21 南昌凯迅光电有限公司 一种正向四结砷化镓太阳电池及其制作方法
CN113990977A (zh) * 2021-10-26 2022-01-28 扬州乾照光电有限公司 一种多结太阳电池结构及其制备方法

Similar Documents

Publication Publication Date Title
US10066318B2 (en) Isoelectronic surfactant induced sublattice disordering in optoelectronic devices
JP5425480B2 (ja) 倒置型メタモルフィック多接合ソーラーセルにおけるヘテロ接合サブセル
US9214580B2 (en) Multi-junction solar cell with dilute nitride sub-cell having graded doping
US20030136442A1 (en) Group III-V solar cell
CN108493284B (zh) 一种晶格失配的多结太阳能电池及其制作方法
JP2010263222A (ja) Iv/iii−v族ハイブリッド合金を有する多接合太陽電池
US20150068581A1 (en) Fabrication Method for Multi-junction Solar Cells
JP2004296658A (ja) 多接合太陽電池およびその電流整合方法
US9324911B2 (en) Methods of fabricating dilute nitride semiconductor materials for use in photoactive devices and related structures
CN112447868A (zh) 一种高质量四结空间太阳电池及其制备方法
CN109285909B (zh) 一种多结太阳能电池及其制作方法
CN107316909A (zh) 一种多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法
CN109560166A (zh) 一种超晶格空间GaInP/InGaAs/Ge电池外延片的制造方法
CN111430493B (zh) 一种多结太阳能电池及供电设备
CN109285908B (zh) 一种晶格失配的多结太阳能电池及其制作方法
JPH0964386A (ja) 多接合太陽電池
US20120073658A1 (en) Solar Cell and Method for Fabricating the Same
CN103000740A (zh) GaAs/GaInP双结太阳能电池及其制作方法
RU2605839C2 (ru) Фотоэлектрический преобразователь
CN109545898A (zh) 一种抗辐照增强型空间GaInP/GaInAs/Ge电池外延片的制造方法
CN212257428U (zh) 一种异质pn结空间电池外延片
CN111276560B (zh) 砷化镓太阳电池及其制造方法
JP2005347402A (ja) 裏面反射型化合物半導体太陽電池およびその製造方法
Zhang et al. Exploration of Lattice-matched monolithic algainp/algaas/gainas/gainnas/Ge 5-junction solar cell grown by MOVPE
CN108198891B (zh) 太阳能电池及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171103

RJ01 Rejection of invention patent application after publication