CN109560166A - 一种超晶格空间GaInP/InGaAs/Ge电池外延片的制造方法 - Google Patents

一种超晶格空间GaInP/InGaAs/Ge电池外延片的制造方法 Download PDF

Info

Publication number
CN109560166A
CN109560166A CN201811416792.5A CN201811416792A CN109560166A CN 109560166 A CN109560166 A CN 109560166A CN 201811416792 A CN201811416792 A CN 201811416792A CN 109560166 A CN109560166 A CN 109560166A
Authority
CN
China
Prior art keywords
layer
gainp
battery
source
doping concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811416792.5A
Other languages
English (en)
Inventor
万智
徐培强
林晓珊
张银桥
汪洋
王向武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Kaixun Photoelectric Co Ltd
Original Assignee
Nanchang Kaixun Photoelectric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Kaixun Photoelectric Co Ltd filed Critical Nanchang Kaixun Photoelectric Co Ltd
Priority to CN201811416792.5A priority Critical patent/CN109560166A/zh
Publication of CN109560166A publication Critical patent/CN109560166A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种超晶格空间GaInP/InGaAs/Ge电池外延片的制造方法,目前,GaInP/InGaAs/Ge三结电池中Ge材料禁带宽度较小,吸收的光谱范围较宽,导致其电流密度远大于InGaAs中电池和GaInP顶电池层,造成了太阳光的利用率的损失,本发明公开了一种超晶格空间GaInP/InGaAs/Ge电池外延片的制造方法,它是分别在中电池和顶电池的基区中引入超晶格结构,即:本发明通过在中电池的p‑GaInAs基区层和顶电池的p‑GaInP基区层之中分别引入GaAsP/GaInAs和GaInP/AlGaInP超晶格,因而能改善电池中的电流匹配,提高电池的的抗辐照性能,同时使少数光生载流子收集效率提升,减少光生载流子的辐射复合,从而提高了空间GaInP/InGaAs/Ge电池外延片的光电转化效率,使电池性能进一步提升。

Description

一种超晶格空间GaInP/InGaAs/Ge电池外延片的制造方法
技术领域
本发明涉及电池外延片的制造方法,尤其是涉及一种超晶格空间GaInP/InGaAs/Ge电池外延片的制造方法。
背景技术
GaAs太阳能电池是目前空间卫星最主要的动力来源,它相比于其它光伏电池具有光电转化效率高、抗辐照性能好等特点。GaAs太阳能电池目前具有多种结构和类型,其中晶格匹配的GaInP/InGaAs/Ge三结太阳能电池是最常用的结构。在此结构中,GaInP、InGaAs、Ge三种材料晶格参数匹配,禁带宽度固定,各节电池负责吸收一定波长范围的光谱。GaInP/InGaAs/Ge三结电池中Ge材料禁带宽度较小,吸收的光谱范围较宽,导致其电流密度远大于InGaAs中电池和GaInP顶电池层,造成了太阳光的利用率的损失。
为了改善常规GaInP/InGaAs/Ge三结太阳能电池电流不匹配的情况,一种方法是在GaInP顶电池和InGaAs中电池中分别插入量子阱结构。量子阱结构虽然可以加宽中电池和顶电池的吸收光谱宽度、改善电池的抗辐照性能,增加电池的整体电流密度,但量子阱结构中垒层形成的势垒,对光生载流子起到了限制作用,使得光子的收集能力减弱,对电池短路电流和开路电压形成了负面的影响,使得量子阱结构的引入对电池的性能并未有明显的改善。
发明内容
本发明的目的在于提供一种改善空间量子阱结构GaInP/InGaAs/Ge电池对光子载流子收集效率、提高光电转化效率的超晶格空间GaInP/InGaAs/Ge电池外延片的制造方法。
本发明的目的是这样实现的:
一种超晶格空间GaInP/InGaAs/Ge电池外延片的制造方法,特征是:在由GaInAs基区层、发射区层、AlGaAs背场层、AlInP窗口层构成的中电池和由GaInP基区层、发射区层、AlGaInP背场层、AlInP窗口层构成的顶电池中分别引入GaAsP/GaInAs和GaInP/AlGaInP超晶格层,其中中电池超晶格GaAsP层沉积厚度控制在10~20nm,顶电池超晶格AlGaInP层沉积厚度控制在10~20nm,中电池和顶电池分别插入两个和一个超晶格结构。具体步骤如下:
运用金属有机化合物化学气相沉淀设备(Metal Organic Chemical VaporDeposition,MOCVD),在p-Ge衬底上依次沉积n-AlGaInP成核层,n-GaAs/n-GaInAs缓冲层,n++-GaAs/p++-GaAs隧穿结层,p-AlGaAs/p-AlGaInAs(DBR)反射层,p-AlGaAs背场层,p-GaInAs基区层,p-GaInAs基区层中沉积两个独立的GaAsP/GaInAs超晶格结构,再沉积n-GaInAs发射区层,n-AlInP窗口层,n++-GaInP/p++-AlGaAs隧穿结层,p-AlGaInP背场层,p-GaInP基区层,p-GaInP基区层中沉积1个独立的GaAsP/GaInAs超晶格结构,再沉积n-GaInP发射区层,n-AlInP窗口层和n+-GaAs欧姆接触层。
衬底材料为p-Ge,厚度为130~150μm,掺杂Ga源、掺杂浓度为0.2E18~3E18cm-3,9°切角;
n-AlGaInP成核层沉积厚度为0.01μm,掺杂浓度为1~2×1018cm-3
n-GaAs/n-GaInAs缓冲层沉积厚度为0.5μm,掺杂浓度为≥1×1018cm-3
n++-GaAs/p++-GaAs隧穿结层,其中n++-GaAs层沉积厚度为0.01~0.03μm,掺杂浓度为≥5×1018cm-3,p++-GaAs层沉积厚度为0.01~0.03μm,掺杂浓度为≥1×1019cm-3
p-AlGaAs/p-AlGaInAs(DBR)反射层沉积厚度为1.8μm,掺杂浓度为5×1017cm-3
p-AlGaAs背场层沉积厚度为0.1μm,掺杂浓度为1~2×1018cm-3
p-GaInAs基区层沉积厚度共为0.3μm,分三层,每层0.1μm,三层间插入两组超晶格结构,掺杂浓度都为2~8×1016cm-3
GaAsP/GaInAs超晶格结构共2组相同结构,每组结构厚度0.615μm。超晶格结构中GaAsP层厚度0.015μm,GaInAs层沉积厚度分别为0.12μm、0.105μm、0.09μm、0.075μm、0.06μm、0.045μm、0.03μm。
n-GaInAs发射区层沉积厚度为0.1μm,掺杂浓度为1×1018cm-3
n-AlInP窗口层沉积厚度为0.1μm,掺杂浓度为1×1018cm-3
n++-GaInP/p++-AlGaAs隧穿结层,其中n++-GaInP层沉积厚度为0.01~0.03μm,掺杂浓度为≥5×1018cm-3,p++-AlGaAs层沉积厚度为0.01~0.03μm,掺杂浓度为≥5×1019cm-3
p-AlGaInP背场层沉积厚度为0.1μm,掺杂浓度为1~2×1018cm-3
p-GaInP基区层沉积厚度为0.2μm,分两层,每层0.1μm,两层中间插入超晶格结构,掺杂浓度为1~8×1016cm-3
GaInP/AlGaInP超晶格结构沉积厚度为0.615μm。结构中AlGaInP沉积厚度0.015μm,GaInP沉积厚度分别为0.12μm、0.105μm、0.09μm、0.075μm、0.06μm、0.045μm、0.03μm。
n-GaInP发射区层沉积厚度为0.1μm,掺杂浓度为1×1018cm-3
n-AlInP窗口层沉积厚度为0.1μm,掺杂浓度为1×1018cm-3
n+-GaAs欧姆接触层沉积厚度为0.5μm,掺杂浓度大于5×1018cm-3
由于将超晶格结构中的垒层变薄,使得相邻阱结构中能带从孤立到杂化,使得整个超晶格相邻阱之间形成连续的能带分布。通过阱宽度的逐渐递减的设计,使得光子载流子在内建电场的作用下,形成共振隧穿,减少了光生载流子的复合,克服了量子阱结构垒层限制的弊端,从而改善了电池性能。
和常规结构相比,本发明是分别在中电池和顶电池基区层中间插入超晶格结构,即:本发明通过在中电池的p-GaInAs基区层和顶电池的p-GaInP基区之中分别引入GaAsP/GaInAs超晶格和GaInP/AlGaInP超晶格结构,因而能加宽电池的吸收光谱宽度,改善电池的的抗辐照性能,提升光生载流子的收集效率,从而提高了空间GaInP/InGaAs/Ge电池外延片的光电转化效率,使电池性能进一步改善。
附图说明
图1是本发明涉及到的外延层结构的示意图。
图2是本发明涉及的中电池和顶电池超晶格结构设计示意图;超晶格结构由阱层和垒层交叉组成。
附图标记:
100:P型Ge衬底;
101:n-AlGaInP成核层;
102:n-GaAs/GaInAs缓冲层;
103:n++-GaAs/p++-GaAs隧穿结层;
104:p-AlGaAs/p-AlGaInAs(DBR)反射层;
105:p-AlGaAs背场层;
106:p-GaInAs基区层和GaAsP/GaInAs超晶格层;
107:n-GaInAs发射区层;
108:n-AlInP窗口层;
109:n++-GaInP/p++-AlGaAs隧穿结层;
110:p-AlGaInP背场层;
111:p-GaInP基区层和GaInP/AlGaInP超晶格层;
112:n-GaInP发射区层;
113:n-AlInP窗口层;
114:n+-GaAs欧姆接触层。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合实例并对照附图对本发明作进一步详细说明。
一种超晶格空间GaInP/InGaAs/Ge电池外延片的制造方法,采用的设备为德国AXITRON公司生产的2600G3型MOCVD(Metal Organic Chemical Vapor Deposition,金属有机化合物化学气相沉淀)。衬底为p型Ge衬底,掺杂Ga源、掺杂浓度为0.2E18~3E18cm-3,厚度为130~150μm,9°切角。使用的MO源为TMGa、TMAl和TMIn,使用的掺杂源为CCl4、DEZn和SiH4,使用的特气为AsH3和PH3
具体步骤如下:
A、MOCVD反应室升温至400℃通入PH3,将反应室升温至690℃,压力设为230mbar,在p-Ge衬底表面通过P扩散形成N型掺杂约1×1018cm-3的Ge子电池。将反应室温度降至620℃,通入TMAl、TMGa、TMIn源、特气PH3,沉积n-AlGaInP成核层,AlGaInP成核层沉积厚度为0.01μm,掺杂源SiH4、掺杂浓度为1~2×1018cm-3
B、反应室升温至650℃、压力控制在450mbar,在n-AlGaInP成核层上沉积n-GaAs/n-GaInAs缓冲层,n-GaAs/n-GaInAs缓冲层沉积厚度0.5μm,掺杂SiH4源、掺杂浓度为≥1×1018cm-3
C、反应室将温至630℃、压力控制在50mbar,在GaAs/GaInAs缓冲层上沉积n++-GaAs层,其中n++-GaAs层沉积厚度为0.01-0.03μm,掺杂SiH4源、掺杂浓度为≥5×1018cm-3,反应降温至620℃,在n++-GaAs层上以沉积p++-GaAs层,p++-GaAs层沉积厚度为0.01-0.03μm,掺杂CCl4源、掺杂浓度为≥1×1019cm-3
D、反应室温度升高至650℃、在p++-GaAs层上沉积p-AlGaAs/p-AlGaInAs(DBR)反射层,p-AlGaAs/p-AlGaInAs反射层沉积厚度为1.8μm,掺杂DEZn源、掺杂浓度为5×1017cm-3
E、在AlGaAs/AlGaInAs反射层上以650℃温度沉积p-AlGaAs背场层,p-AlGaAs背场层沉积厚度为0.1μm,掺杂DEZn源、掺杂浓度为1~2×1018cm-3
F、在AlGaAs背场层上以650℃温度沉积p-GaInAs基区层0.1μm,掺杂DEZn源、掺杂浓度为2~8×1016cm-3,再沉积超晶格结构,GaAsP/GaInAs层交替生长,GaAsP层沉积厚度0.015μm,GaInAs层沉积厚度分别为0.12μm、0.105μm、0.09μm、0.075μm、0.06μm、0.045μm、0.03μm,掺杂DEZn源、掺杂浓度2~8×1016cm-3。再同样的条件沉积p-GaInAs基区层0.1μm和另一组GaAsP/GaInAs超晶格,接着同样的条件再沉积p-GaInAs基区层0.1μm;
G、在p-GaInAs基区层上以650℃温度沉积n-GaInAs发射区层,n-GaInAs发射区层沉积厚度为0.1μm,掺杂SiH4源、掺杂浓度为1×1018cm-3
H、在GaInAs发射区层上以650℃温度沉积n-AlInP窗口层,n-AlInP窗口层沉积厚度为0.1μm,掺杂SiH4源、掺杂浓度为1×1018cm-3
I、在AlInP窗口层上以620℃温度沉积n++-GaInP/p++-AlGaAs隧穿结层,其中:n++-GaInP层沉积厚度为0.01-0.03μm,掺杂SiH4源、掺杂浓度为≥5×1018cm-3,p++-AlGaAs层沉积厚度为0.01-0.03μm,掺杂源CCl4、掺杂浓度为≥5×1019cm-3
J、在GaInP/AlGaAs隧穿结层上以620℃温度沉积p-AlGaInP背场层,p-AlGaInP背场层沉积厚度为0.1μm,掺杂DEZn源、掺杂浓度为1~2×1018
-3
cm;
K、应室温度升至630℃、在AlGaInP背场层上沉积p-GaInP基区层,沉积厚度0.1μm,掺杂DEZn源、掺杂浓度为1~8×1016cm-3。再沉积超晶格结构,GaInP/AlGaInP层交替生长,AlGaInP层沉积厚度0.015μm,GaInP层沉积厚度分别为0.12μm、0.105μm、0.09μm、0.075μm、0.06μm、0.045μm、0.03μm,掺杂DEZn源、掺杂浓度1~8×1016cm-3。再同样的条件沉积p-GaInP基区层0.1μm;
L、在GaInP基区层上以630℃温度沉积n-GaInP发射区层,n-GaInP发射区层沉积厚度为0.1μm,掺杂SiH4源、掺杂浓度为1×1018cm-3
M、在GaInP发射区层上以630℃温度沉积n-AlInP窗口层,n-AlInP窗口层沉积厚度为0.1μm,掺杂SiH4源、掺杂浓度为1×1018cm-3
N、在AlInP窗口层上以630℃温度沉积n+-GaAs欧姆接触层,n+-GaAs欧姆接触层沉积厚度为0.5μm,掺杂SiH4源、掺杂浓度大于5×1018cm-3
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (4)

1.一种超晶格空间GaInP/InGaAs/Ge电池外延片的制造方法,其特征在于:在中电池和顶电池分别引入GaAsP/GaInAs和GaInP/AlGaInP超晶格层,具体步骤如下:
运用金属有机化合物化学气相沉淀设备(Metal Organic Chemical VaporDeposition,MOCVD),在p-Ge衬底上依次沉积n-AlGaInP成核层,n-GaAs/n-GaInAs缓冲层,n++-GaAs/p++-GaAs隧穿结层,p-AlGaAs/p-AlGaInAs(DBR)反射层,p-AlGaAs背场层,p-GaInAs基区层,GaAsP/GaInAs超晶格层,n-GaInAs发射区层,n-AlInP窗口层,n++-GaInP/p++-AlGaAs隧穿结层,p-AlGaInP背场层,p-GaInP基区层,GaInP/AlGaInP超晶格层,n-GaInP发射区层,n-AlInP窗口层和n+-GaAs欧姆接触层。
2.根据权利要求1所述的一种超晶格空间GaInP/InGaAs/Ge电池外延片的制造方法,其特征在于:
衬底材料为p型Ge衬底,掺杂Ga源、掺杂浓度为0.2E18~3E18cm-3,厚度为130~150μm,9°切角;
n-AlGaInP成核层沉积厚度为0.01μm,掺杂SiH4源、掺杂浓度为1~2×1018cm-3
n-GaAs/n-GaInAs缓冲层沉积厚度为0.5μm,掺杂SiH4源、掺杂浓度为≥1×1018cm-3
n++-GaAs/p++-GaAs隧穿结层,其中n++-GaAs层沉积厚度为0.01-0.03μm,掺杂SiH4源、掺杂浓度为≥5×1018cm-3,p++-GaAs层沉积厚度为0.01-0.03μm,掺杂CCl4源、掺杂浓度为≥1×1019cm-3
p-AlGaAs/p-AlGaInAs反射层沉积厚度为1.8μm,掺杂DEZn源、掺杂浓度为5×1017cm-3
p-AlGaAs背场层沉积厚度为0.1μm,掺杂DEZn源、掺杂浓度为1~2×1018cm-3
p-GaInAs基区层沉积总厚度为0.3μm,分三层,每层0.1μm,三层间插入两组超晶格结构,掺杂DEZn源、掺杂浓度都为2~8×1016cm-3
超晶格材料为GaAsP/GaInAs,阱层厚度逐渐减薄;
n-GaInAs发射区层沉积厚度为0.1μm,掺杂SiH4源、掺杂浓度为1×1018cm-3
n-AlInP窗口层沉积厚度为0.1μm,掺杂SiH4源、掺杂浓度为1×1018cm-3
n++-GaInP/p++-AlGaAs隧穿结层,其中n++-GaInP层沉积厚度为0.01-0.03μm,掺杂SiH4源、掺杂浓度为≥5×1018cm-3,p++-AlGaAs层沉积厚度为0.01-0.03μm,掺杂CCl4源、掺杂浓度为≥5×1019cm-3
p-AlGaInP背场层沉积厚度为0.1μm,掺杂DEZn源、掺杂浓度为1~2×1018cm-3
p-GaInP基区层沉积厚度为0.2μm,分两层,每层0.1μm,两层间插入超晶格结构,掺杂DEZn源、掺杂浓度为1~8×1016cm-3
超晶格材料为GaInP/AlGaInP,阱层厚度逐渐减薄;
n-GaInP发射区层沉积厚度为0.1μm,掺杂SiH4源、掺杂浓度为1×1018cm-3
n-AlInP窗口层沉积厚度为0.1μm,掺杂SiH4源、掺杂浓度为1×1018cm-3
n+-GaAs欧姆接触层沉积厚度为0.5μm,掺杂SiH4源、掺杂浓度大于5×1018cm-3
3.根据权利要求1所述的一种超晶格空间GaInP/InGaAs/Ge电池外延片的制造方法,其特征在于:在GaAsP/GaInAs超晶格中,阱层材料为Ga0.94In0.06As,垒层的材料为GaAs0.5P0.5;GaInAs层沉积厚度分别为0.12μm、0.105μm、0.09μm、0.075μm、0.06μm、0.045μm、0.03μm。
4.根据权利要求1所述的一种超晶格空间GaInP/InGaAs/Ge电池外延片的制造方法,其特征在于:在GaInP/AlGaInP量子阱层中,阱层材料为Ga0.45In0.55P,垒层材料为(Al0.1Ga0.9)0.5In0.5P;GaInP层沉积厚度分别为0.12μm、0.105μm、0.09μm、0.075μm、0.06μm、0.045μm、0.03μm。
CN201811416792.5A 2019-01-16 2019-01-16 一种超晶格空间GaInP/InGaAs/Ge电池外延片的制造方法 Pending CN109560166A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811416792.5A CN109560166A (zh) 2019-01-16 2019-01-16 一种超晶格空间GaInP/InGaAs/Ge电池外延片的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811416792.5A CN109560166A (zh) 2019-01-16 2019-01-16 一种超晶格空间GaInP/InGaAs/Ge电池外延片的制造方法

Publications (1)

Publication Number Publication Date
CN109560166A true CN109560166A (zh) 2019-04-02

Family

ID=65867613

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811416792.5A Pending CN109560166A (zh) 2019-01-16 2019-01-16 一种超晶格空间GaInP/InGaAs/Ge电池外延片的制造方法

Country Status (1)

Country Link
CN (1) CN109560166A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117344A (zh) * 2020-09-23 2020-12-22 扬州乾照光电有限公司 一种太阳能电池以及制作方法
CN112713205A (zh) * 2021-03-29 2021-04-27 南昌凯迅光电有限公司 一种高抗辐照三结砷化镓太阳电池及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117344A (zh) * 2020-09-23 2020-12-22 扬州乾照光电有限公司 一种太阳能电池以及制作方法
CN112713205A (zh) * 2021-03-29 2021-04-27 南昌凯迅光电有限公司 一种高抗辐照三结砷化镓太阳电池及其制备方法

Similar Documents

Publication Publication Date Title
US10066318B2 (en) Isoelectronic surfactant induced sublattice disordering in optoelectronic devices
JP5215284B2 (ja) 多接合型化合物半導体太陽電池
CN112447868B (zh) 一种高质量四结空间太阳电池及其制备方法
CN108493284B (zh) 一种晶格失配的多结太阳能电池及其制作方法
CN102422443A (zh) 由应力补偿化合物半导体层构成的隧道二极管
JP2003218374A (ja) Iii−v族太陽電池
US9324911B2 (en) Methods of fabricating dilute nitride semiconductor materials for use in photoactive devices and related structures
US20150068581A1 (en) Fabrication Method for Multi-junction Solar Cells
US20140090700A1 (en) High-concentration multi-junction solar cell and method for fabricating same
CN107316909A (zh) 一种多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法
CN109560166A (zh) 一种超晶格空间GaInP/InGaAs/Ge电池外延片的制造方法
US9337377B2 (en) Methods of forming dilute nitride materials for use in photoactive devices and related structures
JP5758257B2 (ja) 化合物半導体太陽電池製造用積層体、化合物半導体太陽電池およびその製造方法
JP6335784B2 (ja) 可変バンドギャップ太陽電池
CN109545897A (zh) 一种基区带隙递变的空间GaInP/GaInAs/Ge电池外延片的制造方法
CN103000740A (zh) GaAs/GaInP双结太阳能电池及其制作方法
JPH0964386A (ja) 多接合太陽電池
JP2013115249A (ja) 多接合型太陽電池
CN111261744A (zh) 多结太阳能电池及其制备方法
RU2605839C2 (ru) Фотоэлектрический преобразователь
CN109285908B (zh) 一种晶格失配的多结太阳能电池及其制作方法
CN109545898A (zh) 一种抗辐照增强型空间GaInP/GaInAs/Ge电池外延片的制造方法
JPH08204215A (ja) 直列接続型太陽電池
CN111276560B (zh) 砷化镓太阳电池及其制造方法
Zhang et al. Exploration of Lattice-matched monolithic algainp/algaas/gainas/gainnas/Ge 5-junction solar cell grown by MOVPE

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: No.199, huangtang West Street, Airport Economic Zone, Nanchang City, Jiangxi Province, 330000

Applicant after: Nanchang Kaixun photoelectric Co.,Ltd.

Address before: 330000 second floor, office building of small, medium and micro enterprise park, Linkong Economic Zone, Nanchang City, Jiangxi Province

Applicant before: NANCHANG KAIXUN PHOTOELECTRIC Co.,Ltd.

CB02 Change of applicant information