CN109285908B - 一种晶格失配的多结太阳能电池及其制作方法 - Google Patents

一种晶格失配的多结太阳能电池及其制作方法 Download PDF

Info

Publication number
CN109285908B
CN109285908B CN201811145297.5A CN201811145297A CN109285908B CN 109285908 B CN109285908 B CN 109285908B CN 201811145297 A CN201811145297 A CN 201811145297A CN 109285908 B CN109285908 B CN 109285908B
Authority
CN
China
Prior art keywords
layer
buffer layer
battery
solar cell
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811145297.5A
Other languages
English (en)
Other versions
CN109285908A (zh
Inventor
吴真龙
叶培飞
李俊承
姜伟
张雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Changelight Co Ltd
Original Assignee
Xiamen Changelight Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Changelight Co Ltd filed Critical Xiamen Changelight Co Ltd
Priority to CN201811145297.5A priority Critical patent/CN109285908B/zh
Publication of CN109285908A publication Critical patent/CN109285908A/zh
Application granted granted Critical
Publication of CN109285908B publication Critical patent/CN109285908B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发公开供了一种晶格失配的多结太阳能电池及其制作方法,提供一第一电池;在所述第一电池上形成变质缓冲层,所述变质缓冲层包括依次叠加形成的多个子缓冲层,且在相邻所述子缓冲层之间形成有进行原位退火的成核层;在所述变质缓冲层背离所述第一电池一侧形成第二电池。由上述内容可知,在相邻的子缓冲层之间形成进行原位退火的成核层,不仅能够通过成核层掩埋其下子缓冲层的位错处,且同时成核层朝向其上的子缓冲层一侧的粗糙表面能够引导后续外延进行横向外延,进而提高变质缓冲层阻挡位错向上延伸的能力;同时,进行原位退火的成核层形成有粗糙表面,以提高该界面处释放应力的效果,改善了晶圆翘曲的问题,实现更大的工艺窗口。

Description

一种晶格失配的多结太阳能电池及其制作方法
技术领域
本发明涉及太阳能电池技术领域,更为具体的说,涉及一种晶格失配的多结太阳能电池及其制作方法。
背景技术
太阳电池可将太阳能直接转换为电能,是一种最有效的清洁能源转换。III-V族化合物半导体太阳电池在目前材料体系中转换效率最高,同时具有耐高温性能好、抗辐照能力强等优点,被公认为是新一代高性能且长寿命的空间主电源,其中GaInP/InGaAs/Ge晶格匹配结构的三结电池已在航天领域得到广泛应用。
但是传统的晶格匹配三结电池的GaInP顶电池和In0.01GaAs中电池的电流密度远小于Ge底电池的电流密度,没有充分利用太阳光谱,限制了光电转换效率的提高。提高太阳电池转换效率的最有效的途径是提高各子电池的带隙匹配程度,从而更合理的分配太阳光谱。改变各子电池的带隙需要通过改变三元甚至四元材料的组分配比,往往会导致各子电池间存在晶格失配产生残余应力和位错,影响电池性能。
在III-V族太阳电池结构的失配材料外延中采用变质缓冲层(metamorphicbuffer)可以释放晶格失配材料外延时产生的残余应力和阻断位错向有源区的延伸。现有变质缓冲层技术采用组分阶变法,一方面组分逐层增加达到目标晶格常数,另一方面每层采用相同组分,使位错钉扎在每一缓冲层的界面处,不向上延伸进入电池有源区。
现有技术中的变质缓冲层技术虽然能够阻挡位错向上延伸,但阻挡位错的能力有限,且释放应力的效果不足,容易出现晶圆翘曲的问题。
发明内容
有鉴于此,本发明提供了一种晶格失配的多结太阳能电池及其制作方法,以解决现有技术中变质缓冲层出现的阻挡位错能力和释放应力效果不足,而出现的晶圆翘曲的问题。
为实现上述目的,本发明提供的技术方案如下:
一种晶格失配的多结太阳能电池的制作方法,所述制作方法包括:
提供一第一电池;
在所述第一电池上形成变质缓冲层,所述变质缓冲层包括依次叠加形成的多个子缓冲层,且在相邻所述子缓冲层之间形成有进行原位退火的成核层;
在所述变质缓冲层背离所述第一电池一侧形成第二电池。
可选的,对任意一所述成核层进行原位退火持续0.5min-5min,包括端点值。
可选的,所述成核层的厚度为5nm-50nm,包括端点值。
可选的,所述成核层的材质与所述子缓冲层的材质相同。
可选的,所述子缓冲层的材质为GaInAs、AlGaInAs、GaInP或AlGaInP。
可选的,在制作所述第二电池完毕后,还包括:
在所述第二电池背离所述第一电池一侧形成第三电池。
可选的,在提供所述第一电池且形成所述变质缓冲层前,以及在制作完毕所述第二电池且在制作所述第三电池前,均还包括:
形成隧穿结。
可选的,在形成所述变质缓冲层且形成所述第二电池前,还包括:
在所述变质缓冲层背离所述第一电池一侧形成DBR反射层。
相应的,本发明还提供了一种晶格失配的多结太阳能电池,所述晶格失配的多结太阳能电池采用上述的晶格失配的多结太阳能电池的制作方法制作而成。
相较于现有技术,本发明提供的技术方案至少具有以下优点:
本发明提供了一种晶格失配的多结太阳能电池及其制作方法,提供一第一电池;在所述第一电池上形成变质缓冲层,所述变质缓冲层包括依次叠加形成的多个子缓冲层,且在相邻所述子缓冲层之间形成有进行原位退火的成核层;在所述变质缓冲层背离所述第一电池一侧形成第二电池。由上述内容可知,在相邻的子缓冲层之间形成进行原位退火的成核层,不仅能够通过成核层掩埋其下子缓冲层的位错处,且同时成核层朝向其上的子缓冲层一侧的粗糙表面能够引导后续外延进行横向外延,进而提高变质缓冲层阻挡位错向上延伸的能力;同时,进行原位退火的成核层形成有粗糙表面,以提高该界面处释放应力的效果,改善了晶圆翘曲的问题,实现更大的工艺窗口。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请实施例提供的一种晶格失配的多结太阳能电池的制作方法的流程图;
图2a-图2c为图1中各步骤对应的结构示意图;
图3为本申请实施例提供的另一种晶格失配的多结太阳能电池的制作方法的流程图;
图4为本申请实施例提供的一种三结太阳能电池的结构示意图;
图5为本申请实施例提供的又一种晶格失配的多结太阳能电池的制作方法的流程图;
图6为本申请实施例提供的又一种晶格失配的多结太阳能电池的制作方法的流程图;
图7为本申请实施例提供的另一种三结太阳能电池的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
正如背景技术所述,现有技术中的变质缓冲层技术虽然能够阻挡位错向上延伸,但阻挡位错的能力有限,且释放应力的效果不足,容易出现晶圆翘曲的问题。
基于此,本申请实施例提供了一种晶格失配的多结太阳能电池及其制作方法,以解决现有技术中变质缓冲层出现的阻挡位错能力和释放应力效果不足,而出现的晶圆翘曲的问题。为实现上述目的,本申请实施例提供的技术方案如下,具体结合图1至图7对本申请实施例提供的技术方案进行详细的说明。
参考图1所示,为本申请实施例提供的一种晶格失配的多结太阳能电池的制作方法的流程图,其中,所述制作方法包括:
S1、提供一第一电池;
S2、在所述第一电池上形成变质缓冲层,所述变质缓冲层包括依次叠加形成的多个子缓冲层,且在相邻所述子缓冲层之间形成有进行原位退火的成核层;
S3、在所述变质缓冲层背离所述第一电池一侧形成第二电池。
由上述内容可知,在相邻的子缓冲层之间形成进行原位退火的成核层,不仅能够通过成核层掩埋其下子缓冲层的位错处,且同时成核层朝向其上的子缓冲层一侧的粗糙表面能够引导后续外延进行横向外延,进而提高变质缓冲层阻挡位错向上延伸的能力;同时,进行原位退火的成核层形成有粗糙表面,以提高该界面处释放应力的效果,改善了晶圆翘曲的问题,实现更大的工艺窗口。
结合图2a-图2c对本申请实施例提供的技术方案进行更详细的描述,其中,图2a-图2c为图1中各步骤对应的结构示意图。
如图2a所示,提供一第一电池100。
本申请提供的第一电池由晶格常数为a1的材料构成的pn结,第二电池由晶格常数为a2的材料构成的pn结,其中,a1比a2小至少0.001nm。
其中,第一电池需要在第一衬底上进行处理获取,本申请不限定第一衬底的具体材质;此外,本申请对于第一衬底的掺杂类型同样不做具体限制,其可以为p型的第一衬底,还可以为n型的第一衬底,只需要能够后续制作过程中掺杂形成pn结即可。
可选的,在本申请实施例中第一衬底可以为p型Ge衬底,即本申请实施例提供的第一电池为Ge电池。具体的,在制作Ge电池时,需要在p型的Ge衬底上进行n型扩散处理得到n型发射区形成的pn结,进一步的通过在p型的Ge衬底上面生长和衬底晶格匹配的(Al)GaInP层作为成核层,并作为Ge电池的窗口层。
其中,本申请实施例提供的n型扩散可以为磷扩散。
如图2b所示,在第一电池100上形成变质缓冲层200,变质缓冲层200包括依次叠加形成的多个子缓冲层210,且相邻子缓冲层210之间形成有进行原位退火的成核层220。
本申请实施例中采用金属有机化学气相外延沉积(MOCVD)方法在第一电池上生成外延结构,如变质缓冲层、隧穿结、DBR反射层、第二电池、第三电池。其中,本申请实施例提供的所述成核层的材质与所述子缓冲层的材质相同,以及,本申请实施例提供的所述子缓冲层的材质可以为GaInAs、AlGaInAs、GaInP或AlGaInP。变质缓冲层至少包括两个子缓冲层,并且,每一子缓冲层的晶格参数均不小于第一电池的晶格参数且不大于第二电池的晶格参数,且所有子缓冲层的晶格参数沿第一电池至第二电池的方向呈增大规律。
进一步的,变质缓冲层的所有子缓冲层中还可以设置一过冲子缓冲层,其中,过冲子缓冲层的晶格参数大于第二电池的晶格参数。
在本申请一实施例中,本申请提供的在一子缓冲层制作完毕后,在该子缓冲层上形成成核层,且对成核层进行原位退火,其中,本申请实施例提供的对任意一所述成核层进行原位退火持续0.5min-5min,包括端点值。以及,本申请实施例形成的所述成核层的厚度可以为5nm-50nm,包括端点值。其中,成核层的制作,不仅能够通过成核层掩埋其下子缓冲层的位错处,且同时成核层朝向其上的子缓冲层一侧的粗糙表面能够引导后续外延进行横向外延,进而提高变质缓冲层阻挡位错向上延伸的能力;同时,进行原位退火的成核层形成有粗糙表面,以提高该界面处释放应力的效果,改善了晶圆翘曲的问题,实现更大的工艺窗口。
进一步的,本申请实施例提供的制作方法还可以在制作完毕最后一子缓冲层后,在最后一子缓冲层上形成进行原位退火的成核层,即该成核层形成与最后一子缓冲层和第二电池之间。
如图2c所示,在变质缓冲层200背离第一电池100一侧形成第二电池300。
本申请实施例提供的第二电池沿第一电池向变质缓冲层的方向上依次生长有:背场层、p型掺杂InGaAs层基区、n型掺杂InGaAs层发射区和窗口层。其中,背场层可以选取GaInP材料或AlGaAs材料,窗口层选取AlGaInP材料或AlInP材料。
本申请实施例提供的多结太阳能电池可以为如图2c所示的两结太阳能电池,为了进一步提高太阳能电池的光电性能,本申请实施例提供的多结太阳能电池还可以三结太阳能电池,如图3所示,为本申请实施例提供的另一种晶格失配的多结太阳能电池的制作方法的流程图,其中,在制作所述第二电池完毕后,即在步骤S3后还包括:
S4、在所述第二电池背离所述第一电池一侧形成第三电池。
结合图4所示,为本申请实施例提供的一种三结太阳能电池的结构示意图,其中,三结太阳能电池包括:
第一电池100;
位于第一电池100上的变质缓冲层200,且变质缓冲层200包括依次叠加形成的多个子缓冲层210,且相邻子缓冲层210之间形成有进行原位退火的成核层220;
位于变质缓冲层200背离第一电池100一侧的第二电池300;
以及,位于第二电池300背离第一电池100一侧的第三电池400。
在本申请一实施例中,本申请提供的第三电池自第一电池至第二电池的方向依次生长有:AlGaInP背场层、p型掺杂AlGaInP或GaInP层基区、n型掺杂AlGaInP或GaInP层发射区和AlInP窗口层。
进一步的,在制作完毕第三电池后,还可以在第三电池背离第一电池一侧形成欧姆接触层,其中,欧姆接触层可以为生长的InGaAs层,且作为与电极形成欧姆接触的N型接触层。
进一步的,本申请实施例提供的多结太阳能电池,在第一电池和变质缓冲层之间,及在第二电池和第三电池之间还可以形成有隧穿结。如图5所示,为本申请实施例提供的又一种晶格失配的多结太阳能电池的制作方法的流程图,其中,在提供所述第一电池且形成所述变质缓冲层前,以及在制作完毕所述第二电池且在制作所述第三电池前,均还包括:
形成隧穿结。
结合图5所示,在步骤S1后且在步骤S2前,还包括步骤S11、在第一电池上形成第一隧穿结,而后在步骤S2中为在第一隧穿结背离第一电池一侧形成变质缓冲层;
以及,在步骤S3后且在步骤S4前,还包括步骤S31,在第二电池背离第一电池一侧形成第二隧穿结,而后在步骤S4中为在第二隧穿结背离第一电池一侧形成第三电池。
在本申请一实施例中,在制作隧穿结时首先生长n型GaAs或n型GaInP作为隧穿结的N型层,生长p型(Al)GaAs材料作为隧穿结的P型层。其中N型和P型掺杂分别采用Si和C掺杂。
进一步的,本申请实施例提供的多结太阳能电池还可以在变质缓冲层和第二电池之间形成DBR反射层,如图6所示,为本申请实施例提供的又一种晶格失配的多结太阳能电池的制作方法的流程图,其中,在形成所述变质缓冲层且形成所述第二电池前,即在步骤S2后且在步骤S3前,还包括步骤S21:
在所述变质缓冲层背离所述第一电池一侧形成DBR反射层,而后在步骤S3中为在DBR反射层背离第一电池一侧形成第二电池。
在本申请一实施例中,制作的分布式布拉格反射镜(DBR反射层)包括交替生长的第一层材料AlxInzGaAs和第二层材料AlyInzGaAs,其中0≤x<y≤1,0.01≤z≤0.03。两层材料交替生长n个周期,n为整数且3≤n≤30。
相应的,本申请实施例还提供了一种晶格失配的多结太阳能电池,所述晶格失配的多结太阳能电池采用上述任意一实施例提供的晶格失配的多结太阳能电池的制作方法制作而成。
其中,综上实施例提供的多结太阳能电池的制作方法,本申请实施例提供的多结太阳能电池可以两结太阳能电池、三结太阳能电池或更多结太阳能电池,其中,以其中一种三结太阳能电池为了进行描述,如图7所示,为本申请实施例提供的另一种多结太阳能电池的结构示意图,其中,图7所示为三结太阳能电池,且三结太阳能电池包括:
第一电池100;
位于第一电池100上的第一隧穿结510;
位于第一隧穿结510背离第一电池100上的变质缓冲层200,且变质缓冲层200包括依次叠加形成的多个子缓冲层210,且相邻子缓冲层210之间形成有进行原位退火的成核层220;
位于变质缓冲层200背离第一电池100一侧的DBR反射层600;
位于DBR反射层600背离第一电池100一侧的第二电池300;
位于第二电池300背离第一电池100一侧的第二隧穿结520;
位于第二隧穿结520背离第一电池100一侧的第三电池400;
以及,位于第三电池400背离第一电池100一侧的欧姆接触层700。
本申请实施例提供了一种晶格失配的多结太阳能电池及其制作方法,提供一第一电池;在所述第一电池上形成变质缓冲层,所述变质缓冲层包括依次叠加形成的多个子缓冲层,且在相邻所述子缓冲层之间形成有进行原位退火的成核层;在所述变质缓冲层背离所述第一电池一侧形成第二电池。由上述内容可知,在相邻的子缓冲层之间形成进行原位退火的成核层,不仅能够通过成核层掩埋其下子缓冲层的位错处,且同时成核层朝向其上的子缓冲层一侧的粗糙表面能够引导后续外延进行横向外延,进而提高变质缓冲层阻挡位错向上延伸的能力;同时,进行原位退火的成核层形成有粗糙表面,以提高该界面处释放应力的效果,改善了晶圆翘曲的问题,实现更大的工艺窗口。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (8)

1.一种晶格失配的多结太阳能电池的制作方法,其特征在于,所述制作方法包括:
提供一第一电池;
在所述第一电池上形成变质缓冲层,所述变质缓冲层包括依次叠加形成的多个子缓冲层,且在相邻所述子缓冲层之间形成有进行原位退火的成核层;其中,任意一进行原位退火的成核层的制作过程为:在所述子缓冲层制作完毕后,在该子缓冲层上形成成核层,且对所述成核层进行原位退火,对任意一所述成核层进行原位退火持续0.5min-5min,包括端点值;
在所述变质缓冲层背离所述第一电池一侧形成第二电池。
2.根据权利要求1所述的晶格失配的多结太阳能电池的制作方法,其特征在于,所述成核层的厚度为5nm-50nm,包括端点值。
3.根据权利要求1所述的晶格失配的多结太阳能电池的制作方法,其特征在于,所述成核层的材质与所述子缓冲层的材质相同。
4.根据权利要求1所述的晶格失配的多结太阳能电池的制作方法,其特征在于,所述子缓冲层的材质为GaInAs、AlGaInAs、GaInP或AlGaInP。
5.根据权利要求1所述的晶格失配的多结太阳能电池的制作方法,其特征在于,在制作所述第二电池完毕后,还包括:
在所述第二电池背离所述第一电池一侧形成第三电池。
6.根据权利要求5所述的晶格失配的多结太阳能电池的制作方法,其特征在于,在提供所述第一电池且形成所述变质缓冲层前,以及在制作完毕所述第二电池且在制作所述第三电池前,均还包括:
形成隧穿结。
7.根据权利要求1所述的晶格失配的多结太阳能电池的制作方法,其特征在于,在形成所述变质缓冲层且形成所述第二电池前,还包括:
在所述变质缓冲层背离所述第一电池一侧形成DBR反射层。
8.一种晶格失配的多结太阳能电池,其特征在于,所述晶格失配的多结太阳能电池采用权利要求1~7任意一项所述的晶格失配的多结太阳能电池的制作方法制作而成。
CN201811145297.5A 2018-09-29 2018-09-29 一种晶格失配的多结太阳能电池及其制作方法 Active CN109285908B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811145297.5A CN109285908B (zh) 2018-09-29 2018-09-29 一种晶格失配的多结太阳能电池及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811145297.5A CN109285908B (zh) 2018-09-29 2018-09-29 一种晶格失配的多结太阳能电池及其制作方法

Publications (2)

Publication Number Publication Date
CN109285908A CN109285908A (zh) 2019-01-29
CN109285908B true CN109285908B (zh) 2021-03-12

Family

ID=65182553

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811145297.5A Active CN109285908B (zh) 2018-09-29 2018-09-29 一种晶格失配的多结太阳能电池及其制作方法

Country Status (1)

Country Link
CN (1) CN109285908B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038426B (zh) * 2020-11-06 2021-02-05 南昌凯迅光电有限公司 一种晶格失配型三结砷化镓太阳电池及制作方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201722063A (zh) * 2015-10-19 2017-06-16 Solar Junction Corp 高效多結光伏電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963949A (en) * 1988-09-30 1990-10-16 The United States Of America As Represented Of The United States Department Of Energy Substrate structures for InP-based devices
US7122733B2 (en) * 2002-09-06 2006-10-17 The Boeing Company Multi-junction photovoltaic cell having buffer layers for the growth of single crystal boron compounds
US7148463B2 (en) * 2003-07-16 2006-12-12 Triquint Semiconductor, Inc. Increased responsivity photodetector
JP2006332257A (ja) * 2005-05-25 2006-12-07 Sony Corp ヘテロ接合半導体装置及びその製造方法
US20090229662A1 (en) * 2008-03-13 2009-09-17 Emcore Corporation Off-Cut Substrates In Inverted Metamorphic Multijunction Solar Cells
US9214581B2 (en) * 2013-02-11 2015-12-15 California Institute Of Technology Barrier infrared detectors on lattice mismatch substrates
EP3018718A1 (de) * 2014-11-10 2016-05-11 AZUR SPACE Solar Power GmbH Solarzellenstapel
CN108511532A (zh) * 2018-04-03 2018-09-07 扬州乾照光电有限公司 一种晶格失配的多结太阳能电池及其制作方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201722063A (zh) * 2015-10-19 2017-06-16 Solar Junction Corp 高效多結光伏電池

Also Published As

Publication number Publication date
CN109285908A (zh) 2019-01-29

Similar Documents

Publication Publication Date Title
TWI488316B (zh) 反向質變之多接面太陽能電池之替代基板
TWI594449B (zh) 具有二變質層的四接點反向變質多接點太陽能電池
TWI441343B (zh) 反向變質多接面太陽能電池中異質接面子電池
JP3657143B2 (ja) 太陽電池及びその製造方法
CN108493284B (zh) 一种晶格失配的多结太阳能电池及其制作方法
TWI482300B (zh) 具有iv/iii-v族混合合金之反轉多接面太陽能單元
JP5215284B2 (ja) 多接合型化合物半導体太陽電池
US20120211071A1 (en) Four junction inverted metamorphic multijunction solar cell with a single metamorphic layer
US20090288703A1 (en) Wide Band Gap Window Layers In Inverted Metamorphic Multijunction Solar Cells
US20090272430A1 (en) Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells
US20100248411A1 (en) Demounting of Inverted Metamorphic Multijunction Solar Cells
CN109285909B (zh) 一种多结太阳能电池及其制作方法
US11063168B1 (en) Inverted multijunction solar cells with distributed bragg reflector
CN108963019B (zh) 一种多结太阳能电池及其制作方法
CN112117344B (zh) 一种太阳能电池以及制作方法
JP5758257B2 (ja) 化合物半導体太陽電池製造用積層体、化合物半導体太陽電池およびその製造方法
CN109285908B (zh) 一种晶格失配的多结太阳能电池及其制作方法
CN111009584B (zh) 一种晶格失配的多结太阳能电池及其制作方法
CN111785806B (zh) 一种太阳能电池以及制作方法
JP2017055017A (ja) 複数の変成層を備える反転変成多接合型ソーラーセル
CN110718599B (zh) 一种具有变质缓冲层的多结太阳能电池及制作方法
CN111276560B (zh) 砷化镓太阳电池及其制造方法
CN114267746B (zh) 一种多结太阳能电池及制作方法
CN112071937A (zh) 一种太阳能电池以及制作方法
US20140373905A1 (en) Metamorphic multijunction solar cell with surface passivation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant