CN109524492B - 一种提高多结太阳能电池少数载流子收集的方法 - Google Patents

一种提高多结太阳能电池少数载流子收集的方法 Download PDF

Info

Publication number
CN109524492B
CN109524492B CN201811343887.9A CN201811343887A CN109524492B CN 109524492 B CN109524492 B CN 109524492B CN 201811343887 A CN201811343887 A CN 201811343887A CN 109524492 B CN109524492 B CN 109524492B
Authority
CN
China
Prior art keywords
quantum well
solar cell
band gap
base region
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811343887.9A
Other languages
English (en)
Other versions
CN109524492A (zh
Inventor
刘雪珍
刘建庆
高熙隆
刘恒昌
宋欣慰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongshan Dehua Chip Technology Co ltd
Original Assignee
Zhongshan Dehua Chip Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongshan Dehua Chip Technology Co ltd filed Critical Zhongshan Dehua Chip Technology Co ltd
Priority to CN201811343887.9A priority Critical patent/CN109524492B/zh
Publication of CN109524492A publication Critical patent/CN109524492A/zh
Application granted granted Critical
Publication of CN109524492B publication Critical patent/CN109524492B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种提高多结太阳能电池少数载流子收集的方法,该方法是在多结太阳能电池的其中一个子电池或多个子电池或所有子电池的背场与基区之间增设应变结构量子阱,将电子和空穴存储于量子阱内,以提高少数载流子收集效率,同时过滤位错缺陷,其中,所述量子阱的阱和垒的材料光学带隙与基区带隙有关,厚度由少子扩散长度决定,晶格常数与毗邻材料失配不高于5%。本发明可以同时起到过虑位错的作用,尤其适用于失配结构太阳能电池,可以降低穿透位错密度和载流子的非辐射复合,提高短路电流、整体开路电压和填充因子,并最终提高电池的光电转换效率,从而更大程度地发挥太阳能电池的优势。

Description

一种提高多结太阳能电池少数载流子收集的方法
技术领域
本发明涉及太阳能光伏发电的技术领域,尤其是指一种提高多结太阳能电池少数载流子收集的方法。
背景技术
近些年来,煤、石油等不可再生资源的日益匮乏导致能源危机争端愈演愈烈,同时,其对环境的污染带来的全球气温变暖等一系列生态问题越来越严重。考虑人类和自然的长足发展,能源问题亟待解决。该问题已逐渐得到各国的重视,对新能源的开发力度也逐渐加大,目前已经进入开发甚至应用的能源方案有核能、风能、潮汐能和太阳能等清洁能源。但是,核能的危险系数高,风能和潮汐能有地域的局限性,而这些却都是太阳能的优势。另外,太阳光能量巨大,从太阳发出来的光经过1.5亿公里的距离穿过大气层到达地球表面的能量换算成电力,高达~1014KW,约为全球平均电力的10万倍。如果这些能源能够被有效利用,达到取代传统能源的程度,则能源和环境问题得以解决。所以,世界范围内开展了大量太阳能光伏科技领域的研究项目。
太阳能电池按照材料种类划分大致可分为:硅太阳能电池、无机化合物(Ⅲ-Ⅴ、Ⅱ-Ⅵ族)半导体太阳能电池、有机高分子染料电池等几类。目前,砷化镓多结太阳电池作为Ⅲ-Ⅴ族材料太阳能电池的一种,由于其光电转换效率明显高于晶硅电池,因而被广泛地应用于聚光光伏发电(CPV)系统和空间供电系统。砷化镓多结电池的主流结构是晶格匹配的GaInP/GaInAs/Ge三结太阳电池,相应的带隙结构为1.85/1.40/0.67eV,其在500倍聚光条件下,光电转换效率已超过40%,远高于其它类太阳能电池。然而,由于其发电成本过高,成为Ⅲ-Ⅴ族多结太阳能电池产业发展的主要制约因素。而降低成本的关键在于进一步提高电池的光电转换效率。
在外延生长技术上,提高光电转换效率的本质是提高太阳光子的吸收和有效利用。其中,提高太阳光子吸收和收集的主要途径是增加子电池结数和调整电池结构,设计电池的材料带隙与太阳光谱相匹配。计算过程显示提升电流比提升电压转换效率提升的效果更显著,理论上,子电池结数越多将光谱划分得越细,光子吸收得就越多,且多结电池的各子电池电流越接近,光电转换效率越高。上述传统三结电池的带隙组合对于太阳光光谱不是最佳的,因为GaInAs和Ge子电池带隙间隔很大,Ge底电池可吸收的太阳光谱能量比中、顶电池多很多,因此Ge电池的短路电流最大可接近中电池和顶电池的两倍,由于串联结构的限流机制,会导致一大部分光谱能量损失,最终削弱电池的光电转换效率。另外,调整电池结构方面,已有文献和实验表明在电池中引入布拉格反射层(DBR)、量子阱等结构可以大幅提高光子吸收效率,其中DBR结构已应用于成熟的太阳能电池产品中,但量子阱在多结太阳能电池中的应用还在持续开发中。而提高太阳光子利用的主要途径是提高生长材料的晶体质量,在外延生长过程中引入特殊材料、超晶格或应变缓冲层来降低甚至避免缺陷的产生,因为缺陷往往是光生载流子非辐射复合的中心,直接导致光子不能被有效利用。
研究表明,生长具有晶格渐变缓冲层的MM(Metamorphic)结构太阳能电池,即将传统GaInP/GaInAs/Ge三结太阳电池调整为(1.8~1.9)/(1.4~1.7)/(1.0~1.35)/0.67eV带隙组合的AlGaInP/AlGaInAs/GaInAs/Ge四结电池,提高了电池结数同时合理调整带隙,可更好地吸收太阳光子,其理论效率可达47%以上,远高于晶格匹配结构的理论效率。但是,这种带隙的调整会带来晶格常数的不匹配,失配结构存在的内应力不可避免地会导致大量的位错产生,虽然使用晶格渐变缓冲层和过滤位错的过生长层可以释放应力和过滤大量缺陷,但仍有部分穿透位错会延伸至中、顶子电池,成为电子空穴对的复合中心,使得少子扩散长度减小和光子利用效率降低,从而大大降低电池性能。
有文献报道,含有Al原子的材料,例如AlGaInP,由于Al-P键强于Ga-P和In-P键,由此带来的晶格强化效应(Lattice Hardening Effect)可以在一定程度上起到阻碍穿透位错滑移的作用,同时,多元化合物的生长易出现相分离现象,相分离区域会减小作用于位错上的有效应力,阻碍位错滑移,促使更多的穿透位错产生,而Al原子可以降低Ga和In原子在表面的迁移速率,有助于抑制相分离。因此,在降低位错等缺陷的研究中可以优先选择含有Al原子的化合物。
研究表明,低组分的N化物薄层,由于替位N原子之间有较高键能和较小的共价半径,具有很好的可塑性和使薄膜硬化的效果,对于过滤位错有极好的作用。将其应用于晶格失配结构电池中,使穿透位错等缺陷改纵向为横向传播同时应力得以释放,起到位错阻挡层的作用。这样,中、顶子电池的缺陷大大减少,可显著降低复合,提高少子寿命。另外,经理论研究与实验证明,在GaAs材料中同时掺入少量的In和N形成Ga1-xInxNyAs1-y四元合金材料,当x:y=3、0<y<0.06时,Ga1-xInxNyAs1-y材料晶格常数与GaAs(或Ge)基本匹配,且带隙在0.8eV至1.4eV之间变化,其中当0.02<y<0.03时,其带隙为1.0eV至1.1eV之间。根据结构设计,调整In组分x可制备出晶格常数与GaInAs子电池一致且带隙低于GaInAs材料的Ga1- xInxNyAs1-y,此材料可吸收部分Ge底电池过多的光子,使底、中、顶子电池的短路电流更好地匹配,同时减少热量的产生。
众所周知,量子阱对载流子具有优异的存储功能,在LED领域有非常成熟的应用,鉴于此,也有专利设计将其应用于太阳能电池的基区与发射区之间,以提高少数载流子收集。另有研究表明,构成量子阱的阱和垒的厚度在2~50nm范围内,阱垒之间、阱和毗邻的半导体材料之间或者垒和毗邻的半导体材料之间的晶格常数最好存在0.5%~5%的差异,此差异产生的张应力和压应力得以相互补偿而不会对外延层晶体质量产生明显影响,最重要的是受张应力和压应力作用的材料之间形成的界面态可以使穿透位错的传播方向随着应力的释放向水平方向发生偏转,因此,将量子阱设计为微失配的周期结构且设置在有源区之前,提高少数载流子的收集同时也可以很好地发挥位错阻挡层的作用。
综上,如果将N化物薄层或含Al材料构成的应变结构量子阱引入太阳能电池(尤其是失配结构)的背场与基区之间,可很好地解决上述太阳能电池中存在的问题,更大程度地发挥多结叠层太阳能电池的优势,提升转换效率。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提出了一种提高多结太阳能电池少数载流子收集的方法,可同时起到过虑位错的作用,尤其适用于失配结构太阳能电池,可以降低穿透位错密度和载流子的非辐射复合,提高短路电流、整体开路电压和填充因子,并最终提高电池的光电转换效率,从而更大程度地发挥太阳能电池的优势。
为实现上述目的,本发明所提供的技术方案为:一种提高多结太阳能电池少数载流子收集的方法,该方法是在多结太阳能电池的其中一个子电池或多个子电池或所有子电池的背场与基区之间增设应变结构量子阱,将电子和空穴存储于量子阱内,以提高少数载流子收集效率,同时过滤位错缺陷,其中,所述量子阱的阱和垒的材料光学带隙与基区带隙有关,厚度由少子扩散长度决定,晶格常数与毗邻材料失配不高于5%。
进一步,在背场与基区之间增设的应变结构量子阱的阱材料光学带隙低于基区材料光学带隙,但不超过1eV,垒材料的光学带隙等于或低于基区材料带隙,量子阱整体厚度小于电子扩散长度Ln,Ln通常在微米量级。
进一步,所述应变结构量子阱的阱、垒晶格常数差不超过5%。
进一步,所述应变结构量子阱的材料,在带隙选择允许的前提下最好选择含氮原子或铝原子的材料。
本发明与现有技术相比,具有如下优点与有益效果:
1、量子阱应用于基区与背场之间,可将暂时不能被有源区收集的少数载流子存储在其中,减少非辐射复合,有利于内量子效率的提高,进而有利于提高外量子效率;
2、由于量子阱厚度小,在减少光子的透射损失同时,基区厚度可以大幅减薄,从而节省源耗,有利于降低生产成本;
3、采用微失配的周期结构量子阱,应变层界面有利于位错滑移,可以过滤位错,尤其对于失配结构太阳能电池可以释放晶格失配引入的应力,提高子电池的晶体质量;
4、在带隙选择允许的前提下,量子阱材料采用含有N原子的刚性材料,或含有铝原子的多元化合物(利用晶格强化效应),可大大提高位错过滤效果。
利用本方案制作的多结晶格失配太阳能电池,可以有效提高少数载流子的收集,同时,位于其上子电池中的位错密度有一定程度地降低,这意味着由缺陷导致的非辐射复合大幅降低,使多结电池更大程度上提高内量子效率,提高电池整体电流,从而显著提高光电转换效率。经分析,采用相同芯片制程,相比传统MM电池结构,本方案制作的AlGaInP/AlGanAs/GaInAs/Ge晶格失配太阳能电池和GaInP/GaInAs/Ge晶格匹配太阳能电池,AlGaInP、AlGanAs、GaInAs子电池的EQE均有不同程度地提高,根据反射率折算的内量子效率分别提高了6%、3%和7%,GaInP和GaInAs子电池的内量子效率分别提升3%和5%(如表1所示)。
表1采用新结构、传统结构四结电池的EQE测试结果比较
Figure BDA0001863278500000061
附图说明
图1为本发明所述量子阱位置及能级结构示意图。
图2为具体实施例中外延结构示意图。
图3a为应变结构量子阱与相邻背场的晶格常数关系示意图之一。
图3b为应变结构量子阱与相邻背场的晶格常数关系示意图之二。
图3c为应变结构量子阱与相邻背场的晶格常数关系示意图之三。
具体实施方式
为进一步说明本发明的内容,以下结合具体实施例及附图对本发明进行详细描述。
如图2所示,为一种含应变结构量子阱的四结晶格失配太阳能电池,该太阳能电池采用Vecco公司生产的K475型MOCVD外延设备,以4英寸p型Ge单晶为衬底,在该衬底上表面自下而上依次沉积GaInP成核层、GaInAs缓冲层、晶格渐变缓冲层、第一隧穿结、GaInAs子电池(子电池1)、第二隧穿结、AlGaInAs子电池(子电池2)、第三隧穿结、AlGaInP子电池(子电池3)和GaInAs帽层。其中,GaInAs子电池的背场和GaInAs基区之间增设应变结构量子阱1;AlGaInAs子电池的背场和AlGaInAs基区之间增设应变结构量子阱2;AlGaInP子电池的背场和AlGaInP基区之间增设应变结构量子阱3。
所述GaInP成核层晶格与衬底匹配,为n型掺杂,可选Se、Si、Te、P等掺杂剂(本实施例优先选择Si),掺杂浓度为1×1018~5×1018(本实施例优先选择2×1018),厚度为3~20nm(本实施例优先选择8nm)。
所述GaInAs缓冲层晶格与衬底匹配,n型掺杂可选Se、Si、Te、P等作为掺杂剂(本实施例优先选择Si),掺杂浓度为1×1018~5×1018(本实施例优先选择5×1018),厚度为300~1000nm(本实施例优先选择500nm)。
所述晶格渐变缓冲层设计有In组分线性递增型、抛物线型、步进递增型或其中几种组合型,本实施例优先选择步进递增型,具体为由In组分分别为0.01、0.035、0.06、0.085、0.11、0.135、0.17、0.20、0.19的GaInAs层组成的,其中底层比衬底晶格略大,顶层晶格与第一隧穿结n型层匹配,该层n型掺杂浓度为1×1018~5×1018(本实施例优先选择4×1018),总厚度为1000~5000nm(本实施例优先选择2000nm)。
所述第一、二、三隧穿结的p型AlGaAs,掺杂元素可为C、Zn、Mg、B等(本实施例优先选择C),掺杂浓度为1×1020~3×1020(本实施例优先选择1×1020),晶格分别与其相邻的半导体材料匹配,厚度为5~50nm(本实施例优先选择20nm)。
所述第一、二、三隧穿结的n型GaInAs,掺杂元素可为Si、Te、P、Se等(本实施例优先选择Te),掺杂浓度约为1×1019~3×1019(本实施例优先选择2×1019),晶格分别与其相邻的半导体材料匹配,厚度为5~20nm(本实施例优先选择12nm)。
所述GaInAs子电池的光学材料带隙在1.0~1.35eV范围内(本实施例优先选择1.15eV),主要吸收800~1000nm波段的光子。
所述AlGaInAs子电池的光学材料带隙在1.4~1.7eV范围内(本实施例优先选择1.55eV),主要吸收650~800nm波段的光子。
所述AlGaInP子电池的光学材料带隙在1.8~2.0eV范围内(本实施例优先选择1.9eV),主要吸收650nm以下的短波光子。
所述GaInAs子电池的背场可选择AlGaInAs、AlGaInP或GaInP(本实施例优先选择AlGaInAs),晶格与带隙为1.15eV的GaInAs匹配,光学带隙高于1.15eV,厚度50~200nm(本实施例优先选择80nm),掺杂元素可为C、Zn、Mg、B等(本实施例优先选择Zn),掺杂浓度为1×1017~1×1018(本实施例优先选择8×1017)。
所述AlGaInAs子电池的背场可选择AlGaInAs、AlGaInP或GaInP(本实施例优先选择AlGaInAs),晶格与带隙为1.55eV的AlGaInAs匹配,光学带隙高于1.55eV,厚度50~200nm(本实施例优先选择80nm),掺杂元素可为C、Zn、Mg、B等(本实施例优先选择Zn),掺杂浓度为1×1017~1×1018(本实施例优先选择8×1017)。
所述AlGaInP子电池的背场选择AlGaInP,晶格与带隙为1.9eV的AlGaInP匹配,光学带隙高于1.9eV,厚度50~200nm(本实施例优先选择80nm),掺杂元素可为C、Zn、Mg、B等(本实施例优先选择Zn),掺杂浓度为1×1017~1×1018(本实施例优先选择8×1017)。
所述量子阱1的阱、垒材料分别选择GaInNAs和GaInAs,晶格常数与相邻背场的关系选择图3a所示,阱和垒间的失配不超过5%(本实施例优先选择0.5%),阱厚度2~10nm(本实施例优先选择4nm),垒厚度2~10nm(本实施例优先选择4nm),周期在3~10对范围内(本实施例优先选择4对)。
所述量子阱2的阱、垒材料分别选择AlGaInAs和GaInAs,晶格常数与相邻背场的关系选择图3b所示,阱和垒间的失配不超过10%(本实施例优先选择5%),阱厚度2~10nm(本实施例优先选择4nm),垒厚度2~10nm(本实施例优先选择4nm),周期在3~10对范围内(本实施例优先选择4对)。
所述量子阱3的阱、垒材料分别选择AlGaInP和GaInP,晶格常数与相邻背场的关系选择图3c所示,阱和垒间的失配不超过10%(本实施例优先选择5%),阱厚度2~10nm(本实施例优先选择4nm),垒厚度2~10nm(本实施例优先选择4nm),周期在3~10对范围内(本实施例优先选择4对)。
所述GaInAs子电池、AlGaInAs子电池及AlGaInP子电池的发射区分别为与基区晶格匹配的GaInAs、AlGaInAs、AlGaInP材料,可选Se、Si、Te、P等作为掺杂剂(本实施例优先选择Si),掺杂浓度范围均为1×1018~8×1018(本实施例优先选择2×1018),厚度为50~500nm(本实施例优先选择100nm)。
所述GaInAs子电池、AlGaInAs子电池及AlGaInP子电池的窗口层分别为与基区晶格匹配的AlInP材料,可选Se、Si、Te、P等作为掺杂剂(本实施例优先选择Si),掺杂浓度范围均为1×1018~8×1018(本实施例优先选择2×1018),厚度为10~50nm(本实施例优先选择40nm)。
所述GaInAs帽层的晶格与窗口层AlInP匹配,可选Se、Si、Te、P等作为掺杂剂(本实施例优先选择Si),掺杂浓度范围均为1×1018~1×1019(本实施例优先选择4×1018),厚度为100~1000nm(本实施例优先选择300nm)。
在背场与基区之间增设的应变结构量子阱,可以将电子和空穴存储于量子阱内,以提高少数载流子收集效率,同时过滤位错等缺陷,量子阱位置及能级结构请参见图1所示。其中,量子阱的阱和垒的材料光学带隙与基区带隙有关,厚度由少子扩散长度决定,晶格常数与毗邻材料失配不高于5%。量子阱的阱材料光学带隙低于基区材料光学带隙,但不超过1eV,垒材料的光学带隙等于或低于基区材料带隙,量子阱整体厚度小于电子扩散长度Ln,Ln通常在微米量级。量子阱的阱、垒晶格常数差不超过5%。量子阱的材料,在带隙选择允许的前提下尽可能选择含氮原子或铝原子的材料。总之,本发明的关键在于将具有刚性的GaInNAs材料与AlGaInP应用于应变结构的量子阱,引入到多结太阳能电池中,尤其是晶格失配结构的太阳能电池中,并且将其位置安排在晶格渐变缓冲层之上,此方案既可以使电池的少数载流子的收集能力在现有技术水平上大幅提升,又可过滤晶格不匹配导致的穿透位错。该发明可提高电池的光电转换效率,同时在一定程度上节约生产成本,有利于多结电池的优势得到更大程度地发挥,值得推广。
以上所述实施例只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。

Claims (3)

1.一种提高多结太阳能电池少数载流子收集的方法,其特征在于:该方法是在砷化镓多结太阳能电池的其中一个子电池或多个子电池的背场与基区之间增设应变结构量子阱,关键在于将具有刚性的GaInNAs材料与AlGaInP应用于应变结构的量子阱,将电子和空穴存储于量子阱内,以提高少数载流子收集效率,同时过滤位错缺陷,其中,所述量子阱的阱和垒的材料光学带隙与基区带隙有关,厚度由少子扩散长度决定,晶格常数与毗邻材料失配不高于5%;在背场与基区之间增设的应变结构量子阱的阱材料光学带隙低于基区材料光学带隙,但不超过1eV,垒材料的光学带隙等于或低于基区材料带隙,量子阱整体厚度小于电子扩散长度Ln,Ln在微米量级。
2.根据权利要求1所述的一种提高多结太阳能电池少数载流子收集的方法,其特征在于:所述应变结构量子阱的阱、垒晶格常数差不超过5%。
3.根据权利要求1所述的一种提高多结太阳能电池少数载流子收集的方法,其特征在于:所述应变结构量子阱的材料,在带隙选择允许的前提下选择含氮原子或铝原子的材料。
CN201811343887.9A 2018-11-13 2018-11-13 一种提高多结太阳能电池少数载流子收集的方法 Active CN109524492B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811343887.9A CN109524492B (zh) 2018-11-13 2018-11-13 一种提高多结太阳能电池少数载流子收集的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811343887.9A CN109524492B (zh) 2018-11-13 2018-11-13 一种提高多结太阳能电池少数载流子收集的方法

Publications (2)

Publication Number Publication Date
CN109524492A CN109524492A (zh) 2019-03-26
CN109524492B true CN109524492B (zh) 2021-07-02

Family

ID=65776474

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811343887.9A Active CN109524492B (zh) 2018-11-13 2018-11-13 一种提高多结太阳能电池少数载流子收集的方法

Country Status (1)

Country Link
CN (1) CN109524492B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111737851B (zh) * 2020-05-19 2024-01-26 浙江大学 基于光子限制效应的太阳能电池
CN112466976B (zh) * 2020-12-16 2022-04-01 中山德华芯片技术有限公司 一种具有全角反射镜的超薄太阳电池芯片及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124010A (ja) * 2007-11-16 2009-06-04 Nippon Telegr & Teleph Corp <Ntt> 光検出器
CN102832285A (zh) * 2012-09-07 2012-12-19 天津三安光电有限公司 一种三结太阳能电池及其制备方法
CN103915522A (zh) * 2013-01-03 2014-07-09 安科太阳能公司 在中间电池中具有低带隙吸收层的多结太阳能电池和其制备方法
CN104241416A (zh) * 2014-09-18 2014-12-24 瑞德兴阳新能源技术有限公司 一种含量子阱结构的三结太阳能电池
CN107316909A (zh) * 2017-08-11 2017-11-03 南昌凯迅光电有限公司 一种多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124010A (ja) * 2007-11-16 2009-06-04 Nippon Telegr & Teleph Corp <Ntt> 光検出器
CN102832285A (zh) * 2012-09-07 2012-12-19 天津三安光电有限公司 一种三结太阳能电池及其制备方法
CN103915522A (zh) * 2013-01-03 2014-07-09 安科太阳能公司 在中间电池中具有低带隙吸收层的多结太阳能电池和其制备方法
CN104241416A (zh) * 2014-09-18 2014-12-24 瑞德兴阳新能源技术有限公司 一种含量子阱结构的三结太阳能电池
CN107316909A (zh) * 2017-08-11 2017-11-03 南昌凯迅光电有限公司 一种多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法

Also Published As

Publication number Publication date
CN109524492A (zh) 2019-03-26

Similar Documents

Publication Publication Date Title
US20220216358A1 (en) Group-iv solar cell structure using group-iv heterostructures
US10263129B2 (en) Multijunction photovoltaic device having SiGe(Sn) and (In)GaAsNBi cells
US10896990B2 (en) Group-IV solar cell structure using group-IV or III-V heterostructures
CN112447868B (zh) 一种高质量四结空间太阳电池及其制备方法
US20140076386A1 (en) GROUP-IV SOLAR CELL STRUCTURE USING GROUP-IV or III-V HETEROSTRUCTURES
CN105355680B (zh) 一种晶格匹配的六结太阳能电池
King et al. Metamorphic III-V materials, sublattice disorder, and multijunction solar cell approaches with over 37% efficiency
CN106024924A (zh) 一种含新型隧穿结的晶格失配太阳能电池及其制备方法
CN109301006A (zh) 一种应用于晶格失配多结太阳能电池的新型dbr结构
CN210535681U (zh) 一种晶格失配的五结太阳能电池
Alferov et al. III-V heterostructures in photovoltaics
CN109524492B (zh) 一种提高多结太阳能电池少数载流子收集的方法
Salem et al. Performance optimization of the InGaP/GaAs dual-junction solar cell using SILVACO TCAD
CN111430493B (zh) 一种多结太阳能电池及供电设备
CN209880626U (zh) GaInP/GaAs/InGaAs三结薄膜太阳电池
CN209045576U (zh) 一种应用于晶格失配多结太阳能电池的新型dbr结构
CN109309139A (zh) 一种高电流密度晶格失配太阳能电池及其制备方法
RU2442242C1 (ru) Многопереходный преобразователь
CN210272400U (zh) 一种含有多层dbr结构的太阳能电池
CN209045588U (zh) 一种高电流密度晶格失配太阳能电池
RU2364007C1 (ru) Многослойный фотопреобразователь
Ringel et al. Multi-junction III-V photovoltaics on lattice-engineered Si substrates
CN111276560B (zh) 砷化镓太阳电池及其制造方法
CN212257428U (zh) 一种异质pn结空间电池外延片
Gudovskikh et al. Anisotype GaAs based heterojunctions for III-V multijunction solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A method for improving minority carrier collection of multi junction solar cells

Effective date of registration: 20210929

Granted publication date: 20210702

Pledgee: Industrial Bank Limited by Share Ltd. Zhongshan branch

Pledgor: ZHONGSHAN DEHUA CHIP TECHNOLOGY Co.,Ltd.

Registration number: Y2021980010236

PE01 Entry into force of the registration of the contract for pledge of patent right