CN104241416B - 一种含量子阱结构的三结太阳能电池 - Google Patents

一种含量子阱结构的三结太阳能电池 Download PDF

Info

Publication number
CN104241416B
CN104241416B CN201410479799.7A CN201410479799A CN104241416B CN 104241416 B CN104241416 B CN 104241416B CN 201410479799 A CN201410479799 A CN 201410479799A CN 104241416 B CN104241416 B CN 104241416B
Authority
CN
China
Prior art keywords
sub
battery
gainp
gaas
quantum well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410479799.7A
Other languages
English (en)
Other versions
CN104241416A (zh
Inventor
杨翠柏
陈丙振
张杨
张小宾
张露
王雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongshan Dehua Chip Technology Co Ltd
Original Assignee
Redsolar New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Redsolar New Energy Technology Co ltd filed Critical Redsolar New Energy Technology Co ltd
Priority to CN201410479799.7A priority Critical patent/CN104241416B/zh
Publication of CN104241416A publication Critical patent/CN104241416A/zh
Application granted granted Critical
Publication of CN104241416B publication Critical patent/CN104241416B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种含量子阱结构的三结太阳能电池,从下至上依次包括有作为衬底的第一子电池、第一隧穿结、第二子电池、第二隧穿结、第三子电池,所述三个子电池之间晶格匹配且通过隧穿结进行连接,其中,所述第一子电池为Ge电池,所述第二子电池为InxGa1‑xNyAs1‑y/GaAs量子阱电池,所述第三子电池为GaInP电池。本发明形成的能带隙组合在0.67eV/1.3eV/1.8eV左右,使第二子电池和第一子电池的能带隙差ΔEg1约为0.63,第三子电池和第二子电池的能带隙差ΔEg2约为0.5eV,两能带隙差更接近,且由于第三子电池GaInP能带隙在1.8eV左右,其可以比传统GaInP电池吸收更多的光子,这将使得本发明中三个子电池的电流分配更均匀。

Description

一种含量子阱结构的三结太阳能电池
技术领域
本发明涉及太阳能光伏的技术领域,尤其是指一种含量子阱结构的三结太阳能电池。
背景技术
在光伏领域,效率最高的电池当属高效多结太阳能电池,根据法国Soitec公司2014年的报道,其研发的高效四结电池在聚光下效率可达44.7%,创下了新的世界纪录。究其原理而言,高效多结太阳能电池是指由两个或两个以上子电池叠加而成的光伏电池,其主流是基于III-V族化合物半导体材料并利用晶体生长方式制备而成的。这类电池的主要原理就是利用电池中带宽匹配的各子电池,分别对太阳光谱的不同波段进行吸收,实现对太阳光谱的全光谱细分高效利用。基于此,高效多结太阳能电池的光电转换效率在聚光下可达40%以上,1倍太阳光下其效率也在30%左右,远远超过了目前已知的其他各种光伏电池,在空间和地面具有广阔的应用前景。由于其还具有良好的抗辐射性能和高温特性,目前,高效多结太阳能电池已经成为了太空各类飞行器的主要电池,在地面应用领域,各类基于高效多结电池的聚光光伏发电项目也已崭露头角。
目前,最成熟的高效多结太阳能电池为Ge/GaInAs/GaInP三结电池结构,能带隙分别为0.67eV/1.4eV/1.85eV,其光电转换效率普遍在39~40%左右。但是这种结构由于GaInAs子电池与Ge子电池的能带隙差ΔEg2(约0.73eV)远大于GaInP子电池和GaInAs子电池的能带隙差ΔEg1(约0.45eV),造成Ge子电池的电流远高于GaInP子电池和GaInAs子电池,使相当一部分能量因为电流之间的不匹配而被浪费掉。其结果是,Ge/GaInAs/GaInP三结电池的电流只能取三个子电池中电流最小的一个,整体电流水平并不高,并制约了效率的进一步提升。
针对此,人们也在开发新类型的电池结构以改善多个子电池之间的电流匹配,提升效率。目前较为常见的几种办法分别为:在Ge衬底上生长高In组分的GaInAs和GaInP子电池,通过In组分的提升来降低GaInAs和GaInP子电池的能带隙,提升以上两结子电池的电流,进而提升效率。但是,这种方法必然带来以上两结子电池晶格常数的增大,使得以上两结子电池无法保持与Ge衬底的晶格匹配,为此,必须采用晶格渐变缓冲层来解决晶格不匹配的问题,不仅增加生长复杂度,还会影响晶体质量。此外,还有在Ge和GaInAs子电池之间新增加一个1eV左右子电池的方法,这种方法的好处是不必对GaInAs和GaInP子电池进行改变,只需将Ge多余的光谱及对应电流分配给这个新增的1eV电池即可。但是,1eV的电池选择空间并不多,除了高In组分GaInAs外,还有N组分约为2%~3%的GaInNAs材料(又称稀氮材料),高In组分的GaInAs由于In组分较高,与其他三个子电池的晶格适配度很大,即使采用晶格渐变缓冲层也较难生长;而GaInNAs材料中,由于N会引入一些深能级复合中心和背景掺杂,因此,直接生长的GaInNAs子电池往往效率不高。
综上所述,要获得电流匹配度高的高效三结或四结太阳能电池,目前采用的各种方式或存在晶格不匹配的情况,或存在电池材料质量不高的情况,均不同程度的影响了太阳能电池的效率。
发明内容
本发明的目的在于克服现有技术的不足与缺点,为了在晶格匹配的基础上实现各子电池之间的电流匹配,获得效率更高的太阳能电池,提供一种含量子阱结构的三结太阳能电池。
为实现上述目的,本发明所提供的技术方案为:一种含量子阱结构的三结太阳能电池,从下至上依次包括有作为衬底的第一子电池、第一隧穿结、第二子电池、第二隧穿结、第三子电池,所述三个子电池之间晶格匹配且通过隧穿结进行连接,其中,所述第一子电池为Ge电池,所述第二子电池为InxGa1-xNyAs1-y/GaAs量子阱电池,所述第三子电池为GaInP电池。
所述第一子电池通过在p型Ge衬底的表面上进行n型磷扩散,获得n型扩散层,藉此形成了第一子电池的pn结,并通过在n型扩散层上面生长GaInP层和晶格匹配的GaInAs层,起到Ge和GaAs这两种异质材料生长中的成核过渡作用,并可作为Ge电池的窗口层,增强对载流子的反射能力,有助于收集载流子。
所述第一隧穿结为n型GaAs和p型AlGaAs的材料组合或n型GaInP和p型AlGaAs的材料组合。
所述第二子电池采用p-i-n型的pn结结构,从下到上依次包括有p型掺杂GaAs层、无人为掺杂的多周期InxGa1-xNyAs1-y/GaAs量子阱结构层、n型掺杂GaAs层。
所述第二子电池还包括有位于pn结之上的窗口层和位于pn结之下的背场层,窗口层选取GaInP或AlGaAs材料,背场层选取GaInP或AlGaAs材料。
所述多周期InxGa1-xNyAs1-y/GaAs量子阱结构是在GaAs基区之上交替生长InxGa1- xNyAs1-y与GaAs薄膜获得的,交替周期在5~100范围内,x的值取在0.03至0.07范围内,y的值取在0.01至0.025范围内,该量子阱结构的晶格常数为等效能带隙为1.25~1.35eV。
所述InxGa1-xNyAs1-y与GaAs薄膜的厚度均在1~20nm之间。
所述第二隧穿结为n型GaAs和p型AlGaAs的材料组合或n型GaInP和p型AlGaAs的材料组合。
所述第三子电池从下往上依次包括有AlGaInP背场层、GaInP基区、GaInP发射区和AlGaInP窗口层,其中,作为基区和发射区的GaInP晶体为有序态,即GaInP中GaP和InP分子的排列呈有序态,对应的能带隙为1.78~1.82eV,晶格常数为
本发明与现有技术相比,具有如下优点与有益效果:
通过在Ge衬底上依次生长Ge电池、量子阱结构电池和有序态GaInP电池,形成的能带隙组合在0.67eV/1.3eV/1.8eV左右,使第二子电池和第一子电池的能带隙差ΔEg1约为0.63,第三子电池和第二子电池的能带隙差ΔEg2约为0.5eV,两能带隙差更接近,且由于第三子电池GaInP能带隙在1.8eV左右,其可以比传统GaInP电池吸收更多的光子,这将使得本发明中三个子电池的电流分配更均匀,进而提升电池的整体电流并带来较高的光电转换效率。
此外,本发明采用的量子阱结构电池具有能带隙和晶格常数可调的特点,通过在InxGa1-xNyAs1-y中选择合适的材料比例可以使得InxGa1-xNyAs1-y与衬底晶格匹配,易于整个电池的高质量一体化生长;且由于生长的InxGa1-xNyAs1-y很薄且其中的N原子比例低于四结电池中常用的稀氮材料InxGa1-xNyAs1-y(四结电池中为保证InxGa1-xNyAs1-y能带隙在1.0eV左右,需要N的比例通常在0.025左右甚至更高,本发明中限定的N比例小于0.025),可以有效的避免InxGa1-xNyAs1-y中材料N原子及背景掺杂带来的少数载流子寿命短等问题,进而得到具有良好光电响应的第二子电池。这些都保证了本发明在生长工艺上和转换效率上的可实现性。
附图说明
图1为本发明所述三结太阳能电池的结构示意图。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
如图1所示,本实施例所述的含量子阱结构的三结太阳能电池,是采用金属有机化学气相外延沉积或分子束外延方法在Ge衬底上单片生长而成,从下至上依次包括有作为衬底的第一子电池1、第一隧穿结、第二子电池2、第二隧穿结、第三子电池3,所述三个子电池之间晶格匹配且通过隧穿结进行连接,其中,所述第一子电池1为Ge电池,所述第二子电池2为InxGa1-xNyAs1-y/GaAs量子阱电池,所述第三子电池3为GaInP电池。
所述第一子电池1通过在p型Ge衬底的表面上进行n型磷扩散,获得n型扩散层,藉此形成了第一子电池的pn结,并通过在n型扩散层上面生长GaInP层和晶格匹配的GaInAs层,起到Ge和GaAs这两种异质材料生长中的成核过渡作用,并可作为Ge电池的窗口层,增强对载流子的反射能力,有助于收集载流子。
所述第一隧穿结可以为n型GaAs和p型AlGaAs的材料组合或n型GaInP和p型AlGaAs的材料组合,而在本实施例中选择n型高掺杂GaAs和p型高掺杂AlGaAs的材料组合,生长厚度均为10nm左右,从而形成隧穿效应,有助于电流通过。
所述第二子电池2采用p-i-n型的pn结结构,从下到上依次包括有p型掺杂GaAs层、无人为掺杂的多周期InxGa1-xNyAs1-y/GaAs量子阱结构层4、n型掺杂GaAs层。此外,所述第二子电池还包括有位于pn结之上的窗口层和位于pn结之下的背场层,窗口层选取GaInP或AlGaAs材料,背场层选取GaInP或AlGaAs材料。所述多周期InxGa1-xNyAs1-y/GaAs量子阱结构层4是在GaAs基区之上交替生长InxGa1-xNyAs1-y与GaAs薄膜获得的,交替周期在5~100范围内,x的值取在0.03至0.07范围内,y的值取在0.01至0.025范围内,InxGa1-xNyAs1-y与GaAs薄膜的可选厚度均在1~20nm之间,通过对InxGa1-xNyAs1-y与GaAs的厚度、交替周期以及InxGa1-xNyAs1-y中x和y值的组合优选,使得该量子阱结构的晶格常数为等效能带隙为1.25~1.35eV。而在本实施例中所述多周期InxGa1-xNyAs1-y/GaAs量子阱结构层4的InxGa1-xNyAs1-y/GaAs薄膜共交替生长10个周期,每层InxGa1-xNyAs1-y和GaAs薄膜的厚度均为8nm,x取值为0.05,y的取值为0.018,使得第二子电池的等效能带隙达到了1.3eV,晶格常数为
所述第二隧穿结可以为n型GaAs和p型AlGaAs的材料组合或n型GaInP和p型AlGaAs的材料组合。而在本实施例中选择n型高掺杂GaInP和p型高掺杂AlGaAs的材料组合,生长厚度均为10nm左右,从而形成隧穿效应,有助于电流通过。
所述第三子电池从下往上依次包括有AlGaInP背场层、GaInP基区、GaInP发射区和AlGaInP窗口层,其中,作为基区和发射区的GaInP晶体为有序态,即GaInP中GaP和InP分子的排列呈有序态,这是通过对GaInP电池pn结发射区和基区的生长参数调控得到的,从而保证GaInP子电池的能带隙在1.78~1.82eV区间;并通过微调Ga和In的比例,使得GaInP子电池的晶格常数保持在区间。而在本实施例中GaInP基区和GaInP发射区的能带隙通过生长速度、温度和五三比的调节达到了1.8eV,晶格常数为
综上所述,在采用以上方案后,能使得三结太阳能电池的能带隙组合达到了0.67eV/1.3eV/1.8eV,且保证了在材料生长过程中的晶格匹配,减少了材料的缺陷;并由于使用5nm厚的In0.05Ga0.95N0.018As0.982薄膜,相比传统方式,不仅直接减少了N的用量,还降低了该薄膜的厚度,在相当程度上规避了In0.05Ga0.95N0.018As0.982材料中N和背景掺杂带来的不良影响。此外,以上组合可使得本电池的电流匹配度和电流强度明显高于传统三结电池,有望在聚光情况下达到40%以上的高转换效率,值得推广。
以上所述之实施例子只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。

Claims (6)

1.一种含量子阱结构的三结太阳能电池,其特征在于:从下至上依次包括有作为衬底的第一子电池、第一隧穿结、第二子电池、第二隧穿结、第三子电池,所述三个子电池之间晶格匹配且通过隧穿结进行连接,其中,所述第一子电池为Ge电池,所述第二子电池为InxGa1-xNyAs1-y/GaAs量子阱电池,所述第三子电池为GaInP电池;所述第二子电池采用p-i-n型的pn结结构,从下到上依次包括有p型掺杂GaAs层、无人为掺杂的多周期InxGa1-xNyAs1-y/GaAs量子阱结构层、n型掺杂GaAs层;所述多周期InxGa1-xNyAs1-y/GaAs量子阱结构是在GaAs基区之上交替生长InxGa1-xNyAs1-y与GaAs薄膜获得的,交替周期在5~100范围内,x的值取在0.03至0.07范围内,y的值取在0.01至0.025范围内,该量子阱结构的晶格常数为等效能带隙为1.25~1.35eV;所述InxGa1-xNyAs1-y与GaAs薄膜的厚度均在1~20nm之间。
2.根据权利要求1所述的一种含量子阱结构的三结太阳能电池,其特征在于:所述第一子电池通过在p型Ge衬底的表面上进行n型磷扩散,获得n型扩散层,藉此形成了第一子电池的pn结,并通过在n型扩散层上面生长GaInP层和晶格匹配的GaInAs层,起到Ge和GaAs这两种异质材料生长中的成核过渡作用,并可作为Ge电池的窗口层,增强对载流子的反射能力,有助于收集载流子。
3.根据权利要求1所述的一种含量子阱结构的三结太阳能电池,其特征在于:所述第一隧穿结为n型GaAs和p型AlGaAs的材料组合或n型GaInP和p型AlGaAs的材料组合。
4.根据权利要求1所述的一种含量子阱结构的三结太阳能电池,其特征在于:所述第二子电池还包括有位于pn结之上的窗口层和位于pn结之下的背场层,窗口层选取GaInP或AlGaAs材料,背场层选取GaInP或AlGaAs材料。
5.根据权利要求1所述的一种含量子阱结构的三结太阳能电池,其特征在于:所述第二隧穿结为n型GaAs和p型AlGaAs的材料组合或n型GaInP和p型AlGaAs的材料组合。
6.根据权利要求1所述的一种含量子阱结构的三结太阳能电池,其特征在于:所述第三子电池从下往上依次包括有AlGaInP背场层、GaInP基区、GaInP发射区和AlGaInP窗口层,其中,作为基区和发射区的GaInP晶体为有序态,即GaInP中GaP和InP分子的排列呈有序态,对应的能带隙为1.78~1.82eV,晶格常数为
CN201410479799.7A 2014-09-18 2014-09-18 一种含量子阱结构的三结太阳能电池 Active CN104241416B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410479799.7A CN104241416B (zh) 2014-09-18 2014-09-18 一种含量子阱结构的三结太阳能电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410479799.7A CN104241416B (zh) 2014-09-18 2014-09-18 一种含量子阱结构的三结太阳能电池

Publications (2)

Publication Number Publication Date
CN104241416A CN104241416A (zh) 2014-12-24
CN104241416B true CN104241416B (zh) 2017-01-25

Family

ID=52229162

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410479799.7A Active CN104241416B (zh) 2014-09-18 2014-09-18 一种含量子阱结构的三结太阳能电池

Country Status (1)

Country Link
CN (1) CN104241416B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784108B (zh) * 2015-11-20 2019-05-31 北京创昱科技有限公司 一种双结薄膜太阳能电池组件及其制作方法
CN106067493B (zh) * 2016-07-26 2018-05-22 中山德华芯片技术有限公司 一种微晶格失配量子阱太阳能电池及其制备方法
CN109524492B (zh) * 2018-11-13 2021-07-02 中山德华芯片技术有限公司 一种提高多结太阳能电池少数载流子收集的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7812249B2 (en) * 2003-04-14 2010-10-12 The Boeing Company Multijunction photovoltaic cell grown on high-miscut-angle substrate
KR20100084843A (ko) * 2009-01-19 2010-07-28 삼성전자주식회사 다중접합 태양전지
CN101499493A (zh) * 2009-02-23 2009-08-05 东南大学 一种三结太阳能电池
CN102983210B (zh) * 2012-10-08 2015-07-15 天津蓝天太阳科技有限公司 GaAs体系四结太阳能电池的制备方法
CN103199142B (zh) * 2013-04-03 2016-08-03 中国科学院苏州纳米技术与纳米仿生研究所 GaInP/GaAs/InGaAs/Ge四结太阳能电池及其制备方法
CN203721752U (zh) * 2013-12-11 2014-07-16 天津中环新光科技有限公司 带有分布布拉格反射器的三结太阳能电池
CN204118088U (zh) * 2014-09-18 2015-01-21 瑞德兴阳新能源技术有限公司 一种含量子阱结构的三结太阳能电池

Also Published As

Publication number Publication date
CN104241416A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
CN104465843B (zh) 一种双面生长的GaAs四结太阳电池
CN105355680B (zh) 一种晶格匹配的六结太阳能电池
CN210535681U (zh) 一种晶格失配的五结太阳能电池
Ren et al. The GaAs/GaAs/Si solar cell–Towards current matching in an integrated two terminal tandem
CN102244114A (zh) 一种高倍聚光多结太阳能电池及其制备方法
CN102244134A (zh) 一种高效四结太阳能电池及其制作方法
CN106024924A (zh) 一种含新型隧穿结的晶格失配太阳能电池及其制备方法
CN105355670B (zh) 一种含dbr结构的五结太阳能电池
CN109301006A (zh) 一种应用于晶格失配多结太阳能电池的新型dbr结构
CN106252451A (zh) 一种五结叠层太阳电池及其制备方法
CN102983203A (zh) 三结级联太阳能电池及其制作方法
CN109326674B (zh) 含多个双异质结子电池的五结太阳能电池及其制备方法
CN109148621B (zh) 一种双面生长的高效六结太阳能电池及其制备方法
CN105576068B (zh) 一种双面生长的InP五结太阳电池
CN104241416B (zh) 一种含量子阱结构的三结太阳能电池
CN106299011A (zh) 基于InP衬底的五结太阳能电池及其制备方法
CN103077983A (zh) 多结太阳能电池及其制备方法
CN109524492A (zh) 一种提高多结太阳能电池少数载流子收集的方法
CN206282866U (zh) 一种五结叠层太阳电池
CN110911510B (zh) 一种含超晶格结构的硅基氮化物五结太阳电池
CN204315612U (zh) 一种含量子结构的双面生长四结太阳电池
CN105810760A (zh) 一种晶格匹配的五结太阳能电池及其制作方法
CN104465809B (zh) 一种双面生长的硅基四结太阳电池
CN103000740A (zh) GaAs/GaInP双结太阳能电池及其制作方法
CN102790119A (zh) GaInP/GaAs/Ge/Ge四结太阳能电池及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20170327

Address after: 528437 layer 3-4, No. 22, Torch Road, Torch Development Zone, Zhongshan, Guangdong, China

Patentee after: ZHONGSHAN DEHUA CHIP TECHNOLOGY CO., LTD.

Address before: 528437 Guangdong Torch Development Zone, Zhongshan Torch Road, No. 22 Ming Yang Industrial Park

Patentee before: REDSOLAR NEW ENERGY TECHNOLOGY CO., LTD.

TR01 Transfer of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A three junction solar cell with quantum well structure

Effective date of registration: 20210929

Granted publication date: 20170125

Pledgee: Industrial Bank Limited by Share Ltd. Zhongshan branch

Pledgor: ZHONGSHAN DEHUA CHIP TECHNOLOGY Co.,Ltd.

Registration number: Y2021980010236

PE01 Entry into force of the registration of the contract for pledge of patent right