CN102244114A - 一种高倍聚光多结太阳能电池及其制备方法 - Google Patents

一种高倍聚光多结太阳能电池及其制备方法 Download PDF

Info

Publication number
CN102244114A
CN102244114A CN2011101685229A CN201110168522A CN102244114A CN 102244114 A CN102244114 A CN 102244114A CN 2011101685229 A CN2011101685229 A CN 2011101685229A CN 201110168522 A CN201110168522 A CN 201110168522A CN 102244114 A CN102244114 A CN 102244114A
Authority
CN
China
Prior art keywords
battery
emission layer
cell
solar cell
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011101685229A
Other languages
English (en)
Inventor
宋明辉
林桂江
吴志浩
王良均
刘建庆
毕京锋
熊伟平
林志东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Sanan Optoelectronics Technology Co Ltd
Original Assignee
Xiamen Sanan Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Sanan Optoelectronics Technology Co Ltd filed Critical Xiamen Sanan Optoelectronics Technology Co Ltd
Priority to CN2011101685229A priority Critical patent/CN102244114A/zh
Publication of CN102244114A publication Critical patent/CN102244114A/zh
Priority to US14/124,579 priority patent/US20140090700A1/en
Priority to PCT/CN2012/075134 priority patent/WO2012174952A1/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种高倍聚光多结太阳能电池及其制备方法。它是由顶电池、中电池、底电池以及两个隧穿结组成。其中,顶电池和中电池的发射层为渐变掺杂层,顶电池发射层的厚度较传统多结电池的厚数百纳米。本发明涉及的一种高倍聚光多结太阳能电池,其顶部和中部子电池的发射层均使用渐变掺杂方式,具有较高的开路电压和短路电流,同时在高倍聚光条件下,允许顶电池发射层具有比传统多结电池更大的厚度以降低多结电池整体的串联电阻,提高电池的填充因子,最终获得高的光电转换效率。

Description

一种高倍聚光多结太阳能电池及其制备方法
技术领域
本发明属于化合物半导体太阳能电池领域,具体涉及一种高倍聚光多结太阳能电池结构及其制备方法。
背景技术
光伏发电经历了第一代晶体硅电池和第二代薄膜电池发展之后,目前正步入第三代聚光光伏(CPV)技术。CPV 技术的核心是 III-V 族聚光多结太阳电池,与其他种类的太阳电池相比,聚光多结太阳能电池具有光电转换效率高、温度特性好、能耗回收周期短等优点,可以最大限度的利用太阳能资源,降低建设电站对环境的破坏。
多结太阳能电池是由多个具有不同带隙的半导体子电池通过隧穿结连接而成的,不同子电池吸收不同波段的太阳光谱,从而可以将尽可能多的太阳能转换为电能。以其独特的设计思想和较高的光电转换效率,多结太阳能电池已成为目前世界光伏领域各科研单位、企业进行太阳能电池研究的基本电池结构。2010年10月,美国 Spire 公司宣布其研制出的三结太阳能电池,在406倍太阳辐射聚光、大气光学质量AM1.5、25℃的测试条件下,0.97cm2 电池的效率达到了42.3%。国际上CPV 的主要生产商Emcore制备的InGaP/(In)GaAs/Ge三结电池效率在500倍聚光下为39%,1150倍聚光下达到36.3%。伴随着CPV技术产业化进展,高倍聚光(~1000X)太阳能电池以其突出的成本优势成为了CPV产业的主要产品。此类电池可以将数百上千倍的太阳能通过聚光透镜浓缩聚焦到一个很小的电池芯片上发电,从而大规模节约了太阳能电池晶片,但是较高的聚光倍数(~1000X)可以使聚光电池获得较大的开路电压和短路电流的同时,也将使电池产生更大的串联电阻,这严重影响了电池的填充因子,促使电池转换效率的降低。
发明内容
本发明的目的是提供一种新型的高倍聚光多结太阳能电池,其具有较高的开路电压和短路电流,同时在高倍聚光条件下可以保持较高的填充因子,即在高倍聚光条件下仍可保持较高的光电转换效率。
根据本发明的一个方面,提供了一种高倍聚光多结太阳能电池。该高倍聚光多结太阳能电池包括:顶电池、中电池、底电池以及两个隧穿结。其中,顶电池和中电池的发射层均为渐变掺杂,顶电池发射层的厚度较传统多结电池的厚一百纳米以上。
优选地,顶电池发射层的厚度为0.05~0.5微米。
优选地,顶电池发射层的厚度为 0.3微米。
优选地,顶电池和中电池中,靠近基区的发射层为低浓度掺杂区,其掺杂浓度为1×1017 /cm3~1×1018 /cm3,远离基区的发射层为高浓度掺杂区,其掺杂浓度为1×1018 /cm3~1×1019 /cm3
优选地,中电池发射层的掺杂浓度从5×1017 /cm3渐变到5×1018 /cm3
优选地,顶电池发射层的掺杂浓度从5×1017 /cm3渐变到5×1018 /cm3
根据本发明的一个方面,提供了一种高倍聚光多结太阳能电池的制备方法,其包括如下步骤:通过MOCVD方法、MBE方法或UHCVD方法等外延方法,在所选Ge衬底上外延生长Ge底电池;在Ge底电池上外延生长GaAs隧穿结;在GaAs隧穿结上外延生长(In)GaAs中电池的基区;在(In)GaAs中电池的基区上外延生长渐变掺杂的(In)GaAs中电池发射层,构成(In)GaAs中电池;在(In)GaAs中电池上外延生长AlGaAs隧穿结;在AlGaAs隧穿结上外延生长InGaP顶电池基区;在InGaP顶电池基区上外延生长较厚的、渐变掺杂的InGaP顶电池发射层,构成InGaP顶电池。
优选地,中电池的发射层的掺杂浓度为渐变的,包括阶梯型渐变、连续型渐变;靠近基区的发射层为低浓度掺杂区,其掺杂浓度为1×1017/cm3~1×1018/cm3,远离基区的发射层为高浓度掺杂区,其掺杂浓度为1×1018/cm3~1×1019/cm3
优选地,顶电池的发射层的掺杂浓度为渐变的,包括阶梯型渐变、连续型渐变;靠近基区的发射层为低浓度掺杂区,其掺杂浓度为1×1017 /cm3~1×1018 /cm3,远离基区的发射层为高浓度掺杂区,其掺杂浓度为1×1018 /cm3~1×1019 /cm3
优选地,所述顶电池和中电池发射层的掺杂浓度从5×1017 /cm3渐变到5×1018 /cm3
优选地,整个顶电池发射层厚度为0.05~0.5微米。
传统多结太阳能电池的各子电池发射层均为均匀掺杂的,发射层厚度越薄电池的光电转换效率越高。然而,在高倍聚光条件下较薄的顶电池发射层将带来更大的串联电阻,降低了电池的填充因子,最终影响电池在高倍聚光条件下的转换效率。本发明涉及的一种高倍聚光多结太阳能电池,其顶部和中电池的发射层均使用渐变掺杂方式,具有较高的开路电压和短路电流,同时在高倍聚光条件下,允许顶电池发射层具有比传统多结电池更大的厚度以降低多结电池整体的串联电阻,提高电池的填充因子,最终获得较高的光电转换效率。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,但并不构成对本发明的限制。此外,附图数据是描述概要,不是按比例绘制。
图1是本发明所涉及的一种高倍聚光多结太阳能电池侧面剖视图。
图中
100:p型Ge衬底; 
101:n型Ga0.5In0.5P窗口层;
200:GaAs隧穿结;
300:(In)GaAs中电池背场层;
301:(In)GaAs中电池基区;
302:(In)GaAs中电池发射层;
303:(In)GaAs中电池窗口层;
400:AlGaAs隧穿结;
500:GaInP顶电池背场层;
501:GaInP顶电池基区;
502:GaInP顶电池发射层;
503:GaInP顶电池窗口层; 
A:Ge底电池;
B:中电池;
C:顶电池。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式。需要说明的是,在不冲突的情况下本发明实施例以及实施例中的各个特征可以相互结合,这些均落在本发明的保护范围之内。
实施例一
如图1所示,一种高倍聚光多结太阳能电池,包括一个Ge底电池A,一个中电池B,一个顶电池C和其间的两个隧穿结200和400。
更具体而言,图中显示:一p型Ge衬底100,在衬底上沉积一n型Ga0.5In0.5P窗口层101,构成Ge底电池A。
在Ge底电池A顶部沉积一系列的重掺杂的p型和n型层,构成GaAs隧穿结200,用于将Ge底电池A连接至中电池B。
在构成GaAs隧穿结200顶部沉积一用于降低复合损失的中电池背场层300,该层较佳的由p型AlGaAs构成。
在中电池背场层300上沉积中电池基区301和中电池发射层302。在该较佳实例中,中电池基区301由p型(In)GaAs构成,其厚度为3.5微米;中电池发射层302由n型(In)GaAs构成,n型掺杂量随着厚度的增加而逐渐地提高,其掺杂浓度从5×1017/cm3连续渐变到5×1018/cm3,厚度为0.1微米。在中电池发射层302上沉积一由n型AlInP构成的中电池窗口层303,形成中电池B。
在中电池B顶部沉积一较佳由AlGaAs构成的隧穿结400,用于将中电池B连接至顶电池C。
在隧穿结400顶部上沉积一较佳由p型AlInGaP构成的顶电池背场层500。
在顶电池背场层500顶部上沉积顶电池基区501和顶电池发射层502。在该较佳实例中,顶电池基区501由p型GaInP构成,厚度为0.8微米;顶电池发射层502由n型GaInP构成,n型掺杂量随着厚度的增加而逐渐地提高,其掺杂浓度从5×1017/cm3连续渐变到5×1018/cm3,厚度为0.3微米。在顶电池发射层502上沉积一由n型AlInP构成的顶电池窗口层503,形成顶电池C。
实施例二
本实施例为实例一中所述的一种高倍聚光多结太阳能电池的制备工艺,其包括子电池A、B、C及各子电池之间各层的形成工艺。其中在MOCVD外延生长过程中,通过调节n型掺杂源在反应源中的流量比,可以实现发射层的掺杂浓度的渐变。
具体制备工艺包括如下步骤:
采用p型掺杂的单晶锗衬底100,厚度为150微米,作为Ge底电池的基区。
将p型Ge衬底100清洗干净,并装入MOCVD 反应室,首先在750℃下烘烤10分钟,然后降温至600℃,外延生长n型Ga0.5In0.5P窗口层101,形成Ge底电池A。
在Ge底电池上外延生长中底电池的GaAs隧穿结200。
生长中电池B的背场层300,阻止中电池基区的光生电子扩散到底电池。具体方法:调节MOCVD反应室内的温度为620℃,五三族源摩尔流量比为120,在GaAs隧穿结200上外延生长一层p型Al0.2Ga0.8As作为中电池B的背场层。
在电池B的背场层上外延生长形成中电池B的基区301和发射层302。改变MOCVD反应室内的五三族源摩尔流量比为40,在中电池B的背场层300上外延生长一层p型In0.01Ga0.99As作为中电池B的基区301,厚度为3.5微米。在中电池基区301上外延生长发射层302。在MOCVD外延生长过程中,在生长初期使用较小的n型掺杂源流量,随着发射层厚度的增加而逐渐地提高掺杂源流量,最终获得掺杂浓度从5×1017/cm3连续渐变到5×1018/cm3的中电池发射层n型In0.01Ga0.99As 302,其厚度为0.1微米。
在中电池B的发射层302上外延生长一层n型AlInP作为中电池B的窗口层303,形成In0.01Ga0.99As中电池B。
在In0.01Ga0.99As中电池B上外延生长AlGaAs隧穿结400。
生长顶电池C的背场层500,阻止顶电池基区的光生电子扩散到中电池。具体方法:调节MOCVD反应室内的温度为650℃,五三族源摩尔流量比为200,在AlGaAs隧穿结400上外延生长一层p型AlInGaP作为顶电池C的背场层500。
在顶电池C的背场层500上外延生长形成顶电池C的基区501和发射层502。改变五三族源摩尔流量比为180,在电池C的背场层500上外延生长出一层p型Ga0.5In0.5P作为顶电池C的基区501,厚度为0.8微米。在顶电池C的基区501上外延生长顶电池发射层502。在MOCVD外延生长过程中,在生长初期使用较小的n型掺杂源流量,随着发射层厚度的增加而逐渐地提高掺杂源流量,最终获得掺杂浓度从5×1017 /cm3连续渐变到5×1018/cm3的n型Ga0.5In0.5P顶电池发射层502,其厚度为0.3微米。
在顶电池C的发射层502上外延生长一层n型AlInP作为顶电池C的窗口层503,形成Ga0.5In0.5P顶电池C。

Claims (10)

1.一种高倍聚光多结太阳能电池,包含:顶电池、中电池、底电池以及两个隧穿结,其特征在于:顶电池和中电池的发射层的掺杂浓度为渐变的,顶电池发射层的厚度比传统多结电池的厚度大一百纳米以上。
2.根据权利要求1所述的高倍聚光多结太阳能电池,其特征在于:顶电池发射层的厚度为0.05~0.5微米。
3.根据权利要求1所述的高倍聚光多结太阳能电池,其特征在于:所述顶电池和中电池中,靠近基区的发射层为低浓度掺杂区,其掺杂浓度为1×1017 /cm3~1×1018 /cm3,远离基区的发射层为高浓度掺杂区,其掺杂浓度为1×1018 /cm3~1×1019 /cm3
4.根据权利要求3所述的高倍聚光多结太阳能电池,其特征在于:所述顶电池发射层的掺杂浓度从5×1017 /cm3渐变到5×1018 /cm3
5.根据权利要求3所述的高倍聚光多结太阳能电池,其特征在于:所述中电池发射层的掺杂浓度从5×1017 /cm3渐变到5×1018 /cm3
6.一种制作高倍聚光多结太阳能电池的方法,包括如下步骤:
(1)选择一Ge衬底;
(2)在所选Ge衬底上外延生长Ge底电池;
(3)在Ge底电池上外延生长隧穿结;
(4)在隧穿结上外延生长中电池的基区;
(5)在中电池的基区上外延生长掺杂浓度渐变的中电池发射层,构成中电池;
(6)在中电池上外延生长隧穿结;
(7)在隧穿结上外延生长顶电池基区;
(8)在顶电池基区上外延生长掺杂浓度渐变且厚度比传统多结电池的厚度大一百纳米以上的顶电池发射层,构成顶电池。
7.根据权利要求6所述的一种制作高倍聚光多结太阳能电池的方法,其特征在于:所述步骤(5)中形成的中电池的发射层,靠近基区的发射层为低浓度掺杂区,其掺杂浓度为1×1017/cm3~1×1018/cm3,远离基区的发射层为高浓度掺杂区,其掺杂浓度为1×1018/cm3~1×1019/cm3
8.根据权利要求6所述的一种制作高倍聚光多结太阳能电池的方法,其特征在于:所述步骤(8)中形成的顶电池的发射层,靠近基区的发射层为低浓度掺杂区,其掺杂浓度为1×1017 /cm3~1×1018 /cm3,远离基区的发射层为高浓度掺杂区,其掺杂浓度为1×1018 /cm3~1×1019 /cm3
9.根据权利要求6所述的一种制作高倍聚光多结太阳能电池的方法,其特征在于:所述顶电池和中电池发射层的掺杂浓度分别从5×1017 /cm3渐变到5×1018 /cm3
10.根据权利要求6所述的一种制作高倍聚光多结太阳能电池的方法,其特征在于:所述顶电池发射层厚度为0.05~0.5微米。
CN2011101685229A 2011-06-22 2011-06-22 一种高倍聚光多结太阳能电池及其制备方法 Pending CN102244114A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011101685229A CN102244114A (zh) 2011-06-22 2011-06-22 一种高倍聚光多结太阳能电池及其制备方法
US14/124,579 US20140090700A1 (en) 2011-06-22 2012-05-07 High-concentration multi-junction solar cell and method for fabricating same
PCT/CN2012/075134 WO2012174952A1 (zh) 2011-06-22 2012-05-07 一种高倍聚光多结太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011101685229A CN102244114A (zh) 2011-06-22 2011-06-22 一种高倍聚光多结太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
CN102244114A true CN102244114A (zh) 2011-11-16

Family

ID=44962065

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011101685229A Pending CN102244114A (zh) 2011-06-22 2011-06-22 一种高倍聚光多结太阳能电池及其制备方法

Country Status (3)

Country Link
US (1) US20140090700A1 (zh)
CN (1) CN102244114A (zh)
WO (1) WO2012174952A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102651416A (zh) * 2012-05-18 2012-08-29 中国科学院苏州纳米技术与纳米仿生研究所 三结叠层GaAs激光光伏电池及其制备方法
CN102683468A (zh) * 2012-06-06 2012-09-19 南昌大学 一种晶硅异质结太阳电池的发射极结构
WO2012174952A1 (zh) * 2011-06-22 2012-12-27 厦门市三安光电科技有限公司 一种高倍聚光多结太阳能电池及其制备方法
CN106575942A (zh) * 2014-06-27 2017-04-19 杜兰教育基金管理者 用于将太阳能电能转换与太阳能热能利用耦接的红外透射型聚光光伏器件

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9929300B2 (en) * 2015-11-13 2018-03-27 Solaero Technologies Corp. Multijunction solar cells with electrically conductive polyimide adhesive
CN106784108B (zh) * 2015-11-20 2019-05-31 北京创昱科技有限公司 一种双结薄膜太阳能电池组件及其制作方法
EP3937259A1 (de) * 2020-07-10 2022-01-12 AZUR SPACE Solar Power GmbH Monolithische metamorphe mehrfachsolarzelle
US11362230B1 (en) * 2021-01-28 2022-06-14 Solaero Technologies Corp. Multijunction solar cells
US11482636B2 (en) * 2021-01-28 2022-10-25 Solaero Technologies Corp. Multijunction solar cells
EP4213224A1 (en) * 2022-01-14 2023-07-19 SolAero Technologies Corp., a corporation of the state of Delaware Multijunction solar cells with shifted junction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6340788B1 (en) * 1999-12-02 2002-01-22 Hughes Electronics Corporation Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications
CN1588646A (zh) * 2004-09-23 2005-03-02 西安理工大学 一种快速软恢复SiGe/Si异质结功率开关二极管
CN101431117A (zh) * 2008-11-24 2009-05-13 北京索拉安吉清洁能源科技有限公司 具有掺杂阻挡层的多结太阳电池
US20090155951A1 (en) * 2007-12-13 2009-06-18 Emcore Corporation Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells
CN101483202A (zh) * 2009-02-12 2009-07-15 北京索拉安吉清洁能源科技有限公司 单晶硅衬底多结太阳电池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6281426B1 (en) * 1997-10-01 2001-08-28 Midwest Research Institute Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge
US6316715B1 (en) * 2000-03-15 2001-11-13 The Boeing Company Multijunction photovoltaic cell with thin 1st (top) subcell and thick 2nd subcell of same or similar semiconductor material
US20030070707A1 (en) * 2001-10-12 2003-04-17 King Richard Roland Wide-bandgap, lattice-mismatched window layer for a solar energy conversion device
US8173891B2 (en) * 2002-05-21 2012-05-08 Alliance For Sustainable Energy, Llc Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps
US8067687B2 (en) * 2002-05-21 2011-11-29 Alliance For Sustainable Energy, Llc High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters
US20090272438A1 (en) * 2008-05-05 2009-11-05 Emcore Corporation Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell
CN101764165A (zh) * 2008-12-25 2010-06-30 上海空间电源研究所 多结砷化镓太阳电池
CN101533863B (zh) * 2009-03-18 2010-08-04 厦门市三安光电科技有限公司 一种高效单片式四结太阳电池
CN102244114A (zh) * 2011-06-22 2011-11-16 厦门市三安光电科技有限公司 一种高倍聚光多结太阳能电池及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6340788B1 (en) * 1999-12-02 2002-01-22 Hughes Electronics Corporation Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications
CN1588646A (zh) * 2004-09-23 2005-03-02 西安理工大学 一种快速软恢复SiGe/Si异质结功率开关二极管
US20090155951A1 (en) * 2007-12-13 2009-06-18 Emcore Corporation Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells
CN101431117A (zh) * 2008-11-24 2009-05-13 北京索拉安吉清洁能源科技有限公司 具有掺杂阻挡层的多结太阳电池
CN101483202A (zh) * 2009-02-12 2009-07-15 北京索拉安吉清洁能源科技有限公司 单晶硅衬底多结太阳电池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012174952A1 (zh) * 2011-06-22 2012-12-27 厦门市三安光电科技有限公司 一种高倍聚光多结太阳能电池及其制备方法
CN102651416A (zh) * 2012-05-18 2012-08-29 中国科学院苏州纳米技术与纳米仿生研究所 三结叠层GaAs激光光伏电池及其制备方法
CN102683468A (zh) * 2012-06-06 2012-09-19 南昌大学 一种晶硅异质结太阳电池的发射极结构
CN106575942A (zh) * 2014-06-27 2017-04-19 杜兰教育基金管理者 用于将太阳能电能转换与太阳能热能利用耦接的红外透射型聚光光伏器件

Also Published As

Publication number Publication date
WO2012174952A1 (zh) 2012-12-27
US20140090700A1 (en) 2014-04-03

Similar Documents

Publication Publication Date Title
CN102244114A (zh) 一种高倍聚光多结太阳能电池及其制备方法
CN103210497B (zh) 包含具有分级掺杂的稀释氮化物子电池的多结太阳能电池
CN101388419B (zh) 具有反射层的三结太阳电池及其制造方法
CN105355680B (zh) 一种晶格匹配的六结太阳能电池
CN100573923C (zh) 硅基高效多结太阳电池及其制备方法
CN101950774A (zh) 四结GaInP/GaAs/InGaAsP/InGaAs太阳电池的制作方法
CN102412337A (zh) 一种高效四结太阳能电池及其制作方法
CN112103356B (zh) 一种高效三结砷化镓太阳电池及制作方法
CN105355670B (zh) 一种含dbr结构的五结太阳能电池
CN102832285A (zh) 一种三结太阳能电池及其制备方法
CN210535681U (zh) 一种晶格失配的五结太阳能电池
CN109301006A (zh) 一种应用于晶格失配多结太阳能电池的新型dbr结构
CN102637775A (zh) 三结太阳能电池及其制备方法
CN108878550B (zh) 多结太阳能电池及其制备方法
CN103077983A (zh) 多结太阳能电池及其制备方法
CN104247032B (zh) 电池排布装置
CN102790134A (zh) 一种高效倒装五结太阳能电池及其制备方法
CN108172638A (zh) 一种三结太阳电池
CN109148621B (zh) 一种双面生长的高效六结太阳能电池及其制备方法
CN209045576U (zh) 一种应用于晶格失配多结太阳能电池的新型dbr结构
CN105810760A (zh) 一种晶格匹配的五结太阳能电池及其制作方法
CN104241416B (zh) 一种含量子阱结构的三结太阳能电池
CN110931593A (zh) 一种晶格匹配的硅基无砷化合物四结太阳电池
CN205385028U (zh) 一种晶格匹配的六结太阳能电池
CN205385027U (zh) 一种含dbr结构的五结太阳能电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20111116