CN110931593A - 一种晶格匹配的硅基无砷化合物四结太阳电池 - Google Patents

一种晶格匹配的硅基无砷化合物四结太阳电池 Download PDF

Info

Publication number
CN110931593A
CN110931593A CN201911139879.7A CN201911139879A CN110931593A CN 110931593 A CN110931593 A CN 110931593A CN 201911139879 A CN201911139879 A CN 201911139879A CN 110931593 A CN110931593 A CN 110931593A
Authority
CN
China
Prior art keywords
sub
battery
substrate
cell
gainnp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911139879.7A
Other languages
English (en)
Inventor
张小宾
林凯文
王悦辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China Zhongshan Institute
Original Assignee
University of Electronic Science and Technology of China Zhongshan Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China Zhongshan Institute filed Critical University of Electronic Science and Technology of China Zhongshan Institute
Priority to CN201911139879.7A priority Critical patent/CN110931593A/zh
Publication of CN110931593A publication Critical patent/CN110931593A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种晶格匹配的硅基无砷化合物四结太阳电池,包括Si衬底,为双面抛光的p型或n型Si单晶片;在Si衬底的上表面按照层状叠加结构从上至下依次设置有GaNP子电池、GaInNP子电池和Si子电池;在Si衬底的下表面设置有InNSbP子电池;GaNP子电池和GaInNP子电池之间通过第三隧道结连接,GaInNP子电池和Si子电池之间通过第二隧道结连接,Si衬底和InNSbP子电池之间通过第一隧道结连接。本发明在降低四结电池制造成本并提高转换效率的同时,使四结电池在生产和应用过程中更加安全环保。

Description

一种晶格匹配的硅基无砷化合物四结太阳电池
技术领域
本发明涉及太阳能光伏的技术领域,尤其是指一种晶格匹配的硅基无砷化合物四结太阳电池。
背景技术
随着人类社会经济的飞速发展,人们对能源的需求增量越来越大,其中太阳能作为一种可再生绿色能源一直被人们所关注。光伏发电技术可以将太阳能直接转换为电能进行利用,已经广泛应用于大型地面光伏电站和屋顶分布式光伏电站中。在这些光伏电站中采用最多的是单晶硅太阳电池和多晶硅太阳电池,而这两种电池均为单个p-n结结构,其理论极限效率为29%,目前技术发展较为成熟,已经越来越接近该理论极限,发展空间有限。采用多个p-n结的砷化镓(GaAs)多结电池可以更加充分的利用太阳光谱,能显著提高电池效率,然而由于成本太高主要应用于空间电源领域。目前技术发展较为成熟的GaInP/GaAs/Ge三结电池空间转换效率达30%以上,地面光谱转换效率可达33%以上。将GaAs多结电池广泛应用于地面光伏电站面临着两个关键难题:第一,由于需要基于价格昂贵的Ge衬底进行制作,制造成本较高,即使结合透镜和追日技术制作成高倍聚光光伏发电系统,其综合成本也远高于晶硅电池发电系统;第二,GaAs多结电池材料中含有大量的As元素,不仅会给制造过程中的生产废料处理带来很大难度,而且在实际应用中遇到火灾时会产生大量有毒物质,造成环境污染。因此,如果采用价格相对低廉的硅衬底,并制备无砷化合物多结电池就可以解决这两个难题,既获得了比单结硅电池高出很多的光电转换效率,又降低了多结电池的制造成本,使多结电池最终可以应用于地面大规模光伏电站。
半导体化合物GaP材料与Si的晶格常数非常接近,然而GaP的光学带隙为2.26eV,由于其带隙较高应用于多结电池时会造成整体电流偏低。研究者发现在GaP材料中掺入少量的N原子形成GaNP材料后,不仅晶格常数与Si更加匹配,而且材料光学带隙还能降低至2.05~2.15eV之间(W.Shan,W.Walukiewicz,K.M.Yu,et al.,Applied Physics Letters76(22),3251-3253(2000)),比GaP材料更加适合应用于多结太阳电池。
同时有研究表明,如果在GaInP合金中掺入少量的N可形成GaInNP四元合金材料,其材料带隙可以在1.3~2.0eV之间连续可调,同时还能与Si材料保持晶格匹配(S.Almosni,C.Robert,T.Nguyen Thanh,et al.,Journal of Applied Physics 113(12),123509(2013)),非常适合与晶硅材料结合制备太阳电池。
而另一种三元合金材料InNSb在N组分约为70%时,晶格常数与Si材料相同,材料带隙约为0.6eV,只需再掺入微量的P元素即可获得带隙在0.65~0.75eV之间的InNSbP材料,并且保持与Si材料晶格匹配。
理论分析表明,带隙结构为2.13/1.55/1.13/0.71eV的四结太阳电池在地面标准光谱的极限转换效率可达50%以上(A.Marti and G.L.Araujo,Sol.EnergyMater.Sol.Cells 43(2),203-222(1996))。因此,利用与Si材料晶格匹配的GaNP、GaInNP和InNSbP无砷化合物材料与Si衬底相结合,可以得到带隙组合为2.05~2.15/1.50~1.60/1.12/0.65~0.75eV的GaNP/GaInNP/Si/InNSbP四结太阳电池,与四结电池的最优带隙结构非常匹配,理论效率可达50%以上。同时,该四结电池基于Si衬底制作,可显著降低多结电池的制造成本,并且所采用材料均为无砷化合物,在生产和应用过程中更加安全环保。
发明内容
本发明的目的在于克服现有技术的不足与缺点,提出了一种晶格匹配的硅基无砷化合物四结太阳电池,在降低四结电池制造成本并提高转换效率的同时,使四结电池在生产和应用过程中更加安全环保。
为实现上述目的,本发明所提供的技术方案为:一种晶格匹配的硅基无砷化合物四结太阳电池,包括Si衬底,所述Si衬底为双面抛光的p型或n型Si单晶片;在所述Si衬底的上表面按照层状叠加结构从上至下依次设置有GaNP子电池、GaInNP子电池和Si子电池;在所述Si衬底的下表面设置有InNSbP子电池;所述GaNP子电池和GaInNP子电池之间通过第三隧道结连接,所述GaInNP子电池和Si子电池之间通过第二隧道结连接,所述Si衬底和InNSbP子电池之间通过第一隧道结连接。
进一步,所述GaNP子电池、GaInNP子电池、Si子电池和InNSbP子电池的所有材料层的晶格常数与Si衬底保持一致。
进一步,所述GaNP子电池中GaNP材料的光学带隙为2.05~2.15eV,该子电池总厚度为1~3μm。
进一步,所述GaInNP子电池中GaInNP材料的光学带隙为1.50~1.60eV,该子电池总厚度为1~3μm。
进一步,所述Si子电池中Si材料的光学带隙为1.12eV,该子电池总厚度为200~800μm。
进一步,所述InNSbP子电池中InNSbP材料的光学带隙为0.65~0.75eV,该子电池总厚度为1~3μm。
本发明与现有技术相比,具有如下优点与有益效果:
本发明利用双面抛光的单晶Si衬底,结合GaNP、GaInNP、InNSbP等无砷化合物材料的自身特点,在Si衬底上表面设置有GaNP子电池、GaInNP子电池和Si子电池,在其下表面设置有InNSbP子电池,最终得到带隙结构为2.05~2.15/1.50~1.60/1.12/0.65~0.75eV的GaNP/GaInNP/Si/InNSbP四结太阳电池。该硅基无砷化合物四结太阳电池带隙组合与理论最优结构相匹配,可大大提升电池转换效率,显著降低四结电池制造成本,而且在生产和应用过程中更加安全环保。
附图说明
图1为晶格匹配的硅基无砷化合物四结太阳电池结构示意图。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
参见图1所示,本实施例所提供的晶格匹配的硅基无砷化合物四结太阳电池,包括有Si衬底,为双面抛光的p型或n型Si单晶片;在所述Si衬底的上表面按照层状叠加结构从上至下依次设置有GaNP子电池、GaInNP子电池和Si子电池;在所述Si衬底的下表面设置有InNSbP子电池;所述GaNP子电池和GaInNP子电池之间通过第三隧道结连接,所述GaInNP子电池和Si子电池之间通过第二隧道结连接,所述Si衬底和InNSbP子电池之间通过第一隧道结连接。
所述GaNP子电池、GaInNP子电池、Si子电池和InNSbP子电池的所有材料层的晶格常数与Si衬底保持一致。
所述GaNP子电池中GaNP材料的光学带隙为2.05~2.15eV,该子电池总厚度为1~3μm。
所述GaInNP子电池中GaInNP材料的光学带隙为1.50~1.60eV,该子电池总厚度为1~3μm。
所述Si子电池中Si材料的光学带隙为1.12eV,该子电池总厚度为200~800μm。
所述InNSbP子电池中InNSbP材料的光学带隙为0.65~0.75eV,该子电池总厚度为1~3μm。
下面为本实施例上述晶格匹配的硅基无砷化合物四结太阳电池的具体制备过程,其情况如下:
首先,以4英寸双面抛光的p型单晶Si片为衬底,然后采用金属有机化学气相沉积技术(MOCVD)或分子束外延技术(MBE)在Si衬底的上表面依次生长Si子电池、第二隧道结、GaInNP子电池、第三隧道结和GaNP子电池,然后将Si衬底翻转180,再在Si衬底的下表面依次生长第一隧道结和InNSbP子电池,即可完成晶格匹配的硅基无砷化合物四结太阳电池的制备。
综上所述,本发明利用双面抛光的单晶Si衬底,结合GaNP、GaInNP、InNSbP等无砷化合物材料的自身特点,在Si衬底上表面设置有GaNP子电池、GaInNP子电池和Si子电池,在其下表面设置有InNSbP子电池,最终得到带隙结构为2.05~2.15/1.50~1.60/1.12/0.65~0.75eV的GaNP/GaInNP/Si/InNSbP硅基无砷化合物四结太阳电池。该硅基无砷化合物四结太阳电池带隙组合与理论最优结构相匹配,可大大提升电池转换效率,显著降低多结电池制造成本,而且在生产和应用过程中更加安全环保。总之,本发明可以基于成本较低的Si衬底制作适用于地面光伏电站的高效四结太阳电池,具有实际应用价值,值得推广。
以上所述之实施例子只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。

Claims (6)

1.一种晶格匹配的硅基无砷化合物四结太阳电池,包括Si衬底,其特征在于:所述Si衬底为双面抛光的p型或n型Si单晶片;在所述Si衬底的上表面按照层状叠加结构从上至下依次设置有GaNP子电池、GaInNP子电池和Si子电池;在所述Si衬底的下表面设置有InNSbP子电池;所述GaNP子电池和GaInNP子电池之间通过第三隧道结连接,所述GaInNP子电池和Si子电池之间通过第二隧道结连接,所述Si衬底和InNSbP子电池之间通过第一隧道结连接。
2.根据权利要求1所述的一种晶格匹配的硅基无砷化合物四结太阳电池,其特征在于:所述GaNP子电池、GaInNP子电池、Si子电池和InNSbP子电池的所有材料层的晶格常数与Si衬底保持一致。
3.根据权利要求1所述的一种晶格匹配的硅基无砷化合物四结太阳电池,其特征在于:所述GaNP子电池中GaNP材料的光学带隙为2.05~2.15eV,该子电池总厚度为1~3μm。
4.根据权利要求1所述的一种晶格匹配的硅基无砷化合物四结太阳电池,其特征在于:所述GaInNP子电池中GaInNP材料的光学带隙为1.50~1.60eV,该子电池总厚度为1~3μm。
5.根据权利要求1所述的一种晶格匹配的硅基无砷化合物四结太阳电池,其特征在于:所述Si子电池中Si材料的光学带隙为1.12eV,该子电池总厚度为200~800μm。
6.根据权利要求1所述的一种晶格匹配的硅基无砷化合物四结太阳电池,其特征在于:所述InNSbP子电池中InNSbP材料的光学带隙为0.65~0.75eV,该子电池总厚度为1~3μm。
CN201911139879.7A 2019-11-20 2019-11-20 一种晶格匹配的硅基无砷化合物四结太阳电池 Pending CN110931593A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911139879.7A CN110931593A (zh) 2019-11-20 2019-11-20 一种晶格匹配的硅基无砷化合物四结太阳电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911139879.7A CN110931593A (zh) 2019-11-20 2019-11-20 一种晶格匹配的硅基无砷化合物四结太阳电池

Publications (1)

Publication Number Publication Date
CN110931593A true CN110931593A (zh) 2020-03-27

Family

ID=69850386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911139879.7A Pending CN110931593A (zh) 2019-11-20 2019-11-20 一种晶格匹配的硅基无砷化合物四结太阳电池

Country Status (1)

Country Link
CN (1) CN110931593A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112152084A (zh) * 2020-09-27 2020-12-29 深圳市飞研智能科技有限公司 一种晶格匹配的硅基GaInNP垂直腔面发射激光器
CN114300564A (zh) * 2021-12-28 2022-04-08 武汉锐科光纤激光技术股份有限公司 双面太阳能电池以及其制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101304051A (zh) * 2007-05-09 2008-11-12 财团法人工业技术研究院 具渐变式超晶格结构的太阳电池
WO2009014076A1 (ja) * 2007-07-23 2009-01-29 Sumitomo Electric Industries, Ltd. 受光デバイス
CN103210497A (zh) * 2010-10-28 2013-07-17 太阳结公司 包含具有分级掺杂的稀释氮化物子电池的多结太阳能电池
CN104541379A (zh) * 2012-06-22 2015-04-22 埃皮沃克斯股份有限公司 半导体基多结光伏装置的制造
CN204315590U (zh) * 2014-11-28 2015-05-06 瑞德兴阳新能源技术有限公司 一种双面生长的硅基四结太阳电池
US20150179844A1 (en) * 2012-06-26 2015-06-25 Aselsan Elektronik Sanayi Ve Ticaret Anonim Sirketi Inas/alsb/gasb based type- ii sl pin detector with p on n and n on p configurations
CN109103278A (zh) * 2018-08-15 2018-12-28 中山德华芯片技术有限公司 一种无铝的高效六结太阳能电池及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101304051A (zh) * 2007-05-09 2008-11-12 财团法人工业技术研究院 具渐变式超晶格结构的太阳电池
WO2009014076A1 (ja) * 2007-07-23 2009-01-29 Sumitomo Electric Industries, Ltd. 受光デバイス
CN103210497A (zh) * 2010-10-28 2013-07-17 太阳结公司 包含具有分级掺杂的稀释氮化物子电池的多结太阳能电池
US20160118526A1 (en) * 2010-10-28 2016-04-28 Solar Junction Corporation Multi-junction solar cell with dilute nitride sub-cell having graded doping
CN104541379A (zh) * 2012-06-22 2015-04-22 埃皮沃克斯股份有限公司 半导体基多结光伏装置的制造
CN107425084A (zh) * 2012-06-22 2017-12-01 埃皮沃克斯股份有限公司 制造多结光伏装置的方法和光伏装置
US20150179844A1 (en) * 2012-06-26 2015-06-25 Aselsan Elektronik Sanayi Ve Ticaret Anonim Sirketi Inas/alsb/gasb based type- ii sl pin detector with p on n and n on p configurations
CN204315590U (zh) * 2014-11-28 2015-05-06 瑞德兴阳新能源技术有限公司 一种双面生长的硅基四结太阳电池
CN109103278A (zh) * 2018-08-15 2018-12-28 中山德华芯片技术有限公司 一种无铝的高效六结太阳能电池及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANTONIO MARTÍET.AL.: ""Limiting efficiencies for photovoltaic energy conversion in multigap systems"", 《SOLAR ENERGY MATERIALS AND SOLAR CELLS》 *
S. ALMOSNI ET.AL.: ""Evaluation of InGaPN and GaAsPN materials lattice-matched to Si for multi-junction solar cells"", 《APPLIED PHYSICS》 *
W.SHAN ET.AL.: ""Nature of the fundamental band gap in GaNXP1-X"", 《APPLIED PHYSICS LETTERS》 *
姜德鹏等: ""基于Ge衬底的高带隙A1GaInP太阳电池研究"", 《太阳能学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112152084A (zh) * 2020-09-27 2020-12-29 深圳市飞研智能科技有限公司 一种晶格匹配的硅基GaInNP垂直腔面发射激光器
CN114300564A (zh) * 2021-12-28 2022-04-08 武汉锐科光纤激光技术股份有限公司 双面太阳能电池以及其制作方法
CN114300564B (zh) * 2021-12-28 2024-04-05 武汉锐科光纤激光技术股份有限公司 双面太阳能电池以及其制作方法

Similar Documents

Publication Publication Date Title
Dimroth High‐efficiency solar cells from III‐V compound semiconductors
CN203351629U (zh) 光伏电池和光伏系统
CN101388419B (zh) 具有反射层的三结太阳电池及其制造方法
CN100573923C (zh) 硅基高效多结太阳电池及其制备方法
CN101859813B (zh) 四结GaInP/GaAs/InGaAs/Ge太阳电池的制作方法
CN101950774A (zh) 四结GaInP/GaAs/InGaAsP/InGaAs太阳电池的制作方法
CN102244114A (zh) 一种高倍聚光多结太阳能电池及其制备方法
CN101483202A (zh) 单晶硅衬底多结太阳电池
CN105355680A (zh) 一种晶格匹配的六结太阳能电池
CN103219414B (zh) GaInP/GaAs/InGaAsP/InGaAs四结级联太阳电池的制作方法
CN109148621B (zh) 一种双面生长的高效六结太阳能电池及其制备方法
CN110931593A (zh) 一种晶格匹配的硅基无砷化合物四结太阳电池
CN110911510B (zh) 一种含超晶格结构的硅基氮化物五结太阳电池
Bett et al. Advanced III–V solar cell structures grown by MOVPE
CN102790119B (zh) GaInP/GaAs/Ge/Ge四结太阳能电池及其制备方法
CN209045576U (zh) 一种应用于晶格失配多结太阳能电池的新型dbr结构
CN103000740A (zh) GaAs/GaInP双结太阳能电池及其制作方法
CN102437227A (zh) 一种含有InAs量子点结构的多结太阳电池
Razykov Photovoltaic solar electricity: State of the art and future prospects
CN104241416A (zh) 一种含量子阱结构的三结太阳能电池
CN109103278B (zh) 一种无铝的高效六结太阳能电池及其制备方法
CN205194710U (zh) 一种具有反射层的四结太阳能电池
CN201311936Y (zh) 具有反射层的三结太阳电池
CN204118094U (zh) 一种带隙结构优化的三结太阳电池
CN104241432A (zh) 一种带隙结构优化的三结太阳电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200327