CN109103278A - 一种无铝的高效六结太阳能电池及其制备方法 - Google Patents

一种无铝的高效六结太阳能电池及其制备方法 Download PDF

Info

Publication number
CN109103278A
CN109103278A CN201810927043.2A CN201810927043A CN109103278A CN 109103278 A CN109103278 A CN 109103278A CN 201810927043 A CN201810927043 A CN 201810927043A CN 109103278 A CN109103278 A CN 109103278A
Authority
CN
China
Prior art keywords
battery
sub
gan
gainp
band gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810927043.2A
Other languages
English (en)
Other versions
CN109103278B (zh
Inventor
黄珊珊
黄辉廉
张小宾
潘旭
刘建庆
彭娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongshan Dehua Chip Technology Co Ltd
Original Assignee
Zhongshan Dehua Chip Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongshan Dehua Chip Technology Co Ltd filed Critical Zhongshan Dehua Chip Technology Co Ltd
Priority to CN201810927043.2A priority Critical patent/CN109103278B/zh
Publication of CN109103278A publication Critical patent/CN109103278A/zh
Application granted granted Critical
Publication of CN109103278B publication Critical patent/CN109103278B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种无铝的高效六结太阳能电池及其制备方法,采用金属有机化学气相沉积技术或分子束外延生长技术在Ge衬底的上表面按照层状叠加结构由下至上依次生长GaInAs/GaInP缓冲层、第一隧道结、GaNxSb3xAs1‑4x子电池、第二隧道结、GaNySb3yAs1‑4y子电池、第三隧道结、GaInAs子电池、第四隧道结、GaInAsP子电池、第五隧道结、渐变缓冲层和GaInP子电池即可。本发明可以提高含宽带隙材料及稀氮化合物材料的子电池收集效率,增加六结电池短路电流,节约生产成本,最终发挥六结电池的优势,提高电池整体光电转换效率。

Description

一种无铝的高效六结太阳能电池及其制备方法
技术领域
本发明涉及太阳能光伏发电的技术领域,尤其是指一种无铝的高效六结太阳能电池及其制备方法。
背景技术
目前,太阳能电池从技术发展历史来看,大体可以分为三大类:第一代晶硅太阳能电池、第二代薄膜太阳能电池和第三代砷化镓聚光(多结)太阳能电池。砷化镓多结太阳能电池因其转换效率明显高于晶硅电池而被广泛地应用于聚光光伏发电(CPV)系统和空间电源系统。砷化镓多结电池的主流结构是由GaInP、GaInAs和Ge子电池组成的GaInP/GaInAs/Ge三结太阳能电池,电池结构上整体保持晶格匹配,带隙组合为1.85/1.40/0.67eV。然而,对于太阳光光谱,这种三结电池的带隙组合并不是最佳的,由于GaInAs子电池和Ge子电池之间较大的带隙差距,这种结构下Ge底电池的短路电流要比中电池和顶电池的大很多,由于串联结构的电流限制原因,这种结构造成了很大一部分光子能量不能被充分转换利用,限制了电池性能的提高。
理论分析表明,带隙组合为2.1/1.7/1.4/1.1/0.9/0.67eV的六结太阳能电池接近六结电池的最佳理论带隙组合,其地面光谱聚光效率极限可达50%以上,空间光谱极限效率可达38%以上,远远高于传统三结电池,这主要是因为六结电池可以更加充分地利用太阳光,提高电池的开路电压和填充因子。
用于带隙为2.1eV及1.7eV的两结子电池宽带隙材料一般通过增加铝组分来提高材料带隙,而高铝组分的引入将导致材料质量差、材料少子寿命短,使得光生载流子收集效率低。因此,本专利提出采用GaInAsP材料,通过调节Ga、In、As、P的比例可以生长与Ge衬底晶格匹配且带隙为1.7eV的化合物半导体材料;顶电池则采用GaInP材料,通过引入渐变缓冲层后生长无序低In组分的GaInP材料,同时掺入Sb源增加GaInP材料无序度从而进一步提高其带隙,最终所述GaInP材料带隙达到2.1eV。
近些年来,研究者发现稀氮化合物GaInNAs材料中,通过调节In和N的组分,并保持In组分约为N组分的3倍,就能使得GaInNAs的光学带隙达到0.9~1.4eV,并且与Ge衬底晶格匹配,然而,在GaInNAs材料的实际制备过程中,由于GaInNAs需要低温生长才能保证N原子的有效并入,材料中会同时引入大量的C原子,造成背景载流子浓度过高,影响少子扩散长度。另外,由于提供N原子的N源(一般是二甲基肼源)价格比一般的有机源都要高出很多。因此,本专利提出用GaNAsSb材料代替GaInNAs,Sb作为表面活性剂可以改善表面形貌及结晶质量,Sb的引入可以提高N的并入率,且Sb原子可以替代一部分N原子进一步降低材料带隙,因此使用GaNAsSb材料代替GaInNAs材料可以在减少N源用量的同时提高光生载流子收集效率。
总之,这种无铝的GaInP/GaInAsP/GaInAs/GaNxSb3xAs1-4x/GaNySb3yAs1-4y/Ge六结太阳能电池,既可以满足六结电池带隙组合的理论设计要求,又能解决实际制备过程中高铝材料与稀氮化合物材料少子扩散长度较小的问题,还可以节约电池的生产成本,可最大程度地发挥六结电池的优势,提高电池转换效率。
发明内容
本发明的目的在于克服现有技术的不足,提出了一种无铝的高效六结太阳能电池及其制备方法,可以提高含宽带隙材料及稀氮化合物材料的子电池收集效率,增加六结电池短路电流,节约生产成本,最终发挥六结电池的优势,提高电池整体光电转换效率。
为实现上述目的,本发明所提供的技术方案,如下:
一种无铝的高效六结太阳能电池,包括有Ge衬底,所述Ge衬底为p型Ge单晶片;在所述Ge衬底上表面按照层状叠加结构由下至上依次设置有GaInAs/GaInP缓冲层、GaNxSb3xAs1-4x子电池、GaNySb3yAs1-4y子电池、GaInAs子电池、GaInAsP子电池、渐变缓冲层和GaInP子电池;所述GaInAs/GaInP缓冲层和GaNxSb3xAs1-4x子电池之间通过第一隧道结连接,所述GaNxSb3xAs1-4x子电池和GaNySb3yAs1-4y子电池之间通过第二隧道结连接,所述GaNySb3yAs1-4y子电池和GaInAs子电池之间通过第三隧道结连接,所述GaInAs子电池和GaInAsP子电池之间通过第四隧道结连接,所述GaInAsP子电池和渐变缓冲层之间通过第五隧道结连接。
所述GaNxSb3xAs1-4x子电池中GaNxSb3xAs1-4x材料的光学带隙为0.90~0.95eV。
所述GaNySb3yAs1-4y子电池中GaNySb3yAs1-4y材料的光学带隙为1.10~1.15eV。
所述GaInAs子电池中GaInAs材料的光学带隙为1.4eV。
所述GaInAsP子电池中GaInAsP材料的光学带隙为1.70~1.75eV。
所述GaInP子电池中GaInP材料的光学带隙为2.10~2.15eV。
所述渐变缓冲层晶格常数逐渐从与Ge衬底匹配渐变到与GaInP子电池的GaInP材料匹配,且所述渐变缓冲层材料带隙比GaInP子电池带隙高。
所述无铝的高效六结太阳能电池的制备方法,具体是:以p型Ge单晶片为衬底,然后采用金属有机化学气相沉积技术(MOCVD)或分子束外延生长技术(MBE)在衬底的上表面按照层状叠加结构由下至上依次生长GaInAs/GaInP缓冲层、第一隧道结、GaNxSb3xAs1-4x子电池、第二隧道结、GaNySb3yAs1-4y子电池、第三隧道结、GaInAs子电池、第四隧道结、GaInAsP子电池、第五隧道结、渐变缓冲层和GaInP子电池,即可完成晶格匹配的高效六结太阳能电池的制备;其中,所述GaNxSb3xAs1-4x子电池中GaNxSb3xAs1-4x材料的光学带隙为0.90~0.95eV,所述GaNySb3yAs1-4y子电池中GaNySb3yAs1-4y材料的光学带隙为1.10~1.15eV,所述GaInAs子电池中GaInAs材料的光学带隙为1.4eV,所述GaInAsP子电池中GaInAsP材料的光学带隙为1.70~1.75eV,所述GaInP子电池中GaInP材料的光学带隙为2.10~2.15eV,所述渐变缓冲层晶格常数逐渐从与衬底匹配渐变到与GaInP子电池的GaInP材料匹配,且所述渐变缓冲层材料带隙比GaInP子电池带隙高。
本发明与现有技术相比,具有如下优点与有益效果:
本发明的关键在于用无铝的GaInP及GaInAsP材料代替含铝宽带隙材料作为2.1与1.7eV子电池的材料,避免了铝组分带来的材料质量差及少子扩散长度短的问题;另一方面,用GaNAsSb材料代替GaInNAs,减少N源用量的同时提高材料质量。该电池结构既可以满足六结电池带隙组合的理论设计要求,又能解决实际制备过程中含铝宽带隙材料及稀氮化合物材料少子扩散长度较小的问题,还可以节约电池的生产成本,可最大程度地发挥六结电池的优势,提高电池效率。
附图说明
图1为本发明所述无铝的高效六结太阳能电池的结构示意图。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
如图1所示,本实施例所提供的无铝的高效六结太阳能电池,包括有Ge衬底,所述Ge衬底为p型Ge单晶片;在所述Ge衬底上面按照层状叠加结构由下至上依次设置有GaInAs/GaInP缓冲层、GaNxSb3xAs1-4x子电池、GaNySb3yAs1-4y子电池、GaInAs子电池、GaInAsP子电池、渐变缓冲层和GaInP子电池;所述GaInAs/GaInP缓冲层和GaNxSb3xAs1-4x子电池之间通过第一隧道结连接,所述GaNxSb3xAs1-4x子电池和GaNySb3yAs1-4y子电池之间通过第二隧道结连接,所述GaNySb3yAs1-4y子电池和GaInAs子电池之间通过第三隧道结连接,所述GaInAs子电池和GaInAsP子电池之间通过第四隧道结连接,所述GaInAsP子电池和渐变缓冲层之间通过第五隧道结连接。
所述GaNxSb3xAs1-4x子电池中GaNxSb3xAs1-4x材料的光学带隙为0.90~0.95eV。
所述GaNySb3yAs1-4y子电池中GaNySb3yAs1-4y材料的光学带隙为1.10~1.15eV。
所述GaInAs子电池中GaInAs材料的光学带隙为1.4eV。
所述GaInAsP子电池中GaInAsP材料的光学带隙为1.70~1.75eV。
所述GaInP子电池中GaInP材料的光学带隙为2.10~2.15eV。
所述渐变缓冲层晶格常数逐渐从与Ge衬底匹配渐变到与GaInP子电池的GaInP材料匹配,且所述渐变缓冲层材料带隙比GaInP子电池带隙稍高。
下面为本实施例上述高效六结太阳能电池的具体制作方法,其具体过程如下:
以4英寸p型Ge单晶片为衬底,然后采用金属有机化学气相沉积技术(MOCVD)或分子束外延生长技术(MBE)在衬底的上表面按照层状叠加结构由下至上依次生长GaInAs/GaInP缓冲层、第一隧道结、GaNxSb3xAs1-4x子电池、第二隧道结、GaNySb3yAs1-4y子电池、第三隧道结、GaInAs子电池、第四隧道结、GaInAsP子电池、第五隧道结、渐变缓冲层和GaInP子电池,即可完成晶格匹配的高效六结太阳能电池的制备;其中,所述GaNxSb3xAs1-4x子电池中GaNxSb3xAs1-4x材料的光学带隙为0.90~0.95eV,所述GaNySb3yAs1-4y子电池中GaNySb3yAs1-4y材料的光学带隙为1.10~1.15eV,所述GaInAs子电池中GaInAs材料的光学带隙为1.4eV,所述GaInAsP子电池中GaInAsP材料的光学带隙为1.70~1.75eV,所述GaInP子电池中GaInP材料的光学带隙为2.10~2.15eV,所述渐变缓冲层晶格常数逐渐从与衬底匹配渐变到与GaInP子电池的GaInP材料匹配,且所述渐变缓冲层材料带隙比GaInP子电池带隙稍高。
综上所述,本发明不仅可以满足六结电池带隙组合的理论设计要求,还能解决实际制备过程中含铝宽带隙材料及稀氮化合物材料少子扩散长度较小的问题,并且可以节约电池的生产成本,可最大程度地发挥六结电池的优势,显著提高电池效率。总之,本发明可以更加充分地利用太阳光能量,提高多结电池的光电转换效率,值得推广。
以上所述之实施例子只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。

Claims (8)

1.一种无铝的高效六结太阳能电池,包括有Ge衬底,其特征在于:所述Ge衬底为p型Ge单晶片;在所述Ge衬底上表面按照层状叠加结构由下至上依次设置有GaInAs/GaInP缓冲层、GaNxSb3xAs1-4x子电池、GaNySb3yAs1-4y子电池、GaInAs子电池、GaInAsP子电池、渐变缓冲层和GaInP子电池;所述GaInAs/GaInP缓冲层和GaNxSb3xAs1-4x子电池之间通过第一隧道结连接,所述GaNxSb3xAs1-4x子电池和GaNySb3yAs1-4y子电池之间通过第二隧道结连接,所述GaNySb3yAs1-4y子电池和GaInAs子电池之间通过第三隧道结连接,所述GaInAs子电池和GaInAsP子电池之间通过第四隧道结连接,所述GaInAsP子电池和渐变缓冲层之间通过第五隧道结连接。
2.根据权利要求1所述的一种无铝的高效六结太阳能电池,其特征在于:所述GaNxSb3xAs1-4x子电池中GaNxSb3xAs1-4x材料的光学带隙为0.90~0.95eV。
3.根据权利要求1所述的一种无铝的高效六结太阳能电池,其特征在于:所述GaNySb3yAs1-4y子电池中GaNySb3yAs1-4y材料的光学带隙为1.10~1.15eV。
4.根据权利要求1所述的一种无铝的高效六结太阳能电池,其特征在于:所述GaInAs子电池中GaInAs材料的光学带隙为1.4eV。
5.根据权利要求1所述的一种无铝的高效六结太阳能电池,其特征在于:所述GaInAsP子电池中GaInAsP材料的光学带隙为1.70~1.75eV。
6.根据权利要求1所述的一种无铝的高效六结太阳能电池,其特征在于:所述GaInP子电池中GaInP材料的光学带隙为2.10~2.15eV。
7.根据权利要求1所述的一种无铝的高效六结太阳能电池,其特征在于:所述渐变缓冲层晶格常数逐渐从与Ge衬底匹配渐变到与GaInP子电池的GaInP材料匹配,且所述渐变缓冲层材料带隙比GaInP子电池带隙高。
8.一种权利要求1所述无铝的高效六结太阳能电池的制备方法,其特征在于:以p型Ge单晶片为衬底,然后采用金属有机化学气相沉积技术或分子束外延生长技术在衬底的上表面按照层状叠加结构由下至上依次生长GaInAs/GaInP缓冲层、第一隧道结、GaNxSb3xAs1-4x子电池、第二隧道结、GaNySb3yAs1-4y子电池、第三隧道结、GaInAs子电池、第四隧道结、GaInAsP子电池、第五隧道结、渐变缓冲层和GaInP子电池,即可完成晶格匹配的高效六结太阳能电池的制备;其中,所述GaNxSb3xAs1-4x子电池中GaNxSb3xAs1-4x材料的光学带隙为0.90~0.95eV,所述GaNySb3yAs1-4y子电池中GaNySb3yAs1-4y材料的光学带隙为1.10~1.15eV,所述GaInAs子电池中GaInAs材料的光学带隙为1.4eV,所述GaInAsP子电池中GaInAsP材料的光学带隙为1.70~1.75eV,所述GaInP子电池中GaInP材料的光学带隙为2.10~2.15eV,所述渐变缓冲层晶格常数逐渐从与衬底匹配渐变到与GaInP子电池的GaInP材料匹配,且所述渐变缓冲层材料带隙比GaInP子电池带隙高。
CN201810927043.2A 2018-08-15 2018-08-15 一种无铝的高效六结太阳能电池及其制备方法 Active CN109103278B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810927043.2A CN109103278B (zh) 2018-08-15 2018-08-15 一种无铝的高效六结太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810927043.2A CN109103278B (zh) 2018-08-15 2018-08-15 一种无铝的高效六结太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN109103278A true CN109103278A (zh) 2018-12-28
CN109103278B CN109103278B (zh) 2020-03-10

Family

ID=64849750

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810927043.2A Active CN109103278B (zh) 2018-08-15 2018-08-15 一种无铝的高效六结太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN109103278B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110931593A (zh) * 2019-11-20 2020-03-27 电子科技大学中山学院 一种晶格匹配的硅基无砷化合物四结太阳电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122733B2 (en) * 2002-09-06 2006-10-17 The Boeing Company Multi-junction photovoltaic cell having buffer layers for the growth of single crystal boron compounds
CN102184980A (zh) * 2011-04-02 2011-09-14 中国科学院苏州纳米技术与纳米仿生研究所 基于晶片键合的三结太阳能电池及其制备方法
CN102983210A (zh) * 2012-10-08 2013-03-20 天津蓝天太阳科技有限公司 GaAs体系四结太阳能电池的制备方法
CN104247032A (zh) * 2012-04-23 2014-12-24 南洋理工大学 电池排布装置
CN104779313A (zh) * 2014-01-15 2015-07-15 中国科学院苏州纳米技术与纳米仿生研究所 四结级联的太阳能电池及其制备方法
CN105355680A (zh) * 2015-11-19 2016-02-24 中山德华芯片技术有限公司 一种晶格匹配的六结太阳能电池
CN107039557A (zh) * 2015-12-25 2017-08-11 阿聚尔斯佩西太阳能有限责任公司 堆叠状的多结太阳能电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122733B2 (en) * 2002-09-06 2006-10-17 The Boeing Company Multi-junction photovoltaic cell having buffer layers for the growth of single crystal boron compounds
CN102184980A (zh) * 2011-04-02 2011-09-14 中国科学院苏州纳米技术与纳米仿生研究所 基于晶片键合的三结太阳能电池及其制备方法
CN104247032A (zh) * 2012-04-23 2014-12-24 南洋理工大学 电池排布装置
CN102983210A (zh) * 2012-10-08 2013-03-20 天津蓝天太阳科技有限公司 GaAs体系四结太阳能电池的制备方法
CN104779313A (zh) * 2014-01-15 2015-07-15 中国科学院苏州纳米技术与纳米仿生研究所 四结级联的太阳能电池及其制备方法
CN105355680A (zh) * 2015-11-19 2016-02-24 中山德华芯片技术有限公司 一种晶格匹配的六结太阳能电池
CN107039557A (zh) * 2015-12-25 2017-08-11 阿聚尔斯佩西太阳能有限责任公司 堆叠状的多结太阳能电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110931593A (zh) * 2019-11-20 2020-03-27 电子科技大学中山学院 一种晶格匹配的硅基无砷化合物四结太阳电池

Also Published As

Publication number Publication date
CN109103278B (zh) 2020-03-10

Similar Documents

Publication Publication Date Title
CN102184980B (zh) 基于晶片键合的三结太阳能电池及其制备方法
CN101859813B (zh) 四结GaInP/GaAs/InGaAs/Ge太阳电池的制作方法
CN104465843B (zh) 一种双面生长的GaAs四结太阳电池
CN100573923C (zh) 硅基高效多结太阳电池及其制备方法
CN105355680B (zh) 一种晶格匹配的六结太阳能电池
CN101950774A (zh) 四结GaInP/GaAs/InGaAsP/InGaAs太阳电池的制作方法
CN210535681U (zh) 一种晶格失配的五结太阳能电池
CN102244114A (zh) 一种高倍聚光多结太阳能电池及其制备方法
CN105355670B (zh) 一种含dbr结构的五结太阳能电池
CN104393098A (zh) 基于半导体量子点的多结太阳能电池及其制作方法
CN109301006A (zh) 一种应用于晶格失配多结太阳能电池的新型dbr结构
CN102983203A (zh) 三结级联太阳能电池及其制作方法
CN109326674B (zh) 含多个双异质结子电池的五结太阳能电池及其制备方法
CN109148621A (zh) 一种双面生长的高效六结太阳能电池及其制备方法
CN102790119B (zh) GaInP/GaAs/Ge/Ge四结太阳能电池及其制备方法
CN204315612U (zh) 一种含量子结构的双面生长四结太阳电池
CN209045576U (zh) 一种应用于晶格失配多结太阳能电池的新型dbr结构
CN104241416B (zh) 一种含量子阱结构的三结太阳能电池
CN106409958A (zh) 基于石墨衬底的倒装三结太阳电池及其制备方法
CN104465809B (zh) 一种双面生长的硅基四结太阳电池
CN204315590U (zh) 一种双面生长的硅基四结太阳电池
CN102437227A (zh) 一种含有InAs量子点结构的多结太阳电池
CN110931593A (zh) 一种晶格匹配的硅基无砷化合物四结太阳电池
CN109103278A (zh) 一种无铝的高效六结太阳能电池及其制备方法
CN205385027U (zh) 一种含dbr结构的五结太阳能电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: The invention relates to an aluminum free high-efficiency six junction solar cell and a preparation method thereof

Effective date of registration: 20210929

Granted publication date: 20200310

Pledgee: Industrial Bank Limited by Share Ltd. Zhongshan branch

Pledgor: ZHONGSHAN DEHUA CHIP TECHNOLOGY Co.,Ltd.

Registration number: Y2021980010236