CN111628021B - 一种半导体器件和制造方法 - Google Patents

一种半导体器件和制造方法 Download PDF

Info

Publication number
CN111628021B
CN111628021B CN202010496658.1A CN202010496658A CN111628021B CN 111628021 B CN111628021 B CN 111628021B CN 202010496658 A CN202010496658 A CN 202010496658A CN 111628021 B CN111628021 B CN 111628021B
Authority
CN
China
Prior art keywords
layer
semiconductor device
semiconductor layer
conductive type
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010496658.1A
Other languages
English (en)
Other versions
CN111628021A (zh
Inventor
苟于单
王俊
程洋
肖啸
郭银涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Everbright Photonics Co Ltd
Suzhou Everbright Semiconductor Laser Innovation Research Institute Co Ltd
Original Assignee
Suzhou Everbright Photonics Co Ltd
Suzhou Everbright Semiconductor Laser Innovation Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Everbright Photonics Co Ltd, Suzhou Everbright Semiconductor Laser Innovation Research Institute Co Ltd filed Critical Suzhou Everbright Photonics Co Ltd
Priority to CN202010496658.1A priority Critical patent/CN111628021B/zh
Publication of CN111628021A publication Critical patent/CN111628021A/zh
Application granted granted Critical
Publication of CN111628021B publication Critical patent/CN111628021B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种半导体器件,涉及半导体光电子器件领域。本发明公开的半导体器件,包括:第一导电类型半导体层;设置在第一导电类型半导体层上的插入层,插入层为硅碲共掺杂的铟镓砷;设置在插入层上第二导电类型半导体层;其中第一导电类型和第二导电类型是不同的导电类型。本发明公开的半导体器件可实现较高的隧穿峰值电流,可满足较高的隧穿电流需求。

Description

一种半导体器件和制造方法
技术领域
本发明涉及半导体隧道结领域,具体涉及一种包含硅碲共掺杂铟镓砷插入层的半导体器件及其制造方法。
背景技术
隧道结是多结太阳能电池的关键组成部分。在实际应用必须满足以下几个条件:(1)隧道结的隧穿峰值电流必须高于器件电流;(2)隧道结的电阻率应尽可能低;(3)对光电子器件的光通过是透明的,不能吸收光。p-GaAs/n-GaAs隧道结因其材料生长容易,广泛应用于透过大于867nm的太阳光谱吸收子结的连接。为了获得高隧穿电流和低电阻率,通常采用重掺杂的方式来实现,但是通常使用的Si掺杂GaAs由于自补偿和饱和现象,掺杂浓度最高仅能达到1×1019cm-3附近,在该掺杂水平条件下,p-GaAs/n-GaAs隧道结仅能达到的最高峰值电流为25A/cm2,而在高聚光太阳能电池中,局部的电流会超过90A/cm2,因此需要寻找创新的方法以达到需求。
发明内容
因此,本发明提供一种半导体器件以解决现有技术中隧道结器件难以满足高隧穿峰值电流的问题。
同时,本发明还提供一种上述半导体器件的制造方法,以制备上述半导体器件。
本发明提供一种半导体器件包括:一种半导体器件,包括:第一导电类型半导体层;插入层,设置在所述第一导电类型半导体层上,所述插入层为掺杂有硅和碲的III-V族化合物;第二导电类型半导体层,设置在所述插入层上,所述第一导电类型和所述第二导电类型是不同的导电类型。
在本发明的一些实施例中,上述半导体器件还包括:包含上述第一导电类型半导体层、插入层和第二导电半导体层的外延结构的衬底层下方的第一电极,包覆所述半导体外延结构的钝化保护层,所述钝化保护层在所述半导体器件的外延结构的帽层上开有一窗口;包覆所述钝化保护层的第二电极,所述第二电极在所述窗口处与所述半导体器件的外延结构的帽层电性接触。
在本发明的一些实施例中,上述III-V族化合物为铟镓砷。
在本发明的一些实施例中,所述插入层的硅和碲总掺杂浓度为1×1019—6×1019cm-3,厚度为10-30nm。
在本发明的一些实施例中,所述插入层的硅掺杂浓度为5×1018—2×1019cm-3
在本发明的一些实施例中,所述插入层的碲掺杂浓度为5×1018—4×1019cm-3
在本发明的一些实施例中,所述第一导电类型半导体层为掺杂有硅的n型镓砷半导体层,掺杂浓度为2×1018—1×1019cm-3,厚度为10-30nm。
在本发明的一些实施例中,上述第二导电类型半导体层为掺杂有碳的p型镓砷半导体层,掺杂浓度为1×1019—5×1019cm-3,厚度为10-30nm。
本发明还提供一种半导体器件的制造方法,包括:形成第一导电类型半导体层;在所述第一导电类型半导体层上形成插入层,所述插入层为掺杂有硅和碲的铟镓砷;在所述插入层上形成第二导电类型半导体层,所述第一导电类型和所述第二导电类型是不同的导电类型。
在本发明的一些实施例中,上述的半导体器件的制造方法还包括:在包含上述第一导电类型半导体层、插入层和第二导电半导体层的外延结构的衬底层下方形成第一电极;形成包覆所述半导体外延结构的钝化保护层,所述钝化保护层在所述半导体器件的外延结构的帽层上开有一窗口;形成包覆所述钝化保护层的第二电极,所述第二电极在所述窗口处与所述半导体器件的外延结构的帽层电性接触。
在本发明的一些实施例中,上述的半导体器件的制造方法,在所述第一导电类型半导体层上形成插入层的步骤为通过MOCVD气相外延生长的方法形成所述插入层,所述插入层的掺杂剂为乙硅烷和二乙基碲,所述插入层的硅和碲的总掺杂浓度为1×1019—6×1019cm-3,其中硅掺杂浓度为5×1018—2×1019cm-3,碲掺杂浓度为5×1018—4×1019cm-3
本发明提供的半导体器件,是一种隧道结器件,在p-GaAs/n-GaAs界面处插入共掺杂的InGaAs插入层形成量子阱的方法,可以极大的提升p-GaAs/n-GaAs隧道结器件的性能,因为量子阱可以提升隧道结带间隧穿几率,InGaAs层插入形成量子阱后,在耗尽层区域(外延结构部分),隧穿路径明显缩短,从而提升隧穿电流。插入层采用Si+Te共掺杂(硅碲共掺杂)技术,因为Te相较于Si更不容易扩散,并且Te可以作为表面活性剂促进Si的并入,从而可确保良好的材料质量。Si+Te共掺杂因为Si掺杂可以补偿将DETe(二乙基碲)通入反应室和在外延层中并入Te之前的时间延迟,从而可以提高插入层的掺杂浓度,使得Si+Te共掺杂的InGaAs插入层比单纯的InGaAs插入层能够提供更高的隧穿电流。
本发明提供的半导体器件,能够满足高峰值的隧穿电流需求,因此可以应用于超高聚光太阳能电池等对隧道结隧穿电流峰值要求较高的场合。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一个实施例的半导体外延结构;
图2为本发明一个实施例的半导体器件;
附图标记说明:
1-半导体器件;
10-衬底层;
11-半导体外延结构;
111-缓冲层;
112-第一导电类型半导体层;
113-插入层
114-第二导电类型半导体层;
115-帽层;
12-第一电极;
13-第二电极;
14-钝化保护层
141-窗口
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
半导体器件
参见图1和图2。如图1所示,本发明一实施例提供一种半导体器件1,包含如图2所示的半导体外延结构11。其中,半导体外延结构11包含第一导电类型半导体层112,设置在第一导电类型半导体层112上的插入层113,设置在插入层113上的第二导电类型半导体层114。其中第一导电类型和第二导电类型是不同的导电类型。插入层113可以为硅碲共掺杂的III-V族化合物,具体到本实施例中,为硅碲共掺杂的铟镓砷。
半导体外延结构11外延生长于衬底层10上,还包含:缓冲层111以及帽层115。
在本实施例中,插入层113的硅碲总掺杂浓度为1×1019cm-3,厚度为16nm。第一导电类型半导体层112为掺杂有硅的n型镓砷半导体层,掺杂浓度为1×1019cm-3厚度为30nm。第二导电类型半导体层114为掺杂有碳的p型镓砷半导体层,掺杂浓度为1×1019cm-3,厚度为30nm。衬底层10,缓冲层111为掺杂硅的n型镓砷半导体层。帽层115为掺杂碳的p型镓砷半导体层,掺杂浓度为5×1019cm-3
在本发明的其他一些实施例中,插入层113的硅碲总掺杂浓度可以为1×1019—6×1019cm-3,厚度可以为10-30nm。第一导电类型半导体层112的掺杂浓度可以为2×1018—1×1019cm-3,厚度可以为10-30nm。第二导电类型半导体层的掺杂浓度可以为1×1019—5×1019cm-3,厚度可以为10-30nm。缓冲层111厚度可以为100-200nm。
本实施例的半导体器件1还包含:衬底层10下方的第一电极12,包覆半导体外延结构11的钝化保护层14,包覆钝化保护层14的第二电极13。钝化保护层14在帽层115上开有一窗口141,第二电极13覆盖窗口141,并和帽层115在窗口141处电性接触。
其中,第一电极12可以为AuGe/Ni/Au,钝化保护层14为SiOx(硅氧化物),第二电极13可以为Ti/Pt/Au。第一电极厚度可以为250nm,钝化保护层14厚度可以为50-200nm。
本实施例提供的半导体器件1,为隧道结器件,其隧穿峰值电流可以达95A/cm2,电阻率为:1.25×10-2Ω·cm2
在本发明的另一实施例中,当插入层113的掺杂浓度为6×1019cm-3,厚度为16nm的条件时,半导体器件1的隧穿峰值电流可以达5839A/cm2,电阻率为2.55×10-5Ω·cm2
本实施例所提供的半导体器件为隧道结结构,采用在p-GaAs/n-GaAs隧道结界面处插入共掺杂的InGaAs插入层形成量子阱的方法,可以极大的提升p-GaAs/n-GaAs隧道结的性能,因为量子阱的带偏移(band-offset)效应可以提升隧道结带间隧穿几率,InGaAs插入层插入形成量子阱后,在耗尽层区域(外延结构部分),隧穿路径明显缩短,从而提升隧穿电流。隧穿峰值电流可达5839A cm-2,电阻率可达2.55×10-5Ω·cm2
半导体器件的制备
本发明提供一种上述的半导体器件的制造方法。
半导体外延结构11通过MOCVD(Metal-organic Chemical Vapor Deposition,金属有机化合物化学气相沉积)气相外延生长的方式形成于n型GaAs衬底层10上。外延生长过程中,插入层的生长温度为550℃~600℃;V/III为5~74。插入层113的掺杂剂为乙硅烷和二乙基碲。硅碲总掺杂浓度可以为1×1019—6×1019cm-3,硅掺杂浓度可以为5×1018—2×1019cm-3,碲掺杂浓度可以为5×1018—4×1019cm-3
缓冲层111以及第一导电类型半导体层112的掺杂剂为乙硅烷。
第二导电类型半导体层114和帽层115的掺杂剂为四溴化碳。
第一电极12通过在衬底层10上溅射完成。钝化保护层14通过PECVD(PlasmaEnhanced Chemical Vapor Deposition,等离子体增强化学气相沉积)完成成型,窗口141由常规的光刻及湿法腐蚀完成成型。第二电极13通过热蒸发完成成型。
上述半导体器件的制造方法中,插入层采用Si+Te共掺杂(硅碲共掺杂)技术。因为Si掺杂可以补偿将DETe(二乙基碲)通入反应室和在外延层中并入Te之前的时间延迟,从而可以提高InGaAs插入层的掺杂浓度,使得Si+Te共掺杂的量子阱插入层比单纯的InGaAs量子阱插入层能够提供更高的隧穿电流。同时因为Te相较于Si更不容易扩散,并且Te可以作为表面活性剂促进Si的并入,从而可确保良好的材料质量。制备的隧道结器件隧穿峰值电流可达5839A cm-2,电阻率可达2.55×10-5Ω·cm2
本发明实施例所提供的隧道结器件,由于其中的隧道结结构能够满足高峰值的隧穿电流需求,因此可以应用于超高聚光太阳能电池等对隧道结隧穿峰值电流要求较高的场合。
本发明所公开的技术方案已通过实施例说明如上。相信本领域技术人员可通过上述实施例的说明了解本发明。显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

1.一种半导体器件,其特征在于,包括:
隧道结结构,所述隧道结结构包括:
第一导电类型半导体层;
插入层,设置在所述第一导电类型半导体层上,所述插入层为掺杂有硅和碲的III-V族化合物;
第二导电类型半导体层,设置在所述插入层上,所述第一导电类型和所述第二导电类型是不同的导电类型;
其中,所述III-V族化合物为铟镓砷;
所述第一导电类型半导体层为n型镓砷半导体层;
所述第二导电类型半导体层为p型镓砷半导体层。
2.根据权利要求1所述的半导体器件,其特征在于,所述半导体器件还包括:
包含上述第一导电类型半导体层、插入层和第二导电半导体层的外延结构的衬底层下方的第一电极,
包覆所述半导体外延结构的钝化保护层,所述钝化保护层在所述半导体器件的外延结构的帽层上开有一窗口;
包覆所述钝化保护层的第二电极,所述第二电极在所述窗口处与所述半导体器件的外延结构的帽层电性接触。
3.根据权利要求1所述的半导体器件,其特征在于,所述插入层的硅和碲总掺杂浓度为1×1019—6×1019cm-3,厚度为10-30nm。
4.根据权利要求1所述的半导体器件,其特征在于,所述插入层的硅掺杂浓度为5×1018—2×1019cm-3
5.根据权利要求1所述的半导体器件,其特征在于,所述插入层的碲掺杂浓度为5×1018—4×1019cm-3
6.根据权利要求1所述的半导体器件,其特征在于,所述第一导电类型半导体层为掺杂有硅的n型镓砷半导体层,掺杂浓度为2×1018—1×1019cm-3,厚度为10-30nm。
7.根据权利要求1所述的半导体器件,其特征在于,所述第二导电类型半导体层为掺杂有碳的p型镓砷半导体层,掺杂浓度为1×1019—5×1019cm-3,厚度为10-30nm。
8.一种半导体器件的制造方法,其特征在于,包括:
形成隧道结结构,所述形成隧道结结构的步骤包括:
形成第一导电类型半导体层;
在所述第一导电类型半导体层上形成插入层,所述插入层为掺杂有硅和碲的III-V族化合物;
在所述插入层上形成第二导电类型半导体层,所述第一导电类型和所述第二导电类型是不同的导电类型;
其中,所述III-V族化合物为铟镓砷;
所述第一导电类型半导体层为n型镓砷半导体层;
所述第二导电类型半导体层为p型镓砷半导体层。
9.根据权利要求8的半导体器件的制造方法,其特征在于,还包括:
在包含上述第一导电类型半导体层、插入层和第二导电半导体层的外延结构的衬底层下方形成第一电极;
形成包覆所述半导体外延结构的钝化保护层,所述钝化保护层在所述半导体器件的外延结构的帽层上开有一窗口;
形成包覆所述钝化保护层的第二电极,所述第二电极在所述窗口处与所述半导体器件的外延结构的帽层电性接触。
10.根据权利要求8的半导体器件的制造方法,其特征在于,
在所述第一导电类型半导体层上形成插入层的步骤为通过MOCVD气相外延生长的方法形成所述插入层,所述插入层的掺杂剂为乙硅烷和二乙基碲,所述插入层的硅和碲的总掺杂浓度为1×1019—6×1019cm-3,其中硅掺杂浓度为5×1018—2×1019cm-3,碲掺杂浓度为5×1018—4×1019cm-3
CN202010496658.1A 2020-06-03 2020-06-03 一种半导体器件和制造方法 Active CN111628021B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010496658.1A CN111628021B (zh) 2020-06-03 2020-06-03 一种半导体器件和制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010496658.1A CN111628021B (zh) 2020-06-03 2020-06-03 一种半导体器件和制造方法

Publications (2)

Publication Number Publication Date
CN111628021A CN111628021A (zh) 2020-09-04
CN111628021B true CN111628021B (zh) 2021-11-23

Family

ID=72259296

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010496658.1A Active CN111628021B (zh) 2020-06-03 2020-06-03 一种半导体器件和制造方法

Country Status (1)

Country Link
CN (1) CN111628021B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112103352B (zh) * 2020-09-18 2022-02-01 苏州长光华芯光电技术股份有限公司 一种半导体器件及其制造方法
CN112531051B (zh) * 2020-12-04 2023-08-01 苏州长光华芯光电技术股份有限公司 一种隧道结结构及其形成方法、隧道结器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1679774A3 (en) * 2003-02-13 2006-07-26 Agilent Technologies, Inc. InP based VCSEL with zinc-doped tunnel-junction and diffusion blocking layer
CN101371370A (zh) * 2005-10-29 2009-02-18 三星电子株式会社 半导体器件及其制造方法
CN101814543A (zh) * 2010-03-19 2010-08-25 厦门市三安光电科技有限公司 一种具有高峰值电流密度隧穿结的多结太阳电池
CN105762208A (zh) * 2016-02-29 2016-07-13 天津蓝天太阳科技有限公司 一种正向失配四结级联砷化镓太阳电池及其制备方法
CN109920874A (zh) * 2018-12-28 2019-06-21 中国电子科技集团公司第十八研究所 一种具有高抗辐照能力的四结太阳电池结构及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7812249B2 (en) * 2003-04-14 2010-10-12 The Boeing Company Multijunction photovoltaic cell grown on high-miscut-angle substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1679774A3 (en) * 2003-02-13 2006-07-26 Agilent Technologies, Inc. InP based VCSEL with zinc-doped tunnel-junction and diffusion blocking layer
CN101371370A (zh) * 2005-10-29 2009-02-18 三星电子株式会社 半导体器件及其制造方法
CN101814543A (zh) * 2010-03-19 2010-08-25 厦门市三安光电科技有限公司 一种具有高峰值电流密度隧穿结的多结太阳电池
CN105762208A (zh) * 2016-02-29 2016-07-13 天津蓝天太阳科技有限公司 一种正向失配四结级联砷化镓太阳电池及其制备方法
CN109920874A (zh) * 2018-12-28 2019-06-21 中国电子科技集团公司第十八研究所 一种具有高抗辐照能力的四结太阳电池结构及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
The Comparative Study of Using Si and Te Doping Tunnel Junction of Vertical Hetero-structure Laser Photovoltaic Cell;Chenggang Guan等;《2019 the 4th Optoelectronics Global Conference》;20191209;全文 *

Also Published As

Publication number Publication date
CN111628021A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
CN102148295B (zh) 半导体元件及其制造方法
CN110047947B (zh) 具有隧道电介质的太阳能电池
US20150194562A1 (en) Silicon heterojunction photovoltaic device with wide band gap emitter
CN111628021B (zh) 一种半导体器件和制造方法
US7719028B2 (en) Semiconductor light-receiving device and manufacturing method thereof
US9722122B2 (en) Boron, bismuth co-doping of gallium arsenide and other compounds for photonic and heterojunction bipolar transistor devices
JPS6327851B2 (zh)
CN103518297A (zh) 半导体光器件及其制造方法
CN112531051B (zh) 一种隧道结结构及其形成方法、隧道结器件
CN104795409B (zh) GaAs基PHEMT和长波长谐振腔单片集成光探测器
US6258685B1 (en) Method of manufacturing hetero-junction bipolar transistor
JP3843884B2 (ja) バイポーラトランジスタの製造方法
Li et al. Analysis of external quantum efficiencies of GaN homojunction pin ultraviolet photodetectors
JP3565274B2 (ja) バイポーラトランジスタ
CN112103352B (zh) 一种半导体器件及其制造方法
US20160284881A1 (en) Solar Cell having Epitaxial Passivation Layer
JP2000174031A (ja) ヘテロ接合バイポーラトランジスタ
CN109346573A (zh) 一种氮化镓基发光二极管外延片及其制备方法
JP3312506B2 (ja) 化合物半導体ウエハ及び半導体装置
JP3688952B2 (ja) ヘテロ接合バイポーラトランジスタ集積化受光回路及びその製造方法
CN112802738B (zh) 一种提升磷化铟中锌掺杂浓度的方法
US20240204086A1 (en) Semiconductor device having an extrinsic base region with a monocrystalline region and method therefor
JP2002026352A (ja) 半導体装置
JP4725443B2 (ja) バイポーラトランジスタの製造方法
KR20170057388A (ko) 간소화 침착 공정으로 제조한 태양 전지

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 215163 No.2 workshop-1-102, No.2 workshop-2-203, zone a, industrial square, science and Technology City, No.189 Kunlunshan Road, high tech Zone, Suzhou City, Jiangsu Province

Applicant after: Suzhou Changguang Huaxin Optoelectronic Technology Co.,Ltd.

Applicant after: SUZHOU EVERBRIGHT SEMICONDUCTOR LASER INNOVATION RESEARCH INSTITUTE Co.,Ltd.

Address before: 215163 Building 2, No.189, Kunlunshan Road, high tech Zone, Suzhou City, Jiangsu Province

Applicant before: SUZHOU EVERBRIGHT PHOTONICS TECHNOLOGY Co.,Ltd.

Applicant before: SUZHOU EVERBRIGHT SEMICONDUCTOR LASER INNOVATION RESEARCH INSTITUTE Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant