CN107871799B - 一种正向失配四结太阳能电池 - Google Patents

一种正向失配四结太阳能电池 Download PDF

Info

Publication number
CN107871799B
CN107871799B CN201610856612.XA CN201610856612A CN107871799B CN 107871799 B CN107871799 B CN 107871799B CN 201610856612 A CN201610856612 A CN 201610856612A CN 107871799 B CN107871799 B CN 107871799B
Authority
CN
China
Prior art keywords
alga
layer
equal
doped
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610856612.XA
Other languages
English (en)
Other versions
CN107871799A (zh
Inventor
张启明
张恒
刘如彬
唐悦
石璘
孙强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 18 Research Institute
Original Assignee
CETC 18 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 18 Research Institute filed Critical CETC 18 Research Institute
Priority to CN201610856612.XA priority Critical patent/CN107871799B/zh
Publication of CN107871799A publication Critical patent/CN107871799A/zh
Application granted granted Critical
Publication of CN107871799B publication Critical patent/CN107871799B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及太阳能电池技术领域,提供一种正向失配四结太阳能电池,包括Ge衬底和帽层,其中,从所述Ge衬底到所述帽层依次设有Ga0.5In0.5P成核层、Ga0.99In0.01As缓冲层、第一隧道结、(AlGa)1‑xInxAs渐变缓冲层、第一(AlGa)1‑ xInxAs/(AlGa)1‑yInyAs DBR、Ga1‑xInxAs电池、第二隧道结、第二(AlGa)1‑xInxAs/(AlGa)1‑yInyAs DBR、(AlGa)1‑xInxAs电池、第三隧道结以及(AlGa)1‑yInyP电池,通过优化电池带隙在太阳光谱中的分布,调整三个子电池的组分,提高太阳能电池的光电转换效率。

Description

一种正向失配四结太阳能电池
技术领域
本发明属于太阳能电池技术领域,尤其涉及一种正向失配四结太阳能电池。
背景技术
随着生产力的飞速发展,全世界对能源的需求正在猛烈地增长,经济发展对能源的依赖越来越严重,其中太阳能是一种取之不尽用之不竭的绿色能源,于是太阳电池受到人们越来越多的重视。
基于晶格匹配设计思想的正向匹配三结太阳能电池,其材料选择为Ga0.5In0.5P、Ga0.99In0.01As和Ge,这三种材料在晶格常数上匹配好,能获得更好的外延形貌,材料的禁带宽度在AM0条件下能够获得较好的匹配,但其转换效率目前已经几乎达到极限,继续提高的空间有限。
发明内容
本发明的目的在于提供一种正向失配四结太阳能电池,旨在解决现有技术中正向匹配三结太阳能电池的转换效率目前已经几乎达到极限,继续提高的空间有限的问题。
本发明是这样实现的,一种正向失配四结太阳能电池,所述正向失配四结太阳能电池包括Ge衬底和帽层,其中,从所述Ge衬底到所述帽层依次设有Ga0.5In0.5P成核层、Ga0.99In0.01As缓冲层、第一隧道结、(AlGa)1-xInxAs渐变缓冲层、第一(AlGa)1-xInxAs/(AlGa)1-yInyAs DBR、Ga1-xInxAs电池、第二隧道结、第二(AlGa)1-xInxAs/(AlGa)1-yInyAsDBR、(AlGa)1-xInxAs电池、第三隧道结以及(AlGa)1-yInyP电池;
所述第一隧道结包括n型掺杂的n+-GaAs层和p型掺杂的p+-AlGaAs层,所述n型掺杂的n+-GaAs层的浓度和所述p型掺杂的p+-AlGaAs层的浓度均为1×1019-1×1021cm-3
所述(AlGa)1-xInxAs渐变缓冲层包括p型掺杂层,所述p型掺杂层的浓度为1×1017-1×1019cm-3,厚度为500nm-4000nm,0.01≤x≤0.4;
所述第一(AlGa)1-xInxAs/(AlGa)1-yInyAs DBR包括p型掺杂层,所述p型掺杂层的浓度为1×1017-1×1019cm-3,在每个周期内,(AlGa)1-xInxAs和(AlGa)1-yInyAs的厚度均为30nm-300nm,0.01≤x≤0.4,0.01≤y≤0.4;
所述Ga1-xInxAs电池包括n型掺杂的n-Ga1-xInxAs发射区层和p型掺杂的p-Ga1- xInxAs基区层,所述n型掺杂的n-Ga1-xInxAs发射区层的浓度为1×1017-1×1019cm-3,p型掺杂的p-Ga1-xInxAs基区层的浓度为1×1016-1×1018cm-3,所述n型掺杂的n-Ga1-xInxAs发射区层的厚度均为50nm-300nm,所述p型掺杂的p-Ga1-xInxAs基区层的厚度为500nm-3000nm,0.01≤x≤0.4;
所述第二隧道结包括n型掺杂的n+-Ga1-yInyP层和p型掺杂的p+-(AlGa)1-xInxAs层,所述n型掺杂的n+-Ga1-yInyP层的浓度为1×1019-1×1021cm-3,厚度为10nm-100nm,所述p型掺杂的p+-(AlGa)1-xInxAs层的浓度为1×1019-1×1021cm-3,厚度为10nm-100nm,其中,0.01≤x≤0.4,0.4≤y≤0.9;
所述第二(AlGa)1-xInxAs/(AlGa)1-yInyAs DBR包括p型掺杂层,所述p型掺杂层的浓度为1×1017-1×1019cm-3,每个周期内,(AlGa)1-xInxAs的厚度为30nm-300nm,(AlGa)1-yInyAs的厚度范围为30nm-300nm,其中,0.01≤x≤0.4,0.01≤y≤0.4;
所述(AlGa)1-xInxAs电池包括n型掺杂的n-(AlGa)1-xInxAs发射区层和p型掺杂的p-(AlGa)1-xInxAs基区层,所述n型掺杂的n-(AlGa)1-xInxAs发射区层的浓度为1×1017-1×1019cm-3,厚度为50nm-300nm;所述p型掺杂的p-(AlGa)1-xInxAs基区层的浓度为1×1016-1×1018cm-3,厚度为500nm-3000nm,0.01≤x≤0.4;
所述第三隧道结包括n型掺杂的n+-(AlGa)1-yInyP层和p型掺杂的p+-(AlGa)1- xInxAs层,所述n型掺杂的n+-(AlGa)1-yInyP层的浓度为1×1019-1×1021cm-3,厚度为10nm-100nm,所述p型掺杂的p+-(AlGa)1-xInxAs层的浓度为1×1019-1×1021cm-3,厚度为10nm-100nm,其中,0.01≤x≤0.4,0.4≤y≤0.9;
所述(AlGa)1-yInyP电池包括n型掺杂的n-(AlGa)1-yInyP发射区层和p型掺杂的p-(AlGa)1-yInyP基区层,所述n型掺杂的n-(AlGa)1-yInyP发射区层的浓度为1×1017-1×1019cm-3,厚度范围为10nm-100nm,所述p型掺杂的p-(AlGa)1-yInyP基区层的浓度为1×1016-1×1018cm-3,厚度为100nm-1000nm,其中,0.01≤x≤0.4,0.4≤y≤0.9。
作为一种改进的方案,所述第一隧道结的厚度为10nm-100nm,生长温度为550-700度。
作为一种改进的方案,所述Ga0.99In0.01As缓冲层的生长温度为600-750度,厚度为200nm-2000nm。
作为一种改进的方案,所述(AlGa)1-xInxAs电池的n型掺杂的n-(AlGa)1-xInxAs发射区层和p型掺杂的p-(AlGa)1-xInxAs基区层的生长温度为550-700度。
作为一种改进的方案,所述Ga0.5In0.5P成核层的生长温度为550–700℃,厚度为50-500nm。
作为一种改进的方案,所述(AlGa)1-xInxAs渐变缓冲层、第一(AlGa)1-xInxAs/(AlGa)1-yInyAs DBR、第二(AlGa)1-xInxAs/(AlGa)1-yInyAs DBR和Ga1-xInxAs电池的生长温度均为600-750度。
作为一种改进的方案,所述第二隧道结的生长温度为550-700度。
作为一种改进的方案,所述帽层包括n型掺杂的n+-Ga1-xInxAs层,浓度为1×1018-1×1021cm-3,厚度为50nm-1000nm,生长温度为550–700℃,0.01≤x≤0.4。
由于正向失配四结太阳能电池包括Ge衬底和帽层,其中,从所述Ge衬底到所述帽层依次设有Ga0.5In0.5P成核层、Ga0.99In0.01As缓冲层、第一隧道结、(AlGa)1-xInxAs渐变缓冲层、第一(AlGa)1-xInxAs/(AlGa)1-yInyAs DBR、Ga1-xInxAs电池、第二隧道结、第二(AlGa)1- xInxAs/(AlGa)1-yInyAs DBR、(AlGa)1-xInxAs电池、第三隧道结以及(AlGa)1-yInyP电池,通过优化电池带隙在太阳光谱中的分布,调整三个子电池的组分,提高太阳能电池的光电转换效率。
附图说明
图1是本发明提供的正向失配四结太阳能电池的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
图1示出了本发明提供的正向失配四结太阳能电池的结构示意图,为了便于说明,图中仅给出了与本发明相关的部分。
正向失配四结太阳能电池包括Ge衬底和帽层,其中,从所述Ge衬底到所述帽层依次设有Ga0.5In0.5P成核层、Ga0.99In0.01As缓冲层、第一隧道结、(AlGa)1-xInxAs渐变缓冲层、第一(AlGa)1-xInxAs/(AlGa)1-yInyAs DBR、Ga1-xInxAs电池、第二隧道结、第二(AlGa)1-xInxAs/(AlGa)1-yInyAs DBR、(AlGa)1-xInxAs电池、第三隧道结以及(AlGa)1-yInyP电池;
Ga0.5In0.5P成核层,其n型掺杂剂为Si、Se或Te,生长温度为550–700℃,厚度为50-500nm,通过该层中磷原子的扩散形成n-Ge层,从而形成锗电池;
Ga0.99In0.01As缓冲层,其n型掺杂剂为Si、Se或Te,生长温度为600-750度,厚度为200nm-2000nm;
第一隧道结包括n型掺杂的n+-GaAs层和p型掺杂的p+-AlGaAs层,n型掺杂的n+-GaAs层的掺杂剂为Si、Se或Te,p型掺杂的p+-AlGaAs层的掺杂剂为Zn、Mg或C,所述n型掺杂的n+-GaAs层的浓度和所述p型掺杂的p+-AlGaAs层的浓度均为1×1019-1×1021cm-3,其中,该第一隧道结的厚度为10nm-100nm,生长温度为550-700度;
所述(AlGa)1-xInxAs渐变缓冲层包括p型掺杂层,In的组分从下到上从0.01线性或阶梯渐变到x,p型掺杂层的掺杂剂为Zn、Mg或C,所述p型掺杂层的浓度为1×1017-1×1019cm-3,厚度为500nm-4000nm,0.01≤x≤0.4,其生长温度为600-750度;
第一(AlGa)1-xInxAs/(AlGa)1-yInyAs DBR包括p型掺杂层,p型掺杂层的掺杂剂为Zn、Mg或C,所述p型掺杂层的浓度为1×1017-1×1019cm-3,周期数为5-30个,在每个周期内,(AlGa)1-xInxAs和(AlGa)1-yInyAs的厚度均为30nm-300nm,其生长温度为600-750度,0.01≤x≤0.4,0.01≤y≤0.4,;
Ga1-xInxAs电池包括n型掺杂的n-Ga1-xInxAs发射区层和p型掺杂的p-Ga1-xInxAs基区层,n型掺杂的n-Ga1-xInxAs发射区层的掺杂剂为Si、Se或Te,p型掺杂的p-Ga1-xInxAs基区层的掺杂剂为Zn、Mg或C,n型掺杂的n-Ga1-xInxAs发射区层的浓度为1×1017-1×1019cm-3,p型掺杂的p-Ga1-xInxAs基区层的浓度为1×1016-1×1018cm-3,所述n型掺杂的n-Ga1-xInxAs发射区层的厚度均为50nm-300nm,所述p型掺杂的p-Ga1-xInxAs基区层的厚度为500nm-3000nm,其生长温度为600-750度,其中,0.01≤x≤0.4;
第二隧道结包括n型掺杂的n+-Ga1-yInyP层和p型掺杂的p+-(AlGa)1-xInxAs层,n型掺杂的n+-Ga1-yInyP层的掺杂剂为Si、Se或Te,p型掺杂的p+-(AlGa)1-xInxAs层的掺杂剂为Zn、Mg或C,所述n型掺杂的n+-Ga1-yInyP层的浓度为1×1019-1×1021cm-3,厚度为10nm-100nm,所述p型掺杂的p+-(AlGa)1-xInxAs层的浓度为1×1019-1×1021cm-3,厚度为10nm-100nm,其生长温度为550-700度,其中,0.01≤x≤0.4,0.4≤y≤0.9;
第二(AlGa)1-xInxAs/(AlGa)1-yInyAs DBR包括p型掺杂层,p型掺杂层的掺杂剂为Zn、Mg或C,所述p型掺杂层的浓度为1×1017-1×1019cm-3,周期数为5-30个,每个周期内,(AlGa)1-xInxAs的厚度为30nm-300nm,(AlGa)1-yInyAs的厚度范围为30nm-300nm,其生长温度为600-750度,其中,0.01≤x≤0.4,0.01≤y≤0.4;
(AlGa)1-xInxAs电池包括n型掺杂的n-(AlGa)1-xInxAs发射区层和p型掺杂的p-(AlGa)1-xInxAs基区层,n型掺杂的n-(AlGa)1-xInxAs发射区层的掺杂剂为Si、Se或Te,p型掺杂的p-(AlGa)1-xInxAs基区层的掺杂剂为Zn、Mg或C,所述n型掺杂的n-(AlGa)1-xInxAs发射区层的浓度为1×1017-1×1019cm-3,厚度为50nm-300nm;所述p型掺杂的p-(AlGa)1-xInxAs基区层的浓度为1×1016-1×1018cm-3,厚度为500nm-3000nm,0.01≤x≤0.4;
第三隧道结包括n型掺杂的n+-(AlGa)1-yInyP层和p型掺杂的p+-(AlGa)1-xInxAs层,n型掺杂的n+-(AlGa)1-yInyP层的掺杂剂为Si、Se或Te,p型掺杂的p+-(AlGa)1-xInxAs层的掺杂剂为Zn、Mg或C,所述n型掺杂的n+-(AlGa)1-yInyP层的浓度为1×1019-1×1021cm-3,厚度为10nm-100nm,所述p型掺杂的p+-(AlGa)1-xInxAs层的浓度为1×1019-1×1021cm-3,厚度为10nm-100nm,其中,0.01≤x≤0.4,0.4≤y≤0.9;
(AlGa)1-yInyP电池包括n型掺杂的n-(AlGa)1-yInyP发射区层和p型掺杂的p-(AlGa)1-yInyP基区层,n型掺杂的n-(AlGa)1-yInyP发射区层的掺杂剂为Si、Se或Te,p型掺杂的p-(AlGa)1-yInyP基区层的掺杂剂为Zn、Mg或C,所述n型掺杂的n-(AlGa)1-yInyP发射区层的浓度为1×1017-1×1019cm-3,厚度范围为10nm-100nm,所述p型掺杂的p-(AlGa)1-yInyP基区层的浓度为1×1016-1×1018cm-3,厚度为100nm-1000nm,其中,0.01≤x≤0.4,0.4≤y≤0.9。
在本发明实施例中,帽层包括n型掺杂的n+-Ga1-xInxAs层,掺杂剂为Si、Se或Te,浓度为1×1018-1×1021cm-3,厚度为50nm-1000nm,生长温度为550–700℃,0.01≤x≤0.4。
在本发明实施例中,采用第一(AlGa)1-xInxAs/(AlGa)1-yInyAs DBR和第二(AlGa)1- xInxAs/(AlGa)1-yInyAs DBR的结构,可以反射Ga1-xInxAs电池和(AlGa)1-xInxAs电池的光子,从而实现被两个子电池重新吸收,提高量子效率和抗辐照能力。
在本发明实施例中,正向失配四结太阳能电池包括Ge衬底和帽层,其中,从所述Ge衬底到所述帽层依次设有Ga0.5In0.5P成核层、Ga0.99In0.01As缓冲层、第一隧道结、(AlGa)1- xInxAs渐变缓冲层、第一(AlGa)1-xInxAs/(AlGa)1-yInyAs DBR、Ga1-xInxAs电池、第二隧道结、第二(AlGa)1-xInxAs/(AlGa)1-yInyAs DBR、(AlGa)1-xInxAs电池、第三隧道结以及(AlGa)1- yInyP电池,其结构简单,便于制作,同时通过优化电池带隙在太阳光谱中的分布,调整三个子电池的组分,提高太阳能电池的光电转换效率。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种正向失配四结太阳能电池,其特征在于,所述正向失配四结太阳能电池包括Ge衬底和帽层,其中,从所述Ge衬底到所述帽层依次设有Ga0.5In0.5P成核层、Ga0.99In0.01As缓冲层、第一隧道结、(AlGa)1-xInxAs渐变缓冲层、第一(AlGa)1-xInxAs/(AlGa)1-yInyAs DBR、Ga1- xInxAs电池、第二隧道结、第二(AlGa)1-xInxAs/(AlGa)1-yInyAs DBR、(AlGa)1-xInxAs电池、第三隧道结以及(AlGa)1-yInyP电池;
所述第一隧道结包括n型掺杂的n+-GaAs层和p型掺杂的p+-AlGaAs层,所述n型掺杂的n+-GaAs层的浓度和所述p型掺杂的p+-AlGaAs层的浓度均为1×1019-1×1021cm-3
所述(AlGa)1-xInxAs渐变缓冲层包括p型掺杂层,所述p型掺杂层的浓度为1×1017-1×1019cm-3,厚度为500nm-4000nm,0.01≤x≤0.4;
所述第一(AlGa)1-xInxAs/(AlGa)1-yInyAs DBR包括p型掺杂层,所述p型掺杂层的浓度为1×1017-1×1019cm-3,在每个周期内,(AlGa)1-xInxAs和(AlGa)1-yInyAs的厚度均为30nm-300nm,0.01≤x≤0.4,0.01≤y≤0.4;
所述Ga1-xInxAs电池包括n型掺杂的n-Ga1-xInxAs发射区层和p型掺杂的p-Ga1-xInxAs基区层,所述n型掺杂的n-Ga1-xInxAs发射区层的浓度为1×1017-1×1019cm-3,p型掺杂的p-Ga1-xInxAs基区层的浓度为1×1016-1×1018cm-3,所述n型掺杂的n-Ga1-xInxAs发射区层的厚度均为50nm-300nm,所述p型掺杂的p-Ga1-xInxAs基区层的厚度为500nm-3000nm,0.01≤x≤0.4;
所述第二隧道结包括n型掺杂的n+-Ga1-yInyP层和p型掺杂的p+-(AlGa)1-xInxAs层,所述n型掺杂的n+-Ga1-yInyP层的浓度为1×1019-1×1021cm-3,厚度为10nm-100nm,所述p型掺杂的p+-(AlGa)1-xInxAs层的浓度为1×1019-1×1021cm-3,厚度为10nm-100nm,其中,0.01≤x≤0.4,0.4≤y≤0.9;
所述第二(AlGa)1-xInxAs/(AlGa)1-yInyAs DBR包括p型掺杂层,所述p型掺杂层的浓度为1×1017-1×1019cm-3,每个周期内,(AlGa)1-xInxAs的厚度为30nm-300nm,(AlGa)1-yInyAs的厚度范围为30nm-300nm,其中,0.01≤x≤0.4,0.01≤y≤0.4;
所述(AlGa)1-xInxAs电池包括n型掺杂的n-(AlGa)1-xInxAs发射区层和p型掺杂的p-(AlGa)1-xInxAs基区层,所述n型掺杂的n-(AlGa)1-xInxAs发射区层的浓度为1×1017-1×1019cm-3,厚度为50nm-300nm;所述p型掺杂的p-(AlGa)1-xInxAs基区层的浓度为1×1016-1×1018cm-3,厚度为500nm-3000nm,0.01≤x≤0.4;
所述第三隧道结包括n型掺杂的n+-(AlGa)1-yInyP层和p型掺杂的p+-(AlGa)1-xInxAs层,所述n型掺杂的n+-(AlGa)1-yInyP层的浓度为1×1019-1×1021cm-3,厚度为10nm-100nm,所述p型掺杂的p+-(AlGa)1-xInxAs层的浓度为1×1019-1×1021cm-3,厚度为10nm-100nm,其中,0.01≤x≤0.4,0.4≤y≤0.9;
所述(AlGa)1-yInyP电池包括n型掺杂的n-(AlGa)1-yInyP发射区层和p型掺杂的p-(AlGa)1-yInyP基区层,所述n型掺杂的n-(AlGa)1-yInyP发射区层的浓度为1×1017-1×1019cm-3,厚度范围为10nm-100nm,所述p型掺杂的p-(AlGa)1-yInyP基区层的浓度为1×1016-1×1018cm-3,厚度为100nm-1000nm,其中,0.01≤x≤0.4,0.4≤y≤0.9。
2.根据权利要求1所述的正向失配四结太阳能电池,其特征在于,所述第一隧道结的厚度为10nm-100nm,生长温度为550-700度。
3.根据权利要求1所述的正向失配四结太阳能电池,其特征在于,所述Ga0.99In0.01As缓冲层的生长温度为600-750度,厚度为200nm-2000nm。
4.根据权利要求1所述的正向失配四结太阳能电池,其特征在于,所述(AlGa)1-xInxAs电池的n型掺杂的n-(AlGa)1-xInxAs发射区层和p型掺杂的p-(AlGa)1-xInxAs基区层的生长温度为550-700度。
5.根据权利要求1所述的正向失配四结太阳能电池,其特征在于,所述Ga0.5In0.5P成核层的生长温度为550–700℃,厚度为50-500nm。
6.根据权利要求1所述的正向失配四结太阳能电池,其特征在于,所述(AlGa)1-xInxAs渐变缓冲层、第一(AlGa)1-xInxAs/(AlGa)1-yInyAs DBR、第二(AlGa)1-xInxAs/(AlGa)1-yInyAsDBR和Ga1-xInxAs电池的生长温度均为600-750度。
7.根据权利要求1所述的正向失配四结太阳能电池,其特征在于,所述第二隧道结的生长温度为550-700度。
8.根据权利要求1所述的正向失配四结太阳能电池,其特征在于,所述帽层包括n型掺杂的n+-Ga1-xInxAs层,浓度为1×1018-1×1021cm-3,厚度为50nm-1000nm,生长温度为550–700℃,0.01≤x≤0.4。
CN201610856612.XA 2016-09-27 2016-09-27 一种正向失配四结太阳能电池 Active CN107871799B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610856612.XA CN107871799B (zh) 2016-09-27 2016-09-27 一种正向失配四结太阳能电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610856612.XA CN107871799B (zh) 2016-09-27 2016-09-27 一种正向失配四结太阳能电池

Publications (2)

Publication Number Publication Date
CN107871799A CN107871799A (zh) 2018-04-03
CN107871799B true CN107871799B (zh) 2023-11-07

Family

ID=61752245

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610856612.XA Active CN107871799B (zh) 2016-09-27 2016-09-27 一种正向失配四结太阳能电池

Country Status (1)

Country Link
CN (1) CN107871799B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109755340A (zh) * 2018-12-26 2019-05-14 中国电子科技集团公司第十八研究所 一种正向晶格失配三结太阳电池
CN109920874B (zh) * 2018-12-28 2021-04-20 中国电子科技集团公司第十八研究所 一种具有高抗辐照能力的四结太阳电池结构及其制备方法
CN110634984A (zh) * 2019-09-04 2019-12-31 中国电子科技集团公司第十八研究所 一种正向失配五结太阳电池
CN111092127A (zh) * 2019-11-26 2020-05-01 中国电子科技集团公司第十八研究所 一种正向晶格失配三结太阳电池
CN111725332A (zh) * 2020-06-11 2020-09-29 中山德华芯片技术有限公司 一种高性能三结砷化镓太阳电池
EP3965168B1 (de) * 2020-09-07 2023-03-08 AZUR SPACE Solar Power GmbH Stapelförmige monolithische mehrfachsolarzelle
EP3965169B1 (de) 2020-09-07 2023-02-15 AZUR SPACE Solar Power GmbH Stapelförmige monolithische mehrfachsolarzelle
CN112635608B (zh) * 2020-12-21 2023-06-23 中国电子科技集团公司第十八研究所 一种锗基晶格失配四结太阳电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101882645A (zh) * 2009-05-08 2010-11-10 安科太阳能公司 具有iv/iii-v族混合合金的反向多结太阳能电池
CN102790118A (zh) * 2012-07-19 2012-11-21 中国科学院苏州纳米技术与纳米仿生研究所 GaInP/GaAs/InGaAs/Ge四结太阳能电池及其制备方法
CN102983210A (zh) * 2012-10-08 2013-03-20 天津蓝天太阳科技有限公司 GaAs体系四结太阳能电池的制备方法
CN105762208A (zh) * 2016-02-29 2016-07-13 天津蓝天太阳科技有限公司 一种正向失配四结级联砷化镓太阳电池及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130104970A1 (en) * 2011-10-14 2013-05-02 Florida State University Research Foundation, Inc. Four junction solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101882645A (zh) * 2009-05-08 2010-11-10 安科太阳能公司 具有iv/iii-v族混合合金的反向多结太阳能电池
CN102790118A (zh) * 2012-07-19 2012-11-21 中国科学院苏州纳米技术与纳米仿生研究所 GaInP/GaAs/InGaAs/Ge四结太阳能电池及其制备方法
CN102983210A (zh) * 2012-10-08 2013-03-20 天津蓝天太阳科技有限公司 GaAs体系四结太阳能电池的制备方法
CN105762208A (zh) * 2016-02-29 2016-07-13 天津蓝天太阳科技有限公司 一种正向失配四结级联砷化镓太阳电池及其制备方法

Also Published As

Publication number Publication date
CN107871799A (zh) 2018-04-03

Similar Documents

Publication Publication Date Title
CN107871799B (zh) 一种正向失配四结太阳能电池
US10355159B2 (en) Multi-junction solar cell with dilute nitride sub-cell having graded doping
US9543456B1 (en) Multijunction solar cell employing extended heterojunction and step graded antireflection structures and methods for constructing the same
CN109860325B (zh) 一种砷化物多结太阳能电池及其制作方法
US20170338357A1 (en) Exponential doping in lattice-matched dilute nitride photovoltaic cells
JP2010263222A (ja) Iv/iii−v族ハイブリッド合金を有する多接合太陽電池
US20150068581A1 (en) Fabrication Method for Multi-junction Solar Cells
CN109755340A (zh) 一种正向晶格失配三结太阳电池
CN110634984A (zh) 一种正向失配五结太阳电池
US10944022B2 (en) Solar cell with delta doping layer
CN111092127A (zh) 一种正向晶格失配三结太阳电池
CN107316909A (zh) 一种多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法
US20190288147A1 (en) Dilute nitride optical absorption layers having graded doping
Kim et al. InGaAsNSb/Ge double-junction solar cells grown by metalorganic chemical vapor deposition
CN103000740B (zh) GaAs/GaInP双结太阳能电池及其制作方法
CN110534598B (zh) 一种含有超晶格结构背场的化合物太阳电池
CN109742187B (zh) 一种多节太阳能电池制造方法
CN111725332A (zh) 一种高性能三结砷化镓太阳电池
CN112635608B (zh) 一种锗基晶格失配四结太阳电池
CN102738267B (zh) 具有超晶格结构的太阳能电池及其制备方法
JP2012054424A (ja) 太陽電池及びその製造方法
CN104241416A (zh) 一种含量子阱结构的三结太阳能电池
RU2605839C2 (ru) Фотоэлектрический преобразователь
Dai et al. The investigation of wafer-bonded multi-junction solar cell grown by MBE
CN103943712A (zh) 一种超宽带隙隧穿结

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant