CN110534598B - 一种含有超晶格结构背场的化合物太阳电池 - Google Patents

一种含有超晶格结构背场的化合物太阳电池 Download PDF

Info

Publication number
CN110534598B
CN110534598B CN201910672823.1A CN201910672823A CN110534598B CN 110534598 B CN110534598 B CN 110534598B CN 201910672823 A CN201910672823 A CN 201910672823A CN 110534598 B CN110534598 B CN 110534598B
Authority
CN
China
Prior art keywords
layer
region
equal
solar cell
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910672823.1A
Other languages
English (en)
Other versions
CN110534598A (zh
Inventor
张玮
陆宏波
李欣益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Space Power Sources
Original Assignee
Shanghai Institute of Space Power Sources
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Space Power Sources filed Critical Shanghai Institute of Space Power Sources
Priority to CN201910672823.1A priority Critical patent/CN110534598B/zh
Publication of CN110534598A publication Critical patent/CN110534598A/zh
Application granted granted Critical
Publication of CN110534598B publication Critical patent/CN110534598B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明实施例提供了一种含有超晶格结构背场的化合物太阳电池,属于太阳电池技术领域。所述太阳电池的高掺杂隧穿结区包含自下而上依次设置的高n型掺杂的n++层和高p型掺杂的p++层,背场区包含InAlAs层和InP层对所组成的超晶格结构,所述的光电吸收区p层采用Iny1Ga1‑y1Asx1P1‑x1,0≤x1≤1,0≤y1≤1,掺杂元素为Zn、Mg、Be或C,掺杂浓度为5x1015cm‑3‑1x1017cm‑3。该太阳能电池改变了光电吸收区与背场的能带排列,同时掺杂的宽带隙材料InAlAs和窄带隙材料InP超晶格含有的多界面有效抑制了高掺杂隧穿结区扩散对光电吸收转换区的影响,减小了扩散对太阳电池开路电压的下降,改善了该光电转换吸收区pn结的质量,从而提高了太阳电池的效率。

Description

一种含有超晶格结构背场的化合物太阳电池
技术领域
本发明涉及太阳电池技术领域,特别提供了一种含有超晶格结构背场的化合物太阳电池。
背景技术
III-V族化合物太阳电池因其转换效率高、抗辐照能力强、温度特性好等优点,被公认为是新一代高性能长寿命空间主电源。随着化合物半导体生长技术(如金属有机化合物汽相外延MOCVD)的不断进步,III-V族太阳电池的效率得到了很大提高。目前,单结GaAs电池效率已经超过29%,键合五结III-V族太阳电池效率已经达到36%。实现高效五结-六结太阳电池的关键点之一是获得带隙在0.7-1.1eV即波长在1770nm-1120nm的第四、五、六结,通常该吸收波段材料采用InyGa1-yAsxP1-x,0≤x≤1,0≤y≤1,实际研制工作中发现,InyGa1-yAsxP1-x生长速率比较慢,生长时间比较长,导致高掺杂区中的掺杂原子在长时间生长过程中持续向掺杂浓度比较低的光电吸收转换区扩散,破坏了光电转换吸收区的pn结质量,降低了太阳电池的开路电压,进而降低了太阳电池的光电转换效率。
通常的长波长化合物太阳电池中,如图1所示,依次含有隧穿结区、背场区20、光电吸收区、窗口层40,所述的高掺杂隧穿结区包含自下而上依次设置的高n型掺杂的n++层11和高p型掺杂的p++层12,所述的光电吸收区包含自下而上依次设置的p层31、i层32和n层33三部分。该太阳电池的背场结构不能抑制高掺杂区中的掺杂原子在长时间生长过程中持续向掺杂浓度比较低的光电吸收转换区扩散,限制了开路电压,制约了最终太阳电池性能。
发明内容
针对现有技术中存在的问题,本发明实施例提供了一种含有超晶格结构背场的化合物太阳电池,通过采用宽带隙材料InAlAs和窄带隙材料InP超晶格组成的背场区既改变了光电吸收区与背场的能带排列,同时掺杂的宽带隙材料InAlAs和窄带隙材料InP超晶格含有的多界面有效抑制了高掺杂隧穿结区扩散对光电吸收转换区的影响,减小了扩散对太阳电池开路电压的下降,改善了该光电转换吸收区pn结的质量,从而提高了太阳电池的效率。
本发明的技术解决方案是:
一种含有超晶格结构背场的化合物太阳电池,包括自下而上依次设置的高掺杂隧穿结区10、背场区20、光电吸收转换区30和窗口区40,其特征在于:
所述的高掺杂隧穿结区10包含自下而上依次设置的高n型掺杂的n++层11和高p型掺杂的p++层12;
所述的背场区20包含InAlAs层和InP层对所组成的超晶格结构;
所述的光电吸收区30包含自下而上依次设置的p层31、i层32和n层33三部分;
所述的p层31采用Iny1Ga1-y1Asx1P1-x1,0≤x1≤1,0≤y1≤1,掺杂元素为Zn、Mg、Be或C,掺杂浓度为5x1015cm-3-1x1017cm-3
所述的i层32采用Iny2Ga1-y2Asx2P1-x2,0≤x2≤1,0≤y2≤1,掺杂元素为Si或O,掺杂浓度为5x1015cm-3-1x1016cm-3
所述的n层33采用InGax3Al1-x3As,0≤x3≤1,或者采用Iny3Ga1-y3Asx4P1-x4,0≤x4≤1,0≤y3≤1,掺杂元素为Si或Te,掺杂浓度5x1017cm-3-1x1018cm-3
具体地,所述的高n型掺杂的n++层11采用InGaAlAs、InAlGaSb、InP或InGaAs材料,掺杂元素为Si或Te,掺杂浓度>1019cm-3
具体地,所述的高n型掺杂的n++层11厚度为10~30nm。
具体地,所述的高p掺杂的p++层12采用InGaAlAs、InAlGaSb、InP或InGaAs材料,掺杂元素为Zn、Mg、Be或C,掺杂浓度>1019cm-3
具体地,所述的高p掺杂的p++层12厚度为10~30nm。
具体地,所述的背场区20中InAlAs层和InP层对的数量≥5,各层掺杂元素为Zn、Mg或Be,掺杂浓度为5x1017cm-3-2x1018cm-3
具体地,所述的背场区20中InAlAs层厚度为1~5nm,所述的背场区20中InP层厚度为1~5nm。
具体地,所述的背场区20中InAlAs层和InP层对形成的超晶格结构的掺杂浓度介于所述高掺杂隧穿结区10与背场区20之间。
具体地,所述p层31厚度为3000~6000nm、i层32厚度为1~100nm和n层33厚度为10~100nm。
具体地,所述的窗口层40采用InP或InAlAs,厚度为10~50nm,掺杂元素为Si或Te,掺杂浓度5x1017cm-3-1x1018cm-3
本发明与现有技术相比的有益效果是:
本发明实施例提供的含有超晶格结构背场的化合物太阳电池,通过采用宽带隙材料InAlAs和窄带隙材料InP超晶格组成的背场区既改变了光电吸收区与背场的能带排列(参见图3),同时掺杂的宽带隙材料InAlAs和窄带隙材料InP超晶格含有的多界面有效抑制了高掺杂隧穿结区扩散对光电吸收转换区的影响,减小了扩散对太阳电池开路电压的下降,改善了该光电转换吸收区pn结的质量,从而提高了太阳电池的效率。
附图说明
图1为现有技术提供的化合物太阳电池的能带图(Ef:费米能级);
图2为本发明实施例提供的一种含有超晶格结构背场的化合物太阳电池结构示意图;
图3为本发明提供的含有超晶格结构背场的化合物太阳电池的优选实施例结构示意图。
具体实施方式
以下将结合附图及具体实施例对本发明的具体实施方式做进一步详细说明。
如图2所示,本发明实施例提供了一种含有超晶格结构背场的化合物太阳电池,包括自下而上依次设置的高掺杂隧穿结区10、背场区20、光电吸收转换区30和窗口区40,其中:
所述的高掺杂隧穿结区10包含自下而上依次设置的高n型掺杂的n++层11和高p型掺杂的p++层12;
所述的背场区20包含InAlAs层和InP层对所组成的超晶格结构,所述InAlAs层和InP层对即一层InAlAs层位于一层InP层上方形成的一个单元,本发明实施例中背场区20可以包括多个该单元;
所述的光电吸收区30包含自下而上依次设置的p层31、i层32和n层33三部分;
所述的p层31采用Iny1Ga1-y1Asx1P1-x1,0≤x1≤1,0≤y1≤1,掺杂元素为Zn、Mg、Be或C,掺杂浓度为5x1015cm-3-1x1017cm-3,掺杂浓度分布函数为梯度、线性、多项式或指数形式中的任意一种;
所述的i层32采用Iny2Ga1-y2Asx2P1-x2,0≤x2≤1,0≤y2≤1,掺杂元素为Si或O,掺杂浓度为5x1015cm-3-1x1016cm-3
所述的n层33采用InGax3Al1-x3As,0≤x3≤1,或者采用Iny3Ga1-y3Asx4P1-x4,0≤x4≤1,0≤y3≤1,掺杂元素为Si或Te,掺杂浓度5x1017cm-3-1x1018cm-3,掺杂浓度分布函数为梯度、线性、多项式或指数形式中的任意一种。
本发明实施例提供的含有超晶格结构背场的化合物太阳电池,通过采用宽带隙材料InAlAs和窄带隙材料InP超晶格组成的背场区既改变了光电吸收区与背场的能带排列,同时掺杂的宽带隙材料InAlAs和窄带隙材料InP超晶格含有的多界面有效抑制了高掺杂隧穿结区扩散对光电吸收转换区的影响,减小了扩散对太阳电池开路电压的下降,改善了该光电转换吸收区pn结的质量,从而提高了太阳电池的效率。
具体地,所述的高n型掺杂的n++层11采用InGaAlAs、InAlGaSb、InP或InGaAs材料,掺杂元素为Si或Te等,掺杂浓度>1019cm-3,厚度优选10~30nm;所述的高p掺杂的p++层12采用InGaAlAs、InAlGaSb、InP或InGaAs材料,掺杂元素为Zn、Mg、Be或C,掺杂浓度>1019cm-3,厚度优选10~30nm;高n型掺杂的n++层11和高p掺杂的p++层12共同组成了隧穿结,该隧穿结与光吸收区的P层之间存在很高的掺杂梯度,这样既能实现极性转换又能保证光电吸收区材料质量。在一可选实施例中,如图2所示,所述的背场区20中InAlAs层和InP层对的数量≥5,各层掺杂元素为Zn、Mg或Be,掺杂浓度为5x1017cm-3-2x1018cm-3,所述的背场区20中InAlAs层厚度优选1~5nm,所述的背场区20中InP层厚度优选1~5nm。其中,所述的背场区20中的InAlAs掺杂浓度与InP掺杂浓度可以相同也可以不同。该结构背场区中存在多个As/P界面,可以进一步有效抑制高掺杂隧穿结区10掺杂原子向光电吸收区30中的p层31的扩散。
具体地,所述的背场区20中InAlAs层和InP层对形成的超晶格结构的掺杂浓度介于所述高掺杂隧穿结区10与光电吸收区30中的p层31之间,有效抑制了高掺杂隧穿结区10中掺杂原子向光电吸收区30中的p层31的扩散。
具体地,所述p层31厚度为3000~6000nm、i层32厚度为1~100nm和n层33厚度为10~100nm,优选厚度能够最大优化光电吸收区30的整体性能。
在一具体实施例中,所述的窗口层40采用InP或InAlAs,厚度优选10~50nm,掺杂元素为Si或Te,掺杂浓度5x1017cm-3-1x1018cm-3,掺杂浓度分布函数为梯度、线性、多项式或指数形式中的任意一种。
实施例1
以四结太阳电池中的第四(0.73eV)太阳电池为例,如图3所示,该电池包含依次设置的n型掺杂的n++层1、高p型掺杂的p++层2、超晶格背场区3、p层4、i层5、n层6、窗口层7。
n++层1,采用In0.47Ga0.477Al0.053As,带隙是0.8eV,厚度为15nm,掺杂元素为Si,掺杂浓度5x1019cm-3
p++层2,采用In0.47Ga0.477Al0.053As,带隙是0.8eV,厚度为15nm,掺杂元素为Zn,掺杂浓度2x1019cm-3
背场区3包含5对InAlAs/InP超晶格,InAlAs与InP每层厚度为2nm,掺杂元素为Zn,InAlAs掺杂浓度为1x1018cm-3,InP掺杂浓度5x1017cm-3
p层4厚度采用In0.47Ga0.53As,带隙是0.73eV,3000nm,掺杂元素为Zn,掺杂浓度5x1016cm-3
i层5采用In0.47Ga0.53As,带隙是0.73eV,厚度10nm,掺杂元素Si,掺杂浓度5x1015cm-3
n层6采用In0.47Ga0.53As,带隙是0.73eV,厚度100nm,掺杂元素Si,掺杂浓度1x1018cm-3
窗口层7采用InP,厚度为50nm。掺杂元素Si,掺杂浓度1x1018cm-3
该子太阳电池结构采用低压金属有机物化学气相沉积(MOCVD)设备生长。本子太阳电池结构中,掺杂的宽带隙材料InAlAs和窄带隙材料InP超晶格组成的背场区20即改变了光电吸收区与背场的能带排列,同时掺杂的宽带隙材料InAlAs和窄带隙材料InP超晶格含有的多界面有效抑制了高掺杂隧穿结区扩散对光电吸收转换区的影响,减小了扩散对太阳电池开路电压的下降,改善了光电转换吸收区pn结的质量,从而提高了太阳电池的效率。
实验结果表明,采用本发明结构的太阳电池,相比较纯InP材料组成的背场,开路电压提高50mV,相比较纯InAlAs材料组成的背场,开路电压提高30mV。
实施例2
以五结太阳电池中的第五(0.88eV)太阳电池为例,如图3所示,该电池包含依次设置的n型掺杂的n++层1、高p型掺杂的p++层2、超晶格背场区3、p层4、i层5、n层6、窗口层7。
n++层1,采用In0.47Ga0.424Al0.106As,带隙是0.9eV,厚度为15nm,掺杂元素为Si,掺杂浓度5x1019cm-3
p++层2,采用In0.47Ga0.424Al0.106As,带隙是0.9eV,厚度为15nm,掺杂元素为Zn,掺杂浓度2x1019cm-3
背场区3包含5对InAlAs/InP超晶格,InAlAs与InP每层厚度为2nm,掺杂元素为Zn,InAlAs掺杂浓度为1x1018cm-3,InP掺杂浓度5x1017cm-3
p层4厚度采用In0.4Ga0.45As0.86P0.14,带隙是0.88eV,3000nm,掺杂元素为Zn,掺杂浓度5x1016cm-3
i层5采用In0.4Ga0.45As0.86P0.14,带隙是0.88eV,厚度10nm,掺杂元素Si,掺杂浓度5x1015cm-3
n层6采用In0.4Ga0.45As0.86P0.14,带隙是0.88eV,厚度100nm,掺杂元素Si,掺杂浓度1x1018cm-3
窗口层7采用InP,厚度为50nm。掺杂元素Si,掺杂浓度1x1018cm-3
该子太阳电池结构采用低压金属有机物化学气相沉积MOCVD设备生长。本子太阳电池结构中,掺杂的宽带隙材料InAlAs和窄带隙材料InP超晶格组成的背场区20即改变了光电吸收区与背场的能带排列,同时掺杂的宽带隙材料InAlAs和窄带隙材料InP超晶格含有的多界面有效抑制了高掺杂隧穿结区扩散对光电吸收转换区的影响,减小了扩散对太阳电池开路电压的下降,改善了光电转换吸收区pn结的质量,从而提高了太阳电池的效率。
实验结果表明,采用本发明结构的太阳电池,相比较纯InP材料组成的背场,开路电压提高50mV,相比较纯InAlAs材料组成的背场,开路电压提高30mV。
综上所述,本发明提供的一种含有超晶格结构背场的化合物太阳电池,该太阳电池中的宽带隙材料InAlAs和窄带隙材料InP超晶格组成的背场区既改变了光电吸收区与背场的能带排列,同时掺杂的宽带隙材料InAlAs和窄带隙材料InP超晶格含有的多界面有效抑制了高掺杂隧穿结区扩散对光电吸收转换区的影响,解决了已有技术存在的后续生长过程中高掺杂隧穿结区掺杂原子扩散破坏pn结质量的问题,减小了扩散对太阳电池开路电压的下降,改善了光电转换吸收区pn结的质量,从而提高了太阳电池的效率。
以上所述,仅为本发明一个具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
本发明未详细说明部分属于本领域技术人员公知常识。

Claims (1)

1.一种含有超晶格结构背场的化合物太阳电池,包括自下而上依次设置的高掺杂隧穿结区(10)、背场区(20)、光电吸收转换区(30)和窗口区(40),所述高掺杂隧穿结区(10)包含自下而上依次设置的高n型掺杂的n++层(11)和高p型掺杂的p++层(12),其特征在于:
所述背场区(20)包含InAlAs层和InP层对所组成的超晶格结构;
所述光电吸收转换区(30)包含自下而上依次设置的p层(31)、i层(32)和n层(33)三部分;
所述p层(31)采用Iny1Ga1-y1Asx1P1-x1,0≤x1≤1,0≤y1≤1,掺杂元素为Zn、Mg、Be或C,掺杂浓度为5x1015cm-3-1x1017cm-3
所述i层(32)采用Iny2Ga1-y2Asx2P1-x2,0≤x2≤1,0≤y2≤1,掺杂元素为Si或O,掺杂浓度为5x1015cm-3-1x1016cm-3
所述n层(33)采用InGax3Al1-x3As,0≤x3≤1,或者采用Iny3Ga1-y3Asx4P1-x4,0≤x4≤1,0≤y3≤1,掺杂元素为Si或Te,掺杂浓度5x1017cm-3-1x1018cm-3
所述高n型掺杂的n++层(11)采用InGaAlAs、InAlGaSb、InP或InGaAs材料,掺杂元素为Si或Te,掺杂浓度>1019cm-3
所述高n型掺杂的n++层(11)厚度为10~30nm;
所述高p型掺杂的p++层(12)采用InGaAlAs、InAlGaSb、InP或InGaAs材料,掺杂元素为Zn、Mg、Be或C,掺杂浓度>1019cm-3
所述高p型掺杂的p++层(12)厚度为10~30nm;
所述背场区(20)中InAlAs层和InP层对的数量≥5,各层掺杂元素为Zn、Mg或Be,掺杂浓度为5x1017cm-3-2x1018cm-3
所述背场区(20)中InAlAs层厚度为1~5nm,所述背场区(20)中InP层厚度为1~5nm;
所述背场区(20)中InAlAs层和InP层对形成的超晶格结构的掺杂浓度介于所述高掺杂隧穿结区(10)与背场区(20)之间;
所述p层(31)厚度为3000~6000nm、i层(32)厚度为1~100nm和n层(33)厚度为10~100nm;
所述窗口区(40)采用InP或InAlAs,厚度为10~50nm,掺杂元素为Si或Te,掺杂浓度5x1017cm-3-1x1018cm-3
CN201910672823.1A 2019-07-24 2019-07-24 一种含有超晶格结构背场的化合物太阳电池 Active CN110534598B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910672823.1A CN110534598B (zh) 2019-07-24 2019-07-24 一种含有超晶格结构背场的化合物太阳电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910672823.1A CN110534598B (zh) 2019-07-24 2019-07-24 一种含有超晶格结构背场的化合物太阳电池

Publications (2)

Publication Number Publication Date
CN110534598A CN110534598A (zh) 2019-12-03
CN110534598B true CN110534598B (zh) 2021-10-01

Family

ID=68660852

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910672823.1A Active CN110534598B (zh) 2019-07-24 2019-07-24 一种含有超晶格结构背场的化合物太阳电池

Country Status (1)

Country Link
CN (1) CN110534598B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066887B (zh) * 2021-03-19 2023-01-20 扬州乾照光电有限公司 一种太阳电池以及制作方法
CN113690335B (zh) * 2021-10-26 2022-03-08 南昌凯迅光电股份有限公司 一种改善型三结砷化镓太阳电池及其制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5121183A (en) * 1988-06-01 1992-06-09 Mitsubishi Denki Kabushiki Kaisha Light responsive heterojunction semiconductor pn element
CN106571408A (zh) * 2015-10-13 2017-04-19 中国科学院苏州纳米技术与纳米仿生研究所 五结太阳能电池及其制备方法
CN106299011B (zh) * 2015-06-09 2017-10-24 中国科学院苏州纳米技术与纳米仿生研究所 基于InP衬底的五结太阳能电池及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756896B2 (ja) * 1988-05-06 1995-06-14 三菱電機株式会社 太陽電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5121183A (en) * 1988-06-01 1992-06-09 Mitsubishi Denki Kabushiki Kaisha Light responsive heterojunction semiconductor pn element
CN106299011B (zh) * 2015-06-09 2017-10-24 中国科学院苏州纳米技术与纳米仿生研究所 基于InP衬底的五结太阳能电池及其制备方法
CN106571408A (zh) * 2015-10-13 2017-04-19 中国科学院苏州纳米技术与纳米仿生研究所 五结太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN110534598A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
EP3550617B1 (en) Heterojunction solar cell
US10355159B2 (en) Multi-junction solar cell with dilute nitride sub-cell having graded doping
Toprasertpong et al. Absorption threshold extended to 1.15 eV using InGaAs/GaAsP quantum wells for over‐50%‐efficient lattice‐matched quad‐junction solar cells
Brown et al. Third generation photovoltaics
US8895838B1 (en) Multijunction solar cell employing extended heterojunction and step graded antireflection structures and methods for constructing the same
CN112447868B (zh) 一种高质量四结空间太阳电池及其制备方法
CN106663714B (zh) 化合物-半导体光伏电池及化合物-半导体光伏电池的制造方法
CN107871799B (zh) 一种正向失配四结太阳能电池
CN110534598B (zh) 一种含有超晶格结构背场的化合物太阳电池
CN102412337A (zh) 一种高效四结太阳能电池及其制作方法
US20180261709A1 (en) Solar battery
US10944022B2 (en) Solar cell with delta doping layer
CN111430493B (zh) 一种多结太阳能电池及供电设备
Chevuntulak et al. Molecular beam epitaxial growth of interdigitated quantum dots for heterojunction solar cells
CN209880626U (zh) GaInP/GaAs/InGaAs三结薄膜太阳电池
CN111725332A (zh) 一种高性能三结砷化镓太阳电池
CN109524492B (zh) 一种提高多结太阳能电池少数载流子收集的方法
CN103000740A (zh) GaAs/GaInP双结太阳能电池及其制作方法
CN102738267B (zh) 具有超晶格结构的太阳能电池及其制备方法
CN109755340A (zh) 一种正向晶格失配三结太阳电池
CN110797427B (zh) 倒装生长的双异质结四结柔性太阳能电池及其制备方法
CN103633181B (zh) 一种含有ii型异质结窗口层的太阳电池
RU2364007C1 (ru) Многослойный фотопреобразователь
Sun et al. Importance of Long-lifetime n-GaInP for High-efficiency GaInP Solar Cells Grown by MBE
CN111276560B (zh) 砷化镓太阳电池及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant