CN112864282B - 一种抗辐照高效砷化镓太阳电池的制备方法 - Google Patents

一种抗辐照高效砷化镓太阳电池的制备方法 Download PDF

Info

Publication number
CN112864282B
CN112864282B CN202110438714.0A CN202110438714A CN112864282B CN 112864282 B CN112864282 B CN 112864282B CN 202110438714 A CN202110438714 A CN 202110438714A CN 112864282 B CN112864282 B CN 112864282B
Authority
CN
China
Prior art keywords
thickness
layer
gaas
cell
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110438714.0A
Other languages
English (en)
Other versions
CN112864282A (zh
Inventor
徐培强
王克来
宁如光
林晓珊
潘彬
王向武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Kaixun photoelectric Co.,Ltd.
Original Assignee
Nanchang Kaixun Photoelectric Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Kaixun Photoelectric Co ltd filed Critical Nanchang Kaixun Photoelectric Co ltd
Priority to CN202110438714.0A priority Critical patent/CN112864282B/zh
Publication of CN112864282A publication Critical patent/CN112864282A/zh
Application granted granted Critical
Publication of CN112864282B publication Critical patent/CN112864282B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/041Provisions for preventing damage caused by corpuscular radiation, e.g. for space applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种抗辐照高效砷化镓太阳电池的制备方法,属于太阳能电池技术领域。一种抗辐照高效砷化镓太阳电池的制备方法,该太阳电池自下向上依次为Ge衬底、底电池、缓冲层、中底隧穿结、多反射中心布拉格反射镜、中电池、中顶隧穿结、顶电池和盖帽层,其中,多反射中心布拉格反射镜,反射镜由n组交替生长的AlGaInP层和GaInP层组成,通过设计一种新型光谱反射结构,在保证电池结构对入射光足够吸收的情况下,减薄电池区厚度,降低载流子复合几率,提高太阳电池的开路电压及抗辐照性能。

Description

一种抗辐照高效砷化镓太阳电池的制备方法
技术领域
本发明涉及太阳能电池技术领域,具体涉及一种抗辐照高效砷化镓太阳电池的制备方法。
背景技术
自1957年10月4日世界上第一颗人造地球卫星“卫星1号”进入太空以来,航天技术取得了很大的进步,对航天器电源系统的大功率、高可靠性、长寿命和微小型化也提出了新的要求,航天器电源系统供电模式从单一的化学电池供电转变为太阳电池—蓄电池联合供电。砷化镓三结太阳电池凭借着高光电转换效率、更好的耐高温性能、更强的空间抗辐射能力等优异特性,已经取代硅太阳电池,成为航天飞行器的主电源,是目前世界上最具竞争力的新一代空间主电源,也成为了我国航天飞行器,如人造卫星、宇宙飞船、空间实验室等新一代高性能长寿命通用化空间主电源。随着太阳电池制备技术的不断提升,三结太阳电池的转换效率已由最初的26.8%提升到32.5%,并保持着持续进步。而影响太阳电池应用的另外一个重要的参数—抗辐照衰减,近年来进展缓慢,主要是因为作为中电池的(In)GaAs材料的抗辐照性能差。目前的主要做法一般是引入分布式布拉格反射镜(DBR),但是常规的DBR技术是采用单一反射波长,抗辐照性能很难进一步提升,为此,本发明根据光谱及电池区材料的特性,设计了一种新型的光谱反射结构,大幅提升入射光谱的吸收率,减薄电池区厚度,提升太阳电池的抗辐照性能等。
发明内容
基于此,本发明涉及一种高效砷化镓太阳电池的制备方法,旨在解决太阳电池结构中光谱吸收问题,通过设计一种新型光谱反射结构,在保证电池结构对入射光足够吸收的情况下,减薄电池区厚度,降低载流子复合几率,提高太阳电池的开路电压及抗辐照性能。
为解决上述技术问题,本发明提供一种高效砷化镓太阳电池的制备方法,该太阳电池自下向上依次为Ge衬底、底电池、缓冲层、中底隧穿结、多反射中心布拉格反射镜、中电池、中顶隧穿结、顶电池和盖帽层,该太阳电池的制备包括以下步骤:
步骤一:在Ge衬底上,高温下通过PH3扩散的形式,形成底电池发射区,然后生长GaInP或AlGaInP成核层,该成核层同时作为底电池的窗口层;
步骤二:生长GaAs缓冲层;
步骤三:生长中底隧穿结,中底隧穿结为N++GaAs—P++GaAs结构;
步骤四:生长多反射中心布拉格反射镜,反射镜由n组交替生长的AlGaInP层和GaInP层组成,n为小于30的正整数;
其中,AlGaInP层包括一个AlInP中间层以及两个AlxGa1-xInP渐变层,所述的两个AlxGa1-xInP渐变层在所述AlInP中间层厚度方向两侧对称设置,0≤x≤0.5,AlxGa1-xInP渐变层中x值沿远离AlInP中间层方向逐渐减小;
第n组反射镜的反射中心波长为
Figure 372870DEST_PATH_IMAGE001
,生长周期数为取整函数[a-bn],其中,Eg为中电池的带隙数值,a≥10,
Figure 428551DEST_PATH_IMAGE002
步骤五:生长中电池,中电池材料包括InyGaAs基区和发射区,0<y<0.1,基区和发射区总厚度
Figure 527088DEST_PATH_IMAGE003
,窗口层为AlGaInP材料,厚度0.05-0.2μm;
步骤六:然后生长中顶隧穿结,中顶隧穿结为N++GaInP—P++InyAlGaAs结构,其中0<y<0.1;
步骤七:然后生长顶电池,顶电池晶格常数与中电池匹配,由AlGaInP背电场、GaInP基区、GaInP发射区及AlInP窗口层组成;
步骤八:最后生长InyGaAs盖帽层,厚度在0.4~0.6μm之间,0<y<0.1。
进一步地,步骤二中,GaAs缓冲层厚度为0.1~0.8μm。
进一步地,步骤三中,所述N++GaAs的厚度为0.01~0.03μm,所述N++GaAs的掺杂浓度大于1×1019/cm3,掺杂剂为Te、Se和Si中至少一种;所述P++GaAs的厚度为0.01~0.03μm,所述P++GaAs的掺杂浓度大于2×1019/cm3,掺杂剂为Mg、Zn和C中至少一种。
进一步地,步骤四中,每个AlxGa1-xInP渐变层厚度为AlGaInP层厚度的1/16~1/4。
进一步地,步骤四中,AlxGa1-xInP渐变层中Al的组分含量x按照抛物线型变化,x=c(t-d)2,其中t为AlxGa1-xInP厚度,d为远离AlInP材料的距离,0≤d≤t,c为与厚度t有关的系数,保证d为0时,x的数值为0.5。
进一步地,步骤六中,N++GaInP厚度为0.01~0.03μm,掺杂浓度大于1×1019/cm3,掺杂剂为Te、Se和Si中至少一种;P++InyAlGaAs的厚度为0.01~0.03μm,掺杂浓度大于2×1019/cm3;掺杂剂为Mg、Zn和C中至少一种。
进一步地,步骤七中,AlGaInP中Al的组分为0.3~0.5,厚度为0.02~0.15μm,GaInP基区及发射区的总厚度为0.5~1μm,AlInP窗口层厚度为0.05~0.1μm。
本发明与现有技术相比,具有的有益效果是:
多反射中心布拉格反射镜的结构设计。根据布拉格反射镜的特点,合理的设计不同反射镜的反射中心、间隔及强度,实现反射镜厚度、反射波段范围及反射谱强度的最优组合,在保证产品最佳辐照性能的前提下,简化外延生长工艺,降低生产成本。同时,采用该发明技术,可提高中电池的吸收能力,大幅降低中电池厚度,减少光生载流子的复合几率,提高产品的开路电压,更重要的减薄中电池厚度后,降低空间电荷区内因粒子辐射产品的缺陷数目,降低产品的电压和电流辐照衰减。
多反射中心布拉格反射镜的组成材料设计。采用AlGaInP/GaInP材料作为布拉格反射镜材料,利用磷化物的高抗辐照性能,降低布拉格反射镜材料在受粒子辐照后的损伤,提高反射能力;抛物线型组分渐变技术,在不影响整体反射率的情况下,降低布拉格反射镜材料间的界面势垒,提升产品性能。
变化的中电池厚度。中电池的厚度,对太阳电池的抗辐照性能具有重大影响,本发明专利中,中电池的厚度与多反射中心布拉格反射镜的周期数相关,在保证中电池电流密度的前提下,大幅提高该结子电池的抗辐照性能。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1 为本申请实施例所提供的抗辐照高效砷化镓太阳电池的结构示意图;
图2为多反射中心布拉格反射镜示意图;
图3为反射镜材料组成示意图;
图中,Ge衬底-S1、底电池-S2、缓冲层-S3、中底隧穿结-S4、多反射中心布拉格反射镜-S5、中电池-S6、中顶隧穿结-S7、顶电池-S8和盖帽层-S9。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本申请的描述中,需要理解的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本申请保护范围的限制。
在本申请的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
以下结合附图1~3对本申请进行详细说明。其中,图1所示为本申请中的抗辐照高效砷化镓太阳电池的结构示意图,该太阳电池自下向上依次为Ge衬底S1、底电池S2、缓冲层S3、中底隧穿结S4、多反射中心布拉格反射镜S5、中电池S6、中顶隧穿结S7、顶电池S8和盖帽层S9,该太阳电池采用多反射中心布拉格反射镜技术,将整个电池区吸收波段的光反射回,提升电池区对入射太阳光的吸收,这样可以进一步减薄电池区厚度,降低反向饱和电流密度,提升抗辐照性能;采用AlGaInP/GaInP材料作为布拉格反射镜材料,利用磷化物的高抗辐照性能,降低布拉格反射镜材料在受粒子辐照后的损伤,提高反射能力;抛物线型组分渐变技术,在不影响整体反射率的情况下,降低布拉格反射镜材料见的界面势垒,提升产品性能。本发明的太阳电池的制备方法包括以下步骤:
步骤一:在Ge衬底上S1,高温下通过PH3扩散的形式,形成底电池S2发射区,然后生长GaInP或AlGaInP成核层,该成核层同时作为底电池S2的窗口层;
步骤二:生长GaAs缓冲层S3;
步骤三:生长中底隧穿结S4,中底隧穿结S4为N++GaAs—P++GaAs结构(两者复合);
步骤四:生长多反射中心布拉格反射镜S5,图2~3所示,反射镜由n组交替生长的AlGaInP层和GaInP层组成,n为小于30的正整数;
其中,AlGaInP层包括一个AlInP中间层以及两个AlxGa1-xInP渐变层,所述的两个AlxGa1-xInP渐变层在所述AlInP中间层厚度方向两侧对称设置,0≤x≤0.5,AlxGa1-xInP渐变层中x值沿远离AlInP中间层方向逐渐减小;
第n组反射镜的反射中心波长为
Figure 591996DEST_PATH_IMAGE004
,生长周期数为取整函数[a-bn],其中,Eg为中电池的带隙数值,a≥10,
Figure 318644DEST_PATH_IMAGE002
步骤五:生长中电池S6,中电池S6材料包括InyGaAs基区和发射区,0<y<0.1,基区和发射区总厚度
Figure 420592DEST_PATH_IMAGE005
,窗口层为AlGaInP材料,厚度0.05-0.2μm;
步骤六:然后生长中顶隧穿结S7,中顶隧穿结S7为N++GaInP—P++InyAlGaAs结构(两者复合),其中0<y<0.1;
步骤七:然后生长顶电池S8,顶电池S8晶格常数与中电池S6匹配,由AlGaInP背电场、GaInP基区、GaInP发射区及AlInP窗口层组成;
步骤八:最后生长InyGaAs盖帽层S9,0<y<0.1,厚度在0.4~0.6μm之间。
在一些具体的实施例中,步骤二中,GaAs缓冲层厚度为0.1~0.8μm。
在一些具体的实施例中,步骤三中,所述N++GaAs的厚度为0.01~0.03μm,所述N++GaAs的掺杂浓度大于1×1019/cm3,掺杂剂为Te、Se和Si中至少一种;所述P++GaAs的厚度为0.01~0.03μm,所述P++GaAs的掺杂浓度大于2×1019/cm3,掺杂剂为Mg、Zn和C中至少一种。
在一些具体的实施例中,步骤三中,每个AlxGa1-xInP渐变层厚度为AlGaInP层厚度的1/16~1/4。
在一些具体的实施例中,步骤三中,AlxGa1-xInP渐变层中Al的组分含量x按照抛物线型变化,x= c(t-d)2,其中t为AlxGa1-xInP厚度,d为远离AlInP材料的距离,0≤d≤t,c为与厚度t有关的系数,保证d为0时,x的数值为0.5。
在一些具体的实施例中,步骤六中,N++GaInP厚度为0.01~0.03μm,掺杂浓度大于1×1019/cm3,掺杂剂为Te、Se和Si中至少一种;P++InyAlGaAs的厚度为0.01~0.03μm,掺杂浓度大于2×1019/cm3;掺杂剂为Mg、Zn和C中至少一种。
在一些具体的实施例中,步骤七中,AlGaInP中Al的组分为0.3~0.5,厚度为0.02~0.15μm,GaInP基区及发射区的总厚度为0.5~1μm,AlInP窗口层厚度为0.05~0.1μm。
为了进一步说明本发明,下面结合实施例对本发明提供的一种抗辐照高效砷化镓太阳电池的制备方法进行详细描述。
实施例1
一种抗辐照高效砷化镓太阳电池,自下向上依次为Ge衬底S1、底电池S2、缓冲层S3、中底隧穿结S4、多反射中心布拉格反射镜S5,中电池S6、中顶隧穿结S7、顶电池S8和盖帽层S9。具体制作方法如下:
(1)在P型Ge衬底上,高温下通过PH3扩散的形式,形成底电池S2发射区,然后生长GaInP成核层,该成核层同时作为底电池S2的窗口层;
(2)然后生长GaAs缓冲层S3,GaAs缓冲层S3厚度为0.4μm;
(3)然后生长中底隧穿结S4,中底隧穿结S4为N++GaAs/P++GaAs结构,其中N++GaAs的厚度为0.02μm,掺杂浓度3×1019/cm3;P++GaAs的厚度为0.02μm,掺杂浓度5×1019/cm3
(4)然后生长多反射中心布拉格反射镜S5,反射镜由24组交替生长的AlGaInP层和GaInP层组成,其中,AlGaInP层包括一个AlInP中间层以及两个AlxGa1-xInP渐变层,所述的两个AlxGa1-xInP渐变层在所述AlInP中间层厚度方向两侧对称设置,0≤x≤0.5,AlxGa1-xInP渐变层中x值沿远离AlInP中间层方向逐渐减小;AlxGa1-xInP渐变层中Al的组分含量x按照抛物线型变化,x= c(t-d)2,其中t为该组AlGaInP厚度的1/8,d为远离AlInP材料的距离,0≤d≤t,c为与厚度t有关的系数,保证d为0时,x的数值为0.5,例如,对于第5组反射镜,t取值9.9nm,c取值0.005/nm2,则AlxGa1-xInP渐变层中Al的组分随位置的变化关系为x= 0.005(9.9-d)2。第n组反射镜的反射中心波长为
Figure 475267DEST_PATH_IMAGE006
,生长周期数为取整函数[15-bn],其中,当1≤n≤20时,b取0.15,当20<n≤24时,b取0.35,例如,第5组反射镜反射中心为882.5,生长周期为14对,依次类推。
(5)然后生长中电池S6,中电池S6材料包括In0.01GaAs基区和发射区,基区和发射区总厚度1.1μm,窗口层为AlGaInP材料,厚度0.1μm;
(6)然后生长中顶隧穿结S7,中顶隧穿结S7为N++GaInP/P++In0.01AlGaAs结构,其中,N++GaInP厚度为0.02μm,掺杂浓度3×1019/cm3;P++In0.01AlGaAs的厚度为0.02μm,掺杂浓度8×1019/cm3
(7)然后生长顶电池S8,顶电池S8晶格常数与中电池S6匹配,由AlGaInP背电场、GaInP基区、GaInP发射区及AlInP窗口层组成,其中,AlGaInP中Al的组分为0. 45,厚度为0.05μm,GaInP基区及发射区的总厚度为0.65μm,AlInP窗口层厚度为0.06μm;
(8)最后生长In0.01GaAs盖帽层S9,厚度为0.55μm。
本实施例中未描述的内容可以参考本申请其余部分的相关描述。
最后应当说明的是:以上实施例仅用以说明本申请的技术方案而非对其限制;尽管参照较佳实施例对本申请进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本申请的具体实施方式进行修改或者对部分技术特征进行等同替换,其均应涵盖在本申请请求保护的技术方案范围当中。

Claims (7)

1.一种抗辐照高效砷化镓太阳电池的制备方法,其特征在于,该太阳电池自下向上依次为Ge衬底、底电池、缓冲层、中底隧穿结、多反射中心布拉格反射镜、中电池、中顶隧穿结、顶电池和盖帽层,该太阳电池的制备包括以下步骤:
步骤一:在Ge衬底上,高温下通过PH3扩散的形式,形成底电池发射区,然后生长GaInP或AlGaInP成核层,该成核层同时作为底电池的窗口层;
步骤二:生长GaAs缓冲层;
步骤三:生长中底隧穿结,中底隧穿结为N++GaAs—P++GaAs结构;
步骤四:生长多反射中心布拉格反射镜,反射镜由n组交替生长的AlGaInP层和GaInP层组成,n为小于30的正整数;
其中,AlGaInP层包括一个AlInP中间层以及两个AlxGa1-xInP渐变层,所述的两个AlxGa1-xInP渐变层在所述AlInP中间层厚度方向两侧对称设置,0≤x≤0.5,AlxGa1-xInP渐变层中x值沿远离AlInP中间层方向逐渐减小;
第n组反射镜的反射中心波长为
Figure 390480DEST_PATH_IMAGE001
,生长周期数为取整函数[a-bn],其中,Eg为中电池的带隙数值,a≥10,
Figure 701375DEST_PATH_IMAGE002
步骤五:生长中电池,中电池材料包括InyGaAs基区和发射区,0<y<0.1,基区和发射区总厚度
Figure 362164DEST_PATH_IMAGE003
,窗口层为AlGaInP材料,厚度0.05-0.2μm;
步骤六:然后生长中顶隧穿结,中顶隧穿结为N++GaInP—P++InyAlGaAs结构,其中0<y<0.1;
步骤七:然后生长顶电池,顶电池晶格常数与中电池匹配,由AlGaInP背电场、GaInP基区、GaInP发射区及AlInP窗口层组成;
步骤八:最后生长InyGaAs盖帽层, 0<y<0.1,厚度在0.4~0.6μm之间。
2.根据权利要求1所述一种抗辐照高效砷化镓太阳电池的制备方法,其特征在于,步骤二中,GaAs缓冲层厚度为0.1~0.8μm。
3.根据权利要求1所述一种抗辐照高效砷化镓太阳电池的制备方法,其特征在于,步骤三中,所述N++GaAs的厚度为0.01~0.03μm,所述N++GaAs的掺杂浓度大于1×1019/cm3,掺杂剂为Te、Se和Si中至少一种;所述P++GaAs的厚度为0.01~0.03μm,所述P++GaAs的掺杂浓度大于2×1019/cm3,掺杂剂为Mg、Zn和C中至少一种。
4.根据权利要求1所述一种抗辐照高效砷化镓太阳电池的制备方法,其特征在于,步骤四中,每个AlxGa1-xInP渐变层厚度为AlGaInP层厚度的1/16~1/4。
5.根据权利要求1或4所述一种抗辐照高效砷化镓太阳电池的制备方法,其特征在于,步骤四中,AlxGa1-xInP渐变层中Al的组分含量x按照抛物线型变化,x= c(t-d)2,其中t为AlxGa1-xInP厚度,d为远离AlInP材料的距离,0≤d≤t,c为与厚度t有关的系数,保证d为0时,x的数值为0.5。
6.根据权利要求1所述一种抗辐照高效砷化镓太阳电池的制备方法,其特征在于,步骤六中,N++GaInP厚度为0.01~0.03μm,掺杂浓度大于1×1019/cm3,掺杂剂为Te、Se和Si中至少一种;P++InyAlGaAs的厚度为0.01~0.03μm,掺杂浓度大于2×1019/cm3;掺杂剂为Mg、Zn和C中至少一种。
7.根据权利要求1所述一种抗辐照高效砷化镓太阳电池的制备方法,其特征在于,步骤七中,AlGaInP中Al的组分为0.3~0.5,厚度为0.02~0.15μm,GaInP基区及发射区的总厚度为0.5~1μm,AlInP窗口层厚度为0.05~0.1μm。
CN202110438714.0A 2021-04-23 2021-04-23 一种抗辐照高效砷化镓太阳电池的制备方法 Active CN112864282B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110438714.0A CN112864282B (zh) 2021-04-23 2021-04-23 一种抗辐照高效砷化镓太阳电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110438714.0A CN112864282B (zh) 2021-04-23 2021-04-23 一种抗辐照高效砷化镓太阳电池的制备方法

Publications (2)

Publication Number Publication Date
CN112864282A CN112864282A (zh) 2021-05-28
CN112864282B true CN112864282B (zh) 2021-11-05

Family

ID=75992652

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110438714.0A Active CN112864282B (zh) 2021-04-23 2021-04-23 一种抗辐照高效砷化镓太阳电池的制备方法

Country Status (1)

Country Link
CN (1) CN112864282B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280548A (zh) * 2011-09-05 2011-12-14 厦门乾照光电股份有限公司 发光二极管结构及其制造方法
CN103500781A (zh) * 2013-09-30 2014-01-08 山西飞虹微纳米光电科技有限公司 一种高效率的AlGaInP发光二极管外延片及其制备方法
CN105097977A (zh) * 2015-09-11 2015-11-25 王伟明 多结太阳能电池外延结构
EP3179581A1 (en) * 2015-12-11 2017-06-14 Ricoh Company, Ltd. Surface-emitting laser, surface-emitting laser array, laser device, ignitor, internal combustion engine, optical scanner, image forming apparatus, light transmission module, and light emission system
CN207320146U (zh) * 2017-08-22 2018-05-04 南昌凯迅光电有限公司 一种具有抗辐照结构的高效三结级联砷化镓太阳电池
CN108493284A (zh) * 2018-05-03 2018-09-04 扬州乾照光电有限公司 一种晶格失配的多结太阳能电池及其制作方法
CN108767075A (zh) * 2018-06-26 2018-11-06 山东浪潮华光光电子股份有限公司 一种带优化反射层的黄绿光led外延结构及其制备方法
CN112103356A (zh) * 2020-11-09 2020-12-18 南昌凯迅光电有限公司 一种高效三结砷化镓太阳电池及制作方法
CN112466976A (zh) * 2020-12-16 2021-03-09 中山德华芯片技术有限公司 一种具有全角反射镜的超薄太阳电池芯片及其制备方法
CN112531086A (zh) * 2020-11-19 2021-03-19 厦门三安光电有限公司 Dbr结构、led芯片、半导体发光器件及制造方法及显示面板
CN112652685A (zh) * 2019-10-11 2021-04-13 山东华光光电子股份有限公司 一种采用不同材料DBR提高亮度的GaAs基LED及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200411708A1 (en) * 2019-06-25 2020-12-31 The Boeing Company Solar cell design optimized for performance at high radiation doses

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280548A (zh) * 2011-09-05 2011-12-14 厦门乾照光电股份有限公司 发光二极管结构及其制造方法
CN103500781A (zh) * 2013-09-30 2014-01-08 山西飞虹微纳米光电科技有限公司 一种高效率的AlGaInP发光二极管外延片及其制备方法
CN105097977A (zh) * 2015-09-11 2015-11-25 王伟明 多结太阳能电池外延结构
EP3179581A1 (en) * 2015-12-11 2017-06-14 Ricoh Company, Ltd. Surface-emitting laser, surface-emitting laser array, laser device, ignitor, internal combustion engine, optical scanner, image forming apparatus, light transmission module, and light emission system
CN207320146U (zh) * 2017-08-22 2018-05-04 南昌凯迅光电有限公司 一种具有抗辐照结构的高效三结级联砷化镓太阳电池
CN108493284A (zh) * 2018-05-03 2018-09-04 扬州乾照光电有限公司 一种晶格失配的多结太阳能电池及其制作方法
CN108767075A (zh) * 2018-06-26 2018-11-06 山东浪潮华光光电子股份有限公司 一种带优化反射层的黄绿光led外延结构及其制备方法
CN112652685A (zh) * 2019-10-11 2021-04-13 山东华光光电子股份有限公司 一种采用不同材料DBR提高亮度的GaAs基LED及其制备方法
CN112103356A (zh) * 2020-11-09 2020-12-18 南昌凯迅光电有限公司 一种高效三结砷化镓太阳电池及制作方法
CN112531086A (zh) * 2020-11-19 2021-03-19 厦门三安光电有限公司 Dbr结构、led芯片、半导体发光器件及制造方法及显示面板
CN112466976A (zh) * 2020-12-16 2021-03-09 中山德华芯片技术有限公司 一种具有全角反射镜的超薄太阳电池芯片及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Wide-Bandgap Perovskite/Gallium Arsenide Tandem Solar Cells";Zijia Li et.al.;《ADVANCED ENERGY MATERIALS》;20191219;第1903085(1-16页) *
"基于布拉格反射器的空间用四结砷化镓太阳电池抗辐照性能研究";颜平远;《云南师范大学学报(自然科学版)》;20191031;第6-10页 *

Also Published As

Publication number Publication date
CN112864282A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
Geisz et al. Building a six-junction inverted metamorphic concentrator solar cell
CN112447868B (zh) 一种高质量四结空间太阳电池及其制备方法
US10355159B2 (en) Multi-junction solar cell with dilute nitride sub-cell having graded doping
US20170338357A1 (en) Exponential doping in lattice-matched dilute nitride photovoltaic cells
CN109860325B (zh) 一种砷化物多结太阳能电池及其制作方法
TW200941741A (en) Heterojunction subcells in inverted metamorphic multijunction solar cells
CN105355680B (zh) 一种晶格匹配的六结太阳能电池
CN108461568B (zh) 一种具有布拉格反射镜的多结太阳能电池及其制作方法
US20130228216A1 (en) Solar cell with gradation in doping in the window layer
JP2003218374A (ja) Iii−v族太陽電池
CN112103356B (zh) 一种高效三结砷化镓太阳电池及制作方法
CN109309139B (zh) 一种高电流密度晶格失配太阳能电池及其制备方法
CN112038426B (zh) 一种晶格失配型三结砷化镓太阳电池及制作方法
EP4036992A1 (en) Four junction solar cell and solar cell assemblies for space applications
WO2019175651A1 (en) GaAs THREE-JUNCTION SOLAR CELL AND METHOD OF PREPARING THEREOF
CN210272385U (zh) 应用于晶格失配太阳能电池外延生长的晶格渐变缓冲层
CN109524492B (zh) 一种提高多结太阳能电池少数载流子收集的方法
CN109560166A (zh) 一种超晶格空间GaInP/InGaAs/Ge电池外延片的制造方法
CN111430493B (zh) 一种多结太阳能电池及供电设备
CN110707172B (zh) 一种具有布拉格反射层的多结太阳电池及制作方法
TW202114242A (zh) 具有梯度摻雜之稀氮化物光學吸收層
CN112864282B (zh) 一种抗辐照高效砷化镓太阳电池的制备方法
CN114335215B (zh) 一种带有渐变隧穿结的砷化镓太阳电池及其制作方法
CN105810760A (zh) 一种晶格匹配的五结太阳能电池及其制作方法
CN113690335B (zh) 一种改善型三结砷化镓太阳电池及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: No.199, huangtang West Street, Airport Economic Zone, Nanchang City, Jiangxi Province, 330000

Patentee after: Nanchang Kaixun photoelectric Co.,Ltd.

Address before: No.199, huangtang West Street, Airport Economic Zone, Nanchang City, Jiangxi Province, 330000

Patentee before: NANCHANG KAIXUN PHOTOELECTRIC Co.,Ltd.

CP01 Change in the name or title of a patent holder