CN101449347A - 具有单晶硅电极的电容性微机电传感器 - Google Patents

具有单晶硅电极的电容性微机电传感器 Download PDF

Info

Publication number
CN101449347A
CN101449347A CNA2007800178712A CN200780017871A CN101449347A CN 101449347 A CN101449347 A CN 101449347A CN A2007800178712 A CNA2007800178712 A CN A2007800178712A CN 200780017871 A CN200780017871 A CN 200780017871A CN 101449347 A CN101449347 A CN 101449347A
Authority
CN
China
Prior art keywords
layer
electro
mechanical sensors
ground floor
capacitive micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800178712A
Other languages
English (en)
Other versions
CN101449347B (zh
Inventor
C·A·雷
J·布雷泽克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sensor licensing Ltd.
Venture capital and leasing IV Co.
Venture capital and leasing V Co.
Samsung Electronics Co Ltd
Original Assignee
LV Sensors Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LV Sensors Inc filed Critical LV Sensors Inc
Publication of CN101449347A publication Critical patent/CN101449347A/zh
Application granted granted Critical
Publication of CN101449347B publication Critical patent/CN101449347B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0073Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a semiconductive diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0021Transducers for transforming electrical into mechanical energy or vice versa
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0242Gyroscopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0264Pressure sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0814Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for translational movement of the mass, e.g. shuttle type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0831Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type having the pivot axis between the longitudinal ends of the mass, e.g. see-saw configuration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Micromachines (AREA)
  • Gyroscopes (AREA)

Abstract

本文公开的器件是在所有关键压力点上都具有单晶硅的电容性传感器。通过开槽和重新填充形成隔离沟槽,来形成电介质隔离的用于驱动、传感和保护的导电硅电极。对于根据本发明的压力传感器件,其为便于封装,使压力孔与电引线接合焊盘相反。还描述了测量平面内加速度和平面外加速度的双轴加速度计。通过原样复制加速度计并令其绕其平面外轴旋转90度容易实现平面内的第三轴。用此工艺技术可生成谐振斜钩、角速度传感器、辐射热测量仪、及许多其他结构。关键优点是密闭性、垂直通孔、垂直和水平间隙能力、单晶材料、晶片级封装、小尺寸、高性能和低成本。

Description

具有单晶硅电极的电容性微机电传感器
发明领域
本发明一般涉及传感器。本发明尤其涉及具有单晶硅电极的电容性微机电传感器。
背景
几个制造特征导致电容性传感器的精确度和耐久性降低。在电容间隙的顶面和底面上使用不同的材料导致该间隙的顶与底之间热失配。金属电极的使用限制了在两个晶片之间形成高温熔化接合的能力,而这限制密闭地密封器件的能力。与引线接合焊盘在同一表面上地构造压力孔导致引线键合焊盘被曝露于正被测量的粗糙介质的棘手问题。
当前的各种制造方法解决了这些关注点中的一些,但却没能解决另一些。例如,许多方法使用导电金属通孔来将电互连放到传感器的与有源传感元件相反一侧上。然而,这些制造方法具有几个缺点。例如,必须使用额外的制造步骤来图案化传感器中的导电金属通孔。此外,使用金属引起了上述复杂度。因此,在本领域中有必要开发制造允许能密闭地密封、减小或消除热失配、并限制引线接合焊盘的曝露的电容性传感器的方法。
发明内容
本发明提供具有单晶硅电极的电容性微机电传感器。这些传感器优选感测压力、加速度、角速度、或谐振中的至少一个。这些传感器包括两层。第一层由单晶硅制成并具有顶面和底面。第一层形成至少一个电极。第二层也由单晶硅制成并具有顶面和底面。至少有一个电极是在第二层中由从该层的顶面延伸到底面的电介质材料绝缘沟槽界定。优选此绝缘沟槽形成围绕此电极的周界。第二层还优选进一步包括至少一个电保护,其中该至少一个电保护由从该第二层的顶面延伸到其底面的第二个电介质材料绝缘沟槽界定。第一层中的此至少一个电极和第二层中的此至少一个电极一起界定电容器。优选第二层的顶面被蚀刻以形成空穴,该空穴即形成电容间隙。此传感器进一步包括至少一个位于第二层的底面上的电触点。此电触点与第二层中的此至少一个电极电连接。
在优选实施例中,第一层形成隔膜。第一层还可被蚀刻以界定谐振结构、弹簧、或标准质量。
在另一优选实施例中,此传感器进一步包括第三单晶硅层,该层通过电介质层来与顶层的顶面分开。在一个实施例中,此第三层被蚀刻以界定压力孔。在此实施例中,此传感器感测压力并具有压力孔位于器件的与电触点相反一侧上的优点。
附图简述
通过结合附图阅读以下描述将理解本发明及其目的和优点,在附图中:
图1示出根据本发明的传感器的截面图(A)以及从其焊盘一侧观察到的平面图(B)。
图2示出根据本发明的传感器的示例。
图3示出根据本发明的压力传感器的截面图(A)以及从其焊盘一侧观察到的平面图(B)。
图4示出根据本发明的加速度计的截面图(A)以及从其焊盘一侧观察到的平面图(B)。
图5示出根据本发明的加速度计梭的平面图(A)和立体图(B)。
图6到10示出根据本发明的制造传感器的步骤的示意图。
发明的详细描述
在以下描述中,对出现在不同附图中的结构统一标记。图1A示出根据本发明的电容性微机电传感器的截面图。该传感器包括具有顶面112和底面114的第一层110。第一层110由单晶硅制成并包含至少一个电极130。该传感器进一步包括具有顶面122和底面124的第二层120。第二层120包含由电介质材料制成的从顶面122延伸至底面124的隔离沟槽150。隔离沟槽150界定电极140。电极140电连接到诸如引线接合焊盘之类的电触点160。优选第一层110包含此传感器的所有传感元件,以使这些传感元件位于此传感器的与电触点160相反的一侧上。电极130和140一起界定具有电容间隙170的电容器。优选电容间隙170在第二层120中形成以允许精确空间界定间隙170。
图1B示出第二层120的底面124的平面图。图1B示出隔离沟槽150形成环绕电极140的周界以界定电极140。虽然在附图中示出了方形沟槽,但是沟槽150可以是任何几何形状。
图2示出根据本发明的传感器的几个实施例。图2A示出具有第三单晶硅层210的传感器,该层210通过电介质层220来与第一层110的顶面112分开。在此传感器中,第一层110已被减薄以形成隔膜130。在优选实施例中,第三层230被蚀刻以形成压力孔230(图2B)。替换地或附加地,第一层110可被蚀刻以界定例如标准质量260、弹簧250、或谐振结构(未示出)。通过蚀刻去除电介质层220来使第一层110脱开以便能进行器件运动(图2C)。
图3A示出根据本发明的优选压力传感器的截面图。该压力传感器具有第一单晶硅层110,该层已被研磨或蚀刻以形成隔膜130。隔膜130用作电容器中的第一电极。该压力传感器还具有第二单晶硅层120,该层已被蚀刻以形成空穴170。第二单晶硅层120包括两个隔离沟槽150。隔离沟槽150界定形成电容器的第二电极的固定电极340、电保护360、以及驱动公共端口370。固定电极340、电保护360和驱动公共端口370分别电连接到金属接合焊盘320、330和340。该压力传感器还具有第三单晶硅层210,该层通过电介质层220来与隔膜130分开。层220可以是例如埋入式氧化物层。层210被蚀刻以形成压力孔230。注意在该传感器中,在所有关键压力孔处都使用单晶硅,在该传感器内不需要金属,并且压力孔与敏感的金属接合焊盘相对。
图3B示出从传感器的底面看的此压力传感器的平面图。可以看到隔离沟槽150界定固定电极340、电保护360和公共驱动端口370。这些电子部件分别与金属接合焊盘320、330和340电连接。
图4A示出根据本发明的优选加速度计的截面图,而图4B示出其平面图。在一个实施例中,该加速度计与图3中所描述的压力传感器构建在同一管芯中。该加速度计具有第一单晶硅层110,该层已被蚀刻以形成沟槽430和加速度计梭(shuttle)420。该传感器还具有第二硅层120,该层已被蚀刻以形成空穴170。第二单晶硅层120包括界定公共驱动端口460和四个电极440、442、444和450的隔离沟槽150。该公共驱动端口460和四个电极440、442、444和450分别与金属接合焊盘490、470、480、492和494电连接。该加速度计还具有第三单晶硅层210,该层通过电介质层220来与第一层130分开。层220可以是例如埋入式氧化物层。层220被蚀刻以给加速度计梭420提供间隙410。虽然所示加速度计是测量平面内加速度和平面外加速度的双轴加速度计,但通过原样复制加速度计并令其绕其平面外轴旋转90度容易实现平面内的第三轴。
图5A示出加速度计梭420的平面图,而图5B示出其等角投影图。图中示出指状电极510、隔离支架515、侧向弹簧520、侧向弹簧端525、旋转弹簧530、标准质量540、万向支架550、以及隔离沟槽560。指状电极510附连到隔离支架515,而后者将与电极442或444连接。所有这些结构都是通过蚀刻第一层120形成的,如下所述。
图6到图10所示的步骤1到17是用于制作根据本发明的传感器的制造工艺步骤的示例的示意性描述。步骤1到3用来加工SOI(绝缘体上硅)晶片,步骤4到10用来加工隔离沟槽,而步骤11到17是双晶片加工步骤。在此示例中,这些步骤示出一种同时制造根据本发明的压力传感器和加速度计的方法。或者,通过去掉步骤2和3就能制造只感测压力的传感器。可对以下各步骤作修改以创造根据本发明的其他类型的传感器。例如,可添加并类似于表面显微机械加工地图案化多晶硅层。向层612添加这些层能使这些层在空穴730内部并且不妨碍接合表面910。
步骤1通过氧化在SOI晶片610上形成氧化物620。SOI晶片610的较薄有源层612最终形成诸如图2B中的隔膜130之类的隔膜。层612被相对重掺杂到约0.1欧姆/厘米到0.01欧姆/厘米之间以用作导电电极表面。较厚的处置层614形成图2中所描述的第三层210。步骤2通过光刻和湿法氧化蚀刻来图案化和蚀刻氧化物620以在该氧化物620中给出开口630,以使下层硅612可在步骤3中被蚀刻。步骤3是深度反应离子蚀刻(DRIE)式蚀刻以形成弹簧650、蚀刻孔640、指状电极510、隔离沟槽560、标准质量550、旋转弹簧530和隔膜层612中的其他结构(参见图5)。可在此层中通过改变掩模工艺以纳入通常可在表面显微机械加工工艺中作出的其他几何形状来制造诸如角速度传感器、谐振器、或切变传感器(shear sensor)之类的其他类型的传感器。此外,可同时制作多种类型的传感器,从而使得在一个芯片上能有更高的集成度。如本领域技术人员所理解地,可简单通过界定标准质量、弹簧和梳状驱动/梳状传感组合来制作谐振结构。步骤4再次通过氧化在包含相对重掺杂的硅的有源层712、和处置晶片714的新SOI晶片上形成氧化物720,其中该有源层712形成界定诸如图3所示的340、350和370之类的单晶硅电极的隔离沟槽,而处置晶片714则按序稍后被蚀刻掉或研磨和抛光掉。步骤5是在RIE氧化物蚀刻机中蚀刻氧化物720以在氧化物720中形成开口730。此为步骤6中的DRIE蚀刻制备有源层712。在步骤6中,有源层712从开口730被DRIE蚀刻,该蚀刻止于匣层716,从而形成沟槽740。在此蚀刻中要当心以避免产生很难填充成没有空隙的重入沟槽。在步骤7中,用热氧化物生长来氧化沟槽740以提供电介质材料750,该材料将界定和隔离单晶硅电极。在步骤8,用多晶硅810来填充沟槽740。这减少了形成隔离沟槽所需电介质材料的量。可用电介质材料填充整个沟槽,但是发现如果使用热氧化物则会因为所需的氧化物厚度而变得昂贵和困难。步骤9是使用包括DRIE、RIE或甚至桶式蚀刻机的任何类型的蚀刻机对晶片710的多晶硅覆盖层蚀刻,以从晶片710的表面除去多晶硅810,该蚀刻止于氧化物720并只在保留沟槽740的内侧上留有多晶硅810。步骤10中对硅层712约0.5微米到2微米深度的DRIE蚀刻形成诸如图2中空穴170之类的空穴730。在步骤11中使用诸如BOE(缓冲氧化蚀刻)之类的湿法蚀刻从表面910除去氧化物620和720。这使得表面910能在步骤12中使用高温晶片接合技术对准并接合。步骤11还通过底割匣层616并形成诸如图4中的间隙410之类的间隙920来使标准质量脱开。在步骤13,使用BOE在顶氧化物620中蚀刻出开口920并去除底氧化物720。这使硅层614在步骤14中能通过DRIE蚀刻被蚀刻以产生诸如图2B中的孔230之类的孔1010。还是在步骤14中,处置晶片714通过背部研磨和抛光或通过DRIE蚀刻或RIE蚀刻或桶式蚀刻机被去除。步骤15通过使用RIE氧化物蚀刻来蚀刻匣616和匣716,从而分别使隔膜612和互连1020曝露。在步骤16中,在孔1010的相反一侧使用溅射系统沉积金属1030。在步骤17中使用光刻和湿法刻蚀来蚀刻金属1030以形成互连1020和诸如图2中的接合焊盘160之类的金属接合焊盘1040。作为本领域的一名普通技术人员将理解,可作出或以其它方式实现各种改变、替换和变更而不会脱离本发明的原理。因此,应由以下权利要求书及其在法律上的等效方案来确定本发明的范围。

Claims (10)

1.一种电容性微机电传感器,包括:
a)第一层,其中所述第一层具有顶面和底面,其中所述第一层包括单晶硅,并且其中所述第一层形成至少一个电极;
b)第二层,其中所述第二层具有顶面和底面,其中所述第二层包括单晶硅,并且其中在所述第二层中至少有一个电极由从所述第二层的所述顶面延伸至所述底面的电介质材料绝缘沟槽界定;以及
c)至少一个电触点,其中所述至少一个电触点位于所述第二层的所述底面上,并与所述第二层中的所述至少一个电极电连接;
其中所述第一层中的所述至少一个电极和所述第二层中的所述至少一个电极界定电容器。
2.如权利要求1所述的电容性微机电传感器,其特征在于,所述绝缘沟槽形成围绕所述电极的周界。
3.如权利要求1所述的电容性微机电传感器,其特征在于,所述第二层的所述顶面被蚀刻以在所述第二层中形成空穴,并且其中所述空穴界定电容间隙。
4.如权利要求1所述的电容性微机电传感器,其特征在于,进一步包括第三层,其中所述第三层包括单晶硅,并且其中所述第三层通过电介质层来与所述第一层的所述顶面分开。
5.如权利要求4所述的电容性微机电传感器,其特征在于,所述第三层被蚀刻以界定压力孔。
6.如权利要求1所述的电容性微机电传感器,其特征在于,所述第一层形成隔膜。
7.如权利要求1所述的电容性微机电传感器,其特征在于,所述第一层被蚀刻以界定谐振结构、弹簧、或标准质量中的至少一个。
8.如权利要求1所述的电容性微机电传感器,其特征在于,所述传感器感测压力、加速度、角速度、或谐振中的至少一种。
9.如权利要求1所述的电容性微机电传感器,其特征在于,所有传感元件位于所述第一层中。
10.如权利要求1所述的电容性微机电传感器,其特征在于,进一步包括在所述第二层中的至少一个电保护,其中所述至少一个电保护是由从所述第二层的所述顶面延伸到所述底面的第二个电介质材料绝缘沟槽界定的。
CN2007800178712A 2006-04-13 2007-04-04 具有单晶硅电极的电容性微机电传感器 Active CN101449347B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US79179006P 2006-04-13 2006-04-13
US60/791,790 2006-04-13
US11/707,347 US7539003B2 (en) 2005-12-01 2007-02-16 Capacitive micro-electro-mechanical sensors with single crystal silicon electrodes
US11/707,347 2007-02-16
PCT/US2007/008599 WO2007120576A2 (en) 2006-04-13 2007-04-04 Capacitive micro- electro-mechanical sensors with single crystal silicon electrodes

Publications (2)

Publication Number Publication Date
CN101449347A true CN101449347A (zh) 2009-06-03
CN101449347B CN101449347B (zh) 2013-07-17

Family

ID=38610099

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800178712A Active CN101449347B (zh) 2006-04-13 2007-04-04 具有单晶硅电极的电容性微机电传感器

Country Status (5)

Country Link
US (1) US7539003B2 (zh)
EP (1) EP2011132B1 (zh)
JP (3) JP5331678B2 (zh)
CN (1) CN101449347B (zh)
WO (1) WO2007120576A2 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103552980A (zh) * 2013-11-15 2014-02-05 安徽北方芯动联科微系统技术有限公司 Mems芯片圆片级封装方法及其单片超小型mems芯片
CN104101367A (zh) * 2013-04-09 2014-10-15 霍尼韦尔国际公司 具有隔离隔膜的传感器
CN105084296A (zh) * 2014-04-25 2015-11-25 无锡华润上华半导体有限公司 Mems电容式压力传感器的制作方法
CN105980293A (zh) * 2014-02-25 2016-09-28 诺思罗普·格鲁曼·利特夫有限责任公司 用于制造构件的方法和构件
CN106030315A (zh) * 2014-02-26 2016-10-12 株式会社村田制作所 具有框的微机电结构
CN108051134A (zh) * 2017-11-23 2018-05-18 胡波 闭环工作方式的电容式压力传感器
CN108680138A (zh) * 2018-05-09 2018-10-19 中交第公路勘察设计研究院有限公司 软土地基路基大变形沉降自动监测系统及其方法
CN109724744A (zh) * 2013-11-06 2019-05-07 应美盛股份有限公司 压力传感器

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7741964B2 (en) * 2007-05-31 2010-06-22 Schrader Electronics Ltd. Tire pressure detector having reduced power consumption mechanism
JP5260155B2 (ja) * 2008-06-16 2013-08-14 株式会社堀場エステック 静電容量型圧力センサ及びその製造方法
US8238073B2 (en) * 2008-07-18 2012-08-07 Synaptics, Inc. In-molded capacitive sensors
US8499629B2 (en) * 2008-10-10 2013-08-06 Honeywell International Inc. Mounting system for torsional suspension of a MEMS device
ITBO20080079U1 (it) * 2008-10-30 2010-04-30 Lorenzo Peretto Sistema costruttivo per un sensore capacitivo.
US8710599B2 (en) * 2009-08-04 2014-04-29 Fairchild Semiconductor Corporation Micromachined devices and fabricating the same
US8421168B2 (en) * 2009-11-17 2013-04-16 Fairchild Semiconductor Corporation Microelectromechanical systems microphone packaging systems
US8490495B2 (en) 2010-05-05 2013-07-23 Consensic, Inc. Capacitive pressure sensor with vertical electrical feedthroughs and method to make the same
KR101443730B1 (ko) 2010-09-18 2014-09-23 페어차일드 세미컨덕터 코포레이션 미세기계화 다이, 및 직교 오차가 작은 서스펜션을 제조하는 방법
EP2616771B8 (en) 2010-09-18 2018-12-19 Fairchild Semiconductor Corporation Micromachined monolithic 6-axis inertial sensor
KR101779998B1 (ko) 2010-09-18 2017-09-19 페어차일드 세미컨덕터 코포레이션 단일 구동 모드를 가진 미세기계화 모노리식 3축 자이로스코프
US9156673B2 (en) 2010-09-18 2015-10-13 Fairchild Semiconductor Corporation Packaging to reduce stress on microelectromechanical systems
US9278845B2 (en) 2010-09-18 2016-03-08 Fairchild Semiconductor Corporation MEMS multi-axis gyroscope Z-axis electrode structure
US9095072B2 (en) 2010-09-18 2015-07-28 Fairchild Semiconductor Corporation Multi-die MEMS package
CN103209922B (zh) 2010-09-20 2014-09-17 快捷半导体公司 具有减小的并联电容的硅通孔
CN103221795B (zh) 2010-09-20 2015-03-11 快捷半导体公司 包括参考电容器的微机电压力传感器
JP5649474B2 (ja) * 2011-01-26 2015-01-07 ローム株式会社 静電容量型圧力センサおよび静電容量型圧力センサの製造方法
US8673756B2 (en) * 2011-04-14 2014-03-18 Robert Bosch Gmbh Out-of-plane spacer defined electrode
CN103733304B (zh) * 2011-06-29 2016-08-17 因文森斯公司 其中一部分暴露在环境下并且带有竖直集成电子器件的气密封mems设备
US9062972B2 (en) 2012-01-31 2015-06-23 Fairchild Semiconductor Corporation MEMS multi-axis accelerometer electrode structure
US8978475B2 (en) 2012-02-01 2015-03-17 Fairchild Semiconductor Corporation MEMS proof mass with split z-axis portions
US8714021B2 (en) 2012-02-27 2014-05-06 Amphenol Thermometrics, Inc. Catheter die and method of fabricating the same
US8857264B2 (en) 2012-03-30 2014-10-14 Amphenol Thermometrics, Inc. Catheter die
US8754694B2 (en) 2012-04-03 2014-06-17 Fairchild Semiconductor Corporation Accurate ninety-degree phase shifter
US8742964B2 (en) 2012-04-04 2014-06-03 Fairchild Semiconductor Corporation Noise reduction method with chopping for a merged MEMS accelerometer sensor
US9488693B2 (en) 2012-04-04 2016-11-08 Fairchild Semiconductor Corporation Self test of MEMS accelerometer with ASICS integrated capacitors
KR102058489B1 (ko) 2012-04-05 2019-12-23 페어차일드 세미컨덕터 코포레이션 멤스 장치 프론트 엔드 전하 증폭기
US9069006B2 (en) 2012-04-05 2015-06-30 Fairchild Semiconductor Corporation Self test of MEMS gyroscope with ASICs integrated capacitors
EP2647952B1 (en) 2012-04-05 2017-11-15 Fairchild Semiconductor Corporation Mems device automatic-gain control loop for mechanical amplitude drive
EP2647955B8 (en) 2012-04-05 2018-12-19 Fairchild Semiconductor Corporation MEMS device quadrature phase shift cancellation
US9625272B2 (en) 2012-04-12 2017-04-18 Fairchild Semiconductor Corporation MEMS quadrature cancellation and signal demodulation
US9094027B2 (en) 2012-04-12 2015-07-28 Fairchild Semiconductor Corporation Micro-electro-mechanical-system (MEMS) driver
DE102013014881B4 (de) 2012-09-12 2023-05-04 Fairchild Semiconductor Corporation Verbesserte Silizium-Durchkontaktierung mit einer Füllung aus mehreren Materialien
EP2725334B1 (en) * 2012-10-25 2020-04-15 Invensense, Inc. A pressure sensor having a membrane and a method for fabricating the same
US9837935B2 (en) 2013-10-29 2017-12-05 Honeywell International Inc. All-silicon electrode capacitive transducer on a glass substrate
EP2871455B1 (en) 2013-11-06 2020-03-04 Invensense, Inc. Pressure sensor
US9464950B2 (en) * 2013-11-15 2016-10-11 Rosemount Aerospace Inc. Capacitive pressure sensors for high temperature applications
EP3614115A1 (en) 2015-04-02 2020-02-26 InvenSense, Inc. Pressure sensor
US10697994B2 (en) 2017-02-22 2020-06-30 Semiconductor Components Industries, Llc Accelerometer techniques to compensate package stress
KR101988469B1 (ko) * 2017-07-26 2019-06-13 주식회사 신성씨앤티 멤스 센서 및 그 제조 방법
DE102018119943A1 (de) * 2018-08-16 2020-02-20 Endress+Hauser SE+Co. KG Drucksensor
US11225409B2 (en) 2018-09-17 2022-01-18 Invensense, Inc. Sensor with integrated heater
US11060929B2 (en) * 2019-03-04 2021-07-13 Silicon Microstructures, Inc. Pressure sensor die attach
EP3969868A1 (en) 2019-05-17 2022-03-23 InvenSense, Inc. A pressure sensor with improve hermeticity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259828A (ja) * 1985-09-11 1987-03-16 Fuji Electric Co Ltd 静電容量式圧力センサ
US20040163476A1 (en) * 2003-02-26 2004-08-26 Aaron Partridge Episeal pressure sensor and method for making an episeal pressure sensor

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4617606A (en) * 1985-01-31 1986-10-14 Motorola, Inc. Capacitive pressure transducer
JPS61272623A (ja) * 1985-05-29 1986-12-02 Fuji Electric Co Ltd 静電容量式圧力センサ
FI78784C (fi) * 1988-01-18 1989-09-11 Vaisala Oy Tryckgivarkonstruktion och foerfarande foer framstaellning daerav.
DE4106288C2 (de) * 1991-02-28 2001-05-31 Bosch Gmbh Robert Sensor zur Messung von Drücken oder Beschleunigungen
JPH06323939A (ja) * 1993-05-17 1994-11-25 Omron Corp 静電容量式センサ
US5511428A (en) * 1994-06-10 1996-04-30 Massachusetts Institute Of Technology Backside contact of sensor microstructures
FR2722878B1 (fr) * 1994-07-22 1996-09-06 Suisse Electronique Microtech Capteur de pression differentielle de type capacitif
JPH08122251A (ja) * 1994-10-19 1996-05-17 Mitsubishi Materials Corp 赤外線式ガス分析装置
US6212056B1 (en) * 1999-03-26 2001-04-03 Lucent Technologies Inc. Micromachined variable capacitor
JP3588286B2 (ja) * 1999-10-06 2004-11-10 株式会社山武 容量式圧力センサ
US6396677B1 (en) * 2000-05-17 2002-05-28 Xerox Corporation Photolithographically-patterned variable capacitor structures and method of making
JP3629185B2 (ja) * 2000-06-15 2005-03-16 株式会社日立製作所 半導体センサ及びその製造方法
US6507475B1 (en) * 2000-06-27 2003-01-14 Motorola, Inc. Capacitive device and method of manufacture
US6377438B1 (en) * 2000-10-23 2002-04-23 Mcnc Hybrid microelectromechanical system tunable capacitor and associated fabrication methods
JP2002228678A (ja) * 2001-02-02 2002-08-14 Denso Corp 半導体力学量センサとその製造方法
WO2002080255A1 (en) * 2001-03-16 2002-10-10 Corning Intellisense Corporation Electrostatically actuated micro-electro-mechanical devices and method of manufacture
JP2002328137A (ja) * 2001-04-27 2002-11-15 Matsushita Electric Works Ltd 加速度センサ及びその製造方法
US6815739B2 (en) * 2001-05-18 2004-11-09 Corporation For National Research Initiatives Radio frequency microelectromechanical systems (MEMS) devices on low-temperature co-fired ceramic (LTCC) substrates
US6909589B2 (en) * 2002-11-20 2005-06-21 Corporation For National Research Initiatives MEMS-based variable capacitor
JP4159895B2 (ja) * 2003-02-17 2008-10-01 キヤノンアネルバ株式会社 静電容量型圧力センサ及びその製造方法
SE526366C3 (sv) * 2003-03-21 2005-10-26 Silex Microsystems Ab Elektriska anslutningar i substrat
JP2004356708A (ja) * 2003-05-27 2004-12-16 Hosiden Corp 音響検出機構及びその製造方法
US6930368B2 (en) * 2003-07-31 2005-08-16 Hewlett-Packard Development Company, L.P. MEMS having a three-wafer structure
US7111518B1 (en) * 2003-09-19 2006-09-26 Silicon Microstructures, Inc. Extremely low cost pressure sensor realized using deep reactive ion etching
US20050172717A1 (en) 2004-02-06 2005-08-11 General Electric Company Micromechanical device with thinned cantilever structure and related methods
JP2005233877A (ja) * 2004-02-23 2005-09-02 Alps Electric Co Ltd 圧力センサ
CN1314969C (zh) * 2004-04-29 2007-05-09 中国科学院上海微系统与信息技术研究所 一种单硅片体微机械工艺实现的带静电自检测的加速度计
US7272954B2 (en) * 2004-07-14 2007-09-25 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Proceded Georges Claude Low temperature air separation process for producing pressurized gaseous product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259828A (ja) * 1985-09-11 1987-03-16 Fuji Electric Co Ltd 静電容量式圧力センサ
US20040163476A1 (en) * 2003-02-26 2004-08-26 Aaron Partridge Episeal pressure sensor and method for making an episeal pressure sensor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104101367A (zh) * 2013-04-09 2014-10-15 霍尼韦尔国际公司 具有隔离隔膜的传感器
CN104101367B (zh) * 2013-04-09 2018-07-24 霍尼韦尔国际公司 具有隔离隔膜的传感器
CN109724744A (zh) * 2013-11-06 2019-05-07 应美盛股份有限公司 压力传感器
CN103552980A (zh) * 2013-11-15 2014-02-05 安徽北方芯动联科微系统技术有限公司 Mems芯片圆片级封装方法及其单片超小型mems芯片
CN105980293A (zh) * 2014-02-25 2016-09-28 诺思罗普·格鲁曼·利特夫有限责任公司 用于制造构件的方法和构件
CN105980293B (zh) * 2014-02-25 2019-01-04 诺思罗普·格鲁曼·利特夫有限责任公司 用于制造构件的方法和构件
CN106030315A (zh) * 2014-02-26 2016-10-12 株式会社村田制作所 具有框的微机电结构
CN106030315B (zh) * 2014-02-26 2020-06-09 株式会社村田制作所 具有框的微机电结构
CN105084296A (zh) * 2014-04-25 2015-11-25 无锡华润上华半导体有限公司 Mems电容式压力传感器的制作方法
CN105084296B (zh) * 2014-04-25 2017-02-08 无锡华润上华半导体有限公司 Mems电容式压力传感器的制作方法
CN108051134A (zh) * 2017-11-23 2018-05-18 胡波 闭环工作方式的电容式压力传感器
CN108680138A (zh) * 2018-05-09 2018-10-19 中交第公路勘察设计研究院有限公司 软土地基路基大变形沉降自动监测系统及其方法

Also Published As

Publication number Publication date
EP2011132A4 (en) 2014-07-16
JP5331678B2 (ja) 2013-10-30
JP5956644B2 (ja) 2016-07-27
JP5806254B2 (ja) 2015-11-10
US20070279832A1 (en) 2007-12-06
US7539003B2 (en) 2009-05-26
CN101449347B (zh) 2013-07-17
WO2007120576A2 (en) 2007-10-25
JP2009533866A (ja) 2009-09-17
WO2007120576A3 (en) 2008-10-30
EP2011132B1 (en) 2016-06-29
EP2011132A2 (en) 2009-01-07
JP2015180521A (ja) 2015-10-15
JP2013198979A (ja) 2013-10-03

Similar Documents

Publication Publication Date Title
CN101449347B (zh) 具有单晶硅电极的电容性微机电传感器
US9802814B2 (en) Through silicon via including multi-material fill
US7247246B2 (en) Vertical integration of a MEMS structure with electronics in a hermetically sealed cavity
US7104129B2 (en) Vertically integrated MEMS structure with electronics in a hermetically sealed cavity
US10065851B2 (en) Microelectromechanical pressure sensor including reference capacitor
US8710599B2 (en) Micromachined devices and fabricating the same
US8129803B2 (en) Micromachined microphone and multisensor and method for producing same
US7943525B2 (en) Method of producing microelectromechanical device with isolated microstructures
EP3052901B1 (en) Inertial and pressure sensors on single chip
JP2004505269A (ja) マイクロマシン化された絶対圧センサ
CN103121658A (zh) 电容式三轴微陀螺仪的硅外延制造方法
JP2012127692A (ja) Memsセンサおよびその製造方法、ならびにmemsパッケージ
JP2011038780A (ja) 半導体装置及び半導体装置の製造方法
CN115513365A (zh) 一种基于fbar的压力传感器及其制备方法
JP3725078B2 (ja) 半導体力学量センサの製造方法
JP2002181551A (ja) 半導体力学量センサ
JP2004245844A (ja) 半導体力学量センサ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: SENSOR LICENSING CO., LTD.

Free format text: FORMER OWNER: START-UP LOAN + LEASE IV CORP.

Effective date: 20130106

Owner name: START-UP LOAN + LEASE IV CORP.

Free format text: FORMER OWNER: LV SENSORS INC.

Effective date: 20130106

Owner name: SAMSUNG ELECTRONICS CO., LTD.

Free format text: FORMER OWNER: SENSOR LICENSING CO., LTD.

Effective date: 20130106

Owner name: START-UP LOAN + LEASE V CORP.

Effective date: 20130106

Free format text: FORMER OWNER: START-UP LOAN + LEASE V CORP.

Effective date: 20130106

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20130106

Address after: Gyeonggi Do, South Korea

Applicant after: SAMSUNG ELECTRONICS Co.,Ltd.

Address before: California, USA

Applicant before: Sensor licensing Ltd.

Effective date of registration: 20130106

Address after: California, USA

Applicant after: Sensor licensing Ltd.

Address before: American Maryland

Applicant before: Venture capital and leasing IV Co.

Applicant before: Venture capital and leasing V Co.

Effective date of registration: 20130106

Address after: American Maryland

Applicant after: Venture capital and leasing IV Co.

Applicant after: Venture capital and leasing V Co.

Address before: California, USA

Applicant before: LV SENSORS, Inc.

C14 Grant of patent or utility model
GR01 Patent grant