CN101443892B - 硫属元素层的高生产量印刷和金属间材料的使用 - Google Patents

硫属元素层的高生产量印刷和金属间材料的使用 Download PDF

Info

Publication number
CN101443892B
CN101443892B CN2007800146270A CN200780014627A CN101443892B CN 101443892 B CN101443892 B CN 101443892B CN 2007800146270 A CN2007800146270 A CN 2007800146270A CN 200780014627 A CN200780014627 A CN 200780014627A CN 101443892 B CN101443892 B CN 101443892B
Authority
CN
China
Prior art keywords
particle
layer
precursor layer
chalcogen
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007800146270A
Other languages
English (en)
Chinese (zh)
Other versions
CN101443892A (zh
Inventor
耶罗恩·K·J·范杜伦
克雷格·R·莱德赫尔姆
马修·R·鲁滨逊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/361,522 external-priority patent/US20070166453A1/en
Priority claimed from US11/395,438 external-priority patent/US20070163643A1/en
Application filed by Individual filed Critical Individual
Publication of CN101443892A publication Critical patent/CN101443892A/zh
Application granted granted Critical
Publication of CN101443892B publication Critical patent/CN101443892B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/16Photovoltaic cells having only PN heterojunction potential barriers
    • H10F10/167Photovoltaic cells having only PN heterojunction potential barriers comprising Group I-III-VI materials, e.g. CdS/CuInSe2 [CIS] heterojunction photovoltaic cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/12Active materials
    • H10F77/126Active materials comprising only Group I-III-VI chalcopyrite materials, e.g. CuInSe2, CuGaSe2 or CuInGaSe2 [CIGS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Photovoltaic Devices (AREA)
  • Chemically Coating (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
CN2007800146270A 2006-02-23 2007-02-23 硫属元素层的高生产量印刷和金属间材料的使用 Expired - Fee Related CN101443892B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US11/361,522 2006-02-23
US11/361,522 US20070166453A1 (en) 2004-02-19 2006-02-23 High-throughput printing of chalcogen layer
US11/395,438 US20070163643A1 (en) 2004-02-19 2006-03-30 High-throughput printing of chalcogen layer and the use of an inter-metallic material
US11/395,438 2006-03-30
PCT/US2007/062694 WO2007101099A2 (en) 2006-02-23 2007-02-23 High-throughput printing of chalcogen layer and the use of an inter-metallic material

Publications (2)

Publication Number Publication Date
CN101443892A CN101443892A (zh) 2009-05-27
CN101443892B true CN101443892B (zh) 2013-05-01

Family

ID=38459748

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800146270A Expired - Fee Related CN101443892B (zh) 2006-02-23 2007-02-23 硫属元素层的高生产量印刷和金属间材料的使用

Country Status (4)

Country Link
EP (1) EP1992010A2 (enExample)
JP (1) JP2009528680A (enExample)
CN (1) CN101443892B (enExample)
WO (1) WO2007101099A2 (enExample)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8277869B2 (en) * 2008-03-05 2012-10-02 Global Solar Energy, Inc. Heating for buffer layer deposition
JP5738601B2 (ja) * 2008-03-05 2015-06-24 ハナジー・ハイ−テク・パワー・(エイチケー)・リミテッド 薄膜太陽電池セルのための緩衝層蒸着
DE212009000032U1 (de) 2008-03-05 2010-11-04 Global Solar Energy, Inc., Tuscon System zum Aufbringen einer Chalcogenid-Pufferschicht auf einen flexiblen Träger
JP4540724B2 (ja) * 2008-05-20 2010-09-08 昭和シェル石油株式会社 Cis系薄膜太陽電池の製造方法
JP5192990B2 (ja) * 2008-11-11 2013-05-08 光洋應用材料科技股▲分▼有限公司 銅−ガリウム合金スパッタリングターゲット及びそのスパッタリングターゲットの製造方法並びに関連用途
JP2011023520A (ja) * 2009-07-15 2011-02-03 Panasonic Electric Works Co Ltd p型半導体膜及び太陽電池
CN102046836B (zh) * 2009-07-27 2012-10-03 Jx日矿日石金属株式会社 Cu-Ga烧结体溅射靶及该靶的制造方法
US8308973B2 (en) * 2009-07-27 2012-11-13 Rohm And Haas Electronic Materials Llc Dichalcogenide selenium ink and methods of making and using same
EP2476016B1 (en) * 2009-09-08 2017-06-14 Koninklijke Philips N.V. Imaging measurement system with a printed photodetector array
JP5639816B2 (ja) * 2009-09-08 2014-12-10 東京応化工業株式会社 塗布方法及び塗布装置
US20110076798A1 (en) * 2009-09-28 2011-03-31 Rohm And Haas Electronic Materials Llc Dichalcogenide ink containing selenium and methods of making and using same
JP5782672B2 (ja) * 2009-11-06 2015-09-24 凸版印刷株式会社 化合物半導体薄膜作製用インク、そのインクを用いて得た化合物半導体薄膜、その化合物半導体薄膜を備える太陽電池、及びその太陽電池の製造方法
KR101271753B1 (ko) * 2009-11-20 2013-06-05 한국전자통신연구원 박막형 광 흡수층의 제조 방법, 이를 이용한 박막 태양전지 제조 방법 및 박막 태양전지
JP2011165790A (ja) * 2010-02-08 2011-08-25 Fujifilm Corp 太陽電池およびその製造方法
CN101826574A (zh) * 2010-02-10 2010-09-08 昆山正富机械工业有限公司 非真空制作铜铟镓硒光吸收层的方法
CN101853885A (zh) * 2010-02-10 2010-10-06 昆山正富机械工业有限公司 太阳能吸收层浆料的制造方法、该浆料及吸收层
CN101818375A (zh) * 2010-02-11 2010-09-01 昆山正富机械工业有限公司 以非真空工艺制作铜铟镓硒(硫)光吸收层的方法
CN101820032A (zh) * 2010-02-11 2010-09-01 昆山正富机械工业有限公司 一种非真空环境下配置铜铟镓硒浆料制作光吸收层的方法
CN101820025A (zh) * 2010-02-11 2010-09-01 昆山正富机械工业有限公司 以非真空工艺制作铜铟镓硒(硫)光吸收层的方法
CN101789470A (zh) * 2010-02-12 2010-07-28 昆山正富机械工业有限公司 非真空制作铜铟镓硒吸收层的方法
US8709917B2 (en) * 2010-05-18 2014-04-29 Rohm And Haas Electronic Materials Llc Selenium/group 3A ink and methods of making and using same
CN101937943A (zh) * 2010-08-30 2011-01-05 浙江尚越光电科技有限公司 镓铟原子比梯度分布的薄膜太阳能电池吸收层的制备方法
CN101944556A (zh) * 2010-09-17 2011-01-12 浙江尚越光电科技有限公司 一种高均匀度铜铟镓硒吸收层制备方法
WO2012043242A1 (ja) * 2010-09-29 2012-04-05 京セラ株式会社 光電変換装置および光電変換装置の製造方法
WO2012090938A1 (ja) * 2010-12-27 2012-07-05 凸版印刷株式会社 化合物半導体薄膜太陽電池及びその製造方法
CN102569514B (zh) * 2012-01-04 2014-07-30 中国科学院合肥物质科学研究院 一种制备铜铟镓硒太阳能电池光吸收层的方法
WO2013106836A1 (en) * 2012-01-13 2013-07-18 The Regents Of The University Of California Metal-chalcogenide photovoltaic device with metal-oxide nanoparticle window layer
EP2647595A2 (en) * 2012-04-03 2013-10-09 Neo Solar Power Corp. Ink composition, chalcogenide semiconductor film, photovoltaic device and methods for forming the same
CN103915516B (zh) * 2013-01-07 2016-05-18 厦门神科太阳能有限公司 一种cigs基薄膜光伏材料的钠掺杂方法
JP6126867B2 (ja) * 2013-02-25 2017-05-10 東京応化工業株式会社 塗布装置及び塗布方法
CN107078180B (zh) * 2014-02-14 2020-12-11 新南创新有限公司 一种光伏电池及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728231A (en) * 1995-05-15 1998-03-17 Matsushita Electric Industrial Co., Ltd. Precursor for semiconductor thin films and method for producing semiconductor thin films
US6127202A (en) * 1998-07-02 2000-10-03 International Solar Electronic Technology, Inc. Oxide-based method of making compound semiconductor films and making related electronic devices
US6268014B1 (en) * 1997-10-02 2001-07-31 Chris Eberspacher Method for forming solar cell materials from particulars
US6518086B2 (en) * 1999-11-16 2003-02-11 Midwest Research Institute Processing approach towards the formation of thin-film Cu(In,Ga)Se2
US6974976B2 (en) * 2002-09-30 2005-12-13 Miasole Thin-film solar cells

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091136B2 (en) * 2001-04-16 2006-08-15 Basol Bulent M Method of forming semiconductor compound film for fabrication of electronic device and film produced by same
US7605328B2 (en) * 2004-02-19 2009-10-20 Nanosolar, Inc. Photovoltaic thin-film cell produced from metallic blend using high-temperature printing
WO2005089330A2 (en) * 2004-03-15 2005-09-29 Solopower, Inc. Technique and apparatus for depositing thin layers of semiconductors for solar cell fabricaton

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728231A (en) * 1995-05-15 1998-03-17 Matsushita Electric Industrial Co., Ltd. Precursor for semiconductor thin films and method for producing semiconductor thin films
US6268014B1 (en) * 1997-10-02 2001-07-31 Chris Eberspacher Method for forming solar cell materials from particulars
US6127202A (en) * 1998-07-02 2000-10-03 International Solar Electronic Technology, Inc. Oxide-based method of making compound semiconductor films and making related electronic devices
US6518086B2 (en) * 1999-11-16 2003-02-11 Midwest Research Institute Processing approach towards the formation of thin-film Cu(In,Ga)Se2
US6974976B2 (en) * 2002-09-30 2005-12-13 Miasole Thin-film solar cells

Also Published As

Publication number Publication date
JP2009528680A (ja) 2009-08-06
EP1992010A2 (en) 2008-11-19
CN101443892A (zh) 2009-05-27
WO2007101099A2 (en) 2007-09-07
WO2007101099A3 (en) 2007-11-22

Similar Documents

Publication Publication Date Title
CN101443892B (zh) 硫属元素层的高生产量印刷和金属间材料的使用
US8048477B2 (en) Chalcogenide solar cells
US8309163B2 (en) High-throughput printing of semiconductor precursor layer by use of chalcogen-containing vapor and inter-metallic material
US8372734B2 (en) High-throughput printing of semiconductor precursor layer from chalcogenide nanoflake particles
US8623448B2 (en) High-throughput printing of semiconductor precursor layer from chalcogenide microflake particles
US20070163643A1 (en) High-throughput printing of chalcogen layer and the use of an inter-metallic material
US20120295022A1 (en) High-Throughput Printing of Chalcogen Layer
US20130210191A1 (en) High-Throughput Printing of Semiconductor Precursor Layer by Use of Chalcogen-Rich Chalcogenides
US8617640B2 (en) Thin-film devices formed from solid group IIIA alloy particles
US20070169810A1 (en) High-throughput printing of semiconductor precursor layer by use of chalcogen-containing vapor
US20080124831A1 (en) High-throughput printing of semiconductor precursor layer from chalcogenide particles
US20070169809A1 (en) High-throughput printing of semiconductor precursor layer by use of low-melting chalcogenides
US20070169811A1 (en) High-throughput printing of semiconductor precursor layer by use of thermal and chemical gradients
US20090246906A1 (en) High-Throughput Printing of Semiconductor Precursor Layer From Microflake Particles
US20080280030A1 (en) Solar cell absorber layer formed from metal ion precursors
US20070163642A1 (en) High-throughput printing of semiconductor precursor layer from inter-metallic microflake articles
JP2009528681A (ja) カルコゲンと金属間物質の使用による高処理能力の半導体層形成
WO2007101138A2 (en) High-throughput printing of semiconductor precursor layer from inter-metallic nanoflake particles
EP1997149A2 (en) High-throughput printing of semiconductor precursor layer from inter-metallic microflake particles
CN101443130B (zh) 利用硫属元素和金属间材料的半导体层高生产量形成
WO2009051862A2 (en) Semiconductor thin films formed from non-spherical particles
US20070163641A1 (en) High-throughput printing of semiconductor precursor layer from inter-metallic nanoflake particles

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130501

Termination date: 20160223