CN101265099A - 一种高温超导材料及其制备方法 - Google Patents

一种高温超导材料及其制备方法 Download PDF

Info

Publication number
CN101265099A
CN101265099A CNA2008100236377A CN200810023637A CN101265099A CN 101265099 A CN101265099 A CN 101265099A CN A2008100236377 A CNA2008100236377 A CN A2008100236377A CN 200810023637 A CN200810023637 A CN 200810023637A CN 101265099 A CN101265099 A CN 101265099A
Authority
CN
China
Prior art keywords
powder
purity
preparation
temperature
smas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100236377A
Other languages
English (en)
Other versions
CN101265099B (zh
Inventor
陈仙辉
吴涛
吴刚
刘荣华
陈红
房岱峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN2008100236377A priority Critical patent/CN101265099B/zh
Publication of CN101265099A publication Critical patent/CN101265099A/zh
Priority to PCT/CN2009/000084 priority patent/WO2009124447A1/zh
Application granted granted Critical
Publication of CN101265099B publication Critical patent/CN101265099B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

一种高温超导材料,是化学式SmO1-xFxFeAs所示的化合物,Tc 0~53K,式中0≤X≤0.4。其制备方法是先制备前驱物,再制备目标物,前驱物为SmAs,由高纯的Sm粉和As粉在无氧和低水分的气氛中混合均匀并压片,然后在高真空条件下于500~650℃焙烧3~10小时,再升温至800~950℃焙烧5~10小时后冷却得到,用前驱物同高纯的SmF3粉、Fe粉、Fe2O3粉和As粉按比例在无氧和低水分的气氛中混合均匀并压片,包覆Ta膜片后在高真空条件下于1000~1200℃焙烧40~60小时,降至室温后剥离Ta膜片便得到目标物。

Description

一种高温超导材料及其制备方法
一、技术领域
本发明涉及一种超导材料及其制备方法,特别涉及一种高温超导材料及其制备方法,确切地说是一种化学式为SmO1-xFxFeAs(0≤x≤0.4)高温超导材料及其制备方法。
二、背景技术
超导现象于1911年由荷兰人昂纳斯教授发现,至今已有近百年的历史。当一种材料进入超导状态时,主要表现出两种特征现象:一个是零电阻现象,另一个是完全排磁通现象。正是由于超导体具有以上两种特性,使其应用前景非常广泛,例如利用其零电阻特性可以制成强磁场线圈以提供强磁场,超导磁体的应用范围也很广泛,如在固体物理研究、高能物理、受控核聚变反应堆、发电机、电动机、变压器、磁流体发电机、电磁推进装置以及医学人体核磁共振成像装置等许多方面,而完全排磁通现象也已经应用于磁悬浮列车中。如此广泛的应用前景使得人们对其机理和应用的研究的热情空前高涨。但是,在超导材料的应用方面,传统超导体的临界温度都比较低(<23K),这成为限制其应用的不利因素。而在超导理论方面,著名的BCS超导理论也预言了超导体的临界温度不会超过40K,这对于超导现象的应用无疑是雪上加霜。
1986年,瑞士苏黎世IBM研究室学者J.G.Bednorz和K.A.Muller共同发现高临界温度的铜氧化合物超导体,其超导温度达到35K(-238℃),并且在随后的相关研究中发现在该类铜氧化合物材料中其超导温度最高可达到130K(-143℃),该温度已经突破了液氮温度(77K)。正是由于高温超导铜氧化合物的发现,使得人们再一次看到了“室温超导”的可能性,并且其对传统的超导理论也带来巨大的冲击。高温超导铜氧化合物的发现到现在也已经有二十多年的历史了,到目前为止,该类材料是唯一的超导临界温度突破40K的超导材料。但是其超导的机理仍然悬而未决,并且最大超导临界温度也停滞在130K。现在,人们正在努力探索新的高温超导体,目的是进一步提高超导临界温度,并且为超导的机理研究带来更多的可用的信息。
最近,东京工业大学界面研究中心教授细野秀雄等2008年2月18日宣布,在含铁的氧磷族元素化合物(LaOFeAs)中发现了超导电性,其最高临界温度为32K(-241.15℃)。这无疑又是一次对超导科学界的冲击,人们正期待在该类材料中能发现更高的超导临界材料。
三、发明内容
本发明借鉴LaOFeAs这一超导材料,旨在提供一种超导临界温度(Tc)更高的新的超导材料,所要解决的技术问题是遴选新的稀土元素取代镧(La)并进行掺杂,同时构建相应的制备方法。
本发明所称的高温超导材料是化学式为SmO1-xFxFeAs,所示的化合物,其临界超导温度Tc为0~53K,式中X取自0~0.4。
本高温超导材料的制备方法是先制备前驱物,再制备目标物,包括混合、焙烧和冷却,所述的前驱物为砷化钐(SmAs),取纯度99.99%的Sm粉和纯度99.99%的As粉,在无氧和水分含量小于或等于1ppm的气氛中研磨混合均匀,压制成片置于容器中,然后在真空度小于或等于10-3Pa的条件下升温至500~650℃焙烧3~10小时,再继续升温至800~950℃焙烧5~10小时,最后冷却出料。用前驱物同三氟化钐(SmF3)、铁(Fe)、砷(As)和氧化铁(Fe2O3)制备目标物,具体方法是将SmAs粉同纯度99.99%的SmF3粉和纯度98%的Fe粉,纯度99.99%的As粉以及纯度99%的Fe2O3粉按比例在无氧和水分含量小于或等于1ppm的气氛中研磨混合均匀并压制成片,包覆钽(Ta)膜片后置于容器中,在真空度小于或等于10-3Pa的条件下升温至1000~1200℃焙烧40~60小时,再降至室温,剥离Ta膜便得到目标物。所述的按比例是指各原料的摩尔比,即SmAs∶SmF3∶Fe∶Fe2O3∶As=(1-x)/3∶x/3∶(1+2x)/3∶(1-x)/3∶x/3,式中X取自0-0.4,所述的升温和降温是按1~8℃/min的速率升温和降温,优选2~6℃/min.
无氧条件是用惰性气体隔绝空气形成的,所述的惰性气体选自高纯的氩气或氦气或氮气或CO2气体。隔绝空气的作用是防止单质Sm和As的氧化,严格控制水分含量旨在防止SmF3的吸湿、潮解。包覆Ta膜片旨在防止高温条件下容器物质(内壁)参与的不良反应。
本材料用稀土Sm取代La,并在氧位上掺杂氟离子,是除高温超导铜氧化合物系列之外,具有最高超导临界温度的、新型的铁砷系列高温超导材料。通过Sm替换La后超导临界温度TC从28K显著提高到53K,Sm(O,F)FeAs是目前铁砷系列高温超导材料中具有最高超导临界温度的材料,其超导临界温度为53K,这已经打破了BCS理论预言常规超导体超导临界温度TC不可能超过40K的理论值,同时它也大于具有最高超导临界温度TC=39K的非铜氧化合物超导体MgB2。同时此材料的优点是具有很高的临界温度以及很高的临界磁场,将具有比MgB2等材料更为广阔的应用前景。这还将有利于进一步帮助理解铜氧化合物高温导体的物理机制以及强关联体系中的一些基本物理,为理论工作者提供了挑战和实验题材。
四、附图说明
图1是SmO1-xFxFeAs材料样品1的Meissner效应,在超导临界温度TC以下,超导材料体现一个Meissner态,即磁化率体现为负值,这磁化率开始转变的温度TC=43K是跟2图电阻转变的中点是一致的。
图2是SmO1-xFxFeAs材料样品1的电阻率曲线,电阻开始明显下降的温度为44K,在将近40K时电阻已经降到零。同时测量了不同磁场下的电阻,发现7特斯拉对这个材料的超导临界温度没有明显的影响,这说这种材料的临界磁场非常的大。
图3是SmO1-xFxFeAs材料样品2的电阻率曲线,电阻开始明显下降的温度为52K,在将近48K时电阻已经降到零。
五、具体实施方式
1、前驱物SmAs的制备
在隔绝空气的高纯氩(99.999%)气氛下,并且H2O含量小于1ppm,把Sm粉(99.99%)和As粉(99.99%)充分研磨均匀,并压制成片,然后放入石英管中,将其抽至真空度小于10-3Pa,密封后将石英管放入马伏炉中。以每分钟2~6摄氏度速率升温至500~650度保温3~10小时,然后再以每分钟2~6摄氏度速率升温至800-950度保温5~10小时,最后随炉冷却至室温,将反应物从石英管中取出后即完成前驱物制备过程。
2、目标物SmO1-xFxFeAs的制备
在隔绝空气的高纯氩(99.999%)气氛下,并且H2O含量小于1ppm,将制备好的前驱物SmAs粉末、SmF3粉末(99.99%)、Fe粉末(98%)、Fe2O3粉末(99%)、As粉末(99.99%)按照化学计量SmAs∶SmF3∶Fe∶Fe2O3∶As=(1-x)/3∶x/3∶(1+2x)/3∶(1-x)/3∶x/3,混合研磨均匀,并压制成片,再用Ta膜片包裹好放入石英管中抽真空至真空度小于10-3Pa,密封后将石英管放入高温管式炉中。以每分钟2-6摄氏度速率升温至1000~1200度保温40~60小时,再以2~6℃/min降至室温,将反应物从石英管中取出后即完成最终化合物的制备过程。
当X=0.15时,制备的为样品1,当x=0.2~0.3时,制备的为样品2。

Claims (3)

1、一种高温超导材料,其特征在于:以化学式SmO1-xFxFeAs所示的化合物,其临界超导温度0~53K,式中X取自0~0.4。
2、由权利要求1所述的高温超导材料的制备方法,先制备前驱物,再制备目标物,包括混合、焙烧和冷却,其特征在于:所述的前驱物为SmAs,取纯度为99.99%的Sm粉和As粉在无氧和水分含量≤1ppm的气氛中研磨混合均匀并压制成片,然后在真空度≤10-3Pa的条件下升温至500~650℃焙烧3~10小时,再继续升温至800~950℃焙烧5~10小时后冷却;所述的目标物的制备是将SmAs粉、纯度99.99%的SmF3粉、纯度98%的Fe粉、纯度99%的Fe2O3粉和纯度99.99%的As粉按SmAs∶SmF3∶Fe∶Fe2O3∶As=(1-x)/3∶x/3∶(1+2x)/3∶(1-x)/3∶x/3的摩尔比在无氧和水分含量≤1ppm的气氛中研磨混合均匀并压制成片,包覆Ta膜片,然后在真空度≤10-3Pa的条件下升温至1000~1200℃焙烧40~60小时,再降至室温;所述的升温和降温是按1~8℃/min的速率升温和降温。
3、根据权利要求2所述的制备方法,其特征在于:升温和降温的速率为2~6℃/min。
CN2008100236377A 2008-04-11 2008-04-11 一种高温超导材料的制备方法 Expired - Fee Related CN101265099B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2008100236377A CN101265099B (zh) 2008-04-11 2008-04-11 一种高温超导材料的制备方法
PCT/CN2009/000084 WO2009124447A1 (zh) 2008-04-11 2009-01-20 一种高温超导材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100236377A CN101265099B (zh) 2008-04-11 2008-04-11 一种高温超导材料的制备方法

Publications (2)

Publication Number Publication Date
CN101265099A true CN101265099A (zh) 2008-09-17
CN101265099B CN101265099B (zh) 2012-03-14

Family

ID=39987822

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100236377A Expired - Fee Related CN101265099B (zh) 2008-04-11 2008-04-11 一种高温超导材料的制备方法

Country Status (2)

Country Link
CN (1) CN101265099B (zh)
WO (1) WO2009124447A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009124447A1 (zh) * 2008-04-11 2009-10-15 中国科学技术大学 一种高温超导材料及其制备方法
CN101880165A (zh) * 2010-04-16 2010-11-10 北京工业大学 一种短时间固相烧结技术制备铁基超导体的方法
CN101608340B (zh) * 2009-01-21 2012-03-21 中国科学院物理研究所 一种铁基高温超导晶体及其制备方法
CN101774811B (zh) * 2010-01-05 2012-08-22 西南交通大学 一种铁基REFeAsO1-xFx超导材料的制备方法
CN101550009B (zh) * 2009-04-30 2013-10-16 中国科学院上海硅酸盐研究所 一类掺杂的铁基高温超导材料的制备方法
CN109411108A (zh) * 2017-08-18 2019-03-01 南京中硼联康医疗科技有限公司 用于慢化中子的缓速体
CN110931160A (zh) * 2019-10-23 2020-03-27 中国科学院电工研究所 铁基超导前驱粉、其制备方法、铁基超导线带材
CN113877662A (zh) * 2021-09-09 2022-01-04 先导薄膜材料(广东)有限公司 一种无氧无水高纯砷粉及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113371766A (zh) * 2021-03-25 2021-09-10 中山大学 一种具有丰富量子态的新型过渡金属硫化物及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100524466B1 (ko) * 2001-06-29 2005-10-27 자이단 호진 고쿠사이 초덴도 산교 기쥬츠 겐큐 센타 산화물 초전도체의 접합방법 및 산화물 초전도체 접합체
CN100392157C (zh) * 2005-03-25 2008-06-04 北京有色金属研究总院 钇钡铜氧单畴超导块的多籽晶制备方法
JP5196339B2 (ja) * 2006-06-02 2013-05-15 独立行政法人科学技術振興機構 超伝導化合物及びその製造方法
CN100503902C (zh) * 2007-04-05 2009-06-24 西南交通大学 一种制备钐钡铜氧单畴超导块材的方法
CN101265099B (zh) * 2008-04-11 2012-03-14 中国科学技术大学 一种高温超导材料的制备方法
CN101345103B (zh) * 2008-08-27 2010-12-01 西南交通大学 一种铁基SmFeAsO1-xFx超导线材的制备方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009124447A1 (zh) * 2008-04-11 2009-10-15 中国科学技术大学 一种高温超导材料及其制备方法
CN101608340B (zh) * 2009-01-21 2012-03-21 中国科学院物理研究所 一种铁基高温超导晶体及其制备方法
CN101550009B (zh) * 2009-04-30 2013-10-16 中国科学院上海硅酸盐研究所 一类掺杂的铁基高温超导材料的制备方法
CN101774811B (zh) * 2010-01-05 2012-08-22 西南交通大学 一种铁基REFeAsO1-xFx超导材料的制备方法
CN101880165A (zh) * 2010-04-16 2010-11-10 北京工业大学 一种短时间固相烧结技术制备铁基超导体的方法
CN101880165B (zh) * 2010-04-16 2012-11-21 北京工业大学 一种短时间固相烧结技术制备铁基超导体的方法
CN109411108A (zh) * 2017-08-18 2019-03-01 南京中硼联康医疗科技有限公司 用于慢化中子的缓速体
CN109411108B (zh) * 2017-08-18 2020-06-12 南京中硼联康医疗科技有限公司 用于慢化中子的缓速体
CN111494812A (zh) * 2017-08-18 2020-08-07 南京中硼联康医疗科技有限公司 用于慢化中子的缓速体
CN111494812B (zh) * 2017-08-18 2022-03-22 南京中硼联康医疗科技有限公司 用于慢化中子的缓速体
US11400316B2 (en) 2017-08-18 2022-08-02 Neuboron Medtech Ltd. Moderator for moderating neutrons
CN110931160A (zh) * 2019-10-23 2020-03-27 中国科学院电工研究所 铁基超导前驱粉、其制备方法、铁基超导线带材
CN110931160B (zh) * 2019-10-23 2021-03-19 中国科学院电工研究所 铁基超导前驱粉、其制备方法、铁基超导线带材
CN113877662A (zh) * 2021-09-09 2022-01-04 先导薄膜材料(广东)有限公司 一种无氧无水高纯砷粉及其制备方法

Also Published As

Publication number Publication date
CN101265099B (zh) 2012-03-14
WO2009124447A1 (zh) 2009-10-15

Similar Documents

Publication Publication Date Title
CN101265099B (zh) 一种高温超导材料的制备方法
CN102082010B (zh) 一种铁基超导体的制备方法
CN101814344A (zh) 一种铁基超导体的制备方法
CN102931338B (zh) 一种具有多层复合结构的ybco超导膜及其制备方法
CN102255041B (zh) 一种ybco超导薄膜的制备方法
CN101747031B (zh) 一种高温超导纳米复合薄膜及其制备方法
CN102584204A (zh) 一种ybco超导复合薄膜的制备方法
CN1929044B (zh) 含有Si元素和C元素的MgB2超导材料及其制备方法
CN105976939A (zh) 基于化学溶液法制备铋系超导薄膜的方法
CN111554505A (zh) 一种PbMo6S8超导线材的制备方法
CN102000815B (zh) 一种FeAs粉体的负压固相反应制备方法
CN101295563A (zh) 一种有机物掺杂的MgB2块材的制备方法
CN102938270A (zh) 制备Cu包套Ba0.6K0.4Fe2As2超导线材及冷高压致密化方法
CN102615280A (zh) 一种sps技术制备铁基超导体的方法
CN101880165B (zh) 一种短时间固相烧结技术制备铁基超导体的方法
CN101746807A (zh) 提高三氟乙酸盐-金属有机沉积制备ybco薄膜厚度的方法
CN111547769B (zh) 一种高致密度psms超导带材的制备方法
CN1029885C (zh) 一种含硼氧化物高温超导体及其制备方法
CN101250060A (zh) 一种用球形镁粉制备MgB2超导材料的方法
CN102992771A (zh) 一种二硼化镁基超导块材的制造方法
CN109626987A (zh) 一种铋系超导体的制备方法
CN102690114B (zh) 一种ybco超导复合膜的制备方法
Liu Research Progress in Iron-Based Superconducting Wires and Tapes
CN105845270A (zh) 一种利用铋系超导材料制备超导薄膜的方法
CN101274845B (zh) 钆钍氧铁砷高温超导材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120314

Termination date: 20150411

EXPY Termination of patent right or utility model