CN101263613B - 无机发光层、其制备方法和含有其的无机发光器件 - Google Patents

无机发光层、其制备方法和含有其的无机发光器件 Download PDF

Info

Publication number
CN101263613B
CN101263613B CN2006800334491A CN200680033449A CN101263613B CN 101263613 B CN101263613 B CN 101263613B CN 2006800334491 A CN2006800334491 A CN 2006800334491A CN 200680033449 A CN200680033449 A CN 200680033449A CN 101263613 B CN101263613 B CN 101263613B
Authority
CN
China
Prior art keywords
inorganic light
shell
type
semiconductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006800334491A
Other languages
English (en)
Other versions
CN101263613A (zh
Inventor
K·B·卡亨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Publication of CN101263613A publication Critical patent/CN101263613A/zh
Application granted granted Critical
Publication of CN101263613B publication Critical patent/CN101263613B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/949Radiation emitter using nanostructure
    • Y10S977/95Electromagnetic energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Mathematical Physics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Luminescent Compositions (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Devices (AREA)

Abstract

本发明公开了一种无机发光层以及制备所述发光层的方法,所述发光层包含:许多发光核,各核具有响应空穴和电子复合而发光的半导体材料,各所述发光核限定第一带隙;许多半导体壳,所述半导体壳分别形成于所述发光核周围以形成核/壳量子点,各所述半导体壳具有比所述第一带隙宽的第二带隙;和半导体基质,所述半导体基质与所述半导体亮相连以提供经由所述半导体基质并至各所述半导体壳及其相应发光核的导电路径以便允许空穴和电子复合。

Description

无机发光层、其制备方法和含有其的无机发光器件
技术领域
本发明涉及无机发光二极管器件,所述器件包括具有量子点的发光层。
背景技术
自从二十世纪六十年代早期已制备半导体发光二极管(LED)器件,且近来被制造用于宽范围的消费者和工业应用。包含LED的层基于晶体半导体材料,晶体半导体材料需要超高真空技术(例如分子有机化学蒸汽沉积)用于其生长。此外,各层通常需要在几乎晶格匹配的基板上生长,以形成无缺陷的层。这些基于晶体的无机LED的优点为亮度高(由于层的电导率高)、寿命长、环境稳定性良好和外量子效率高。产生所有的这些优点的晶体半导体层的使用也产生许多缺点。主要的缺点为制造成本高、难以由相同的芯片组合多色输出、需要高成本和刚性基板。
在二十世纪八十年代中期,发明了基于使用小分子量分子的有机发光二极管(OLED)(Tang等,Appl.Phys.Lett.51,913(1987))。在二十世纪九十年代早期,发明了聚合物型LED(Burroughes等,Nature347,539(1990))。在随后的15年间,基于有机物的LED显示器进入市场,对器件寿命、效率和亮度有很大的改进。例如包含磷光发射体的器件外量子效率高达19%,而器件寿命常规报道为数万小时。与基于晶体的无机LED相比,OLED亮度降低(主要由于载流子迁移率小)、寿命较短,且器件工作时需要封装成本高。另一方面,OLED的优点为制造成本可能较低,能由相同的器件发射多种颜色,且如果可解决封装问题,允许使用挠性显示器。
为了改进OLED的性能,在二十世纪九十年代后期,引入了包含有机物和量子点的混合发射体的OLED器件(Matoussi等,J.Appl.Phys.83,7965(1998))。往发射体层中加入量子点的优点在于可提高器件的色域;通过简单地变化量子点粒径可达到发红光、绿光和蓝光;且可降低制造成本。由于各种问题(例如量子点在发射体层中聚集),这些器件的效率比通常的OLED器件低。当使用纯量子点薄膜作为发射体层时,效率更差(Hikmet等,J.Appl.Phys.93,3509(2003))。效率低是由于量子点层的绝缘性质。后来通过在有机空穴和电子传输层之间沉积单层量子点薄膜(Coe等,Nature 420,800(2002))提高效率(至约1.5cd/A)。一般认为由量子点发光主要是由于在有机分子上的激子的Forster能量转换(在有机分子上发生电子-空穴复合)。无论将来在效率方面有任何改进,这些混合器件仍面临纯OLED器件所具有的所有缺点。
近来通过在真空沉积的n-和p-GaN层之间夹有单层厚核/壳CdSe/ZnS量子点层来构造主要全无机LED(Mueller等,Nano Letters5,1039(2005))。所得到的器件外量子效率差,为0.001-0.01%。该问题部分与据报道存在后生长的三辛基氧化膦(TOPO)和三辛基膦(TOP)有机配体有关。这些有机配体为绝缘体,导致电子和空穴在量子点上的注入差。此外,由于使用通过高真空技术生长的电子和空穴半导体层且使用蓝宝石基板,该结构的其余部分制造成本高。
因此,构造基于量子点发射体的全无机LED是非常有益的,其通过低成本沉积技术形成,且各层具有良好的电导率性能。所得到的LED将兼有结晶LED和有机LED的许多所需特性。
发明概述
本发明的一个目标为提供其发射体层由无机量子点形成的无机发光二极管器件,其中所述无机发射体层同时导电和发光。此外,所述二极管器件通过低成本的沉积法形成。
通过无机发光层实现这些目标,所述无机发光层包含:
(a)许多发光核,各核具有响应空穴和电子复合而发光的半导体材料,各所述发光核限定第一带隙;
(b)许多半导体壳,所述半导体壳分别形成于所述发光核周围以形成核/壳量子点,各所述半导体壳具有比所述第一带隙宽的第二带隙;和
(c)半导体基质,所述半导体基质与所述半导体壳相连以提供经由所述半导体基质并至各所述半导体壳及其相应发光核的导电路径以便允许空穴和电子复合。
本发明的一个优点为提供一种形成发光层的方法,其发光物质为同时发光和导电的量子点。发光层包含导电宽带隙纳米微粒和带壳量子点发射体的复合材料。使用热退火使导电纳米微粒在其自身内和量子点表面烧结。结果是,提高了发光层的电导率,因为电子-空穴注入了量子点。为了使量子点能经受得住退火步骤而不降低其荧光效率(由于在退火过程中钝化量子点的有机配体蒸发掉了),设计量子点壳来约束电子和空穴,使得其波函数不采样(sample)外壳的表面状态。
本发明的再一个优点为在全无机发光二极管器件中结合导电和发光的发光层。电子和空穴传输层由导电纳米微粒组成,此外,使用单独的热退火步骤来提高这些层的电导率。所有的纳米微粒和量子点通过化学方法合成且制成胶态分散体。因此,所有的器件层通过低成本方法例如液滴涂布(drop casting)或喷墨沉积。所得到的全无机发光二极管器件成本低,可在各种基板上形成,且可经调节在宽范围的可见光和红外波长发射。与基于有机物的发光二极管器件相比,其亮度提高,且其封装要求降低。
附图说明
图1表示核/壳量子点微粒的示意图;
图2表示本发明的无机发光层的截面图;
图3表示本发明的无机发光器件的侧视图;
图4表示本发明的无机发光器件的另一个实施方案的侧视图;和
图5图示ZnS薄膜的透射率。
发明详述
使用量子点作为发光二极管中的发射体的优点在于可通过改变量子点微粒的大小简单地调节发射波长。因此,可由相同的基板实现窄谱(导致色域较宽)的多色发射。如果通过胶态方法制备量子点[且不通过高真空沉积技术生长(S.Nakamura等,Electron.Letter.34,2435(1998))],则基板不必昂贵或需要与LED半导体体系晶格匹配。例如基板可为玻璃、塑料、金属箔或Si。使用这些技术来形成量子点LED是十分理想的,特别是如果使用低成本沉积技术来沉积LED层。
图1为核/壳量子点120发射体的示意图。该微粒包括发光核100、半导体壳110和有机配体115。由于通常的量子点的大小在几纳米数量级,且与其固有的激子的大小相当,因此微粒的吸收峰和发射峰均相对于本体值蓝移(R.Rossetti等,J.Chem.Phys.79,1086(1983))。由于量子点小,点的表面电子状态对点的荧光量子产额有很大的影响。通过将适当的(例如伯胺)有机配体115与其表面相连或通过围绕着发光核100外延生长另一种半导体(半导体壳110)可钝化发光核100的电子表面状态。生长半导体壳110的优点(相对于通过有机方法钝化的核)为可同时钝化空穴和电子核微粒表面状态,所得到的量子产额通常较高,且量子点对光更稳定且在化学上更稳定。由于半导体壳110的厚度有限(通常为1-2个单层),其电子表面状态也需要被钝化。同样,有机配体115为常见的选择。以CdSe/ZnS核/壳量子点120为例,在核/壳界面处的化合价和导带偏移使得所得到的电位将空穴和电子约束在核区内。由于电子通常比重空穴轻,所以空穴主要约束于核内,而电子穿透至壳中,且采样与金属原子相关的电子表面状态(R.Xie等,J.Am.Chem.Soc.127,7480(2005))。因此,对于CdSe/ZnS核/壳量子点120的情况,仅壳的电子表面状态需要被钝化,合适的有机配体120的实例为一种与表面Zn原子形成给体/受体键的伯胺(X.Peng等,J.Am.Chem.Soc.119,7019(1997))。总之,通常的高度发光的量子点具有核/壳结构(较高带隙围绕着较低带隙)且具有与壳的表面相连的不导电的有机配体120。
在过去的十年内,由许多工作者制造了高度发光的核/壳量子点的胶态分散体(O.Masala和R.Seshadri,Annu.Rev.Mater.Res.34,41(2004))。发光核100由IV型(Si)、III-V型(InAs)或II-VI型(CdTe)半导体材料组成。对于在光谱的可见光部分的发射,由于通过改变CdSe核的直径(1.9-6.7nm),发射波长可从465nm调节至640nm,因此CdSe为优选的核材料。如本领域众所周知的,可由其他材料体系制造可见光发光量子点,例如掺杂的ZnS(A.A.Bol等,Phys.Stat.Sol.B224,291(2001))。发光核100通过本领域众所周知的化学方法制备。通常的合成路线为在配位溶剂中高温分解分子前体、溶剂热(solvothermal)方法(O.Masala和R.Seshadri,Annu.Rev.Mater.Res.34,41(2004))和静置沉淀(R.Rossetti等,J.Chem.Phys.80,4464(1984))。半导体壳110通常由II-VI型半导体材料(例如CdS或ZnSe)组成。通常选择壳半导体以与核材料几乎晶格匹配,且化合价和导带水平使得核空穴和电子主要约束在量子点的核区内。对于CdSe核,优选的壳材料为ZnSexS1-x,其中x为0.0-约0.5。通常通过在配位溶剂中在高温下分解分子前体来完成围绕发光核100的半导体壳110的形成(M.A.Hines等,J.Phys.Chem.100,468(1996))或反胶束技术(A.R.Kortan等,J.Am.Chem.Soc.112,1327(1990))。
如本领域众所周知的,形成量子点薄膜的两种低成本方法为通过液滴涂布和旋转涂布(spin casting)沉积核/壳量子点120的胶态分散体。用于液滴涂布量子点的常用溶剂为9∶1的己烷∶辛烷混合物(C.B.Murray等,Annu.Rev.Mater.Sci.30,545(2000))。需要选择有机配体115使得量子点微粒溶解于己烷中。因此,含有烃基末端的有机配体为良好的选择,例如烷基胺。使用本领域众所周知的方法,来自生长方法的配体(例如TOPO)可与所选的有机配体115交换(C.B.Murray等,Annu.Rev.Mater.Sci.30,545(2000))。当旋转涂布量子点的胶态分散体时,对溶剂的要求是易在沉积表面上展开,且在旋转涂布过程中溶剂以中等速率蒸发。发现醇基的溶剂为良好的选择,例如将低沸点醇(例如乙醇)与较高沸点醇(例如丁醇-己醇混合物)混合,良好地形成薄膜。相应地,可使用配体交换将末端可溶于极性溶剂的有机配体与量子点相连,吡啶为合适的配体的一个实例。由这两种沉积法形成的量子点薄膜发光,但不导电。由于不导电的有机配体分隔核/壳量子点120微粒,因此薄膜有电阻。由于移动的电荷沿着量子点传送时,移动的电荷由于半导体壳110的限制势垒而截留在核区,因此薄膜有电阻。
无机LED的适当工作通常需要围绕着导电(标称掺杂)和发光发射体层的低电阻率n型和p型传输层。如上所述,通常的量子点薄膜发光,但绝缘。图2示意性地说明一种提供同时发光和导电的无机发光层150的方法。原理基于共沉积小的(<2nm)导电无机纳米微粒140,连同核/壳量子点120形成无机发光层150。随后使用惰性气体(Ar或N2)退火步骤在其自身内和在较大的核/壳量子点120的表面上烧结较小的无机纳米微粒140。烧结无机纳米微粒140导致产生连续的导电半导体基质130。通过该烧结过程,该基质还与核/壳量子点120相连。因此,自无机发光层150的边缘经由半导体基质130并至各核/壳量子点120产生导电路径,其中电子和空穴在发光核100中复合。还应注意到将核/壳量子点120包在导电半导体基质130中具有额外的益处,即保护量子点免受环境中氧和湿气的影响。
无机纳米微粒140需要由导电的半导体材料(例如IV型(Si)、III-V型(GaP)或II-VI型(ZnS或ZnSe)半导体)组成。为了容易地将电荷注入核/壳量子点120,优选无机纳米微粒140由带隙与半导体壳110材料相当(更特别是带隙在壳材料带隙的0.2eV内)的半导体材料组成。在ZnS为核/壳量子点120外壳的情况下,无机纳米微粒140由ZnS或Se含量低的ZnSSe组成。无机纳米微粒140通过本领域众所周知的化学方法制备。通常的合成路线为在配位溶剂中在高温下分解分子前体、溶剂热方法(O.Masala和R.Seshadri,Annu.Rev.Mater.Res.34,41(2004))和静置沉淀(R.Rossetti等,J.Chem.Phys.80,4464(1984))。如本领域众所周知的,相对于其大块对应物,纳米大小的纳米微粒在更低的温度下熔融(A.N.Goldstein等,Science 256,1425(1992))。相应地,希望无机纳米微粒140的直径小于2nm,以便增强烧结过程,优选的大小为1-1.5nm。至于含有ZnS壳的较大的核/壳量子点120,据报道2.8nm的ZnS微粒在退火温度高达350℃时较稳定(S.B.Qadri等,Phys.Rev B60,9191(1999))。综合这两个结果,退火过程优选的温度为250-300℃,持续时间最高达60分钟,在其自身内和在较大的核/壳量子点120的表面上烧结较小的无机纳米微粒140,而较大的核/壳量子点120形状和大小保持较稳定。
为了形成无机发光层150,形成无机纳米微粒140和核/壳量子点120的共分散体。由于希望核/壳量子点120被无机发光层150中的无机纳米微粒140围绕着,选择无机纳米微粒140与核/壳量子点120的比率大于1∶1。优选的比率为2∶1或3∶1。根据沉积方法(例如旋转涂布或液滴涂布),适当地选择有机配体115。通常相同的有机配体115用于两种类型的微粒。为了提高无机发光层150的电导率(和电子-空穴注入过程),优选与核/壳量子点120和无机纳米微粒140相连的有机配体115因在惰性气氛下将无机发光层150退火而蒸发。通过选择具有低沸点的有机配体115,可在退火过程中使有机配体从薄膜蒸发(C.B.Murray等,Annu.Rev.Mater.Sci.30,545(2000))。因此,对于通过液滴涂布形成的薄膜,优选较短链的伯胺,例如己胺;对于通过旋转涂布形成的薄膜,吡啶为优选的配体。在高温下将薄膜退火可由于薄膜与基板之间热膨胀不匹配,导致薄膜裂纹。为了避免该问题,优选退火温度从25℃斜线升至退火温度,再从退火温度降至室温。优选的升温时间为30分钟。所得到的无机发光层150的厚度为10-100nm。
在退火步骤之后,核/壳量子点120的外壳不含有机配体115。对于CdSe/ZnS量子点的情况下,不含外配体的壳导致自由电子损失,原因是被壳的未钝化的表面状态截留(R.Xie,J.Am.Chem.Soc.127,7480(2005))。因此,经退火的核/壳量子点120比未退火的点量子产额降低。为了避免这种状况,需要增加ZnS壳的厚度,其程度使得核/壳量子点电子波函数不再采样壳的表面状态。使用本领域众所周知的计算技术(S.A.Ivanov等,J.Phys.Chem.108,10625(2004)),需要ZnS壳的厚度为至少5个单层(ML)厚,以消除电子表面状态的影响。但是,当ZnS亮厚高达2ML时,可直接在CdSe上生长,而不会由于两个半导体晶格之间晶格失配产生缺陷(D.V.Talapin等,J.Phys.Chem.108,18826(2004))。为了避免晶格缺陷,可在CdSe核和ZnS外壳之间生长ZnSe的中间壳。该方法由Talapin等使用(D.V.Talapin等,J.Phys.Chem.B 108,18826(2004)),其中在CdSe核上能生长最高达8ML厚的ZnS壳,最佳ZnSe壳厚为1.5ML。还可采用更复杂的方法,使晶格失配差异最小,例如在数个单层的距离上将中间壳的半导体含量从CdSe平稳变化至ZnS(R.Xie等,J.Am.Chem.Soc.127,7480(2005))。总之,使外壳的厚度足够厚,使得没有游离的载流子采样电子表面状态。此外,如果需要,将适当的半导体含量的中间壳加至量子点,以避免产生厚半导体壳110带来的缺陷。
图3给出结合有无机发光层150的电致发光LED器件200的最简单的实例。基板160承载沉积的半导体和金属层,其唯一的要求是足够刚性以能够进行沉积法,且可承受热退火过程(最高温度约285℃)。基板可为透明或不透明的。可能的基板材料有玻璃、硅、金属箔和某些塑料。接下来沉积的材料为阳极170。在基板160为p型Si的情况下,需要在基板160的底表面上沉积阳极170。适用于p-Si的阳极金属为Al。可通过热蒸发或溅射沉积。在沉积之后,在约430℃下退火20分钟。对于所有的上述其他类型的基板,在基板160的顶表面上沉积(如图3所示)阳极170且阳极包括透明的导体,例如氧化锡铟(ITO)。ITO可通过溅射或本领域众所周知的其他方法沉积。ITO通常在约300℃下退火1小时以改进其透明性。由于透明导体(例如ITO)的薄层电阻远大于金属的薄层电阻,可使用热蒸发或溅射,通过遮蔽掩模(shadow mask)选择性地沉积汇流排金属(bus metal)190,以降低接触垫至实际器件的电压降。接着沉积无机发光层150。如上所述,可在透明导体(或Si基板)上液滴涂布或旋转涂布。还可使用其他沉积技术,例如喷墨胶态量子点-无机纳米微粒混合物。在沉积之后,优选在270℃下将无机发光层150退火50分钟。最后,阴极180金属沉积在无机发光层150上。可选的阴极180金属为与包括无机纳米微粒140的材料形成欧姆接触的物质。例如在ZnS无机纳米微粒140的情况下,优选的金属为Al。可通过热蒸发或溅射沉积,随后在285℃下热退火10分钟。本领域技术人员还可推断颠倒层组合物,使得阴极180沉积在基板160上,阳极形成在无机发光层150上。对于Si载体的情况下,基板160为n型Si。
图4给出结合有无机发光层150的电致发光LED器件205的另一个实施方案。该图表示将p型传输层220和n型传输层230加至器件,且包围无机发光层150。如本领域众所周知,LED结构通常包含掺杂的n型和p型传输层。这些传输层有几个不同的用途。如果半导体被掺杂,则与半导体形成欧姆接触更容易。由于发射体层通常本身带有杂质或经轻微掺杂,因此与掺杂的传输层形成欧姆接触更容易。由于表面等离激元效应(plasmon effect)(K.B.Kahen,Appl.Phys.Lett.78,1649(2001)),具有与发射体层相邻的金属层导致发射体效率降低。因此,最好通过足够厚的(至少150nm)传输层将发射体层与金属触点间隔。最后,传输层不仅将电子和空穴注入发射体层,而且通过适当选择材料,可防止载流子泄漏出发射体层。例如如果无机纳米微粒140由ZnS0.5Se0.5组成,传输层由ZnS组成,则通过ZnS势垒将电子和空穴约束在发射体层内。适用于p型传输层的材料包括II-VI和III-V半导体。典型的II-VI半导体为ZnSe、ZnS或ZnTe。仅ZnTe天然为p型,而ZnSe和ZnS为n型。为了得到足够高的p型导电性,应向所有的三种材料中加入另外的p型掺杂物。对于II-VI p型传输层的情况下,可选的掺杂物为锂和氮。例如在文献中说明在约350℃下Li3N可扩散至ZnSe中以产生p型ZnSe,其电阻率低至0.4ohm-cm(S.W.Lim,Appl.Phys.Lett.65,2437(1994))。
适用于n型传输层的材料包括II-VI和III-V半导体。典型的II-VI半导体为ZnSe或ZnS。对于p型传输层,为了得到足够高的n型导电性,应向半导体中加入另外的n型掺杂物。在II-VI n型传输层的情况下,可选的掺杂物为Al、In或Ga的III型掺杂物。如本领域众所周知,可通过离子注入(随后退火)或扩散法(P.J.George等,Appl.Phys.Lett.66,3624[1995])将这些掺杂物加至层中。更优选的路线为在化学合成纳米微粒的过程中原位加入掺杂物。以在十六胺(HDA)/TOPO配位溶剂中形成ZnSe微粒为例(M.A.Hines等,J.Phys.Chem.B102,3655[1998]),Zn源为二乙基锌的己烷溶液,Se源为溶解于TOP中的Se粉末(形成TOPSe)。如果用Al掺杂ZnSe,则将相应百分比的(相对于二乙基锌浓度的百分之几)三甲基铝的己烷溶液加至包含TOP、TOPSe和二乙基锌的注射器。当通过化学浴沉积法生长薄膜时,成功地证明了这类原位掺杂法(J.Lee等,Thin Solid Films431-432,344[2003])。应注意到,参考图4,还可仅在结构中加入p型传输层或n型传输层使二极管工作。本领域技术人员还可推断层组合物可颠倒,使得在基板160上沉积阴极180,在p型传输层220上形成阳极。在Si载体的情况下,基板160为n型Si。
以下实施例用于进一步理解本发明,不应认为是要局限本发明的范围。
实施例1
根据图2的示意形成无机发光层150。无机纳米微粒140由ZnS组成,而核/壳量子点120具有CdSe核和ZnSe/ZnS壳。ZnS微粒采用Khosravi等报道的经修改的方法化学合成(A.A.Khosravi等,Appl.Phys.Lett.67,2506[1995])。Zn源为ZnCl2,硫源为双(三甲基甲硅烷基)硫醚(TMS)2S,表面活性剂/配体为己胺。制备各自为0.02M的ZnCl2、(TMS)2S和己胺的丁醇溶液,将等体积的各溶液用于反应。为了防止所得到的ZnS纳米微粒氧化,使用众所周知的方法在惰性条件下进行反应。首先,将5ml氯化锌溶液和5ml己胺溶液在两颈烧瓶中混合,同时剧烈搅拌该混合物。接着将5ml(TMS)2S溶液以0.1-1ml/分钟的速率滴加至烧瓶,同时继续剧烈搅拌该混合物。随后将所得到的三组分溶液放置在旋转蒸发器中,从溶液中蒸除约13ml丁醇。加入过量的甲醇后,将溶液离心分离,将上清液倾析。为了再溶解沉淀物,加入0.5ml甲苯。再一次将过量的甲醇加至溶液中,随后离心,倾析上清液。所得到的沉淀物可溶解于各种非极性溶剂中。由于通过液滴涂布沉积ZnS无机纳米微粒140和CdSe/ZnSe/ZnS核/壳量子点120的胶态分散体,将沉淀物溶解于9∶1的己烷:辛烷溶剂混合物中(C.B.Murray等,Annu.Rev.Mater.Sci.30,545[2000])。所得到的胶态分散体光学透明,但在360nm下激发时发射近紫外光。图5绘制在三种不同的温度下热退火10分钟后,ZnS纳米微粒薄膜的透射率。由于从其本体带隙(bulk bandgap)蓝移(约3.6eV)显著,图5表明ZnS微粒非常小(<2nm),且在约280℃时开始烧结在一起。如上所述,优选无机纳米微粒140非常小(<2nm),以便能够在较低温度下烧结。
采用Talapin等的路线合成核/壳量子点120(D.V.Talapin等,J.Phys.Chem.B108,18826[2004])。为了形成CdSe核,在Schlenk line和氩气流下进行“绿色”合成路线。开始将8g TOPO、5g HDA和0.15g正十四烷基膦酸(TDPA)在三颈烧瓶中混合,随后进行标准脱气和干燥过程。将2ml 1M的TOPSe溶液加至烧瓶中,随后将混合物加热至300℃。通过注射器将镉储液(0.12g乙酸镉在3ml TOP中)快速注入烧瓶中,同时将溶液剧烈搅拌。由于注入室温储液,反应温度立即下降约25℃。在260℃下保持7.5分钟,形成发射波长为约530nm的发绿光核量子点。
接着,在核CdSe量子点上沉积ZnSe的薄壳(约1.5ml)。开始将3.6ml核量子点粗品溶液(未洗涤)与20g TOPO和12g HDA(将两种配位溶剂脱气,干燥,随后加至烧瓶中)在三颈烧瓶中混合。将所得到的混合物升至190℃。在手套箱中,往注射器中填充Zn和Se前体(0.3mmol二乙基锌、0.39mmol TOPSe和3ml另外的TOP)。随后将注射器的内含物以5ml/小时的速率缓慢加至烧瓶中,同时剧烈搅拌溶液。在注入ZnSe前体后,立即将约5ml ZnS外壳沉积在带ZnSe壳的量子点上。这时往注射器填充3mmol二乙基锌(来自1M的二乙基锌的己烷溶液)、1.38ml(TMS)2S和12ml TOP。将注射器内含物以8ml/小时的速率加入,生长温度设定为210℃。完成ZnS壳生长后,将反应混合物冷却至90℃,且在该温度下保持60分钟。最后,将11ml丁醇加至混合物中,以防止在低于TOPO和HAD的凝固点下固化。所得到的核/壳/壳量子点轻微红移(相对于核发射),且发绿黄色光(约545nm)。测得的量子产额超过50%。
无机发光体层150包含ZnS无机纳米微粒140和CdSe/ZnSe/ZnS核/壳量子点120的复合材料。因此,使用9∶1的己烷∶辛烷作为溶剂形成CdSe/ZnSe/ZnS核/壳量子点120的胶态分散体,己胺为与量子点相连的有机配体。由于这样合成的核/壳量子点120含有TOPO/HDA作为表面配体,所以用己胺进行配体交换方法(D.V.Talapin等,NanoLett.4,207[2001])来钝化量子点。向经过配体交换的分散体中加入过量的甲醇后,将溶液离心,将上清液倾析。为了再溶解沉淀物,加入1.0ml甲苯。再一次将过量的甲醇加至溶液,随后离心,倾析上清液。将所得到的沉淀物再溶解于9∶1的己烷∶辛烷溶剂混合物中。请注意配体交换和微粒洗涤均在无空气的条件下进行。分别以2∶1的组分分散体的体积比,将ZnS纳米微粒和CdSe/ZnSe/ZnS量子点的复合胶态分散体液滴涂布在基板(Si或玻璃)上。将所得到的薄膜在270℃的管式炉中,在恒定的Ar流下退火50分钟(升至270℃耗时35分钟,降至室温耗时35分钟)。所得到的薄膜的荧光性在明亮的室内光线下清晰可见,并再次为绿黄色。该薄膜看起来在空气中稳定,观察几小时后未发现荧光产量衰减。该薄膜还导电,电阻率为104ohm-cm数量级。
实施例2
使用上述无机发光层120作为部件构造电致发光型发光二极管。通过遮蔽掩模在干净的玻璃基板160的表面上溅射ITO。沉积后,将ITO薄膜在300℃下退火1小时以改进其透明性。接着如实施例1所述,将无机发光层120沉积在ITO的表面上。为了确保层不含针孔,将复合(ZnS纳米微粒和CdSe/ZnSe/ZnS核/壳/壳)胶态分散体液滴涂布两次(每次液滴涂布后在270℃的管式炉中退火50分钟)。在两次液滴涂布之前,沉积表面用丙酮/甲醇溶剂洗液清洗,随后使用氮气吹干试样。
接着沉积n型传输层230。该传输层由ZnSe纳米微粒形成。通过在配位溶剂中高温分解分子前体来合成纳米微粒(在Schlenk line和氩气流下进行)。更具体地讲,将7g HDA(干燥并脱气)放置在三颈烧瓶中,随后加热至300℃。在手套箱中,往注射器中填充0.8mmol二乙基锌(来自1M的二乙基锌的己烷溶液)、0.8mmol TOPSe和2.5ml另外的TOP。将注射器内含物快速注入烧瓶,同时剧烈搅拌溶液。由于注入室温Zn/Se储液,反应温度立即下降约25℃。在270℃下保持3分钟,以便形成发近紫外光的ZnSe纳米微粒。在冷却至室温之前,将7ml丁醇加至溶液中以防止HDA固化。由于需要己胺液滴涂布,因此进行标准配体交换以除去HDA配体,并用己胺配体置换。随后将所得到的经配体交换的溶液放置在旋转蒸发器中,从溶液中蒸除任何过量的丁醇和己胺。加入过量的甲醇后,将溶液离心,将上清液倾析。为了再溶解沉淀物,加入0.25ml甲苯。再一次将过量的甲醇加至溶液中,随后离心,倾析上清液。将所得到的沉淀物再溶解于9∶1的己烷∶辛烷溶剂混合物中。为了确保层不含针孔,将ZnSe胶态分散体液滴涂布两次(每次液滴涂布后在270℃的管式炉中退火50分钟)。在两次液滴涂布之前,沉积表面用丙酮/甲醇溶剂洗液清洗,随后使用氮气吹干试样。
随后将带图案的阴极180沉积在n型ZnSe传输层230上。通过遮蔽掩模热蒸发铝以形成400nm厚的薄膜。为了与ZnSe更好地接触,将Al在285℃下退火10分钟(温度从25℃升至285℃,又返回25℃)。在带图案的阴极180和阳极170(ITO)触点的交叉点上,LED透过玻璃基板160发光。交叉面积为约5mm2。在柔和的室内照明条件下,LED发绿黄色可见光。器件发光所需的电压为至少7-8V。在连续工作几分钟后,在毁灭性失效之前,器件可控制高达100mA(2A/cm2)的直流电流。
具体参考某些优选的实施方案详细描述了本发明,但应理解的是,在本发明的宗旨和范围内可进行各种改变和变化。
零件列表
100发光核
110半导体壳
115有机配体
120核/壳量子点
130半导体基质
140无机纳米微粒
150无机发光层
160基板
170阳极
180阴极
190汇流排金属
200无机发光器件
205无机发光器件
220p型传输层
230n型传输层

Claims (24)

1.一种无机发光层,所述发光层包含:
(a)许多发光核,各核具有响应空穴和电子复合而发光的半导体材料,各所述发光核限定第一带隙;
(b)半导体壳,所述半导体壳分别形成于所述发光核周围以形成核/壳量子点,各所述半导体壳具有比所述第一带隙宽的第二带隙;和
(c)半导体基质,所述半导体基质包含分散的由IV型、III-V型或II-VI型半导体材料形成的无机纳米微粒,所述半导体基质与所述半导体壳相连以提供经由所述半导体基质并至各所述半导体壳及其相应发光核的导电路径以便允许空穴和电子复合,并且所述无机纳米微粒具有不同于核/壳量子点的组成。
2.权利要求1的无机发光层,其中所述各发光核包含IV型、III-V型或II-VI型半导体材料。
3.权利要求2的无机发光层,其中所述各发光核包含CdSe。
4.权利要求1的无机发光层,其中所述各半导体壳包含II-VI型半导体材料。
5.权利要求4的无机发光层,其中所述各半导体壳包含ZnS。
6.权利要求2的无机发光层,其中所述各半导体壳包含II-VI型半导体材料。
7.权利要求1的无机发光层,其中所述半导体基质材料的带隙在所述半导体壳材料带隙的0.2eV内。
8.一种制备权利要求1的无机发光层的方法,所述方法包括:
(a)提供核/壳量子点和半导体基质纳米微粒的胶态分散体;
(b)沉积所述胶态分散体以形成薄膜;和
(c)将所述薄膜退火以形成所述无机发光层。
9.权利要求8的无机发光层,其中所述层的厚度为10-100nm。
10.权利要求8的无机发光层,其中所述沉积的薄膜在250-300℃下退火最高达60分钟。
11.一种无机发光器件,所述器件包含:
(a)彼此隔开的阳极和阴极电极;和
(b)位于所述阳极和所述阴极电极之间的权利要求1的无机发光层。
12.权利要求11的无机发光器件,所述器件包含位于所述阳极和所述无机发光层之间的p型传输层。
13.权利要求12的无机发光器件,其中所述p型传输层包含p型ZnSe、ZnS或ZnTe。
14.权利要求12的无机发光器件,其中通过包含氮或锂或二者的掺杂物提高所述p型传输层的电导率。
15.权利要求11的无机发光器件,所述器件包含位于所述阴极和所述无机发光层之间的n型传输层。
16.权利要求15的无机发光器件,其中所述n型传输层包含n型ZnSe或ZnS。
17.权利要求15的无机发光器件,其中通过包含Al、In或Ga的III型掺杂物提高所述n型传输层的电导率。
18.权利要求12的无机发光器件,所述器件包含位于所述阴极和所述无机发光层之间的n型传输层。
19.权利要求18的无机发光器件,其中所述n型传输层包含n型ZnSe或ZnS。
20.权利要求18的无机发光器件,其中通过包含Al、In或Ga的III型掺杂物提高所述n型传输层的电导率。
21.一种无机发光器件,所述器件包含:
(a)基板;
(a)在所述基板上形成的阳极和与所述阳极彼此隔开的阴极;和
(b)位于所述阳极和所述阴极之间的权利要求1的无机发光层。
22.权利要求21的无机发光器件,其中所述基板包含p型半导体材料。
23.权利要求22的无机发光器件,其中所述发光层在所述基板的一侧上形成,所述阳极在所述基板的另一侧上形成。
24.权利要求21的无机发光器件,其中所述基板由玻璃、金属箔或塑料形成,所述阳极在所述基板上形成。
CN2006800334491A 2005-09-14 2006-08-30 无机发光层、其制备方法和含有其的无机发光器件 Expired - Fee Related CN101263613B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/226,622 US7615800B2 (en) 2005-09-14 2005-09-14 Quantum dot light emitting layer
US11/226,622 2005-09-14
PCT/US2006/033567 WO2007037882A1 (en) 2005-09-14 2006-08-30 Quantum dot light emitting layer

Publications (2)

Publication Number Publication Date
CN101263613A CN101263613A (zh) 2008-09-10
CN101263613B true CN101263613B (zh) 2010-10-06

Family

ID=37591697

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800334491A Expired - Fee Related CN101263613B (zh) 2005-09-14 2006-08-30 无机发光层、其制备方法和含有其的无机发光器件

Country Status (7)

Country Link
US (1) US7615800B2 (zh)
EP (1) EP1932185A1 (zh)
JP (1) JP5043848B2 (zh)
KR (1) KR20080043829A (zh)
CN (1) CN101263613B (zh)
TW (1) TWI375339B (zh)
WO (1) WO2007037882A1 (zh)

Families Citing this family (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101257780B1 (ko) * 2005-02-16 2013-04-24 매사추세츠 인스티튜트 오브 테크놀로지 반도체 나노결정을 포함하는 발광 디바이스
EP1999797A4 (en) * 2006-02-09 2010-11-24 Qd Vision Inc DEVICE COMPRISING SEMICONDUCTOR NANOCRYSTALS AND A LAYER COMPRISING A DOPE ORGANIC MATERIAL AND METHODS THEREOF
US8941299B2 (en) * 2006-05-21 2015-01-27 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
JP5110851B2 (ja) * 2006-11-01 2012-12-26 キヤノン株式会社 有機発光素子
ES2570600T3 (es) * 2006-11-01 2016-05-19 Ventana Med Syst Inc Haptenos, conjugados de haptenos, composiciones de los mismos y método para su preparación y uso
US7785657B2 (en) * 2006-12-11 2010-08-31 Evident Technologies, Inc. Nanostructured layers, method of making nanostructured layers, and application thereof
US20080218068A1 (en) * 2007-03-05 2008-09-11 Cok Ronald S Patterned inorganic led device
US7888700B2 (en) * 2007-03-08 2011-02-15 Eastman Kodak Company Quantum dot light emitting device
US7564067B2 (en) * 2007-03-29 2009-07-21 Eastman Kodak Company Device having spacers
US20080237611A1 (en) * 2007-03-29 2008-10-02 Cok Ronald S Electroluminescent device having improved contrast
US7682789B2 (en) * 2007-05-04 2010-03-23 Ventana Medical Systems, Inc. Method for quantifying biomolecules conjugated to a nanoparticle
DK2167963T3 (da) 2007-05-23 2019-06-24 Ventana Med Syst Inc Polymerbærere til immunhistokemi og in situ-hybridisering
US7902748B2 (en) 2007-05-31 2011-03-08 Global Oled Technology Llc Electroluminescent device having improved light output
US8361823B2 (en) * 2007-06-29 2013-01-29 Eastman Kodak Company Light-emitting nanocomposite particles
US20090004419A1 (en) * 2007-06-29 2009-01-01 Cok Ronald S Multi-layer masking film
US7838889B2 (en) * 2007-08-10 2010-11-23 Eastman Kodak Company Solid-state area illumination system
JP2009087782A (ja) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd エレクトロルミネッセンス素子の製造方法
US7741770B2 (en) * 2007-10-05 2010-06-22 Global Oled Technology Llc LED device having improved light output
US7777233B2 (en) * 2007-10-30 2010-08-17 Eastman Kodak Company Device containing non-blinking quantum dots
US8153352B2 (en) 2007-11-20 2012-04-10 Eastman Kodak Company Multicolored mask process for making display circuitry
US20110031452A1 (en) * 2007-11-28 2011-02-10 Todd Krauss Nanoparticles Having Continuous Photoluminescence
KR101475520B1 (ko) * 2008-01-14 2014-12-23 삼성전자주식회사 잉크젯 프린트용 양자점 잉크 조성물 및 그를 이용한전자소자
US8029139B2 (en) * 2008-01-29 2011-10-04 Eastman Kodak Company 2D/3D switchable color display apparatus with narrow band emitters
WO2009103124A1 (en) * 2008-02-22 2009-08-27 The University Of Melbourne Semiconductor device including nanocrystals and methods of manufacturing the same
WO2009123763A2 (en) 2008-04-03 2009-10-08 Qd Vision, Inc. Light-emitting device including quantum dots
US9525148B2 (en) 2008-04-03 2016-12-20 Qd Vision, Inc. Device including quantum dots
US8390008B2 (en) * 2008-05-29 2013-03-05 Global Oled Technology Llc LED device structure to improve light output
CA2979353C (en) 2008-06-05 2020-06-30 Ventana Medical Systems, Inc. Compositions comprising nanomaterials and method for using such compositions for histochemical processes
US8237642B2 (en) * 2008-07-14 2012-08-07 Global Oled Technology Llc Method for improving display lifetime
KR100973172B1 (ko) 2008-08-05 2010-08-02 한국과학기술연구원 단일 활성층 구조를 가지는 교류 구동형 발광소자 및 그제조방법
US8115380B2 (en) * 2008-08-14 2012-02-14 Global Oled Technology Llc Display device with chiplets
US8184112B2 (en) * 2008-09-24 2012-05-22 Global Oled Technology Llc Increasing dynamic range of display output
US20100102706A1 (en) * 2008-10-28 2010-04-29 Miller Michael E Electroluminescent device with increased fill factor
US8022612B2 (en) * 2008-11-10 2011-09-20 Global Oled Technology, Llc. White-light LED having two or more commonly controlled portions with improved angular color performance
GB0821122D0 (en) * 2008-11-19 2008-12-24 Nanoco Technologies Ltd Semiconductor nanoparticle - based light emitting devices and associated materials and methods
US20100201275A1 (en) 2009-02-06 2010-08-12 Cok Ronald S Light sensing in display device
US7994714B2 (en) 2009-02-11 2011-08-09 Global Oled Technology Llc Display device with chiplets and light shields
US8497821B2 (en) * 2009-02-16 2013-07-30 Global Oled Technology Llc Chiplet display device with serial control
US9070323B2 (en) * 2009-02-17 2015-06-30 Global Oled Technology Llc Chiplet display with multiple passive-matrix controllers
US8279145B2 (en) * 2009-02-17 2012-10-02 Global Oled Technology Llc Chiplet driver pairs for two-dimensional display
US8456387B2 (en) * 2009-02-18 2013-06-04 Global Oled Technology Llc Display device with chiplet drivers
US7973472B2 (en) * 2009-04-15 2011-07-05 Global Oled Technology Llc Display device with polygonal chiplets
US8698391B2 (en) 2009-04-29 2014-04-15 Global Oled Technology Llc Chiplet display with oriented chiplets and busses
US8125472B2 (en) 2009-06-09 2012-02-28 Global Oled Technology Llc Display device with parallel data distribution
US8125418B2 (en) * 2009-06-26 2012-02-28 Global Oled Technology Llc Passive-matrix chiplet drivers for displays
TWI515917B (zh) * 2009-07-07 2016-01-01 佛羅里達大學研究基金公司 穩定且全溶液製程之量子點發光二極體
US8259095B2 (en) 2009-08-20 2012-09-04 Global Oled Technology Llc Optically testing chiplets in display device
US20110043541A1 (en) 2009-08-20 2011-02-24 Cok Ronald S Fault detection in electroluminescent displays
US8183765B2 (en) * 2009-08-24 2012-05-22 Global Oled Technology Llc Controlling an electronic device using chiplets
US8072437B2 (en) 2009-08-26 2011-12-06 Global Oled Technology Llc Flexible multitouch electroluminescent display
US8081177B2 (en) * 2009-08-28 2011-12-20 Global Oled Technology Llc Chiplet display with optical control
US8305294B2 (en) 2009-09-08 2012-11-06 Global Oled Technology Llc Tiled display with overlapping flexible substrates
US8115383B2 (en) 2009-10-29 2012-02-14 Global Oled Technology Llc Electroluminescent area illumination with integrated mechanical switch
US20110102413A1 (en) 2009-10-29 2011-05-05 Hamer John W Active matrix electroluminescent display with segmented electrode
WO2011060180A1 (en) * 2009-11-11 2011-05-19 Qd Vision, Inc. Device including quantum dots
WO2011074492A1 (ja) * 2009-12-18 2011-06-23 株式会社 村田製作所 薄膜形成方法、及び量子ドットデバイス
USPP22463P3 (en) * 2010-02-16 2012-01-17 Menachem Bornstein Gypsophila plant named ‘Pearl Blossom’
KR101097342B1 (ko) * 2010-03-09 2011-12-23 삼성모바일디스플레이주식회사 양자점 유기 전계 발광 소자 및 그 형성방법
US8530883B2 (en) * 2010-03-11 2013-09-10 Light-Based Technologies Incorporated Manufacture of quantum dot-enabled solid-state light emitters
KR101641367B1 (ko) * 2010-05-20 2016-07-21 엘지디스플레이 주식회사 양자점 발광 소자 및 이의 제조 방법
JP5446056B2 (ja) 2010-05-24 2014-03-19 株式会社村田製作所 発光素子、及び発光素子の製造方法、並びに表示装置
WO2012050621A1 (en) * 2010-10-15 2012-04-19 Los Alamos National Security, Llc Quantum dot sensitized solar cell
JP5763774B2 (ja) 2010-10-15 2015-08-12 グローバル オーエルイーディー テクノロジー リミティド ライアビリティ カンパニー マルチ・パッシブマトリクス・コントローラを有するチップレット表示装置
WO2012071107A1 (en) * 2010-11-23 2012-05-31 Qd Vision, Inc. Device including semiconductor nanocrystals & method
US9577037B2 (en) * 2010-12-28 2017-02-21 Life Technologies Corporation Nanocrystals with high extinction coefficients and methods of making and using such nanocrystals
US8619103B2 (en) 2011-01-31 2013-12-31 Global Oled Technology Llc Electroluminescent device multilevel-drive chromaticity-shift compensation
US9177500B2 (en) 2011-01-31 2015-11-03 Global Oled Technology Llc Display with secure decryption of image signals
US20120194564A1 (en) 2011-01-31 2012-08-02 White Christopher J Display with secure decompression of image signals
US8456390B2 (en) 2011-01-31 2013-06-04 Global Oled Technology Llc Electroluminescent device aging compensation with multilevel drive
US8803857B2 (en) 2011-02-10 2014-08-12 Ronald S. Cok Chiplet display device with serial control
US8624882B2 (en) 2011-02-10 2014-01-07 Global Oled Technology Llc Digital display with integrated computing circuit
US8599118B2 (en) 2011-02-16 2013-12-03 Global Oled Technology Llc Chiplet display with electrode connectors
US8587501B2 (en) 2011-02-17 2013-11-19 Global Oled Technology Llc Electroluminescent display device with optically communicating chiplets
WO2013019299A2 (en) * 2011-05-11 2013-02-07 Qd Vision, Inc. Method for processing devices including quantum dots and devices
US9520573B2 (en) 2011-05-16 2016-12-13 Qd Vision, Inc. Device including quantum dots and method for making same
US8520114B2 (en) 2011-06-01 2013-08-27 Global Oled Technology Llc Apparatus for displaying and sensing images
CN102916097B (zh) * 2011-08-01 2017-08-18 潘才法 一种电致发光器件
GB201116517D0 (en) 2011-09-23 2011-11-09 Nanoco Technologies Ltd Semiconductor nanoparticle based light emitting materials
KR101886262B1 (ko) * 2011-10-28 2018-08-08 엘지이노텍 주식회사 발광 복합체 및 이를 포함하는 발광 장치
KR102156760B1 (ko) * 2011-11-01 2020-09-17 엘지디스플레이 주식회사 양자 발광 표시 장치 및 이의 제조 방법
WO2013162646A1 (en) * 2012-04-22 2013-10-31 Qd Vision, Inc. Coated semiconductor nanocrystals and products including same
WO2013078242A1 (en) 2011-11-22 2013-05-30 Qd Vision, Inc. Methods for coating semiconductor nanocrystals
WO2013078247A1 (en) 2011-11-22 2013-05-30 Qd Vision, Inc. Methods of coating semiconductor nanocrystals, semiconductor nanocrystals, and products including same
US10008631B2 (en) 2011-11-22 2018-06-26 Samsung Electronics Co., Ltd. Coated semiconductor nanocrystals and products including same
KR20130067137A (ko) * 2011-12-13 2013-06-21 삼성전자주식회사 양자점-매트릭스 박막 및 그의 제조방법
WO2013103440A1 (en) 2012-01-06 2013-07-11 Qd Vision, Inc. Light emitting device including blue emitting quantum dots and method
KR101960469B1 (ko) 2012-02-05 2019-03-20 삼성전자주식회사 반도체 나노결정, 그의 제조 방법, 조성물 및 제품
KR101890751B1 (ko) * 2012-09-05 2018-08-22 삼성전자주식회사 질화물 반도체 디바이스 및 그 제조 방법
US9653691B2 (en) * 2012-12-12 2017-05-16 Universal Display Corporation Phosphorescence-sensitizing fluorescence material system
US9617472B2 (en) 2013-03-15 2017-04-11 Samsung Electronics Co., Ltd. Semiconductor nanocrystals, a method for coating semiconductor nanocrystals, and products including same
DE102013206077A1 (de) 2013-04-05 2014-10-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Blau-emittierende Leuchtdioden auf Basis von Zinkselenid-Quantenpunkten
CN103226259B (zh) * 2013-04-09 2015-07-01 北京京东方光电科技有限公司 液晶显示面板、显示装置及液晶显示面板的制造方法
US20140339437A1 (en) * 2013-05-17 2014-11-20 Hany Maher AZIZ Method and apparatus for sensing device including quantum dot light emitting devices
CN103345884B (zh) * 2013-06-26 2016-03-09 京东方科技集团股份有限公司 双面显示装置及其制备方法
US10062738B2 (en) 2013-11-27 2018-08-28 The Regents Of The University Of Michigan Devices combining thin film inorganic LEDs with organic LEDs and fabrication thereof
CN103887391B (zh) * 2014-04-17 2016-08-31 东南大学 一种内含掺杂量子点的硫化锌薄膜交流电致发光器件及其制备方法
JP6513193B2 (ja) * 2015-05-15 2019-05-15 富士フイルム株式会社 マルチコアシェル粒子、ナノ粒子分散液およびフィルム
CN105153811B (zh) * 2015-08-14 2019-12-10 广州华睿光电材料有限公司 一种用于印刷电子的油墨
KR102519945B1 (ko) * 2015-08-31 2023-04-10 엘지디스플레이 주식회사 양자점, 양자점 필름, 양자점을 포함하는 엘이디 패키지 및 표시장치
CN105206757B (zh) * 2015-11-05 2016-09-07 京东方科技集团股份有限公司 有机发光二极管及其制作方法、显示基板和显示装置
WO2017096229A1 (en) 2015-12-02 2017-06-08 Nanosys, Inc. Quantum dot encapsulation techniques
WO2017096227A1 (en) 2015-12-02 2017-06-08 Nanosys, Inc. Quantum dot based color conversion layer in display devices
KR102415248B1 (ko) 2015-12-29 2022-06-30 삼성디스플레이 주식회사 양자점 및 이를 이용한 발광 소자
US10700236B2 (en) * 2016-03-17 2020-06-30 Apple Inc. Quantum dot spacing for high efficiency quantum dot LED displays
EP3475388A1 (en) * 2016-06-27 2019-05-01 Nanosys, Inc. Methods for buffered coating of nanostructures
CN106206827B (zh) * 2016-09-07 2017-06-27 景德镇陶瓷大学 一种量子点基异质结太阳能电池有源层的制备方法
US10790411B2 (en) * 2016-12-01 2020-09-29 Nanosys, Inc. Quantum dot LED with spacer particles
WO2018106784A2 (en) 2016-12-07 2018-06-14 Djg Holdings, Llc Preparation of large area signage stack
CN108155296A (zh) * 2016-12-29 2018-06-12 苏州星烁纳米科技有限公司 量子点发光器件及显示装置
KR20200065007A (ko) * 2017-10-04 2020-06-08 디아이씨 가부시끼가이샤 입자, 잉크 및 발광 소자
KR102172248B1 (ko) * 2018-01-10 2020-10-30 세종대학교산학협력단 무기 하이브리드 광결정 필름 및 이의 제조 방법
US10741782B2 (en) 2018-03-22 2020-08-11 Sharp Kabushiki Kaisha Light-emitting device with mixed nanoparticle charge transport layer
CN110416421B (zh) * 2018-04-28 2021-03-23 Tcl科技集团股份有限公司 一种量子点薄膜及量子点发光二极管
CN110635055B (zh) * 2018-06-22 2021-07-16 Tcl科技集团股份有限公司 一种量子点薄膜及量子点发光二极管
WO2020170371A1 (ja) * 2019-02-20 2020-08-27 シャープ株式会社 発光デバイスの製造方法
CN112018270B (zh) * 2019-05-31 2021-09-10 Tcl科技集团股份有限公司 量子点薄膜的制备方法和量子点发光二极管的制备方法
KR20200140438A (ko) 2019-06-05 2020-12-16 삼성디스플레이 주식회사 디스플레이 장치
KR20210051998A (ko) 2019-10-31 2021-05-10 삼성전자주식회사 발광 소자, 그 제조방법 및 이를 포함한 표시 장치
CN111129333B (zh) * 2019-12-30 2022-08-19 广东聚华印刷显示技术有限公司 Qled器件、显示装置及qled器件的制备方法
US11884858B2 (en) 2020-06-18 2024-01-30 Samsung Electronics Co., Ltd. Semiconductor nanocrystal, light-emitting film, production method of the light-emitting film, light emitting device, and display device
CN114106623B (zh) * 2020-12-15 2023-04-07 广东聚华印刷显示技术有限公司 量子点墨水、量子点薄膜、电致发光二极管及显示器件
WO2024075248A1 (ja) * 2022-10-06 2024-04-11 シャープディスプレイテクノロジー株式会社 発光素子、表示装置及び発光層の形成方法
WO2024079906A1 (ja) * 2022-10-14 2024-04-18 シャープディスプレイテクノロジー株式会社 表示装置の製造方法および表示装置
WO2024079907A1 (ja) * 2022-10-14 2024-04-18 シャープディスプレイテクノロジー株式会社 量子ドット層、発光素子、表示装置、および発光素子の製造方法
WO2024084570A1 (ja) * 2022-10-18 2024-04-25 シャープディスプレイテクノロジー株式会社 発光素子および表示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6753108B1 (en) * 1998-02-24 2004-06-22 Superior Micropowders, Llc Energy devices and methods for the fabrication of energy devices
EP1231250A1 (en) 2001-02-07 2002-08-14 Agfa-Gevaert Manufacturing of a thin film inorganic light emitting diode
US7150910B2 (en) * 2001-11-16 2006-12-19 Massachusetts Institute Of Technology Nanocrystal structures
AU2003279708A1 (en) * 2002-09-05 2004-03-29 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
EP1704596A2 (en) 2003-09-05 2006-09-27 Dot Metrics Technology, Inc. Quantum dot optoelectronic devices with nanoscale epitaxial lateral overgrowth and methods of manufacture
US7880377B2 (en) * 2004-01-23 2011-02-01 Hoya Corporation Quantum dot-dispersed light emitting device, and manufacturing method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Alexander H.Mueller et al.Multicolor Light-Emitting DiodesonSemiconductorNanocrystals Encapsulated in GaNChargeInjection Layers.NANOLETTERS5 6.2005,5(6),1040-1042.
Alexander H.Mueller et al.Multicolor Light-Emitting DiodesonSemiconductorNanocrystals Encapsulated in GaNChargeInjection Layers.NANOLETTERS5 6.2005,5(6),1040-1042. *
JP特开2004-207610A 2004.07.22

Also Published As

Publication number Publication date
KR20080043829A (ko) 2008-05-19
US20070057263A1 (en) 2007-03-15
TWI375339B (en) 2012-10-21
EP1932185A1 (en) 2008-06-18
WO2007037882A1 (en) 2007-04-05
US7615800B2 (en) 2009-11-10
JP2009508356A (ja) 2009-02-26
CN101263613A (zh) 2008-09-10
TW200717873A (en) 2007-05-01
JP5043848B2 (ja) 2012-10-10

Similar Documents

Publication Publication Date Title
CN101263613B (zh) 无机发光层、其制备方法和含有其的无机发光器件
CN101690401B (zh) 发光纳米复合颗粒
CN101681956B (zh) 量子点发光装置
US7919342B2 (en) Patterned inorganic LED device
CN102916097B (zh) 一种电致发光器件
CN102473800B (zh) 稳定的且所有溶液可加工的量子点发光二极管
CN101611480B (zh) 制造用于电子设备中的现场外掺杂半导体传输层的方法
Li et al. High luminance of CuInS 2-based yellow quantum dot light emitting diodes fabricated by all-solution processing
US20080164466A1 (en) Light emitting devices with a zinc oxide thin film structure
CN111218284B (zh) 一种核壳量子点及其制备方法、电子器件
KR20090059279A (ko) 금속 산화물 나노 입자의 형성 방법 및 금속 산화물 나노입자가 분포된 발광층을 포함하는 발광 소자 및 그 발광소자 제작 방법
CN100390940C (zh) 电极材料和半导体元件
CN112397655B (zh) 复合材料及其制备方法和量子点发光二极管
CN113130784B (zh) 复合材料及其制备方法和应用、量子点发光二极管
CN113044882B (zh) 纳米材料及其制备方法、量子点发光二极管
CN112397670B (zh) 复合材料及其制备方法和量子点发光二极管
WO2023056829A1 (zh) 量子点发光层、量子点发光层的制备方法和量子点发光二极管器件
CN118064128A (zh) 量子点组合物的制备方法、发光材料及发光器件
CN113054144A (zh) 纳米材料及其制备方法、量子点发光二极管及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101006

Termination date: 20130830