CN106206827B - 一种量子点基异质结太阳能电池有源层的制备方法 - Google Patents

一种量子点基异质结太阳能电池有源层的制备方法 Download PDF

Info

Publication number
CN106206827B
CN106206827B CN201610804891.5A CN201610804891A CN106206827B CN 106206827 B CN106206827 B CN 106206827B CN 201610804891 A CN201610804891 A CN 201610804891A CN 106206827 B CN106206827 B CN 106206827B
Authority
CN
China
Prior art keywords
cqds
preparation
quantum dot
organic solvent
conductive substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610804891.5A
Other languages
English (en)
Other versions
CN106206827A (zh
Inventor
曾涛
陈云霞
冯诗乐
苏小丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jingdezhen Ceramic Institute
Original Assignee
Jingdezhen Ceramic Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jingdezhen Ceramic Institute filed Critical Jingdezhen Ceramic Institute
Priority to CN201610804891.5A priority Critical patent/CN106206827B/zh
Publication of CN106206827A publication Critical patent/CN106206827A/zh
Application granted granted Critical
Publication of CN106206827B publication Critical patent/CN106206827B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种量子点基异质结太阳能电池有源层的制备方法,将经典热注射法制备油溶性单分散量子点通过旋转喷涂方式沉积于指定的导电基底形成对应的量子点薄膜。基底经真空干燥后接直流电源正极,并以惰性电极为负极,相对一定距离置于含有碘源的有机溶剂电解槽中。处理过程中调控施加电压、改变电解槽内温度及超声源功率来调控量子点基薄膜的中配体交换及其熔接程度。处理所得的量子点薄膜(太阳能电池中的有源层)平整无裂缝且具有较高的载流子扩散长度。此外,该制备工艺合理简单且可重复性较好,因此具有广阔的应用前景。

Description

一种量子点基异质结太阳能电池有源层的制备方法
技术领域
本发明属于光电材料领域,具体涉及一种量子点基异质结太阳能电池有源层的制备方法。
背景技术
随着“清洁、绿色”等可持续发展理念在能源行业的提出,越来越多社会资源投入到如何制造高效、低成本光伏器件研究中。传统硅基太阳能电池的成本回收周期过长,因此开发新型薄膜太阳能电池材料对光伏领域的发展具有重要的指导意义。胶体量子点(Colloidal quantum dots,简称CQDs)优良的理化性质及其溶液可加工性有望在提高以其为有源层(active layer)材料构筑的固态结型太阳能电池光电转换效率的同时大大降低制器件造成本,成为第三代太阳能电池材料研究的热点之一。目前,此类型太阳能电池的光电转换效率已超过10%(Nano Lett., 2016, 16, 4630-4634; Nano Lett., 2015, 15(11): 7691-7696)。
该类型高效率电池的标准结构为:导电基底/电子传输层/CQDs有源层/空穴传输层/金属电极。其中CQDs构筑的薄膜有源层在电池器件中扮演着重要角色,不仅因其作为吸收层产生光生电子-空穴对,还与电子或空穴传输层相互接触形成内建电场促使电子与空穴的分离。因此,有源层的电学性能、光学性能与微结构之间的关系直接影响整个电池器件的输出性能。如何将溶液中的CQDs最终形成均匀、微结构“紧凑”的薄膜是实现高效率异质结太阳能电池的关键步骤之一。目前制备该类型高性能电池中的有源层标准工艺过程可分为2步骤:(1)旋转涂覆包覆绝缘有机配体的CQDs有机溶液形成薄膜;(2)原位配体交换(Adv. Mater., 2016, 28 (2): 299-304)。在操作过程中,值得注意的是为了保证原子级别配体(一般为卤族原子,如I-)能最大程度交换原有绝缘配体以钝化量子表面缺陷及增强CQD之间电子跃迁输运性能,在每次旋涂过程中均要进行配体交换工艺。然而每次旋涂CQDs所形成薄膜的厚度有限,这意味着旋转涂覆和配体交换工艺必须进行多次,而且该工艺并不能保证配体交换反应的彻底性。此外,CQDs构筑薄膜的中存在大量的晶界不利于光生载流子在有源层中的传输。
因此,如何在保证配体交换反应完全的同时实现CQDs之间彼此的适度熔接,进而制备出具有高载流子扩散长度的量子点基有源层成为此类太阳能电池获得优良光电转换的关键。
发明内容
本发明要解决的技术问题是提供一种工艺简单、可重复性好且具有较高载流子扩散长度的量子点基异质结太阳能电池有源层的制备方法。
为解决以上技术问题,本发明的技术方案是:一种量子点基异质结太阳能电池有源层的制备方法,其特征在于包括如下步骤:
第一步:利用经典热注射法制备高度分散的CQDs,并将其分散在非极性溶剂中制备出一定浓度稳定的CQDs溶液;
第二步:利用喷笔附载CQDs溶液向旋转的导电基底上进行喷涂,形成对应的CQDs薄膜,并随后置于真空烘箱内干燥;
第三步:将涂附有CQDs薄膜的导电基底接直流电源正极,惰性电极接负极,相对而放并同时置于含有碘源的有机溶剂中处理一定时间,处理过程中通过改变有机溶剂的温度并辅以超声振动以获得微结构紧凑的薄膜;
第四步:将薄膜用甲醇清洗干燥即可完成有源层的制备。
所述第一步中高度分散的CQDs表面包覆烷基长碳链分子。
所述烷基长碳链分子为油酸或油胺。
所述第一步中CQDs为无机半导体量子点。
所述无机半导体量子点为CdS、CdSe、CdTe、PbS、PbSe、CuInS2、CuInSe2、AgInS2、AgBiS2中的一种。
所述第一步中非极性溶剂为甲苯、氯仿或正己烷,所述CQDs溶液的浓度为10~100mg/ml。
所述第二步中喷涂的步骤为:将导电基底置于匀胶机上以1500~3000 rpm转速进行旋转,同时利用压缩空气驱动0.3~0.5 mm孔径喷笔在40~60 psi压强条件下进行CQDs溶液的喷涂,喷涂总时间控制在3~10 min;所述第二步中真空烘箱的真空度为6×10-2 Pa,干燥温度为50~60℃,干燥时间为6~12 h;所述导电基底为镀有ZnO薄膜的FTO导电基底或镀有Mo薄膜的导电基底或镀有ZnO薄膜的ITO导电基底。
所述第三步中惰性电极为金、铂电极或石墨电极;碘源为四丁基碘化铵或甲基碘化铵,碘源浓度为 1×10-3~10×10-3 M。
所述第三步中的有机溶剂为极性有机溶剂和非极性有机溶剂按体积比1:1~5混合组成,所述极性有机溶剂为甲醇、乙醇、二甲基甲酰胺中的一种,所述非极性有机溶剂为甲苯。
所述第三步中处理时间为5~30 min,电源电压为30~100 V,温度为27~90℃,超声功率为35~100 W,两电极距离为0.5~4 cm。
本发明的有益效果为:
A、可选CQDs材料中除去含Pb等重金属元素量子点以外,还有如CuInS2及AgBiS2等含有环境友好型元素,因此符合绿色化学标准;
B、喷涂过程中导电基底的高速旋转可保证薄膜的均匀性及其有机溶剂的快速挥发;
C、可以保证CQDs表面配体交换反应的彻底性,并方便CQDs之间熔接程度的调控。此外,还可保证CQDs基有源层薄膜具有较高的载流子扩散长度;
D、对于各种材质的半导体量子点薄膜后期处理均具有较好的适用,适谱性强;
E、促使配体交换反应及CQDs熔接过程一步进行,免去后期CQDs薄膜需要惰性气氛或真空环境热处理等工序,整个制备工序简单,从而大大降低生产成本,且工艺可重复性较好,可为规模化生产奠定良好的基础。
附图说明
附图1为量子点基异质结太阳能电池有源层的制备方法工艺过程示意图。
具体实施方式
实施例1:PbS CQDs基有源层的制备
步骤1:利用经典热注射法制备表面包覆有油酸的PbS CQDs,具体工艺如下:0.45g PbO加入到1.26 ml油酸与12 ml十八碳烯混合溶剂中于95℃搅拌条件下真空脱氧脱水12h,并形成透明无色溶液,再将体系温度升至100℃,并通入N2气作为保护气体。随后将加热套移开,利用注射器向溶液快速注入1.5 mmol 六甲基二硅硫烷与10 ml的十八碳烯均匀混合溶液,过程中维持搅拌直至反应体系温度降至室温,通过体系中加入甲醇及丙酮进行离心清洗,最后将所得PbS CQDs分散在甲苯中,制备出浓度为20 mg/ml的PbS CQDs溶液;
步骤2:将镀有ZnO薄膜的FTO导电基底置于匀胶机上以2600 rpm转速进行旋转,同时利用压缩空气驱动0.35 mm孔径喷笔在42 psi压强条件下进行PbS CQDs溶液的喷涂,喷涂总时间控制在4 min,形成PbS CQDs薄膜,并随后置于真空度为6×10-2 Pa,温度为52℃的真空烘箱内干燥7 h;
步骤3:将涂附有PbS CQDs薄膜的导电基底接直流电源正极,金薄片连接电源负极,相对而放,同时置于含有浓度为5×10-3 M的甲基碘化铵的有机溶剂中(VDMF:V甲苯=1:2),两电极相距离1.5 cm,电压为60 V,处理时间为15 min,处理过程中有机溶剂的温度为50℃并辅以功率为35 W的超声振动以获得微结构紧凑的薄膜;
步骤4:取出薄膜利用甲醇清洗干燥即可完成整个制备工艺。
实施例子2:CuInS2 CQDs基有源层的制备
步骤1:利用经典热注射法制备表面包覆有油胺的CuInS2 CQDs,具体工艺如下:0.1 mmol CuCl及0.1 mmol InCl3·4H2O加入到6 ml油胺中于95℃搅拌条件下真空脱氧脱水6 h,并形成深蓝色溶液,再将体系温度升至130℃,并通入N2气作为保护气体,形成透明浅黄色溶液。随后将体系温度降至80℃,利用注射器向溶液快速注入0.3 mmol 高纯S粉与5ml的油胺的均匀混合溶液,过程中维持搅拌5 min保证CuInS2 CQDs成核稳定,再将体系温度升至150℃维持15 min促使其尺寸生长。待反应结束后,移开加热套,通过向体系中加入甲醇及丙酮进行离心清洗,最后将所得CuInS2 CQDs分散在正己烷中,制备出浓度为65 mg/ml的CuInS2 CQDs溶液;
步骤2:将镀有Mo薄膜的导电基底置于匀胶机上以2000 rpm转速进行旋转,同时利用压缩空气驱动0.4 mm孔径喷笔在50 psi压强条件下进行CuInS2 CQDs溶液的喷涂,喷涂总时间控制在6 min,形成CuInS2 CQDs薄膜,并随后置于真空度为6×10-2 Pa,温度为55℃的真空烘箱内干燥10 h;
步骤3:将涂附有CuInS2 CQDs薄膜的导电基底接直流电源正极,金薄片连接电源负极,相对而放,同时置于含有浓度为2×10-3 M的四丁基碘化铵的有机溶剂中(V甲醇:V甲苯=1:4),两电极相距离2 cm,电压为40 V,处理时间为10 min,处理过程中有机溶剂的温度为80℃并辅以功率为60 W的超声振动以获得微结构紧凑的薄膜;
步骤4:取出薄膜利用甲醇清洗干燥即可完成整个制备工艺。
实施例子3:AgBiS2 CQDs基有源层的制备
步骤1:利用经典热注射法制备表面包覆有油酸的AgBiS2 CQDs,具体工艺如下:0.5 mmol Bi(OAc)3及0.5 mmol Ag(OAc)加入到20 mmol油酸中于100℃搅拌条件下真空脱氧脱水24 h,并形成透明溶液。随后通入N2气作为保护气体,利用注射器向溶液快速注入1.0 mmol六甲基二硅硫烷与5 ml的十八碳烯均匀混合溶液,注入后移开加热套,待体系温度降至室温,通过向体系中加入甲醇及丙酮进行离心清洗,最后将所得AgBiS2 CQDs分散在氯仿中,制备出浓度为90 mg/ml的AgBiS2 CQDs溶液;
步骤2:将镀有ZnO薄膜的ITO导电基底置于匀胶机上以1500 rpm转速进行旋转,同时利用压缩空气驱动0.45 mm孔径喷笔在60 psi压强条件下进行AgBiS2 CQDs溶液的喷涂,喷涂总时间控制在8 min,形成AgBiS2 CQDs薄膜,并随后置于真空度为6×10-2 Pa,温度为60℃的真空烘箱内干燥11 h;
步骤3:将涂附有AgBiS2 CQDs薄膜的导电基底接直流电源正极,石墨片连接电源负极,相对而放,同时置于含有浓度为8×10-3 M的甲基碘化铵的有机溶剂中(V甲醇:V甲苯=1:3),两电极相距离3 cm,电压为90 V,处理时间为25 min,处理过程中有机溶剂的温度为60℃并辅以功率为90 W的超声振动以获得微结构紧凑的薄膜;
步骤4:取出薄膜利用甲醇清洗干燥即可完成整个制备工艺。
本发明不局限于上述实施例所记载的3种量子点基太阳能电池的有源层制备方法,相关领域的技术人员应当理解:只要涉及到本专利中提及的多场条件下处理任何材质量子点基薄膜,使其对应的器件性能提升(不仅仅局限于太阳能电池,还可涉及的其它器件诸如量子点基的LED等),都应在该专利的保护范围内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (8)

1.一种量子点基异质结太阳能电池有源层的制备方法,其特征在于,包括如下步骤:
第一步:利用经典热注射法制备高度分散的CQDs,并将其分散在非极性溶剂中制备出一定浓度稳定的CQDs溶液;
第二步:利用喷笔附载CQDs溶液向旋转的导电基底上进行喷涂,形成对应的CQDs薄膜,并随后置于真空烘箱内干燥;
第三步:将涂附有CQDs薄膜的导电基底接直流电源正极,惰性电极接负极,相对而放并同时置于含有碘源的有机溶剂中处理一定时间,处理过程中通过改变有机溶剂的温度并辅以超声振动以获得微结构紧凑的薄膜;
第四步:将薄膜用甲醇清洗干燥即可完成有源层的制备;
所述第一步中非极性溶剂为甲苯、氯仿或正己烷,所述CQDs溶液的浓度为10~100 mg/ml;
所述第三步中处理时间为5~30 min,电源电压为30~100 V,温度为27~90℃,超声功率为35~100 W,两电极距离为0.5~4 cm。
2.根据权利要求1所述的制备方法,其特征在于:所述第一步中高度分散的CQDs表面包覆烷基长碳链分子。
3.根据权利要求2所述的制备方法,其特征在于:所述烷基长碳链分子为油酸或油胺。
4.根据权利要求1所述的制备方法,其特征在于:所述第一步中CQDs为无机半导体量子点。
5.根据权利要求4所述的制备方法,其特征在于:所述无机半导体量子点为CdS、CdSe、CdTe、PbS、PbSe、CuInS2、CuInSe2、AgInS2、AgBiS2中的一种。
6.根据权利要求1所述的制备方法,其特征在于:所述第二步中喷涂的步骤为:将导电基底置于匀胶机上以1500~3000 rpm转速进行旋转,同时利用压缩空气驱动0.3~0.5 mm孔径喷笔在40~60 psi压强条件下进行CQDs溶液的喷涂,喷涂总时间控制在3~10 min;所述第二步中真空烘箱的真空度为6×10-2 Pa,干燥温度为50~60℃,干燥时间为6~12 h;所述导电基底为镀有ZnO薄膜的FTO导电基底或镀有Mo薄膜的导电基底或镀有ZnO薄膜的ITO导电基底。
7.根据权利要求1所述的制备方法,其特征在于:所述第三步中惰性电极为金、铂电极或石墨电极;碘源为四丁基碘化铵或甲基碘化铵,碘源浓度为 1×10-3~10×10-3 M。
8.根据权利要求1所述的制备方法,其特征在于:所述第三步中的有机溶剂为极性有机溶剂和非极性有机溶剂按体积比1:1~5混合组成,所述极性有机溶剂为甲醇、乙醇、二甲基甲酰胺中的一种,所述非极性有机溶剂为甲苯。
CN201610804891.5A 2016-09-07 2016-09-07 一种量子点基异质结太阳能电池有源层的制备方法 Active CN106206827B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610804891.5A CN106206827B (zh) 2016-09-07 2016-09-07 一种量子点基异质结太阳能电池有源层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610804891.5A CN106206827B (zh) 2016-09-07 2016-09-07 一种量子点基异质结太阳能电池有源层的制备方法

Publications (2)

Publication Number Publication Date
CN106206827A CN106206827A (zh) 2016-12-07
CN106206827B true CN106206827B (zh) 2017-06-27

Family

ID=58066574

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610804891.5A Active CN106206827B (zh) 2016-09-07 2016-09-07 一种量子点基异质结太阳能电池有源层的制备方法

Country Status (1)

Country Link
CN (1) CN106206827B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107059131A (zh) * 2017-04-21 2017-08-18 南京信息工程大学 一种半导体纳米晶及其制备方法与应用
CN109052369B (zh) * 2018-08-15 2020-08-21 深圳大学 一种纳米材料的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7615800B2 (en) * 2005-09-14 2009-11-10 Eastman Kodak Company Quantum dot light emitting layer
US7682789B2 (en) * 2007-05-04 2010-03-23 Ventana Medical Systems, Inc. Method for quantifying biomolecules conjugated to a nanoparticle
CN101974776A (zh) * 2010-11-12 2011-02-16 华东师范大学 一种在水相中电泳沉积制备量子点薄膜的方法
CN103055954B (zh) * 2013-01-16 2015-03-04 中国科学院理化技术研究所 对量子点/棒进行表面修饰改性的方法、光合成催化剂的制备及体系与方法
CN103675034B (zh) * 2013-11-29 2016-05-25 华中科技大学 一种半导体电阻式气体传感器及其制备方法

Also Published As

Publication number Publication date
CN106206827A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
CN106025085B (zh) 基于Spiro‑OMeTAD/CuXS复合空穴传输层的钙钛矿太阳能电池及其制备方法
CN105244441B (zh) 基于四苯乙烯聚合物空穴传输层的钙钛矿太阳能电池
CN109461821A (zh) 一种有机-无机杂化钙钛矿薄膜的制备方法
CN106384785B (zh) 一种锡掺杂甲基铵基碘化铅钙钛矿太阳能电池
CN106784329A (zh) 一种SnO2量子点电子传输层钙钛矿太阳能电池及其制备方法
CN108878661B (zh) 一种碳量子点修饰的钙钛矿太阳能电池的制备方法
CN109904318A (zh) 一种基于反溶液浴的钙钛矿薄膜制备方法及太阳能电池
CN106887520A (zh) 一种添加剂辅助的钙钛矿太阳能电池及其制备方法
CN104022185A (zh) 一种钙钛矿膜及其制备与应用方法
CN107240643A (zh) 溴元素掺杂甲胺铅碘钙钛矿太阳能电池及其制作方法
CN108470852A (zh) 一种界面修饰钙钛矿太阳能电池的制备方法
Li et al. Synthesis of TiO2 submicro-rings and their application in dye-sensitized solar cell
CN110010769B (zh) 一种取向生长有机无机杂化钙钛矿薄膜的制备方法
CN109659394A (zh) 一种高质量全无机钙钛矿薄膜材料的制备方法及应用
CN102544373B (zh) 一种量子点敏化有序体异质结太阳电池及其制备方法
CN107195784A (zh) 一种快速氧化处理钙钛矿太阳电池空穴传输层的方法
CN110844936A (zh) 一种三硫化二锑纳米棒阵列的制备方法及基于其的太阳电池
CN106206827B (zh) 一种量子点基异质结太阳能电池有源层的制备方法
CN107833969B (zh) 一种高效率平面异质结钙钛矿薄膜太阳能电池及制备方法
CN107369768A (zh) 一种基于新有机铅源的钙钛矿太阳能电池的制备方法
Wang et al. Transfer of asymmetric free-standing TiO 2 nanowire films for high efficiency flexible dye-sensitized solar cells
CN105576128A (zh) 一种控制钙钛矿太阳能电池吸光层形貌的方法
CN105789450B (zh) 一种大面积均质有机‑无机钙钛矿薄膜的制备方法及其制品和应用
CN102222575B (zh) 染料敏化太阳能电池光阳极的制备方法
CN105655489A (zh) 一种基于喷涂工艺制备大面积钙钛矿太阳能电池的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant