CN101231951B - 利用nh3-nf3化学物质的氧化蚀刻 - Google Patents

利用nh3-nf3化学物质的氧化蚀刻 Download PDF

Info

Publication number
CN101231951B
CN101231951B CN2008100007537A CN200810000753A CN101231951B CN 101231951 B CN101231951 B CN 101231951B CN 2008100007537 A CN2008100007537 A CN 2008100007537A CN 200810000753 A CN200810000753 A CN 200810000753A CN 101231951 B CN101231951 B CN 101231951B
Authority
CN
China
Prior art keywords
oxide
substrate
gas mixture
ammonia
etchant gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008100007537A
Other languages
English (en)
Other versions
CN101231951A (zh
Inventor
里泽·阿格瓦尼
高建德
吕新亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN101231951A publication Critical patent/CN101231951A/zh
Application granted granted Critical
Publication of CN101231951B publication Critical patent/CN101231951B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • H01L21/31055Planarisation of the insulating layers involving a dielectric removal step the removal being a chemical etching step, e.g. dry etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明一般提供用于选择性去除半导体基片上的多种氧化物的装置和方法。本发明的一个实施例提供一种用于使用蚀刻气体混合物以预期去除速率选择性去除基片上氧化物的方法。蚀刻气体混合物包括第一气体和第二气体,并且第一气体和第二气体的比值由预期去除速率确定。

Description

利用NH3-NF3化学物质的氧化蚀刻
技术领域
本发明实施例一般涉及用于加工半导体基片的方法和装置。更加明确地,本发明实施例涉及用于在半导体制备中选择性氧化蚀刻的方法和装置。
背景技术
在半导体制备中,氧化物制备是决定性的,特别是对于作为MOS(金属氧化物半导体)技术栅极结构的基本部分的薄氧化物。通过适当制备控制,氧化物层具有高的质量、稳定性和优良的介电性能。为了获得用于不同功能的不同性能氧化物,在整合组件制造(IDM)中使用多种氧化物制备工艺。热氧化物和沉积氧化物主要用于半导体器件中。另外,在加工期间可能产生本征氧化物。不同氧化物还可能区别地响应后续加工并且可能需要用于相同目的的不同处理。
在氧气氛中通过高温退火热生长热氧化物。热氧化物可能用于多硅表面的介电材料、器件隔离、注入屏蔽、应力消除(衬垫氧化物)、再氧化氮化物、以及光致抗蚀剂粘附和应力降低。
通过在加工室中使硅源与氧反应制备沉积氧化硅。还可以通过诸如臭氧/硅酸乙酯(TEOS)化学或碳基化学的组合沉积氧化物。沉积氧化物的示例可能是通过单一工艺产生的HARP(高纵深比工艺)氧化物。HARP,也称为亚常压化学气相沉积(SACVD),是用于在诸如浅槽隔离(STI)和前金属介电质(PMD)的高纵深比间隙中沉积氧化物的使用臭氧/TEOS化学的非等离子体基化学气相沉积(CVD)方法。
当将基片表面暴露于氧时通常形成本征氧化物。当在常压条件的加工室之间移动基片时,或当少量的氧残余在真空室中时,发生氧暴露。还可能由蚀刻期间的污染导致本征氧化物。本征氧化物通常是不需要的,在后续工艺之前需要去除。
在半导体制备期间,可能以过量材料形成结构,并且随后将其蚀刻和/或抛光到预期尺寸。对于氧化物特征,为了达到预期尺寸,一般在其形成之后使用抛光和蚀刻。某些氧化物特征可能具有区别响应相同工艺的两种或多种氧化物,因此在加工中引起困难,特别是当特征尺寸较小时。
STI(浅槽隔离)是具有几种形式氧化物的氧化物结构中的一种。STI是用于亚0.25微米制备的器件隔离技术的初始形式。氧化物填充沟槽用于隔离在半导体基片上形成的器件。首先在半导体基片上蚀刻沟槽,随后热生长氧化物层。该高温氧化物层的目的是将适当转角变圆,以便初期避免栅极介电质断裂并且在CVD氧化物沉积之后消除应力。热氧化物层还钝化硅表面,并且作为硅和沉积氧化物层之间的阻挡层。随后以高密度等离子体(HDP)或HARP氧化物填充沟槽,抛光并逆蚀刻。为了将基片上的沟槽和其它结构准备用于诸如多种阱注入、栅极氧化以及最终的多硅沉积和定形的后续工艺,在沉积之后可能对氧化物填充沟槽执行化学机械抛光(CMP)工艺,以及随后的蚀刻工艺。
溅射蚀刻工艺和湿法蚀刻工艺是用于STI蚀刻的常规氧化物蚀刻工艺。然而,溅射蚀刻工艺一般不能完全去除氧化物,并且可能通过物理轰击损伤精密硅层。湿法蚀刻使用用于去除氧化物的化学溶液,例如氢氟酸(HF)和去离子水。然而,稀HF具有氧化物蚀刻速率不定的缺点。与非氮化氧化物相比,氮化氧化物蚀刻非常慢。热氧化物以与沉积氧化物不同的速率蚀刻。另外,退火氧化物具有与沉积氧化物不同的蚀刻速率。这在工艺流程中导致明显的可变性和集成度问题。
在浅槽隔离中,例如,使用三种不同氧化物填充沟槽。为了在抛光和多种清洗之后保持氧化物的可平面性,需要以相同速率蚀刻全部氧化物的蚀刻化学。事实上,多种工艺可变性导致明显的多余泄漏,其促成从源极到漏极的主要电流。这种多余泄漏的一个示例是围绕在SRI转角附近的多硅罩层。通常在STI蚀刻/清洗之后,在用于填充沟槽的氧化物沉积之前生长高温STI氧化物衬垫。在不同HF逆蚀刻期间,沟槽中的不同氧化物以不同速率蚀刻。随后,沉积多硅挤入到氧化物中的过蚀刻空洞内部。围绕在沟槽内部的多硅罩层导致多余泄漏和收得率损失。
因此,需要用于以相同速率蚀刻全部氧化物的装置和方法。
发明内容
本发明一般提供用于选择性去除半导体基片上的多种氧化物的装置和方法。
本发明的一个实施例提供用于以预期去除速率选择性去除基片上氧化物的方法,包括:将基片放置在真空室内,其中基片表面具有包括氧化物的结构,将基片冷却到第一温度,在真空室内产生蚀刻气体混合物的活性物种,其中蚀刻气体混合物包括第一气体和第二气体,并且第一气体和第二气体的比值由预期去除速率确定,为了在结构上形成薄膜将基片表面上的结构暴露于活性物种,加热基片以蒸发在结构上形成的薄膜以及从真空室去除蒸发的薄膜。
本发明的另一个实施例提供用于处理具有包括第一氧化物和第二氧化物的氧化物结构的基片的方法,包括:将基片放置在真空室中,将基片冷却到第一温度,将蚀刻气体混合物引入到真空室中,其中为了以第一速率减少第一氧化物并且以第二速率减少第二氧化物而调整蚀刻气体混合物,在真空室中产生蚀刻气体混合物的等离子体,将氧化物结构暴露于等离子体以在结构上形成薄膜,加热基片以蒸发在氧化物结构上形成的薄膜,以及从真空室去除蒸发的薄膜。
本发明的另一个实施例提供用于处理基片的方法,包括:将基片放置在真空室中,其中基片具有包括第一氧化物和第二氧化物的表面特征,将蚀刻气体混合物引入到真空室中,从蚀刻气体混合物产生活性物质,通过将表面特征暴露于蚀刻气体混合物的等离子体而至少部分地去除第一氧化物,以及通过水法蚀刻工艺减少第二氧化物。
附图说明
出于可能详细理解本发明的上述特征的方式,可能通过参考实施例给出上面概述的本发明的更加特定的描述,在附图中示出了某些实施例。然而,应该指出的是,附图仅示出了本发明的典型实施例,由于本发明可能允许其它等效实施例,因此不能认为附图限制了本发明范围。
图1示意地示出了具有在其中形成的浅槽隔离的基片块的部分透视图;
图2示意地示出了浅槽隔离的部分视图;
图3示意地示出了根据本发明一个实施例的处理室的截面图;
图4A-4I是根据本发明一个实施例的用于形成浅槽隔离的制备工序的示意图;
图5A-5H是用于形成隔离在STI中的电子器件的制备工序的示意图。
具体实施方式
本发明涉及用于在半导体制备中选择性氧化蚀刻的方法和装置。更加明确地,本发明提供用于使用蚀刻气体混合物从基片表面选择性去除和/或均匀去除一种或多种氧化物的方法和装置。
图1示意地示出了具有在其中形成的浅槽隔离的基片块10的部分透视图。所示基片块10仅是部分制备的并且具有在硅基底1中形成的浅槽2。浅槽2以氧化物填充并且设置成隔离在其中构建的电子器件,在该情况中为晶体管。源极3和漏极4通过注入步骤在浅槽2中形成。多晶硅结构(通常称为多晶硅)5在源极3和漏极4之间形成。栅极氧化物层6在硅基底1和多晶硅5之间形成。参考图4和5讨论详细制备工序。
图2示意地示出基片块10沿截线2-2的部分截面图。图2示出多晶硅5与浅槽2相遇的位置。浅槽2由热氧化物层7和沉积氧化物层8形成。通过使用HF的技术湿法蚀刻执行前多晶硅蚀刻/清洗。由于HF以比沉积氧化物层8快的速率蚀刻热氧化物层7,所以在浅槽2中形成间隙9。后续的多晶硅沉积导致多晶硅5填充间隙9并且包裹源极3或漏极4,引起寄生结或泄漏。
图3示意地示出根据本发明一个实施例的处理室100的截面图。在该实施例中,处理室100包括设置在室体112上端的盖组件200和至少部分地设置在室体112中的支架组件300。处理室还包括具有U型截面远程电极的远程等离子体产生器140。室100和相关硬件优选由一种或多种工艺兼容材料形成,例如,铝、阳极化铝、镀镍铝、镀镍铝6061-T6、不锈钢,以及它们的组合和合金。
支架组件300部分地设置在室体112中。通过由风箱(bellow)333封装的轴314提升和降低支架组件300。室体112包括在其侧壁中形成的用于提供进入室100内部的入口的流量阀开口160。选择性开启和关闭流量阀开口160,以便允许晶片传输机器人(未示出)进入室体112内部。晶片传输机器人对于本领域技术人员是众所周知的,并且可以使用任何合适的机器人。在一个实施例中,可以通过流量阀开口160将晶片传送进出处理室100到临近的传输室和/或真空交换室(未示出),或集成装置中的其它室。示范集成装置包括,但不限制在,可从加州的Santa Clara的应用材料有限公司购得的PRODUCERTM、CENTURATM、ENDURATM和ENDURASLTM台。
室体112还包括在其中形成的用于在其中流通热传输流体的通道113。热传输流体可以是加热流体或冷却液,并且用于在处理和晶片传输期间控制室体112的温度。室体112的温度对于防止气体或副产品有害浓缩于室壁上是重要的。示范热传输流体包括水、乙二醇或它们的混合物。示范热传输流体可能还包括氮气。
室体112还包括衬垫133,其围绕支架组件300并且为了维护和清洗是可移动的。衬垫133优选由诸如铝的金属或陶瓷材料制成。然而,可能使用任何工艺兼容材料。为了增加沉积在其上的任何材料的粘附,可能喷砂处理衬垫133,由此防止导致室100的污染的材料剥落。衬垫133通常包括一个或多个孔隙135和在其中形成的与真空系统进行流体交换的泵送通道129。孔隙135提供用于气体进入泵送通道129的流动路径,而泵送通道提供通过衬垫133的流动路径,以便气体可以脱离室100。
真空系统可能包括真空泵125和节流阀127以用于调节室100内气体流动。真空泵125连接到设置在室体112上的真空舱门131,并且与在衬垫133中形成的泵送通道129进行流体交换。为了调节室100内的气体流动,通过节流阀127选择性隔离真空泵125和室体112。可交替地使用术语“气体”和“多种气体”,除非另外指出,并且是指一种或多种前驱气体、反应物、催化剂、载体、净化剂、清洗剂、它们的组合,以及引入到室体112中的任何其它流体。
盖组件200包括堆叠在一起的多个组件。例如,盖组件200包括盖边缘210、气体传送组件220和顶板250。盖边缘210设计成支撑构成盖组件200的组件重量,并且耦接到室体112的上表面,以便提供对内部室组件的通路。气体传送组件220连接到盖边缘210的上表面,并且布置成具有与其的最小热接触。盖组件200的组件优选由具有高热导率和低热阻的材料制成,诸如具有高光滑度表面的铝合金。优选地,组件的热阻小于大约5x10-4m2K/W。
气体传送组件220可包括气体分布板225或喷头。气体供应面板(未示出)通常用于向室100提供一种或多种气体。所用特定气体或多种气体取决于将要在室100内执行的工艺。例如,典型气体包括一种或多种前驱气体、反应物、催化剂、载体、净化剂、清洗剂、或它们的任意混合物或组合。通常,使将引入到室100的一种或多种气体进入到盖组件200并随后通过气体传送组件220进入室体112。电控阀门和/或流动控制机构(未示出)可用于控制从气体源到室100中的气体流动。
在一个方案中,在气体线路分成如上所述地将气体馈送到室体112的两个分离气体线路的位置,将气体从气体供应仪表盘传送到室100。取决于工艺,可以以该方式传送多种气体,并且可在室100中或在将它们传送到室100之前混合它们。
仍然参考图3,盖组件200可能还包括用于在盖组件200内产生反应物种的等离子体的电极240。在该实施例中,将电极240支撑在顶板250上并与其电隔离。将隔离体填料环设置在电极240的底部附近,将电极240从顶板250分开。将环形隔离体(未示出)设置在隔离体填料环的上部附近并保持在顶板250上表面上,如图3所示。由此将环形隔离体(未示出)设置在电极240的上部附近,以便使电极240与盖组件200的其它组件电隔离。这些环中的每一个,隔离体填料和环形隔离体可以由氧化铝或任何其它绝缘的工艺兼容材料制成。
电极240耦接到电源340,同时气体传送组件220接地。因此,在电极240和气体传送组件220之间形成的空间内引燃一种或多种工艺气体的等离子体。等离子体还可包含在由区隔板形成的空间中。在缺少区隔板组件的情况中,将等离子体引燃并包含在电极240和气体传送组件220之间。在每个实施例中,将等离子体充分限制或包含在在盖组件200内。
可使用能够将气体活化成反应物种并保持反应物种的等离子体的任何电源。例如,可使用射频(RF)、直流电流(DC)、交流电流(AC)或微波(MW)基功率放电技术。还可由热基技术、气体击穿技术、高强度光源(例如UV能量)、或暴露于x-射线源产生活化。替代地,可使用诸如远程等离子体产生器的远程活化源,以产生随后传送到室100内的反应物种的等离子体。示范远程等离子体产生器可由诸如MKS Instruments公司和Advanced EnergyIndustries公司的制造商提供。优选地,RF电源耦接到电极240。
取决于工艺气体和将要在室100内执行的操作,可加热气体传送组件220。在一个实施例中,诸如例如电阻加热器的加热元件270耦接到气体传送组件220。在一个实施例中,加热元件270是管状构件并且将其压入到气体传送组件220的上表面。气体传送组件220上表面包括具有略小于加热元件270的外部直径的宽度的沟槽或隐埋通道,以便使用干涉配合将加热元件270保持在沟槽中。
由于包括气体传送组件220和区隔组件230的传送组件220的每个组件是彼此导电耦接的,加热元件270调节气体传送增加220的温度。可以在2005年2月22日提交的美国专利申请No.11/063,645中获得处理室的额外细节,这里将其作为参考文献。
对于执行需要不破坏真空而加热和冷却基片表面的等离子体辅助干法蚀刻工艺,处理室100是特别有用的。在一个实施例中,处理室100可用于选择性去除基片上的一种或多种氧化物。
为了描述的简化和方便,现在将描述在处理室100中执行的使用氨气(NH3)和三氟化氮(NF3)气体混合物的用于去除一种或多种硅氧化物的示范干法蚀刻工艺。发明人相信,对于从除全部在单一处理气氛内的基片加热和冷却之外的等离子体处理受益的任何干法蚀刻工艺,包括退火工艺,处理室100是有利的。
参考图3,干法蚀刻工艺开始于将诸如例如半导体基片的基片110放入到处理室100中。通常通过流量阀开口160将基片放入到室体112中并布设置在支架构件310的上表面上。可将基片110夹持到支架构件310的上表面。优选地,通过抽取真空将基片110夹持到支架构件310的上表面。随后,如果其还没有处于处理位置,将支架构件310升降至室体112内的加工位置。优选将室体112保持在50℃和80℃之间的温度,更加优选地,在大约65℃。通过使热传送介质流过通道113而保持室体112的该温度。
通过将热传送介质或冷却剂流过在支架组件300中形成的通道,将基片110冷却到65℃之下,诸如在15℃和50℃之间。在一个实施例中,将基片保持在室温以下。在另一实施例中,将基片保持在22℃和40℃之间的温度。通常,为了达到上述指定的预期基片温度,将支架构件310保持在大约22℃之下。为了冷却支架构件310,使冷却剂流过在支架组件300中形成的流体通道。为了更好地控制支架构件310的温度,优选使用冷却剂的连续流。冷却剂优选是50%体积分数的乙二醇和50%体积分数的水。当然,只要保持基片的预期温度,可以使用水和乙二醇的任何比值。
为了选择性去除基片110表面上的多种氧化物,将蚀刻气体混合物引入到室100。在一个实施例中,为了形成蚀刻气体混合物,随后将氨气和三氟化氮气体引入到室100中。引入到室中的每种气体的量是可变的并且可能进行调整,以便适应,例如,将要去除的氧化物层厚度、将要清洗的基片几何形状、等离子体的体积容量、室体112的体积容量、以及耦接到室体112的真空系统的能力。
为了选择性去除基片表面上的多种氧化物,可预先确定蚀刻气体混合物的比值。在一个实施例中,为了均匀去除诸如热氧化物、沉积氧化物和/或本征氧化物的多种氧化物,可调节蚀刻气体混合物中的组分比值。在一个实施例中,为了均匀去除多种氧化物,可调节蚀刻气体混合物中的氨气与三氟化氮的摩尔比值。在一个方案中,为了提供具有氨气与三氟化氮的至少1∶1摩尔比值,添加气体。在另一个方案中,气体混合物的摩尔比值至少是大约3∶1(氨气比三氟化氮)。优选地,将在从5∶1(氨气比三氟化氮)到30∶1之间的摩尔比值下的气体引入到室100中。更优选地,气体混合物的摩尔比值是大约5∶1(氨气比三氟化氮)到大约10∶1。气体混合物的摩尔比值还可在大约10∶1(氨气比三氟化氮)和大约20∶1之间。
还可将净化气体或载气添加到蚀刻气体混合物。可能使用任何合适净化/载体气体,诸如例如,氩气、氦气、氢气或它们的混合物。通常,全部蚀刻气体混合物是从大约0.05%到大约20%体积分数的氨气和三氟化氮。其余是载体气体。在一个实施例中,为了稳定室体112内的压力,在反应气体之前首先将净化或载体气体引入到室体112中。
室体112中的操作压力可以是可变的。通常,将压力保持在大约500mTorr和大约30Torr之间。优选地,将压力保持在大约1Torr和大约10Torr之间。更加优选地,将室体112中的操作压力保持在大约3Torr和大约6Torr之间。
为了在气体传送组件220中包含的空间261、262和263内引燃气体混合物的等离子体,将从大约5到大约600瓦的RF功率施加到电极240。优选地,RF功率小于100瓦。更加优选地,施加功率的频率是非常低的,诸如小于100kHz。优选地,频率范围在从大约50kHz到大约90kHz的范围中。
等离子体能量将氨气和三氟化氮分解为将联合形成气相的高反应性氟化铵(NH4F)化合物和/或氢氟化铵(NH4F·HF)化合物的反应物种。这些分子随后通过气体分布板225的开口225A流过气体传送组件220,以便与将要处理的基片表面反应。在一个实施例中,首先将载体气体引入到室100中,产生载体气体的等离子体,并且随后将反应气体,即氨气和三氟化氮添加到等离子体。
不希望受理论限制,发明人相信,蚀刻气体,NH4F和/或NH4F·HF与氧化硅表面反应,以便形成六氟硅酸铵(NH4)2SiF6、NH3和H2O产物。在处理条件下NH3和H2O是蒸汽,通过真空泵125将它们从室100去除。特别地,在气体通过真空舱门131脱离室100进入真空泵125之前,挥发性气体流过在衬垫133中形成的孔隙135进入泵送通道129。在基片表面留下(NH4)2SiF6薄膜。可以如下概述该反应机制:
NF3+3NH3→NH4F+NH4F·HF+N2
6NH4F+SiO2→(NH4)2SiF6+2H2O+4NH3
(NH4)2SiF6+热量→2NH3+2HF+SiF4
在基片表面上形成薄膜之后,可将支架构件310提升到紧靠加热的气体分布板225的退火位置。从气体分布板225辐射的热量可使(NH4)2SiF6薄膜分裂或升华为挥发性SiF4、NH3和HF产物。如上所述,可随后通过真空泵125将这些挥发性产物从室100去除。通常,将75℃或更高的温度用于从基片110有效升华和去除薄膜。优选地,使用100℃或更高的温度,诸如在大约115℃和大约200℃之间。
通过气体分布板225对流传送或辐射用于将(NH4)2SiF6薄膜分裂成其挥发性组分的热能。如上所述,将加热元件270直接耦接到分布板225,并且使其工作,以便将分布板225及与其热接触的组件加热到在大约75℃和250℃之间的温度。在一个方案中,将分布板225加热到在100℃和150℃之间的温度,诸如大约120℃。
可以多种方式实现该提升改变。例如,升降机构330可以朝向分布板225的下表面提升支架构件310。在该提升步骤期间,将基片110固定到支架构件310,诸如通过如上所述的真空夹持或电夹持。替代地,可以通过经由升降环320升高升降杆325,将基片110升降脱离支架构件310并且放置在紧靠加热的分布板225的位置。
在其上具有的薄膜的基片110上表面和分布板225之间的距离不是决定性的,而是例行实验的结果。本领域技术人员可以容易地确定不损伤底层基片而快速且有效地蒸发薄膜所需的间隔。然而,发明人相信,在大约0.254mm(10微英寸)和5.08mm(200微英寸)之间的间隔是有效的。
一旦已经将薄膜从基片上去除,清洗并排空处理室100。随后通过将基片支架300降低到传输位置、松持基片、以及通过流量阀开口160传输基片,将处理的基片移出室体112。
本发明的一个实施例可用于在浅槽隔离制备期间均匀去除多种氧化物。STI是用于亚0.25微米制备的器件隔离技术的初始形式。STI制备一般包括沟槽掩模和蚀刻、侧壁氧化、沟槽填充和平整化。图4A-4I是根据本发明实施例的用于形成浅槽隔离的制备工序的截面示意图。
图4A示出在形成阻挡氧化物层402和沉积氮化物层403之后的半导体基片401。基片401可能是具有<100>晶体学取向且直径为150mm(6英寸)、200mm(8英寸)、或300mm(12英寸)的硅基片。可在高温氧化炉中在基片401上生长阻挡氧化物层402。阻挡氧化物层402可具有大约
Figure B2008100007537D00101
的厚度。在后续的氮化物剥离步骤期间,阻挡氧化物层402保护基片401免受污染。可在高温低压化学气相沉积(LPCVD)炉中形成氮化物层403。氮化物层403一般是由氨气和二氯甲硅烷气体反应形成的氮化硅(Si3N4)的薄膜。氮化物层403是耐用的掩模材料,其在氧化物沉积期间保护基片401并且在后续化学机械抛光(CMP)期间作为抛光截止材料。
图4B示出在氮化物层403之上形成、曝光和显影的光致抗蚀剂层404。可在光致抗蚀剂层404上形成沟槽图案。后续氮化物蚀刻和氧化物蚀刻步骤在氮化物层403和阻挡层402中形成暴露基片401中指定为隔离区域的位置的沟槽图案405。
图4C示出使用诸如干法等离子体蚀刻的蚀刻工艺在基片401中形成浅槽406。随浅槽406后将以介电材料填充并且其作为在基片401上构建的诸如金在基片场效应晶体管(MOSFET)上的金属的电子器件之间的隔离材料。
图4D示出在浅槽406内部形成的衬垫氧化物层407。通常在高温氧化炉中生长衬垫氧化物层407。衬垫氧化物层407的目的是改进基片401和将要填充的沟槽氧化物之间的界面。
图4E示出在浅槽406内部的衬垫氧化物层407之上形成的氮化物衬垫408。可通过等离子体增强化学气相沉积(PECVD)工艺从在诸如氮气或氩气的载体气体中的硅烷和氨气形成氮化物衬垫408。氮化物衬垫408的目的是在浅槽406中导致应力并防止由受力氧化物引起的机械失效。
图4F示出填充在浅槽406和沟槽图案405内部的沟槽氧化物409。通常通过CVD工艺以相对高的沉积速率形成沟槽氧化物409。沟槽氧化物409是过填充的,以便沟槽氧化物409在基片401顶表面之上。
为了获得如图4G所示的平坦表面,可应用CMP工艺。CMP工艺从沟槽氧化物409去除过量的氧化物。
为了去除氮化物层402及暴露多种氧化物、阻挡层402的热氧化物、沟槽氧化物409的沉积氧化物、衬垫氧化物层407的热氧化物和氮化物衬垫408的氮化氧化物,可执行氮化物剥离步骤,如图4H所示。
通常,将执行氧化物蚀刻步骤,以便使浅槽结构准备用于后续处理步骤,例如多个阱注入。图4I示出在干法蚀刻工艺之后的STI。本发明的干法蚀刻工艺可用于蚀刻图4H中暴露的多种氧化物,以便在浅槽409之上获得基本平坦的顶表面并防止不期望的结或泄漏。在一个实施例中,可在与本发明的处理室100相似的处理室中执行干法蚀刻工艺。可将基片400放置在真空处理室内并将其保持在50℃和80℃之间的温度,更加优选的是大约65℃。随后将基片冷却到65℃以下,诸如在15℃和50℃之间。为了去除基片400表面上的多种氧化物,将蚀刻气体混合物引入到处理室100。在一个实施例中,将包含氨气和三氟化氮气体的蚀刻气体混合物引入到处理室中。为了适应,例如,将要去除的氧化物层的厚度、基片400的几何结构、等离子体的体积容量、室的体积容量、真空系统的能力、以及基片400上不同氧化物的性能,调整氨气和三氟化氮的量和比值。还可将净化气体或载体气体添加到蚀刻气体混合物。随后引燃蚀刻气体混合物的等离子体。等离子体与氧化物反应,在基片400上留下一层薄膜。随后将基片400加热到高于75℃的温度,特别是在大约115℃和大约200℃之间的温度,以便升华薄膜。可以随后净化和排空处理室。由此使基片400准备用于后续步骤。
上述蚀刻工艺可用于半导体制备期间的多种蚀刻步骤,特别是在将要至少部分去除一种或多种氧化物的步骤中。例如,注入和沉积之前的多种回蚀可能使用上述蚀刻工艺。
图5A-5H是用于形成诸如MOSFET结构500的电子器件的制备工序的截面示意图,包括这里描述的干法蚀刻工艺和处理室100。
参考图5A-5H,可在例如硅或砷化锗基片525的半导体材料上形成示范MOSFET。优选地,基片525是具有<100>晶体学取向且直径为150mm(6英寸)、200mm(8英寸)、或300mm(12英寸)的硅晶片。通常,MOSFET结构包括以下方面的组合:(i)介电层,诸如二氧化硅、有机硅、碳掺杂氧化硅、磷硅酸玻璃(PSG)、硼磷硅酸玻璃(BPSG)、氮化硅、或它们的组合;(ii)半导体层,诸如掺杂多晶硅、n-型或p-型掺杂单晶硅;以及(iii)从诸如钨、硅化钨、钛、硅化钛、硅化钴、硅化镍、或它们的组合的金属层或金属硅化物层形成的电触点和互联线路。
参考图5A,有源电子器件的制备开始于形成使有源电器件与其它器件电隔离的电隔离结构。存在几种类型的电隔离结构,诸如场氧化物阻挡、或浅槽隔离。在该情况中,浅槽隔离545A和545B是围绕在其中形成并准备器件的电有源元件的暴露区域的。STI可包括如图4A-I所述的两种或多种氧化物。为了形成具有从大约50到300埃的厚度的薄栅极氧化物层550,热氧化暴露区域。随后沉积、构图并蚀刻多硅层,以便形成栅极电极555。为了形成绝缘介电层560,可以再氧化多晶硅栅极电极555的表面,以提供图5A所示结构。
参考图5B,接下来通过以适当掺杂剂原子掺杂合适区域形成源极570A和漏极570B。例如,对于p-型基片525,使用包含砷或磷的n-型掺杂剂物种。通常,掺杂通过离子注入器执行,并且可包括,例如,浓度为大约1013原子/cm2且能级从大约30到80Kev的磷(31P)、或剂量从大约1015到1017原子/cm2且能级从大约10到100Kev的砷(75As)。在注入工艺之后,通过加热基片,例如,在快速热处理(RTP)装置中,促使掺杂剂进入基片525。此后,通过如上所述的干法蚀刻工艺剥离覆盖源极570A和漏极570B区域的薄栅极氧化物层550,以便去除由注入工艺导致的薄栅极氧化物层550中捕获的任何杂质。还可蚀刻浅槽隔离545A和545B中的两种或多种氧化物。为了适应不同氧化物所需的多种蚀刻速率,可调节蚀刻气体混合物。
参考图5C和图5D,通过低压化学气相沉积(LPCVD)使用SiH2、Cl2和NH3的气体混合物在栅极电极555上和基片525表面上沉积氮化硅层575。如图5D所示,为了在栅极电极侧壁上形成氮化物间隔垫580,随后使用反应离子蚀刻(RIE)技术蚀刻氮化硅层575。间隔垫580将栅极电极555顶表面上形成的硅化物层与源极570A和漏极570B之上沉积的其它硅化物层电隔离。应该注意的是,可以由诸如氧化硅的其它材料制备电隔离侧壁间隔垫580。通常通过CVD或PECVD从硅酸乙酯(TEOS)的原料气在从大约600℃到大约1,000℃的范围内的温度下沉积用于形成侧壁间隔垫580的氧化硅层。虽然,示出的是在注入和RTP活化之后形成间隔垫580,但是可在源极/漏极注入和RTP活化之前形成间隔垫580。
参考图5E,通常通过在工艺之前和之后暴露于气氛,在暴露的硅表面形成本征氧化硅层585。为了改进所形成的金属硅化物的合金化反应和电导率,必须在形成栅极电极555、源极570A和漏极570B上的导电金属硅化物触点之前去除本征氧化硅层585。本征氧化硅层585可以增加半导体材料的电阻,并且恶化相继沉积的硅和金属层的硅化反应。因此,必须在形成用于互联有源电子器件的金属硅化物触点或导体之前使用所述干法蚀刻工艺去除该本征氧化硅层585。上述干法蚀刻工艺可用于去除本征氧化硅层585,以便暴露源极570A、漏极570B和栅极电极555的顶表面,如图5F所示。浅槽隔离545A和545B中的氧化物同样暴露于干法蚀刻工艺。为了在不同表面获得均匀去除速率,可对干法蚀刻工艺进行适当调整,诸如反应气体比值。
此后,如图5G所示,为了沉积金属层590,使用物理气相沉积(PVD)或溅射工艺。随后,为了在金属层590与硅接触的区域中形成金属硅化物,使用传统炉内退火来退火金属和硅层。通常在分离处理系统中执行退火。因此,可能在金属590之上沉积保护盖层(未示出)。盖层通常是氮化物材料并且可能包括从由氮化钛、氮化钨、氮化钽、氮化镍和氮化硅组成的组中选择的一种或多种材料。盖层可能由任何沉积工艺沉积,优选由PVD沉积。
退火通常包括在氮气气氛中将MOSFET结构500加热到在600℃和800℃之间的温度保持大约30分钟。替代地,可以使用将MOSFET结构500快速加热到大约1000℃保持大约30秒的快速热退火工艺形成金属硅化物595。合适的导电金属包括钴、钛、镍、钨、铂和具有低接触电阻且可以在多硅和单晶硅上形成可靠金属硅化物触点的任何其它金属。
可以通过使用不侵袭金属硅化物595、隔板580或场氧化物545A、B而去除金属的王水(HCl和HNO3)的湿法蚀刻去除金属层590的未反应部分,由此在栅极电极555、源极570A和漏极570B上留下自准直金属硅化物595,如图5H所示。此后,可以在电极结构上沉积包括例如氧化硅、BPSG或PSG的绝缘罩层。可以通过在CVD室中的化学气相沉积沉积绝缘罩层,在该CVD室中从低压或常压的原料气浓缩材料,例如,如1996年3月19日授权的共同受让美国专利No.5,500,249所描述的,这里将其作为参考文献。此后,为了形成光滑平坦表面,在玻璃转变温度退火MOSFET结构500。
虽然已经针对MOSFET器件的形成描述了上述处理工序,这里描述的干法蚀刻工艺还可以用于形成需要去除多种氧化物的其它半导体结构和器件。还可以在沉积包括例如铝、铜、钴、镍、硅、钛、钯、铪、硼、钨、钽或它们的组合的不同金属层的沉积之间使用干法蚀刻工艺。
在一个实施例中,本发明的干法蚀刻工艺可能与湿法蚀刻工艺相结合。例如,对于具有至少两种氧化物的氧化物结构,干法蚀刻工艺可能用于选择性去除第一氧化物、相对第二氧化物完全地或部分地减少第一氧化物特征。湿法HF蚀刻工艺可能随后用于去除第二氧化物。
为了提供前述描述的更好理解,给出下列非限制性示例。虽然示例可能导向特定实施例,不能认为示例在任何特定方面限制了本发明。
示例:
在蚀刻期间,将2sccm的NF3、10sccm的NH3、和2,500sccm的氩气的气体混合物引入到诸如加工室100的真空室内。使用100瓦的功率引燃气体混合物的等离子体。底部净化剂是1,500sccm的氩气而边部净化剂是50sccm的氩气。室压保持在大约6Torr,基片温度为大约22℃。将基片蚀刻120秒。
在退火期间,间隔是750微英寸,盖温度为120℃。将基片退火大约60秒。从基片表面去除大约50埃的材料。没有观察到退火影响。蚀刻速率是大约0.46埃/秒
Figure B2008100007537D00141
对于
Figure B2008100007537D00142
蚀刻,观察到的蚀刻均匀度是大约5%。
除非另外指出,在说明书和权利要求中使用的表示成分质量、性能、反应条件等等的全部数字应该理解为近似值。这些近似值是基于力图由本发明获得的预期性能和测量误差的,并且至少应该考虑报道的有效数字位数并应用常规舍入技术来分析。另外,可以进一步优化这里表示的任何量,包括温度、压力、物种、摩尔比值、流速等等,以便获得预期的蚀刻选择性和颗粒性能。
虽然前面描述定向于本发明的实施例,在不偏离其基本范围条件下可能设计出本发明的其它和额外实施例,因此其范围由权利要求所确定。

Claims (21)

1.一种用于处理基片的方法,包括:
将所述基片放置在真空室中,其中所述基片表面具有包括第一硅氧化物的结构;
将所述基片冷却到第一温度;
在所述真空室内引燃蚀刻气体混合物的等离子体以产生活性物种,其中所述蚀刻气体混合物包括氨气和三氟化氮,并且所述氨气和三氟化氮的摩尔比值至少是3∶1;
将所述基片表面上的第一硅氧化物与所述活性物种反应以在所述结构上形成薄膜;
加热所述基片以蒸发在所述结构上形成的所述薄膜;以及
从所述真空室去除所述蒸发的薄膜。
2.如权利要求1所述的方法,其特征在于,所述活性物种包括氮和氟原子。
3.如权利要求1所述的方法,其特征在于,所述结构包括第二硅氧化物,并且所述第二硅氧化物是由不同于第一硅氧化物的方法形成的。
4.如权利要求3所述的方法,其特征在于,所述蚀刻气体混合物以第一去除速率去除第一硅氧化物和以第二去除速率去除第二硅氧化物。
5.如权利要求1所述的方法,其特征在于,氨气与三氟化氮的比值在10∶1到20∶1之间。
6.如权利要求1所述的方法,其特征在于,所述蚀刻气体混合物还包括载体气体,和所述蚀刻气体混合物包括从0.05%到20%体积分数的氨气和三氟化氮。
7.如权利要求1所述的方法,其特征在于,还包括在产生所述活性物种之前将载体气体引入到所述真空室。
8.如权利要求1所述的方法,其特征在于,所述第一温度介于15℃到65℃之间。
9.如权利要求1所述的方法,其特征在于,加热所述基片以蒸发所述薄膜包括加热所述基片至从75℃到200℃的第二温度。
10.如权利要求1所述的方法,其特征在于,所述氨气和三氟化氮的摩尔比值介于3∶1和10∶1之间。
11.如权利要求1所述的方法,其特征在于,所述氨气和三氟化氮的摩尔比值介于5∶1和30∶1之间。
12.一种用于处理基片的方法,包括:
将所述基片放置在真空室中,其中所述基片包括第一硅氧化物层和第二硅氧化物层,所述第一硅氧化物层内衬一浅槽,所述第二硅氧化物层填充所述浅槽;以及
通过一工艺选择性地去除所述第一硅氧化物和第二硅氧化物以得到一覆在所述浅槽上的平坦表面,所述工艺包括:
将所述基片冷却到第一温度;
将蚀刻气体混合物引入到所述真空室中,其中为了以第一速率减少第一硅氧化物以及以第二速率减少第二硅氧化物,调节所述蚀刻气体混合物,所述蚀刻气体混合物包括氨气和三氟化氮,并且所述氨气和三氟化氮的摩尔比值至少是3∶1;
在所述真空室内产生所述蚀刻气体混合物的等离子体;
将所述第一硅氧化物和第二硅氧化物暴露于所述等离子体以形成一含氮和氟的薄膜;
加热基片以蒸发所述含氮和氟的薄膜;以及
从所述真空室去除所述蒸发的含氮和氟的薄膜。
13.如权利要求12所述的方法,其特征在于,所述第一硅氧化物是热生长氧化物,以及所述第二硅氧化物是通过化学气相沉积的沉积氧化物。
14.如权利要求12所述的方法,其特征在于,所述基片还包括本征氧化物。
15.如权利要求12所述的方法,其特征在于,所述第一速率等于所述第二速率。
16.如权利要求12所述的方法,其特征在于,所述第一温度介于15℃到65℃之间。
17.如权利要求12所述的方法,其特征在于,加热所述基片以蒸发所述含氮和氟的薄膜包括加热所述基片至从75℃到200℃的第二温度。
18.如权利要求12所述的方法,其特征在于,所述引入蚀刻气体混合物包括根据第一硅氧化物和第二硅氧化物的性质调整氨气和三氟化氮的比值。
19.一种用于处理基片的方法,包括:
将所述基片放置在真空室中,其中所述基片具有包括第一硅氧化物和第二硅氧化物的表面特征;
将蚀刻气体混合物引入到所述真空室中,其中所述蚀刻气体混合物包括氨气和三氟化氮,并且所述氨气和三氟化氮的摩尔比值至少是3∶1;
从所述蚀刻气体混合物产生活性物种;
通过将所述表面特征暴露于所述蚀刻气体混合物的等离子体而至少部分地减少所述第一硅氧化物;以及
通过湿法蚀刻工艺而减少所述第二硅氧化物。
20.如权利要求19所述的方法,其特征在于,还包括调节氨气和三氟化氮的摩尔比值以选择性去除所述第一硅氧化物。
21.如权利要求19所述的方法,其特征在于,减少所述第二硅氧化物包括提供稀释氢氟酸溶液。
CN2008100007537A 2007-01-11 2008-01-11 利用nh3-nf3化学物质的氧化蚀刻 Active CN101231951B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/622,437 2007-01-11
US11/622,437 US20070123051A1 (en) 2004-02-26 2007-01-11 Oxide etch with nh4-nf3 chemistry

Publications (2)

Publication Number Publication Date
CN101231951A CN101231951A (zh) 2008-07-30
CN101231951B true CN101231951B (zh) 2010-09-08

Family

ID=39357957

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100007537A Active CN101231951B (zh) 2007-01-11 2008-01-11 利用nh3-nf3化学物质的氧化蚀刻

Country Status (6)

Country Link
US (2) US20070123051A1 (zh)
EP (1) EP1944796A3 (zh)
JP (1) JP4995102B2 (zh)
KR (1) KR100931765B1 (zh)
CN (1) CN101231951B (zh)
TW (2) TWI402914B (zh)

Families Citing this family (205)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090004850A1 (en) 2001-07-25 2009-01-01 Seshadri Ganguli Process for forming cobalt and cobalt silicide materials in tungsten contact applications
US20050230350A1 (en) 2004-02-26 2005-10-20 Applied Materials, Inc. In-situ dry clean chamber for front end of line fabrication
US20060051966A1 (en) * 2004-02-26 2006-03-09 Applied Materials, Inc. In-situ chamber clean process to remove by-product deposits from chemical vapor etch chamber
US20080142483A1 (en) * 2006-12-07 2008-06-19 Applied Materials, Inc. Multi-step dep-etch-dep high density plasma chemical vapor deposition processes for dielectric gapfills
US7939422B2 (en) * 2006-12-07 2011-05-10 Applied Materials, Inc. Methods of thin film process
US20100151677A1 (en) * 2007-04-12 2010-06-17 Freescale Semiconductor, Inc. Etch method in the manufacture of a semiconductor device
US7867900B2 (en) * 2007-09-28 2011-01-11 Applied Materials, Inc. Aluminum contact integration on cobalt silicide junction
US7989329B2 (en) * 2007-12-21 2011-08-02 Applied Materials, Inc. Removal of surface dopants from a substrate
US20090191703A1 (en) * 2008-01-29 2009-07-30 Applied Materials, Inc. Process with saturation at low etch amount for high contact bottom cleaning efficiency for chemical dry clean process
US20100099263A1 (en) * 2008-10-20 2010-04-22 Applied Materials, Inc. Nf3/h2 remote plasma process with high etch selectivity of psg/bpsg over thermal oxide and low density surface defects
US7994002B2 (en) 2008-11-24 2011-08-09 Applied Materials, Inc. Method and apparatus for trench and via profile modification
CN101740338B (zh) * 2008-11-24 2012-07-18 中芯国际集成电路制造(北京)有限公司 薄膜去除方法
US9159808B2 (en) 2009-01-26 2015-10-13 Taiwan Semiconductor Manufacturing Company, Ltd. Selective etch-back process for semiconductor devices
US8975753B2 (en) 2009-04-03 2015-03-10 Research Triangle Institute Three dimensional interconnect structure and method thereof
US7972966B2 (en) * 2009-05-19 2011-07-05 International Business Machines Corporation Etching of tungsten selective to titanium nitride
KR101040941B1 (ko) * 2009-08-17 2011-06-16 주성엔지니어링(주) 기판처리장치 및 방법
CN101996901B (zh) * 2009-08-26 2013-01-30 中芯国际集成电路制造(上海)有限公司 铝垫的制作方法
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
IT1401385B1 (it) * 2010-08-06 2013-07-18 Toncelli Pressa per la vibrocompressione sottovuoto di lastre o blocchi o manufatti di materiale agglomerato o ceramico.
US8741778B2 (en) * 2010-12-14 2014-06-03 Applied Materials, Inc. Uniform dry etch in two stages
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US8771539B2 (en) 2011-02-22 2014-07-08 Applied Materials, Inc. Remotely-excited fluorine and water vapor etch
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US8912096B2 (en) * 2011-04-28 2014-12-16 Applied Materials, Inc. Methods for precleaning a substrate prior to metal silicide fabrication process
JP2013048127A (ja) * 2011-07-26 2013-03-07 Applied Materials Inc アッシュ後の側壁の回復
US8771536B2 (en) 2011-08-01 2014-07-08 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
CN102931130A (zh) * 2011-08-11 2013-02-13 应用材料公司 灰化后侧壁修复
FR2979166A1 (fr) * 2011-08-16 2013-02-22 St Microelectronics Crolles 2 Procede de fabrication d'un transistor mos
TWI492298B (zh) * 2011-08-26 2015-07-11 Applied Materials Inc 雙重圖案化蝕刻製程
US8679982B2 (en) 2011-08-26 2014-03-25 Applied Materials, Inc. Selective suppression of dry-etch rate of materials containing both silicon and oxygen
US8679983B2 (en) 2011-09-01 2014-03-25 Applied Materials, Inc. Selective suppression of dry-etch rate of materials containing both silicon and nitrogen
US8927390B2 (en) 2011-09-26 2015-01-06 Applied Materials, Inc. Intrench profile
US8808563B2 (en) 2011-10-07 2014-08-19 Applied Materials, Inc. Selective etch of silicon by way of metastable hydrogen termination
WO2013070436A1 (en) 2011-11-08 2013-05-16 Applied Materials, Inc. Methods of reducing substrate dislocation during gapfill processing
CN103137467A (zh) * 2011-11-24 2013-06-05 联华电子股份有限公司 移除氧化层的半导体制作工艺
US9267739B2 (en) 2012-07-18 2016-02-23 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9034770B2 (en) 2012-09-17 2015-05-19 Applied Materials, Inc. Differential silicon oxide etch
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
TWI604528B (zh) 2012-10-02 2017-11-01 應用材料股份有限公司 使用電漿預處理與高溫蝕刻劑沉積的方向性二氧化矽蝕刻
US9177780B2 (en) 2012-10-02 2015-11-03 Applied Materials, Inc. Directional SiO2 etch using plasma pre-treatment and high-temperature etchant deposition
US8980761B2 (en) 2012-10-03 2015-03-17 Applied Materials, Inc. Directional SIO2 etch using low-temperature etchant deposition and plasma post-treatment
TWI591712B (zh) * 2012-10-03 2017-07-11 應用材料股份有限公司 使用低溫蝕刻劑沉積與電漿後處理的方向性二氧化矽蝕刻
US8765574B2 (en) 2012-11-09 2014-07-01 Applied Materials, Inc. Dry etch process
US8969212B2 (en) 2012-11-20 2015-03-03 Applied Materials, Inc. Dry-etch selectivity
US9064816B2 (en) 2012-11-30 2015-06-23 Applied Materials, Inc. Dry-etch for selective oxidation removal
US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
US9111877B2 (en) 2012-12-18 2015-08-18 Applied Materials, Inc. Non-local plasma oxide etch
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US9093389B2 (en) * 2013-01-16 2015-07-28 Applied Materials, Inc. Method of patterning a silicon nitride dielectric film
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US8801952B1 (en) 2013-03-07 2014-08-12 Applied Materials, Inc. Conformal oxide dry etch
US10170282B2 (en) 2013-03-08 2019-01-01 Applied Materials, Inc. Insulated semiconductor faceplate designs
US20140271097A1 (en) 2013-03-15 2014-09-18 Applied Materials, Inc. Processing systems and methods for halide scavenging
US8895449B1 (en) 2013-05-16 2014-11-25 Applied Materials, Inc. Delicate dry clean
US9114438B2 (en) 2013-05-21 2015-08-25 Applied Materials, Inc. Copper residue chamber clean
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9543163B2 (en) 2013-08-20 2017-01-10 Applied Materials, Inc. Methods for forming features in a material layer utilizing a combination of a main etching and a cyclical etching process
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US8956980B1 (en) 2013-09-16 2015-02-17 Applied Materials, Inc. Selective etch of silicon nitride
US9472416B2 (en) 2013-10-21 2016-10-18 Applied Materials, Inc. Methods of surface interface engineering
US8951429B1 (en) 2013-10-29 2015-02-10 Applied Materials, Inc. Tungsten oxide processing
US9236265B2 (en) 2013-11-04 2016-01-12 Applied Materials, Inc. Silicon germanium processing
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
CN103646874A (zh) * 2013-11-29 2014-03-19 上海华力微电子有限公司 二氧化硅sab的去除方法
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9117855B2 (en) 2013-12-04 2015-08-25 Applied Materials, Inc. Polarity control for remote plasma
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9263278B2 (en) 2013-12-17 2016-02-16 Applied Materials, Inc. Dopant etch selectivity control
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
US11164753B2 (en) 2014-01-13 2021-11-02 Applied Materials, Inc. Self-aligned double patterning with spatial atomic layer deposition
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9299577B2 (en) * 2014-01-24 2016-03-29 Applied Materials, Inc. Methods for etching a dielectric barrier layer in a dual damascene structure
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9499898B2 (en) 2014-03-03 2016-11-22 Applied Materials, Inc. Layered thin film heater and method of fabrication
US9508561B2 (en) 2014-03-11 2016-11-29 Applied Materials, Inc. Methods for forming interconnection structures in an integrated cluster system for semicondcutor applications
US9472453B2 (en) * 2014-03-13 2016-10-18 Qualcomm Incorporated Systems and methods of forming a reduced capacitance device
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9136273B1 (en) 2014-03-21 2015-09-15 Applied Materials, Inc. Flash gate air gap
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9269590B2 (en) 2014-04-07 2016-02-23 Applied Materials, Inc. Spacer formation
CN103928319A (zh) * 2014-04-08 2014-07-16 上海华力微电子有限公司 锗硅外延生长方法
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
JP6435667B2 (ja) * 2014-07-01 2018-12-12 東京エレクトロン株式会社 エッチング方法、エッチング装置及び記憶媒体
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9159606B1 (en) 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9165786B1 (en) 2014-08-05 2015-10-20 Applied Materials, Inc. Integrated oxide and nitride recess for better channel contact in 3D architectures
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
US9368364B2 (en) 2014-09-24 2016-06-14 Applied Materials, Inc. Silicon etch process with tunable selectivity to SiO2 and other materials
US9478434B2 (en) 2014-09-24 2016-10-25 Applied Materials, Inc. Chlorine-based hardmask removal
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US9240315B1 (en) 2014-10-10 2016-01-19 Applied Materials, Inc. CVD oxide surface pre-conditioning by inductively coupled O2 plasma
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US9299583B1 (en) 2014-12-05 2016-03-29 Applied Materials, Inc. Aluminum oxide selective etch
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US9502258B2 (en) 2014-12-23 2016-11-22 Applied Materials, Inc. Anisotropic gap etch
US9343272B1 (en) 2015-01-08 2016-05-17 Applied Materials, Inc. Self-aligned process
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US9373522B1 (en) 2015-01-22 2016-06-21 Applied Mateials, Inc. Titanium nitride removal
US9449846B2 (en) 2015-01-28 2016-09-20 Applied Materials, Inc. Vertical gate separation
US9793104B2 (en) 2015-01-29 2017-10-17 Aixtron Se Preparing a semiconductor surface for epitaxial deposition
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US9929305B2 (en) 2015-04-28 2018-03-27 International Business Machines Corporation Surface treatment for photovoltaic device
US9595452B2 (en) 2015-05-27 2017-03-14 Lam Research Corporation Residue free oxide etch
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10008366B2 (en) 2015-09-08 2018-06-26 Applied Materials, Inc. Seasoning process for establishing a stable process and extending chamber uptime for semiconductor chip processing
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
CN107799591B (zh) 2016-08-31 2020-06-09 中芯国际集成电路制造(上海)有限公司 Ldmos及其形成方法
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
CN107919298B (zh) 2016-10-08 2021-01-29 北京北方华创微电子装备有限公司 气相刻蚀装置及设备
US11107699B2 (en) 2016-10-08 2021-08-31 Beijing Naura Microelectronics Equipment Co., Ltd. Semiconductor manufacturing process
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10141189B2 (en) * 2016-12-29 2018-11-27 Asm Ip Holding B.V. Methods for forming semiconductors by diffusion
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US11380557B2 (en) * 2017-06-05 2022-07-05 Applied Materials, Inc. Apparatus and method for gas delivery in semiconductor process chambers
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10297458B2 (en) * 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
CN107611007A (zh) * 2017-08-24 2018-01-19 长江存储科技有限责任公司 一种深沟槽的预清洗方法及3d nand制备工艺
US10269936B2 (en) * 2017-08-31 2019-04-23 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET device and method of forming same
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
TWI766433B (zh) 2018-02-28 2022-06-01 美商應用材料股份有限公司 形成氣隙的系統及方法
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
JP6700571B1 (ja) * 2018-09-13 2020-05-27 セントラル硝子株式会社 シリコン酸化物のエッチング方法及びエッチング装置
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
KR20210035449A (ko) * 2019-09-24 2021-04-01 삼성전자주식회사 반도체 소자 및 이의 제조 방법
WO2021150625A1 (en) * 2020-01-23 2021-07-29 Applied Materials, Inc. Method of cleaning a structure and method of depositiing a capping layer in a structure
KR20220028445A (ko) * 2020-08-28 2022-03-08 삼성전자주식회사 웨이퍼 처리 장치 및 이를 이용한 웨이퍼 처리 방법
US11232947B1 (en) * 2020-09-01 2022-01-25 Taiwan Semiconductor Manufacturing Company Limited Ammonium fluoride pre-clean protection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372657B1 (en) * 2000-08-31 2002-04-16 Micron Technology, Inc. Method for selective etching of oxides
CN1822328A (zh) * 2005-02-18 2006-08-23 东京毅力科创株式会社 立式分批处理装置

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4807016A (en) * 1985-07-15 1989-02-21 Texas Instruments Incorporated Dry etch of phosphosilicate glass with selectivity to undoped oxide
JPS6396937A (ja) * 1986-10-13 1988-04-27 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
US4872947A (en) * 1986-12-19 1989-10-10 Applied Materials, Inc. CVD of silicon oxide using TEOS decomposition and in-situ planarization process
DE3884653T2 (de) * 1987-04-03 1994-02-03 Fujitsu Ltd Verfahren und Vorrichtung zur Gasphasenabscheidung von Diamant.
US5030319A (en) * 1988-12-27 1991-07-09 Kabushiki Kaisha Toshiba Method of oxide etching with condensed plasma reaction product
US5578130A (en) * 1990-12-12 1996-11-26 Semiconductor Energy Laboratory Co., Ltd. Apparatus and method for depositing a film
JP3018517B2 (ja) * 1991-01-25 2000-03-13 ソニー株式会社 ドライエッチング方法
JPH05160085A (ja) * 1991-12-11 1993-06-25 Fujitsu Ltd 半導体装置の製造方法
US5282925A (en) * 1992-11-09 1994-02-01 International Business Machines Corporation Device and method for accurate etching and removal of thin film
US5500249A (en) 1992-12-22 1996-03-19 Applied Materials, Inc. Uniform tungsten silicide films produced by chemical vapor deposition
US5505816A (en) * 1993-12-16 1996-04-09 International Business Machines Corporation Etching of silicon dioxide selectively to silicon nitride and polysilicon
US6979632B1 (en) * 1995-07-13 2005-12-27 Semiconductor Energy Laboratory Co., Ltd. Fabrication method for thin-film semiconductor
US5719085A (en) * 1995-09-29 1998-02-17 Intel Corporation Shallow trench isolation technique
US5712185A (en) * 1996-04-23 1998-01-27 United Microelectronics Method for forming shallow trench isolation
US6048798A (en) * 1996-06-05 2000-04-11 Lam Research Corporation Apparatus for reducing process drift in inductive coupled plasma etching such as oxide layer
US6197116B1 (en) * 1996-08-29 2001-03-06 Fujitsu Limited Plasma processing system
US5846375A (en) * 1996-09-26 1998-12-08 Micron Technology, Inc. Area specific temperature control for electrode plates and chucks used in semiconductor processing equipment
TW304293B (en) * 1996-11-18 1997-05-01 United Microelectronics Corp Manufacturing method for shallow trench isolation
US5766971A (en) * 1996-12-13 1998-06-16 International Business Machines Corporation Oxide strip that improves planarity
US6706334B1 (en) * 1997-06-04 2004-03-16 Tokyo Electron Limited Processing method and apparatus for removing oxide film
US6063712A (en) * 1997-11-25 2000-05-16 Micron Technology, Inc. Oxide etch and method of etching
US6635185B2 (en) * 1997-12-31 2003-10-21 Alliedsignal Inc. Method of etching and cleaning using fluorinated carbonyl compounds
US6194038B1 (en) * 1998-03-20 2001-02-27 Applied Materials, Inc. Method for deposition of a conformal layer on a substrate
JP3178412B2 (ja) * 1998-04-27 2001-06-18 日本電気株式会社 トレンチ・アイソレーション構造の形成方法
US6004863A (en) * 1998-05-06 1999-12-21 Taiwan Semiconductor Manufacturing Company Non-polishing sacrificial layer etchback planarizing method for forming a planarized aperture fill layer
US6153523A (en) * 1998-12-09 2000-11-28 Advanced Micro Devices, Inc. Method of forming high density capping layers for copper interconnects with improved adhesion
US6399506B2 (en) * 1999-04-07 2002-06-04 Taiwan Semiconductor Manufacturing Co., Ltd. Method for planarizing an oxide layer
US6559026B1 (en) * 2000-05-25 2003-05-06 Applied Materials, Inc Trench fill with HDP-CVD process including coupled high power density plasma deposition
US6271147B1 (en) * 2000-08-18 2001-08-07 Vanguard International Semiconductor Corporation Methods of forming trench isolation regions using spin-on material
US6448537B1 (en) * 2000-12-11 2002-09-10 Eric Anton Nering Single-wafer process chamber thermal convection processes
US20020124867A1 (en) * 2001-01-08 2002-09-12 Apl Co., Ltd. Apparatus and method for surface cleaning using plasma
US6670278B2 (en) * 2001-03-30 2003-12-30 Lam Research Corporation Method of plasma etching of silicon carbide
US6506291B2 (en) * 2001-06-14 2003-01-14 Applied Materials, Inc. Substrate support with multilevel heat transfer mechanism
US7138649B2 (en) * 2001-08-09 2006-11-21 Amberwave Systems Corporation Dual-channel CMOS transistors with differentially strained channels
US7256370B2 (en) * 2002-03-15 2007-08-14 Steed Technology, Inc. Vacuum thermal annealer
JP2003282530A (ja) * 2002-03-26 2003-10-03 Hitachi Kokusai Electric Inc 基板処理装置、及び半導体装置の製造方法
US6500728B1 (en) * 2002-05-24 2002-12-31 Taiwan Semiconductor Manufacturing Company Shallow trench isolation (STI) module to improve contact etch process window
US20040072446A1 (en) * 2002-07-02 2004-04-15 Applied Materials, Inc. Method for fabricating an ultra shallow junction of a field effect transistor
US6767844B2 (en) * 2002-07-03 2004-07-27 Taiwan Semiconductor Manufacturing Co., Ltd Plasma chamber equipped with temperature-controlled focus ring and method of operating
CN101457338B (zh) 2003-02-14 2011-04-27 应用材料股份有限公司 利用含氢自由基清洁自生氧化物的方法和设备
KR100728173B1 (ko) * 2003-03-07 2007-06-13 앰버웨이브 시스템즈 코포레이션 쉘로우 트렌치 분리법
US6903031B2 (en) * 2003-09-03 2005-06-07 Applied Materials, Inc. In-situ-etch-assisted HDP deposition using SiF4 and hydrogen
US7030034B2 (en) * 2003-09-18 2006-04-18 Micron Technology, Inc. Methods of etching silicon nitride substantially selectively relative to an oxide of aluminum
US20050230350A1 (en) * 2004-02-26 2005-10-20 Applied Materials, Inc. In-situ dry clean chamber for front end of line fabrication
US20060051966A1 (en) * 2004-02-26 2006-03-09 Applied Materials, Inc. In-situ chamber clean process to remove by-product deposits from chemical vapor etch chamber
US7780793B2 (en) * 2004-02-26 2010-08-24 Applied Materials, Inc. Passivation layer formation by plasma clean process to reduce native oxide growth
US7049200B2 (en) * 2004-05-25 2006-05-23 Applied Materials Inc. Method for forming a low thermal budget spacer
KR20070087196A (ko) * 2004-12-21 2007-08-27 어플라이드 머티어리얼스, 인코포레이티드 화학 기상 에칭 챔버로부터 부산물 증착을 제거하기 위한인-시튜 챔버 세정 방법
US20060130971A1 (en) * 2004-12-21 2006-06-22 Applied Materials, Inc. Apparatus for generating plasma by RF power
WO2006102318A2 (en) * 2005-03-18 2006-09-28 Applied Materials, Inc. Electroless deposition process on a contact containing silicon or silicide
US20070087573A1 (en) * 2005-10-19 2007-04-19 Yi-Yiing Chiang Pre-treatment method for physical vapor deposition of metal layer and method of forming metal silicide layer
US7416989B1 (en) * 2006-06-30 2008-08-26 Novellus Systems, Inc. Adsorption based material removal process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372657B1 (en) * 2000-08-31 2002-04-16 Micron Technology, Inc. Method for selective etching of oxides
CN1822328A (zh) * 2005-02-18 2006-08-23 东京毅力科创株式会社 立式分批处理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Hiroki Ogawa et al..Dry Cleaning Technology for Removal of Silicon NativeOxide Employing Hot NH3/NF3 Exposure.Japanese Journal of Applied Physics41 8.2002,41(8),5349-5358. *

Also Published As

Publication number Publication date
KR100931765B1 (ko) 2009-12-14
EP1944796A3 (en) 2008-12-17
TW200845211A (en) 2008-11-16
EP1944796A2 (en) 2008-07-16
TW201342475A (zh) 2013-10-16
US20100093151A1 (en) 2010-04-15
TWI520216B (zh) 2016-02-01
CN101231951A (zh) 2008-07-30
US7955510B2 (en) 2011-06-07
JP4995102B2 (ja) 2012-08-08
KR20080066614A (ko) 2008-07-16
JP2008205440A (ja) 2008-09-04
US20070123051A1 (en) 2007-05-31
TWI402914B (zh) 2013-07-21

Similar Documents

Publication Publication Date Title
CN101231951B (zh) 利用nh3-nf3化学物质的氧化蚀刻
CN101903984B (zh) 利用等离子体清洁处理形成钝化层以降低自然氧化物生长的方法
US10199215B2 (en) Apparatus and method for selective deposition
TWI389251B (zh) 處理薄膜之方法
CN102224573B (zh) 用于沟槽与介层洞轮廓修饰的方法与设备
US8043933B2 (en) Integration sequences with top surface profile modification
CN102376564B (zh) 用于提高氮化硅批间均匀度的非晶硅陈化作用
US20060130971A1 (en) Apparatus for generating plasma by RF power
TW202333281A (zh) 用於深溝槽內的低溫選擇性磊晶之方法及設備
CN105745740A (zh) 用于稳定蚀刻后界面以使下一处理步骤之前的队列时间问题最小化的方法
US20210175075A1 (en) Oxygen radical assisted dielectric film densification
US20090191703A1 (en) Process with saturation at low etch amount for high contact bottom cleaning efficiency for chemical dry clean process
CN103930992A (zh) 间层多晶硅电介质帽和形成该间层多晶硅电介质帽的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: American California

Patentee after: Applied Materials Inc.

Address before: American California

Patentee before: Applied Materials Inc.