CN101175570A - 卟啉基电极催化剂 - Google Patents

卟啉基电极催化剂 Download PDF

Info

Publication number
CN101175570A
CN101175570A CNA2006800161929A CN200680016192A CN101175570A CN 101175570 A CN101175570 A CN 101175570A CN A2006800161929 A CNA2006800161929 A CN A2006800161929A CN 200680016192 A CN200680016192 A CN 200680016192A CN 101175570 A CN101175570 A CN 101175570A
Authority
CN
China
Prior art keywords
atom
oxygen
halogen atom
group
another
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006800161929A
Other languages
English (en)
Inventor
岩田奈绪子
永见哲夫
锦织英孝
汤浅真
小柳津研一
山口有朋
北尾水希
今井卓也
木户茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN101175570A publication Critical patent/CN101175570A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Fuel Cell (AREA)

Abstract

本发明提供了一种具有高氧还原活性的大环有机化合物基催化剂。特别地公开了将由式(I)表示的卟啉络合物担载于导电载体上而制得氧还原催化剂。在式(I)中R各自独立地表示氢原子、具有1~6个碳原子的烷基、卤原子、氨基、羟基、硝基、苯基或氰基或者相邻的R可一起形成具有2~6个碳原子的亚甲基链或者芳环;R'各自独立地表示噻吩基;和M表示选自Cu、Zn、Fe、Co、Ni、Ru、Pb、Rh、Pd、Pt、Mn、Sn、Au、Mg、Cd、Al、In、Ge、Cr和Ti的金属原子,M可结合卤原子、氧原子、-OH、氮原子、NO或=CO。

Description

卟啉基电极催化剂
技术领域
本发明涉及有效地还原氧的使用卟啉化合物的电极催化剂。
背景技术
燃料电池是其中提供燃料例如氢气或烃和氧化剂例如氧气和直接将由因此发生的氧化还原反应得到的化学能转化成电能的一种发电系统。当氧气(O2)在燃料电池中被还原时,已知当1电子还原时产生过氧化物,当2电子还原时产生过氧化氢,当4电子还原时产生水。这类燃料电池已经作为比常规发电系统更清洁的能源引起关注,并且这类燃料电池的实际应用得到广泛研究。
作为氧还原催化剂,已广泛使用了涉及采用铂(Pt)、钯(Pd)等的贵金属基电极催化剂。这类贵金属基电极催化剂通常具有高的氧还原活性;然而,它们仍存在经济效率方面的问题。
同时,已知大环有机化合物例如酞菁或卟啉能够还原氧。近年来,开发使用这类大环有机化合物的氧还原催化剂已取得进展(例如日本专利公开(kokai)Nos.57-208073A(1982)、57-208074A(1982)、11-253811A(1999)、2000-157871A和2003-109614A)。
然而,使用大环有机化合物的常规氧还原催化剂具有比前述贵金属基电极催化剂更低的氧还原活性,并且与诱发4电子还原相比,使用大环有机化合物的催化剂不利地更容易诱发2电子还原。因此,这类催化剂几乎不能投入实际使用。
本发明的申请人已经提交了一份申请,其中在中位处用烷基进行取代的卟啉催化剂作为可以克服前述问题的氧还原催化剂(日本专利申请No.2004-206148)。
专利文献1:日本专利公开(kokai)No.57-208073A(1982)
专利文献2:日本专利公开(kokai)No.57-208074A(1982)
专利文献3:日本专利公开(kokai)No.11-253811A(1999)
专利文献4:日本专利公开(kokai)No.2000-157871A
专利文献5:日本专利公开(kokai)No.2003-109614A
发明内容
本发明提供了一种具有高氧还原活性的大环有机化合物基氧还原催化剂。
本发明人进行了集中研究以实现以上目的。结果他们发现使用其中在中位处用噻吩基进行取代的卟啉作为电极催化剂将能够实现以上目的。这促使完成了本发明。
具体地,本发明包括以下发明。
(1)一种氧还原催化剂,其包含导电载体和担载于其上的由式(I)表示的卟啉络合物:
Figure S2006800161929D00021
其中R各自独立地表示氢原子、具有1~6个碳原子的烷基、卤原子、氨基、羟基、硝基、苯基或氰基或者相邻的R一起形成具有2~6个碳原子的亚甲基链或者芳环;R’各自独立地表示噻吩基;和M表示选自Cu、Zn、Fe、Co、Ni、Ru、Pb、Rh、Pd、Pt、Mn、Sn、Au、Mg、Cd、Al、In、Ge、Cr和Ti的金属原子,条件是M可结合卤原子、氧原子、-OH、氮原子、NO或=CO。
(2)根据(1)的氧还原催化剂,其中M表示Co。
(3)根据(1)或(2)的氧还原催化剂,其中R各自独立地表示3-噻吩基。
(4)一种包含导电载体和担载于其上的由式(I)表示的卟啉络合物的氧还原催化剂,其通过在惰性气体氛围中的热处理获得:
Figure S2006800161929D00031
其中R各自独立地表示氢原子、具有1~6个碳原子的烷基、卤原子、氨基、羟基、硝基、苯基或氰基或者相邻的R一起形成具有2~6个碳原子的亚甲基链或者芳环;R’各自独立地表示噻吩基;和M表示选自Cu、Zn、Fe、Co、Ni、Ru、Pb、Rh、Pd、Pt、Mn、Sn、Au、Mg、Cd、Al、In、Ge、Cr和Ti的金属原子,条件是M可结合卤原子、氧原子、-OH、氮原子、NO或=CO。
(5)根据(4)的氧还原催化剂,其中所述热处理在400℃或更高下进行。
(6)一种使用根据(1)~(5)任一项的氧还原催化剂的用于燃料电池的电极催化剂。
(7)一种通过在惰性气体氛围中进行热处理而制备包含导电载体和担载于该载体上的由式(I)表示的卟啉络合物的氧还原催化剂的方法:
Figure S2006800161929D00032
其中R各自独立地表示氢原子、具有1~6个碳原子的烷基、卤原子、氨基、羟基、硝基、苯基或氰基或者相邻的R一起形成具有2~6个碳原子的亚甲基链或者芳环;R’各自独立地表示噻吩基;和M表示选自Cu、Zn、Fe、Co、Ni、Ru、Pb、Rh、Pd、Pt、Mn、Sn、Au、Mg、Cd、Al、In、Ge、Cr和Ti的金属原子,条件是M可结合卤原子、氧原子、-OH、氮原子、NO或=CO。
(8)根据(7)的方法,其中所述热处理在400℃或更高下进行。
本发明提供了一种比常规的苯基取代的卟啉络合物等具有显著更高氧还原活性的卟啉基氧还原催化剂。本发明的氧还原催化剂可用于燃料电池用的电极催化剂等。
本说明书包括在作为本申请的优先权文本的日本专利申请No.2005-137698的说明书和/或附图中披露的部分或全部内容。
附图简述
图1显示了用于在高温/常压下的热处理的设备的实施方案。
参考符号的说明
(a)石英管
(b)管式炉
(c)样品盘
(d)冷凝器
(e)三通旋塞
实施本发明的最佳方式
下文中详细描述了本发明。
其中在中位处用噻吩基进行取代的卟啉络合物被用作本发明的氧还原催化剂的物料。特别地,使用由式(I)表示的卟啉络合物:
Figure S2006800161929D00051
其中R各自独立地表示氢原子、具有1~6个碳原子的烷基、卤原子、氨基、羟基、硝基、苯基或氰基或者相邻的R一起形成具有2~6个碳原子的亚甲基链或者芳环;R’各自独立地表示噻吩基;和M表示选自Cu、Zn、Fe、Co、Ni、Ru、Pb、Rh、Pd、Pt、Mn、Sn、Au、Mg、Cd、Al、In、Ge、Cr和Ti的金属原子,条件是M可结合卤原子、氧原子、-OH、氮原子、NO或=CO。
在用于常规氧还原催化剂的卟啉络合物中,苯基或取代的苯基位于中位处。然而在用于本发明的氧还原催化剂的卟啉络合物中,中位处的取代基(即R’)是噻吩基(优选3-噻吩基)。
本文中使用的术语“具有1~6个碳原子的烷基”可以是指线型或支链烷基。其实例包括甲基、乙基、正丙基、异丙基、正丁基、仲丁基、叔丁基、异丁基、正戊基、仲戊基、异戊基和新戊基。这些烷基可以具有取代基例如卤原子、氨基或羟基。R’优选表示具有1~5个碳原子的烷基,更优选表示具有2~4个碳原子的烷基。
R的实例包括氢原子、具有1~6个碳原子的烷基、卤原子、氨基、羟基、硝基、苯基和氰基,优选氢原子和烷基。作为选择,相邻的R可以一起形成具有2~6个碳原子的亚甲基链或者芳环。这些芳环的实例包括稠合的芳环例如苯和萘环。
用于本发明的卟啉络合物具有由带有前述基团的卟啉骨架和金属原子M形成的N4-螯合物结构。金属原子M的实例包括Cu、Zn、Fe、Co、Ni、Ru、Pb、Rh、Pd、Pt、Mn、Sn、Au、Mg、Cd、Al、In、Ge、Cr和Ti,优选Co、Fe等。另外,这些金属原子M可以包含具有配位在其上的卤原子、氧原子、羟基、氮原子、NO、CO等的配体。
随后,描述制备用于本发明的卟啉络合物的方法。
可以通过下列方式使用吡咯化合物和醛化合物制备在中位处用噻吩基进行取代的卟啉骨架。
Figure S2006800161929D00061
其中R和R’如上定义。
将碱例如吡啶和丙酸等加入反应容器,和在例如约50℃~100℃下加热所得混合物。向其中加入吡咯化合物和醛化合物,随后搅拌。搅拌的持续时间取决于反应温度而变化,并且通常为约1~5小时。反应结束后,将所述反应溶液用碱性水溶液例如氢氧化钠水溶液清洗和然后用水清洗。将有机层分离并在硫酸镁等上干燥以通过蒸馏除去所述溶剂。随后,通过常规提纯方式例如色谱法或重结晶来提纯所述残余物,以得到目标烷基取代的卟啉(I’)。
随后,使用由此得到的噻吩取代的卟啉(I’)和金属原子以形成螯合物。通过将所希望的金属原子的盐或络合物与卟啉(I’)混合而容易地形成螯合物。例如,可以通过将卟啉(I’)彻底溶于溶剂例如DMF中、向其中加入乙酸钴四水合物、在回流下于氩气氛中加热该混合物和通过常见技术提纯所述反应混合物而得到目标钴-卟啉络合物。
根据常见技术通过将上述卟啉络合物(I)担载于导电载体上而形成本发明的氧还原催化剂。例如,制备含有卟啉络合物(I)的浆料、糊状物或者悬浮体、将导电载体浸入其中或者用所述浆料或糊状物涂布导电载体,和然后干燥所述载体。由此可以制备本发明的氧还原催化剂。用于所述浆料、糊状物或悬浮体的溶剂(担载溶剂)的实例包括卤代烃溶剂例如氯仿或四氯乙烷、乙腈、四氢呋喃、单环芳族烃溶剂(例如苯或甲苯)、和C1-6低级醇(例如丙醇或丁醇)。
对导电载体没有特别的限制。例如从优良导电性和成本有效性的观点出发,可以使用碳材料例如炭黑、石墨、碳纤维、碳纳米管或碳纳米纤维。由于其单位重量的大表面积,导电载体优选为颗粒状。在该情形中,导电载体的颗粒直径优选为0.03μm~0.1μm。另外,优选使得导电载体的颗粒形成其中初级颗粒彼此连接的结构。
相对于所述导电载体,担载于导电载体上的所述卟啉络合物的量通常为40~80wt%,和优选50~60wt%。
此外,本发明人发现在惰性气体氛围中将以上述方式得到的包含担载于其上的卟啉络合物(I)的导电载体热处理可以进一步提高用于还原氧的所述氧还原催化剂的活性。可以通过下列方式用于在高温/常压下的热处理的设备进行热处理,例如图1中所示。
将包含担载于其上的卟啉络合物(I)的导电载体置于石英管(a)中,并将该管充填惰性气体和密封或者充入惰性气体以提高该管中的温度。在热处理时,对所述管中的氛围压力没有特别的限制。例如,优选大致0.8atm~1.2atm的常压。热处理优选在300℃或更高、更优选在400℃或更高、最优选在550℃或更高下进行。热处理的上限温度通常为600℃,优选550℃,和最优选500℃。所述热处理的持续时间取决于温度而变化。通常为1~40小时和优选1~3小时。可用于本发明的惰性气体的实例包括稀有气体例如氦气、氖气和氩气、氮气,以及这些的混合气体。在热处理之后,将所述载体冷却至室温以得到本发明的电极催化剂。借助于上述方式通过热处理得到的电极(即烧结电极)具有比热处理之前的电极更好的氧还原活性。
此外,本发明的氧还原催化剂可以包含其它涉及在所述载体上除了卟啉络合物(I)之外还使用贵金属例如铂或钯的4电子氧还原催化剂。
本发明的氧还原催化剂可用作燃料电池例如固体聚合物燃料电池用的电极催化剂。例如,将本发明的电极催化剂分散于含电解质的溶液中、用所得分散液涂布电解质膜和将被涂布的膜干燥。由此可以获得在所述电解质膜表面上具有电极催化剂的燃料电池用电极催化剂。另外,借助于施加压力将碳布等热焊接在催化剂层表面上以制备电极-电解质构造体。
在下文中参照实施例更详细地描述本发明,尽管本发明的技术范围不限于此。
实施例1:5,10,15,20-四(3-噻吩基)卟啉的合成
Figure S2006800161929D00081
合成其中全部4个中位被3-噻吩基取代的卟啉。
将丙酸(200ml)加入2-L四颈烧瓶中以将其加热至140℃,并将吡咯(5.6ml,81mmol)和3-噻吩醛(7.0ml,80mmol)加入其中。反应结束后,冷却所述反应溶液、加入冷甲醇以进行抽滤、将所述残余物溶于氯仿中,并将所得物质用水、氢氧化钠水溶液和水清洗两次。将所述有机层在硫酸镁上干燥,并通过蒸馏除去溶剂。通过硅胶上的柱色谱法(5cm()×50cm)用氯仿洗提所述残余物、收集含有目标产物的级分、通过蒸馏除去溶剂,并从氯仿/己烷中将所得晶体重结晶以得到标题化合物(2.3g;产率:18%)。通过UV分析(UV-2100,Shimadzu Corporation)、1H-NMR(JNMAL-300)和FAB-MASS(JEOL JMS-SX102A)鉴别产物。
UV-vis(CHCl3):λmax=421,521,556,596,和654nm
1H-NMR(300 MHz,CDCl3):δ(ppm):-2.7(s,2H),7.7(q,4H),8.0(d,4H),8.0(d,4H),9.0(s,8H)。
实施例2:5,10,15,20-四(3-噻吩基)卟啉钴络合物(CotthP)的合成
Figure S2006800161929D00091
合成在实施例1中得到的四(3-噻吩基)卟啉的钴络合物。
将DMF(100ml)和300mg实施例1中得到的四(3-噻吩基)卟啉加入并溶于500ml圆底烧瓶中,和用氩气对所得物质脱气。
将乙酸钴四水合物(585mg)超声溶于其中,并使用装有氩气球的Dimroth回流冷凝器于150℃~160℃在回流下将所得物质加热2小时。反应结束后,将所得物质冰冷却至4℃或更低,并加入过量的冰冷却水用于重结晶(DMF/水)。使用玻璃过滤器通过抽滤而回收晶体,然后在真空中干燥(120℃,6小时),得到标题化合物(CotthP)(267mg,82%)。通过UV分析(UV-2100,Shimadzu Corporation)和FAB-MASS(JEOLJMS-SX102A)鉴别产物。
实施例3:将卟啉络合物担载于导电载体(碳)上
将实施例2中得到的CotthP用作卟啉络合物。将炭黑(Ketjen Black)用作导电载体。
将炭黑(500mg)超声分散在氯仿中。使用磁力搅拌器、高剪切应力型搅拌器等在室温到58℃下将所述分散液搅拌1.5小时。使用注射器将CotthP加入其中,搅拌该混合物并同时冷却至30℃达3~6小时。搅拌结束后,通过蒸馏除去氯仿并在真空中干燥所述残余物以得到担载卟啉络合物的碳。
实施例4:对担载卟啉络合物的碳进行热处理
在不同温度下使用图1中所示的用于在高温/常压下热处理的设备将实
施例3中制备的担载卟啉络合物的碳进行热处理,以制得烧结电极。热处理在以下条件下进行。
温度:300℃、400℃、500℃、550℃、600℃
升温速率:5℃/min
惰性气体:氩气(常压)
持续时间:2小时(通常在热处理结束后自然冷却至室温)
实施例5:电化学测定
测定在实施例4中制备的烧结电极的电化学性质。
改性电极的制备
使用热解刨边石墨电极(半径:3.00mm;面积:0.28cm2)。通过用耐水研磨纸(#1000)抛光将所述电极进行预处理,随后在离子交换水中超声清洗。将实施例4中制备的担载卟啉络合物的炭黑(2mg)分散于0.25ml5wt%Nafion的溶液中。从该溶液中分离20μl级分并浇铸在所述电极表面上。
通过循环伏安法(CV)测量评价氧还原特性
通过CV测量评价不同改性电极的氧还原特性。测量于室温下在氧气或氩气氛围中进行,并记录第一次扫描。用于测量的具体条件如下。
使用的仪器:恒电位器[Nikkou Keisoku,DPGS-1]
函数发生器[Nikkou Keisoku,NFG-5]
X-Y记录器[Rikendenshi,D-72DGl
电池溶液:1.0M HClO4
工作电极:改性电极
参考电极:饱和甘汞电极(SCE)
对电极:铂电极
扫描速率:100mV/sec
扫描范围:600至-600mV
通过CV测量确定的分析本发明的卟啉络合物改性电极的峰值电势的结果示于表1中。
表1
    热处理温度(℃)     峰值电势Ep(V vs SCE)
    无热处理300400500550600     0.380.410.400.470.410.42
Ep:循环伏安法中的氧还原波的峰值电势
从上文所示的结果明显看出,当使用本发明的氧还原催化剂时得到的峰值电势显著增强。
工业实用性
用于本发明的卟啉络合物具有高的氧还原电势并且可用作例如燃料电池用的电极催化剂。
本文中引用的所有公开物、专利和专利申请的整个内容通过引用并入本文。

Claims (8)

1.一种氧-还原催化剂,其包含导电载体和担载于其上的由式(I)表示的卟啉络合物:
Figure S2006800161929C00011
其中R各自独立地表示氢原子、具有1~6个碳原子的烷基、卤原子、氨基、羟基、硝基、苯基或氰基或者相邻的R一起形成具有2~6个碳原子的亚甲基链或者芳环;R’各自独立地表示噻吩基;和M表示选自Cu、Zn、Fe、Co、Ni、Ru、Pb、Rh、Pd、Pt、Mn、Sn、Au、Mg、Cd、Al、In、Ge、Cr和Ti的金属原子,条件是M可结合卤原子、氧原子、-OH、氮原子、NO或=CO。
2.根据权利要求1的氧-还原催化剂,其中M表示Co。
3.根据权利要求1或2的氧-还原催化剂,其中R’各自独立地表示3-噻吩基。
4.一种包含导电载体和担载于其上的由式(I)表示的卟啉络合物的氧-还原催化剂,其通过在惰性气体氛围中的热处理获得:
Figure S2006800161929C00012
其中R各自独立地表示氢原子、具有1~6个碳原子的烷基、卤原子、氨基、羟基、硝基、苯基或氰基或者相邻的R一起形成具有2~6个碳原子的亚甲基链或者芳环;R’各自独立地表示噻吩基;和M表示选自Cu、Zn、Fe、Co、Ni、Ru、Pb、Rh、Pd、Pt、Mn、Sn、Au、Mg、Cd、Al、In、Ge、Cr和Ti的金属原子,条件是M可结合卤原子、氧原子、-OH、氮原子、NO或=CO。
5.根据权利要求4的氧-还原催化剂,其中所述热处理在400℃或更高下进行。
6.一种使用根据权利要求1~5中任一项的氧-还原催化剂的用于燃料电池的电极催化剂。
7.一种通过在惰性气体氛围中进行热处理而制备包含导电载体和担载于该载体上的由式(I)表示的卟啉络合物的氧-还原催化剂的方法:
Figure S2006800161929C00021
其中R各自独立地表示氢原子、具有1~6个碳原子的烷基、卤原子、氨基、羟基、硝基、苯基或氰基或者相邻的R一起形成具有2~6个碳原子的亚甲基链或者芳环;R’各自独立地表示噻吩基;和M表示选自Cu、Zn、Fe、Co、Ni、Ru、Pb、Rh、Pd、Pt、Mn、Sn、Au、Mg、Cd、Al、In、Ge、Cr和Ti的金属原子,条件是M可结合卤原子、氧原子、-OH、氮原子、NO或=CO。
8.根据权利要求7的方法,其中所述热处理在400℃或更高下进行。
CNA2006800161929A 2005-05-10 2006-05-10 卟啉基电极催化剂 Pending CN101175570A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP137698/2005 2005-05-10
JP2005137698A JP2006314871A (ja) 2005-05-10 2005-05-10 ポルフィリン系電極触媒

Publications (1)

Publication Number Publication Date
CN101175570A true CN101175570A (zh) 2008-05-07

Family

ID=37396688

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006800161929A Pending CN101175570A (zh) 2005-05-10 2006-05-10 卟啉基电极催化剂

Country Status (6)

Country Link
US (1) US20090048096A1 (zh)
JP (1) JP2006314871A (zh)
CN (1) CN101175570A (zh)
DE (1) DE112006001184T5 (zh)
GB (1) GB2440489B8 (zh)
WO (1) WO2006121191A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102113155B (zh) * 2008-07-29 2013-11-13 丰田自动车株式会社 制备燃料电池电极催化剂的方法和固体聚合物燃料电池
TWI609719B (zh) * 2016-12-09 2018-01-01 National Taiwan University Of Science And Technology 用於燃料電池的觸媒及其製造方法
CN115894494A (zh) * 2022-12-29 2023-04-04 南方科技大学 配体、配合物及在电化学反应中的应用

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080286490A1 (en) * 2005-02-20 2008-11-20 Hahn-Meitner-Institut Berlin Gmbh Production of a Platinum-Free Chelate Catalyst Material as an Intermediate Product, and Further Processing Thereof to Obtain an Electrocatalytic Coating as a Final Product
IN266777B (zh) 2006-03-24 2015-06-01 Acal Energy Ltd
GB0608079D0 (en) 2006-04-25 2006-05-31 Acal Energy Ltd Fuel cells
GB0614337D0 (en) 2006-07-19 2006-08-30 Acal Energy Ltd Fuel Cells
GB0614338D0 (en) 2006-07-19 2006-08-30 Acal Energy Ltd Fuel cells
CN101657921B (zh) * 2007-04-12 2013-06-12 3M创新有限公司 高性能、高耐用非贵重金属燃料电池催化剂
GB0718349D0 (en) 2007-09-20 2007-10-31 Acal Energy Ltd Fuel cells
GB0718577D0 (en) 2007-09-24 2007-10-31 Acal Energy Ltd Fuel cells
WO2009075037A1 (en) * 2007-12-12 2009-06-18 Toyota Jidosha Kabushiki Kaisha Method of preparing an electrode catalyst for fuel cells, and a polymer electrolyte fuel cell
GB0801199D0 (en) * 2008-01-23 2008-02-27 Acal Energy Ltd Fuel cells
GB0801198D0 (en) 2008-01-23 2008-02-27 Acal Energy Ltd Fuel cells
JP5158792B2 (ja) * 2008-02-14 2013-03-06 独立行政法人産業技術総合研究所 一酸化炭素の電気化学的酸化用触媒
JP5386977B2 (ja) * 2008-06-06 2014-01-15 東洋紡株式会社 金属錯体複合体を用いた燃料電池用触媒、並びに膜電極接合体、燃料電池、及び酸化還元触媒
WO2011016855A1 (en) * 2009-08-04 2011-02-10 Gentex Corporation Cathodic materials for use in electrochemical sensors and associated devices and methods of manufacturing the same
JP5837364B2 (ja) * 2010-08-30 2015-12-24 住友化学株式会社 ポリマーコンポジット変性物の製造方法
JP2012110811A (ja) * 2010-11-22 2012-06-14 Sumitomo Chemical Co Ltd 変性物、燃料電池用電極触媒、膜電極接合体及び燃料電池
CN102851023A (zh) * 2011-07-01 2013-01-02 陈文通 一种锌卟啉荧光材料及其制备方法
CN102432615B (zh) * 2011-08-26 2014-03-12 广东信泰科技有限公司 用作太阳能电池的染料敏化剂的化合物及其制备方法
CN102658130B (zh) * 2012-04-20 2013-11-06 大连理工大学 钌-钯双金属负载二氧化钛纳米管光催化剂的制备方法及其应用
WO2014020915A1 (ja) 2012-08-01 2014-02-06 東洋インキScホールディングス株式会社 電池触媒用組成物及びその製造方法、電極材料、並びに燃料電池
US20170184564A1 (en) * 2014-03-19 2017-06-29 Case Western Reserve University Sensor for nitric oxide detection
CN107004862B (zh) * 2014-12-15 2021-02-05 3M创新有限公司 膜电极组件
JP7303556B2 (ja) * 2018-04-18 2023-07-05 国立大学法人東海国立大学機構 超強力触媒を用いた難分解性有機物の分解方法及び超強力触媒

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3801320A (en) * 1971-10-18 1974-04-02 Monsanto Co Photoimaging in presence of oxygen
US4690741A (en) * 1984-10-12 1987-09-01 Cape Cod Research, Inc. Electrolytic reactor and method for treating fluids
EP1289035A2 (en) * 2001-08-29 2003-03-05 Matsushita Electric Industrial Co., Ltd. Composite electrode for reducing oxygen
WO2004074828A1 (ja) * 2003-02-24 2004-09-02 Makoto Yuasa 活性酸素種等測定装置
JP2005066592A (ja) * 2003-08-05 2005-03-17 Toyota Motor Corp 触媒材料およびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102113155B (zh) * 2008-07-29 2013-11-13 丰田自动车株式会社 制备燃料电池电极催化剂的方法和固体聚合物燃料电池
TWI609719B (zh) * 2016-12-09 2018-01-01 National Taiwan University Of Science And Technology 用於燃料電池的觸媒及其製造方法
US10529993B2 (en) 2016-12-09 2020-01-07 National Taiwan University Of Science And Technology Catalyst for fuel cell and method for manufacturing the same
CN115894494A (zh) * 2022-12-29 2023-04-04 南方科技大学 配体、配合物及在电化学反应中的应用
CN115894494B (zh) * 2022-12-29 2024-06-18 南方科技大学 配体、配合物及在电化学反应中的应用

Also Published As

Publication number Publication date
GB2440489B (en) 2009-10-07
WO2006121191A1 (ja) 2006-11-16
US20090048096A1 (en) 2009-02-19
DE112006001184T5 (de) 2008-03-06
JP2006314871A (ja) 2006-11-24
GB2440489A8 (en) 2011-06-29
GB2440489B8 (en) 2011-06-29
GB2440489A (en) 2008-01-30
GB0722840D0 (en) 2008-01-02

Similar Documents

Publication Publication Date Title
CN101175570A (zh) 卟啉基电极催化剂
CN102666547B (zh) 含氮芳族化合物和金属配合物
JP5422159B2 (ja) 環状化合物、その金属錯体及び変性金属錯体
WO1994004614A1 (en) Metal-mediated cross-coupling with ring-metalated porphyrins
TW201038573A (en) Cyclic compound
JP2003109614A (ja) 高分子固体電解質型燃料電池酸素極用触媒及びその製造方法
Ozok et al. Novel benzothiophene based catalyst with enhanced activity for glucose electrooxidation
JP4461427B2 (ja) 電極触媒体及びその製造方法
CN107074868A (zh) 用于将co2选择性电化学还原为co的卟啉分子催化剂
CN102069000A (zh) 一种生产氯乙烯用非汞催化剂及其制备方法
CN105061340B (zh) 活性炭负载纳米铜催化剂催化合成1,2,3‑三氮唑类化合物的方法
CN100509156C (zh) 一种卤素取代双核酞菁铁氧还原催化剂及其制备方法
Hegde et al. C− H Activation of Benzamides Using Biogenically Synthesized Pd@ CNTs Catalyst under External Ligand Free Condition: Access to Isoquinolones and A DFT Study of Phytochemicals
Geng et al. Magnetite nanoparticles immobilized on hydrophilic polyelectrolyte-grafted carbon nanotube as efficient organic–inorganic hybrid heterogeneous catalyst for Knoevenagel condensation in aqueous medium
JP2005230648A (ja) 燃料電池カソード電極触媒
Falkowski et al. Multiwalled carbon nanotube/sulfanyl porphyrazine hybrids deposited on glassy carbon electrode—Effect of nitro peripheral groups on electrochemical properties
JP5328888B2 (ja) 燃料電池用電極触媒の調製方法
CN111362952A (zh) 单一取代基金属酞菁衍生物的制备和应用
Yuasa et al. A comparison of several meso‐tetraalkyl cobalt porphyrins as catalysts for the electroreduction of dioxygen
CN107201532B (zh) 芳香化合物的硝化方法
JP2005205393A (ja) ポルフィリン系電極触媒
JP2006247523A (ja) 酸素還元触媒
JP2009234918A (ja) 変性金属錯体及びその用途
CN113754606B (zh) 吩噁嗪二胺衍生物和/或吩噻嗪二胺衍生物及其制备方法
JP2008251394A (ja) インドロ[3,2−b]カルバゾール型ポリアミド化合物からなる電極活物質及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20080507

C20 Patent right or utility model deemed to be abandoned or is abandoned