WO2004074828A1 - 活性酸素種等測定装置 - Google Patents

活性酸素種等測定装置 Download PDF

Info

Publication number
WO2004074828A1
WO2004074828A1 PCT/JP2004/002112 JP2004002112W WO2004074828A1 WO 2004074828 A1 WO2004074828 A1 WO 2004074828A1 JP 2004002112 W JP2004002112 W JP 2004002112W WO 2004074828 A1 WO2004074828 A1 WO 2004074828A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen species
active oxygen
porphyrin
reactive oxygen
concentration
Prior art date
Application number
PCT/JP2004/002112
Other languages
English (en)
French (fr)
Inventor
Makoto Yuasa
Fumio Mizoguchi
Hitoshi Takebayashi
Masahiko Abe
Masumi Koishi
Shigeru Kido
Masamitsu Nagahama
Masayuki Kawasaki
Masahiko Yokosuka
Takashi Ishihara
Rizwangul Ibrahim
Original Assignee
Makoto Yuasa
Fumio Mizoguchi
Hitoshi Takebayashi
Masahiko Abe
Masumi Koishi
Shigeru Kido
Masamitsu Nagahama
Masayuki Kawasaki
Masahiko Yokosuka
Takashi Ishihara
Rizwangul Ibrahim
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makoto Yuasa, Fumio Mizoguchi, Hitoshi Takebayashi, Masahiko Abe, Masumi Koishi, Shigeru Kido, Masamitsu Nagahama, Masayuki Kawasaki, Masahiko Yokosuka, Takashi Ishihara, Rizwangul Ibrahim filed Critical Makoto Yuasa
Priority to EP04713993.6A priority Critical patent/EP1600766B1/en
Priority to JP2005502808A priority patent/JP5053547B2/ja
Priority to US10/547,142 priority patent/US8298387B2/en
Publication of WO2004074828A1 publication Critical patent/WO2004074828A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
    • A61B5/14865Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood

Definitions

  • the present invention relates to a reactive oxygen species for measuring the concentration of reactive oxygen species such as superoxide ion radical (0 2 —), hydrogen peroxide, bright OH, N ⁇ , and ONOO— in vivo and in vitro.
  • the present invention relates to a measuring device.
  • the on-radical acts as an electron acceptor (oxidizing agent), an electron donor (reducing agent), and a hydrogen ion acceptor (base). Radical concentration measurements have been attempted.
  • cytochrome c (trivalent) (cyt.c (F e 3+ )) reacts with superoxide ionone-radical as shown in formula (5) to produce cytochrome c (divalent) (cyt.c (F e 2 +)).
  • cytochrome c (divalent) (cyt.c (F e 2 +))
  • the cytochrome c (divalent) reduced by O 2 — is electrochemically reoxidized, and the oxidation current at that time is measured. It quantitatively detects the concentration of oxydionion radical.
  • an active oxygen species concentration sensor including an electrode, an active oxygen species electrode, a counter electrode and a reference electrode; and a sample for measuring a current generated between the metal and the active oxygen species in the metalloporphyrin polymer film by the sensor.
  • a method for detecting reactive oxygen species was proposed.
  • an electrode in which a polymer film of a metal porphyrin complex in which a metal atom is introduced at the center of a porphyrin compound is formed on the surface of a conductive member does not require a large amount of enzymes, and there is no problem of deactivation. It is based on the ability to detect the presence and concentration of reactive oxygen species. Disclosure of the invention
  • the present invention is a further development of the above-mentioned proposal of the present applicant, and it is possible to reliably measure the concentration of reactive oxygen species and the like such as superoxide adionone radical (0 2 ⁇ ) in vivo or in vitro.
  • the whole device can be made compact and can be attached to the living body at any time, and the measured data can be transmitted to a remote place.
  • an active oxygen species measuring device of the present invention comprises: an active oxygen species sensor provided with an electrode capable of detecting the presence of an active oxygen species or the like as a current; and a measuring voltage applied to the active oxygen species sensor. It is characterized by comprising a power supply means for applying, and an active oxygen species concentration measuring means for measuring the concentration of the active oxygen species or the like from the current detected by the active oxygen species sensor. By forming in this way, an appropriate measurement voltage is applied from the power supply means to the reactive oxygen species sensor. Then, the electrode of the active oxygen species sensor detects the presence of the active oxygen species and the like as a current, and the active oxygen species concentration measuring means can measure the concentration of the active oxygen species and the like from the detected current.
  • the reactive oxygen species concentration measuring means includes external output means for outputting the measured concentration of the active oxygen species and the like to the outside, and receives the output of the external output means to measure the concentration of the active oxygen species and the like. It may be configured to have remote monitoring means for monitoring. This makes it possible to monitor the health of the living body at a remote location using the remote monitoring means.
  • the remote monitoring means includes a communication means for transmitting and receiving data to and from the reactive oxygen species measuring device; a computing means for performing data processing on the concentration of the active oxygen species and the like received from the external output means; Display means for displaying the concentration of the active oxygen species and the data processing result obtained by the arithmetic means, wherein the external output means is connected to the remote monitoring means. Communication means for transmitting and receiving data between them, and display means for displaying the concentration of reactive oxygen species and the like and data received from the remote monitoring means.
  • the calculating means performs data processing on the concentration of the reactive oxygen species and the like, and the health condition of the living body such as a person to be measured and the environmental condition outside the living body
  • the concentration of reactive oxygen species and the like By displaying the concentration of reactive oxygen species and the like, the health condition of the living body and the extracorporeal environmental condition on the display means, the health condition of the living body can be monitored from a remote place.
  • the health condition of the living body, etc. obtained at a remote location is returned to the reactive oxygen species measuring device via the remote monitoring means and the reactive oxygen species measuring device communication means, and is displayed on the display means to notify the user. be able to.
  • the remote monitoring means as a base station, Simultaneous access to the reactive oxygen species measurement device side, centralized management of various data, and data processing that cannot be performed on the reactive oxygen species etc. measurement device side, required arithmetic processing obtained
  • the data can be sent to the measuring device for reactive oxygen species.
  • transmission and reception of data between the active oxygen species measuring device and the remote monitoring means are performed via a wireless or wired transmission system.
  • a wireless propagation system when a wireless propagation system is used, the concentration of active oxygen species and the like can be remotely monitored and controlled regardless of the distance between the remote monitoring means and the active oxygen species measuring device. Especially, even when the measuring device such as reactive oxygen species moves, normal operation can always be continued.
  • the wireless propagation system known methods using various communication methods such as radio waves, visible light, infrared light, ultraviolet light, ultrasonic waves, the Internet, and satellite communication can be used. Also, if a wired transmission system is used, reliable data transmission / reception is possible, and furthermore, it is possible to effectively use in a hospital or the like without giving a radio wave interference to other electronic devices and the like. .
  • the communication means and the display means of the reactive oxygen species measuring device are formed by a mobile phone, and are formed so as to exchange data with the remote monitoring means via the Internet. .
  • This makes it possible to use mobile phones that are extremely excellent in portability and to exchange data through the Internet to measure completed oxygen species, etc. It can be measured at any time in areas where it can be reached, and it is possible to monitor the health of living organisms by measuring reactive oxygen species, etc., even in an acute situation.
  • the electrodes of the reactive oxygen species sensor detect the presence of reactive oxygen species in the living body. It is good to form in the shape which can be detected as a flow. Thus, for example, by attaching electrodes to a human body or a moving object, it is possible to measure reactive oxygen species and the like in a living body, and it is also possible to constantly measure reactive oxygen species and the like in a living body.
  • the power supply means may be configured to variably control the measurement voltage applied to the active oxygen species sensor. As a result, an appropriate measurement voltage corresponding to the active oxygen species to be measured can be applied to the active oxygen species sensor, and the active oxygen species to be measured can be accurately measured.
  • the reactive oxygen species concentration measuring means may include at least one of display means for displaying the concentration of the active oxygen species measured based on the current detected by the reactive oxygen species sensor and external output means for outputting the concentration to the outside. It is good to form. This makes it possible to clearly display the concentration of the active oxygen species and the like measured by the display means, and to transmit the concentration of the active oxygen species and the like measured by the external output means to a remote place. Can be monitored remotely.
  • the electrode of the active oxygen species sensor may be formed so that a material capable of detecting the presence of an active oxygen species or the like as a current is provided on the electrode surface. By placing the material on the electrode surface in a region where the active oxygen species or the like in the living body or in the living body is present, the concentration of the active oxygen species or the like in the living body or in the living body can be reliably measured.
  • a material capable of detecting the presence of an active oxygen species or the like as an electric current can be formed of at least one of a polymer film of a metal vorphyrin complex, a redox polymer or a derivative thereof, a metal complex, and a complex compound. Good. According to the material formed in this way, the concentration of active oxygen species and the like can be accurately and reliably measured.
  • metal vorphyrin complex is formed by the following formula (I) or (II). Let's assume it's done
  • M represents a metal selected from iron, manganese, cobalt, chromium, and iridium, and at least one of the four Rs is a thiofuryl group, a pyrrolyl group, a furyl group, or a mercapto group. It is any group selected from a phenyl group, an aminophenyl group, and a hydroxyphenyl group, and other R represents any of the above groups, an alkyl group, an aryl group, or hydrogen.
  • M and R have the above-mentioned meanings, and at least one of the two Ls is imidazole and its derivatives, pyridine and its derivatives, aniline and its derivatives, histidine and its derivatives Nitrogen-based axial ligands such as trimethylamine and its derivatives, thiophenol and its derivatives, cysteine and its derivatives, methionine and its derivatives, such as sulfur-based axial ligands, benzoic acid and its derivatives, acetic acid and An oxygen-based axial ligand such as a derivative thereof, phenol and a derivative thereof, an aliphatic alcohol and a derivative thereof, and water; and other L is any one of the above-described axial ligands or ligands. Show what is not.
  • a metal porphyrin complex can be reliably formed on the surface of the electrode, and an electrode having excellent sensitivity can be obtained.
  • porphyrin compounds that form metal porphyrin complexes include 5,10,15,20-tetrakis (2-thiofuryl) porphyrin and 5
  • Such active oxygen species measuring device of the present invention is Ru der those acting configured, in vivo or in vitro super one Okishidoa two on radical (0 2 - -) concentration of the active oxygen species such as Measurement can be performed reliably, the entire device can be made compact, it can be always attached to a living body, and the measured data can be transmitted to a remote place.
  • the health status of the subject can be returned to the measurement side of the reactive oxygen species, etc., to be informed, and by monitoring and monitoring the reactive oxygen species, the excellent effects of monitoring the health of the living body can be achieved. Can be demonstrated. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a circuit diagram showing one embodiment of the reactive oxygen species measuring apparatus of the present invention
  • FIG. 2 (a) shows one embodiment of the active oxygen species sensor used in the reactive oxygen species measuring apparatus of the present invention
  • FIG. 3 (b) is a left side view of FIG. 3 (a)
  • FIG. 3 (a) is a side view showing another embodiment of the reactive oxygen species sensor used in the reactive oxygen species measuring apparatus of the present invention
  • FIG. 4 (b) is a left side view of FIG. 4 (a)
  • FIG. 4 is a side view showing still another embodiment of the reactive oxygen species sensor used in the reactive oxygen species measuring apparatus of the present invention.
  • FIG. 5 is a side view showing still another embodiment of the reactive oxygen species sensor used for the reactive oxygen species etc. measuring device of the present invention.
  • FIG. 6 (a) is a plan view of a reactive oxygen species sensor used in the apparatus for measuring reactive oxygen species, etc. of the present invention, showing a still another embodiment of the present invention, with a cover removed, and (b) of FIG. 6 (a).
  • FIG. 7 (c) is an exploded perspective view showing a state where a cover is removed, and
  • FIG. 7 is a circuit diagram showing another embodiment of the measuring apparatus for reactive oxygen species and the like of the present invention.
  • FIG. 1 shows an embodiment of the apparatus for measuring active oxygen species and the like of the present invention.
  • the reactive oxygen species measurement device of the present embodiment includes an active oxygen species sensor 1 having an electrode capable of detecting the presence of a reactive oxygen species or the like as a current, and a power supply for applying a measurement voltage to the active oxygen species sensor 1.
  • the active oxygen species sensor 11 in the present embodiment is formed in a two-electrode system, and is formed by the working electrode 4 and the counter electrode 5 and the shield 6. Note that a three-electrode type may be provided by providing a reference electrode (not shown).
  • the power supply means 2 includes a switch 8, a voltage dividing resistor Rl, a variable resistor VR1, and a voltage dividing resistor R2 connected in series to a DC power source 7 such as a battery and a potentiostat, and a variable resistor VR1 and a voltage dividing resistor. It is formed so that the measurement voltage is variably output from both ends of R2. The measurement voltage is measured by a voltmeter 9.
  • the measurement voltage applied to the active oxygen species sensor 11 by the power supply means 2 is variably controlled according to the active oxygen species to be measured by changing the resistance value of the variable resistor VR1. For example, Super O carboxymethyl door two Onrajika Le (0 2 _ •) 0. 5 V, the oxygen molecules (O 2) is _ 0.
  • an active oxygen species concentration measuring means 3 for amplifying and measuring a weak current corresponding to the concentration of the active oxygen species flowing between the counter electrode 5 and the working electrode 4 of the active oxygen species sensor 1 is connected.
  • the active oxygen species concentration measuring means 3 includes a display means 10 for displaying the concentration of the active oxygen species and the like measured based on the current detected by the active oxygen species sensor 1, and an external output means 1 for outputting to the outside by transmission or the like. 1 and.
  • the display means 10 and the external output means 11 may have at least one of them. If external output means 11 is provided, remote monitoring means 12 provided with receiving means 13 is provided to receive the concentration detection result sent from reactive oxygen species concentration measuring means 3 and to activate Remotely monitor the concentration of oxygen species It is good to do so. Specifically, as shown in FIG.
  • the remote monitoring means 12 includes a receiving means 13 and detects the concentration detection result sent from the external output means 11 of the reactive oxygen species concentration measuring means 3.
  • the calculating means (not shown) performs calculations based on the concentration of the active oxygen species measurement, etc., to obtain the health state and environmental state of the living body and the outside of the living body, which are the measurement targets, and is also illustrated. It is preferable to display the concentration of reactive oxygen species, etc., the health condition of the living body to be measured, and the environmental condition outside the living body by remote display means, and monitor the concentration of reactive oxygen species, etc., remotely.
  • working electrode 4 serving as an electrode of the active oxygen species sensor 11 will be described.
  • the working electrode 4 is formed in a shape capable of detecting the presence of reactive oxygen species or the like in a living body as an electric current, for example, in the form of a thin 21 dollar that can be inserted into a living body from the outside, or a microscopic body that can be inserted into a blood vessel It may be formed into a catheter shape or a shape that can be joined to the skin surface, for example, a shaft portion of a piercing. Thus, for example, it is possible to measure the reactive oxygen species and the like in the human body by attaching the working electrode 4 to the human body, or to constantly measure the reactive oxygen species and the like in the living body. Specific configurations of the working electrode 4 and the counter electrode 5 will be described later.
  • the working electrode 4 may be formed so that a material capable of detecting the presence of active oxygen species or the like as a current is provided on the working electrode surface.
  • a material capable of detecting the presence of active oxygen species or the like as a current is provided on the working electrode surface.
  • the concentration of the active oxygen species and the like in the living body can be reliably measured by placing the material on the working electrode surface in the region where the active oxygen species and the like of the living body are present.
  • the material of the working electrode 4 capable of detecting the presence of reactive oxygen species or the like as a current includes at least one of a polymer film of a metal vorphyrin complex, a redox polymer or a derivative thereof, a metal complex, and a complex compound. It is good to form by one kind. According to the material formed in this way, active oxygen species The concentration can be accurately and reliably measured.
  • the conductive member constituting the working electrode 4 can be used without any particular limitation as long as it is a member generally used for an electrode.
  • GC glassy carbon
  • pyrolytic graphite
  • HOP G Oriented Pyro retainer worship Gras phi Bok
  • platinum gold
  • noble metals such as silver
  • I tO I n 2 0 3 / S n0 2 a
  • the shape of the conductive member is not particularly limited as long as it can be used as an electrode, and may be various shapes such as a columnar shape, a prismatic shape, a needle shape, and a fiber shape.
  • the shape is a needle shape, a catheter shape, or a pierced shaft shape as described above.
  • M represents a metal selected from iron, manganese, cobalt, chromium, and iridium, and at least one of the four Rs is a thiofuryl group, a pyrrolyl group, a furyl group, or a mercaptofin. It is any group selected from an enyl group, an aminophenyl group, and a hydroxyphenyl group, and the other R represents any one of the above groups, an alkyl group, an aryl group, or hydrogen.
  • M and R have the above-mentioned meanings, and at least one of the two Ls is imidazole and its derivatives, pyridine and its derivatives, and aniline and its derivatives Nitrogen-based axial ligands such as histidine and its derivatives, trimethylamine and its derivatives, and sulfur-based axes such as thiophenol and its derivatives, cysteine and its derivatives, and methionine and its derivatives Ligands, benzoic acid and its derivatives, acetic acid and its derivatives, phenol and its derivatives, aliphatic alcohols and its derivatives, oxygen-based axial ligands such as water, and the other L is any of the above Axial ligands or those without ligands are shown.
  • Nitrogen-based axial ligands such as histidine and its derivatives, trimethylamine and its derivatives, and sulfur-based axes such as thiophenol and its derivatives, cysteine and its derivatives, and methionine and its derivative
  • the metal vorphyrin complex represented by the above formula (I) or (II) is a complex compound in which a metal atom is coordinated to a porphyrin compound.
  • this porphyrin compound is a cyclic compound in which four pyrrol rings are alternately bonded to four methine groups at the a; position, and is formed with four nitrogen atoms facing the center.
  • a complex compound metal vorphyrin complex
  • a metal atom is introduced into the center of the porphyrin by using a commonly used method for forming a metal complex, for example, a method such as metallization.
  • a method such as metallization.
  • various metals such as iron, manganese, cobalt, chromium, and iridium can be used.
  • the metal atom can be properly used depending on the type of the active oxygen species or the like to be measured. For example, when measuring superoxide ion radicals, iron, manganese, cobalt, etc. are measured, and when measuring molecular oxygen, iron, cobalt, manganese, chromium, iridium, etc. are measured. When measuring hydrogen oxide, it is preferable to use iron, manganese, etc., and when measuring OH, N ⁇ , ON ⁇ _, etc., it is preferable to use iron, manganese, etc., respectively.
  • the porphyrin compound used in the present invention is a porphyrin compound, which is an unsubstituted porphyrin, in which at least one of the four positions of 5, 10, 15, 20 according to 1 UPAC nomenclature is a thiofuryl group.
  • Frill porphyrin 5 10, 15, 20-tetrakis (3-thiofuryl) porphyrin, 5? 10, 15, 20-tetrakis (2-pyrrolyl) porphyrin, 5, 10? 1,5,20-tetrakis (3-pyrrolyl) porphyrin, 5,1015,20-tetrakis (2-furyl) volphyrin, 5,10,1520-tetrakis (3-furyl) porphyrin,
  • examples of imidazole derivatives include methyl imidazole, ethyl imidazole, propyl imidazole, and dimethyl imidazole.
  • examples of derivatives of pyridine include methylpyridine, methylpyridyl acetate, nicotinamide, pyridazine, pyrimidine, virazine, and triazine, and examples of derivatives of aniline include aminophenyl.
  • histidine derivatives include histidine methyl ester, histamine and hippuryl-histidyl-leucine, and examples of trimethylamine derivatives include triethylamine and tripropylamine, and examples of thiophenol derivatives.
  • the Mercaptophenol As for the Mercaptophenol, mercaptobenzoic acid, aminothiophenol, benzenedithiol, methylbenzenedithiol, etc .; examples of cysteine derivatives; cistin methyl ester, cysteineethyl ester, etc .; and examples of methionine derivatives
  • examples of benzoic acid derivatives include methionine methyl ester and methionine ethyl ester
  • examples of benzoic acid derivatives include salicylic acid, fumaric acid, isofuric acid, and terefuculic acid.
  • acetic acid derivatives include trifluorofluoride Acetic acid, mercaptoacetic acid, propionic acid, butyric acid, etc.
  • examples of phenol derivatives include cresol and dihydroxybenzene
  • examples of aliphatic alcohol derivatives include ethyl alcohol, propyl alcohol. .
  • a polymer film of the metal porphyrin complex on the surface of the conductive member of the working electrode 4 in order to form a polymer film of the metal porphyrin complex on the surface of the conductive member of the working electrode 4, electrolytic polymerization, solution polymerization, heterogeneous polymerization, Various polymerization methods such as a method can be used. Of these, it is preferable to form a polymer film using an electropolymerization method. Specifically, in an organic solvent such as dichloromethane, chloroform, and carbon tetrachloride, tetrabutylammonium perchlorate is used.
  • TBAP Bu 4 NC I 0 4
  • TP AP P r 4 NC I_ ⁇ 4
  • TEAP tetra-E chill ammonium Niu arm Park opening rate
  • a suitable supporting electrolyte such as a conductive electrode to a working electrode, a noble metal electrode such as a platinum (Pt) electrode, an insoluble electrode such as a titanium electrode, a carbon electrode, or a stainless steel electrode, and a saturated calomel electrode ( SCE), silver-monochloride electrode, etc.
  • a suitable supporting electrolyte such as a conductive electrode to a working electrode, a noble metal electrode such as a platinum (Pt) electrode, an insoluble electrode such as a titanium electrode, a carbon electrode, or a stainless steel electrode, and a saturated calomel electrode ( SCE), silver-monochloride electrode, etc.
  • a metalloporphyrin polymer film can be formed on the surface of the conductive member.
  • Figures 2 (a) and (b) show active oxygen species sensors formed into needle-shaped electrodes by integrating the working electrode 4 and counter electrode 5 in consideration of in vivo measurement, complex measurement, clinical diagnosis and treatment, etc.
  • Indicates 1 In the active oxygen species sensor 1 shown in FIG. 2, the outermost electrode is a counter electrode 5 formed of a thin pipe, and a conductive member forming the working electrode 4 via an electrically insulating material 14 is provided concentrically inside the counter electrode 5.
  • the working electrode 4, the electrically insulating material 14, and the tip of the counter electrode 5 are cut obliquely so as to provide a convenient needle tip, and the working electrode 4 extends from the tip of the 21-shaped counter electrode 5 to the outside.
  • the above-mentioned metal porphyrin polymer film is formed on the exposed portion.
  • the working electrode 4 and the counter electrode 5 are formed so as to be electrically connected with the lead wires 4a and 5a, respectively.
  • the constituent material of the counter electrode 5 may be a noble metal such as platinum, gold, or silver, a corrosion-resistant alloy such as titanium, stainless steel, iron-chromium alloy, or a material such as carbon. Therefore, it is preferable to use a highly safe material (for example, precious metals such as platinum, gold, and silver, titanium, stainless steel, and carbons).
  • the outer shape of the counter electrode 5 be formed as thin as possible, for example, about 0.2 to 1.5 mm.
  • various reference electrodes such as a silver Z silver chloride electrode and mercury / mercuric chloride can be used as the reference electrode.
  • a solid reference electrode can also be used.
  • the thickness of the polymer film of the metal volphyrin complex is appropriately determined depending on the type of the electrode and the metal volfilin complex, the type of active oxygen to be measured, and the like. It is preferred that:
  • FIGS. 3 (a) and 3 (b) show another active oxygen species sensor 11a formed in the shape of a twenty dollar as in FIG.
  • the active oxygen species sensor 1a of the embodiment of FIG. 3 is used to remove unnecessary in-vivo current, current noise, etc., and to improve sensitivity, signal Z noise ratio (SZN ratio), etc. This is an improvement on oxygen species sensor 1-1.
  • the working electrode 4 made of a conductive material is put in an electrically insulating material 14 (two-layer structure), and they are put in a counter electrode 5 (three-layer structure).
  • the tubing is placed in a porous material 14 (four-layer structure), and the outside of the thin tube is finally covered with a material such as a metal that serves as a ground (five-layer structure) to form a ground part 15.
  • the thickness of the polymer film of the metal volphyrin complex is appropriately determined depending on the type of the electrode and the metal volfilin complex, the type of active oxygen to be measured, and the like, but is 1 or less in terms of electrode activity, modification stability, and the like. Is preferred.
  • the active oxygen species sensor 1a having the structure shown in FIG. 3 is also used for composite measurement, etc., a multilayer structure of about 10 several layers is possible.
  • the material of the earth can be a true metal such as platinum, gold or silver, a corrosion-resistant alloy such as titanium, stainless steel, iron chromium alloy, or a material such as carbon. Since it often enters the body, it is preferable to use a highly safe material (for example, a true metal such as platinum, gold, and silver, titanium, stainless steel, and carbon steel).
  • Each of the reactive oxygen species sensors 1 and 1a shown in FIGS. 2 and 3 can measure reactive oxygen species and the like by inserting a sharp tip of an electrode portion into a living body.
  • FIG. 4 shows another active oxygen species sensor 1b formed in a catheter shape.
  • the active oxygen species sensor 1b of the embodiment of FIG. 4 forms a thin electrode portion composed of the working electrode 4, the electrically insulating material 14 and the counter electrode 5 as in FIG. 2, and the tip of the electrode portion extends in the axial direction.
  • the electrode is fixed to the tip of a resin pipe 16 with an outer diameter of about lmm together with the lead wires 4a and 5a connected to the working electrode 4 and the counter electrode 5. I have.
  • the resin pipe 16 is made of a material that can be safely inserted into a living body.
  • Each reactive oxygen species sensor 1b shown in Fig. 4 measures reactive oxygen species by inserting a thin electrode part into a living body, specifically into a blood vessel, a lymphatic vessel, a digestive organ, an organ, or the like. be able to.
  • the direction of travel of the electrode portion at the tip be freely controlled remotely.
  • the electrode section is mounted with a slight inclination with respect to the axial direction of the resin pipe 16 and the direction of travel of the electrode section can be selected by rotating the resin pipe 16 around the axis.
  • a small bimetal is provided in the vicinity of the electrode part, and by controlling the energization, the bimetal is bent in an arbitrary direction so that the traveling direction can be selected. It is advisable to apply a magnetic field from outside so that the traveling direction of the small magnet can be selected.
  • FIG. 5 shows another active oxygen species sensor 1c formed in a pierce shaft shape.
  • the active oxygen species sensor 1c of the embodiment of FIG. 5 forms a narrow electrode portion composed of the working electrode 4, the electrically insulating material 14 and the counter electrode 5 as in FIG. In the middle part, the working electrode 4 inside the counter electrode 5 and the electrical insulating material 14 are exposed on the outer peripheral surface, respectively.
  • the small power supply means 2 and the reactive oxygen species concentration measuring means provided in the decoration part 17 of the piercing 3 is formed by connecting a working electrode 4 and a counter electrode 5.
  • Each active oxygen species sensor 1c shown in FIG. 5 can measure active oxygen species and the like by passing a thin electrode portion through a piercing hole 19 of an ear 18.
  • FIG. 6 shows still another reactive oxygen species sensor 1d formed in a chip shape.
  • the reactive oxygen species sensor 1 d of the embodiment of FIG. 6 is taken out of the living body. Oxygen concentration in the liquid to be measured such as minute blood Is measured.
  • FIG. 6 is exaggerated for convenience of explanation, the size of the chip is, for example, 5 mm X 20 to 30 mm in a planar shape and 0.5 to 1.0 mm in thickness. It is of the order of magnitude.
  • This active oxygen species sensor Id has a working electrode 4 formed at the center on an insulating substrate 30 made of glass, resin, ceramics or the like, and a counter electrode 5 and a ground portion 15 formed on both sides thereof.
  • the counter electrode 5, and the grounding portion 15 gold, platinum, copper, nickel, nickel-nickel, stainless steel, stainless steel, and other conductive metals are used as in the above-described embodiments. be able to. Furthermore, when forming a pattern of these materials on the insulating substrate 30, select from electroless treatment as a wet surface treatment, vacuum deposition as a dry surface treatment, ion plating, coating and baking with an ink jet, etc. Good to do. Further, a thin carbon layer 4c is formed on the surface of the circular measuring portion 4b at the end of the central working electrode 4 in the same manner as in the above embodiment, and a polymer film 4 of the metal porphyrin complex is formed thereon. d is formed.
  • the carbon layer 4c may be provided according to the necessity of the material of the measuring section 4b when the polymer film 4d of the metal vorfilin complex is provided thereon, and may be omitted.
  • the carbon layer 4c may be formed in the same manner as the working electrode 4, the counter electrode 5, and the ground portion 15.
  • the polymer film 4d of the metal vorphyrin complex can be formed using various polymerization methods such as an electrolytic polymerization method, a solution polymerization method, and a heterogeneous polymerization method in the same manner as in each of the above embodiments.
  • the working electrode 4, the counter electrode 5, and the ground portion 15 are formed so as to be electrically connected with lead wires 4a, 5a, and 15a, respectively.
  • the lead wires 4a, 5a, and 15a are formed in an electrode form that can be inserted and connected to the connecting part, so that connection to the outside can be easily performed with one touch. Is also good.
  • the working electrode 4 is provided on the insulating substrate 30, An insulative cover 31 that covers the counter electrode 5 and the grounding part 15 from above is fixed, and a measurement that has a function of sucking blood etc. into the inside by capillary action at the tip of the working electrode 4 where the measuring part 4 b is located. A space 32 is formed. A small hole 33 for communicating the measurement space 32 with the outside is formed in the insulating substrate 30.
  • the shape of the insulating substrate 30 and the shape of the cover 31 may be changed as necessary, and the shape may be such that the liquid to be measured, such as blood, can be reliably and easily introduced into the measurement space 32. Furthermore, by making the surface states of the insulating substrate 30 and the cover 31 highly compatible with the liquid to be measured, such as blood, the penetration of the liquid to be measured into the measurement space 32 is facilitated. It is good to let. Further, the cover 31 may be omitted if necessary.
  • Each reactive oxygen species sensor 1d shown in Fig. 6 measures, for example, reactive oxygen species by sucking a small amount of blood collected from the earlobe through the opening at the tip of the measurement space 32 by capillary action. It can be carried out.
  • the tip of the sharp electrode is inserted into a living body, and the working electrode 4 and the counter electrode 5 are inserted into the living body.
  • the electrode part attached to the tip of the resin pipe 16 is directly or using an optical fiber scope, etc., into the blood vessel, the lymphatic vessel,
  • the working electrode 4 and the counter electrode 5 are introduced into a living body by being guided into an organ or an organ.
  • the piercing shaft is passed through the piercing hole 19 of the ear 18 and the electrode part attached to the shaft is inserted into the living body of the piercing hole 19.
  • the working electrode 4 and the counter electrode 5 are brought into contact with the portion.
  • each reactive oxygen species sensor 1d shown in Fig. 6 for example, a small amount of blood collected from the earlobe is sucked into the inside of the measurement space 32 from the tip opening by capillary action, and the working electrode 4 and the counter electrode are used. 5 is contacted.
  • the reactive oxygen species sensor 1, la, lb, lc, and Id are used in a measurement system in which the superoxide ion radical is present in this way, the metal in the metalloporphyrin complex that forms a polymerized film on the surface of the working electrode 4 Is reduced by the superoxide ionone radical.
  • the metal is iron, the super one Okishidoa two on radical, it is reduced from 63+ 6 2 + (Equation (7)).
  • the current values thus detected by the working electrode 4 and the counter electrode 5 correspond to the superoxide ionone radical concentration. Therefore, based on the current value, it can be quantitatively detected as the concentration of the superoxide ionone radical existing in the living body. That is, the measurement of the concentration of the superoxide ionone radical can be performed according to the same principle as in the above formulas (5) and (6). According to the present embodiment, the current value detected by the active oxygen species concentration measuring means 3 by the working electrode 4 and the counter electrode 5 is quantitatively detected as the concentration of the superoxide ionone radical.
  • the display means 10 of the reactive oxygen species concentration measuring means 3 uses the reactive oxygen species sensors 11, la, lb, lc, Id, etc. to measure the active oxygen species based on the current detected. And the external output means 11 outputs the measured concentration to the remote monitoring means 12 by transmission or the like. In this way, the concentration detection result sent from the external output means 11 of the active oxygen species concentration measuring means 3 is received by the receiving means 13 of the remote monitoring means 12 and the active oxygen species is calculated by the calculating means (not shown).
  • the health condition of the living body and the extracorporeal environmental condition that were measured are calculated by performing the calculation based on the concentration of the species measurement, etc., and the concentration of the active oxygen species and the health condition of the living body are also displayed by display means (not shown). In addition, it is possible to remotely monitor the concentration of reactive oxygen species, etc. by displaying environmental conditions outside the living body.
  • active oxygen species such as hydrogen peroxide and .OH and other radical active species such as ⁇ 01 ⁇ -can be quantitatively detected in the same manner.
  • each of the reactive oxygen species sensors 1, 1, la, lb, lc, and 1d of the present embodiment is used, even in an in-vitro (in vitro) environment as well as an in-vivo (in vivo) environment, It can detect active oxygen species such as oxydionion radical, hydrogen peroxide, and 0 ⁇ , and other radical active species ( ⁇ , ⁇ —, etc.), and can quantitatively measure these active oxygen species. And can be widely used.
  • various diseases can be identified by the active enzyme species and other radical active species in the living body. For example, by measuring the concentration of reactive oxygen species in blood, It is possible to identify diseases such as cancer.
  • the spoiled state of the food can be observed by measuring the active oxygen species and the like and the concentration thereof in the food.
  • the state of water pollution can be observed by measuring the concentration of reactive oxygen species and the like in water such as tap water and sewage.
  • the concentration of superoxide dismutase (hereinafter referred to as “SOD”), which is an enzyme having a function of eliminating superoxide ion radical and the anion, also includes SOD. It can be measured by measuring the degree of disappearance of the superoxide ionone radical when a sample is added.
  • FIG. 7 shows another embodiment of the present invention, which is made more specific to enable remote monitoring.
  • the configuration of the reactive oxygen species concentration measuring means 3a on the reactive oxygen species measuring device side and the remote monitoring means 12a side are more specifically formed.
  • Means 2 is formed similarly to the embodiment of FIG.
  • data can be transmitted and received in both directions using the Internet between the reactive oxygen species measuring device and the remote monitoring means 12a, and more detailed contents are provided.
  • Remote monitoring control based on reactive oxygen species and the like is performed.
  • a mobile phone 21 is provided to communicate with the communication means 22 for transmitting and receiving data to and from the remote monitoring means 12a.
  • the display means 23 for displaying is also used.
  • the active oxygen species concentration measuring means 3a is provided with an arithmetic control means 24 having an amplifier, a CPU, a memory (both not shown) and the like. Then, the detection voltage sent from the reactive oxygen species sensor 1 is received to determine the concentration of the reactive oxygen species, and the data is converted into data that can be transmitted by the mobile phone 23. Data from the arithmetic and control means 24 is sent to the mobile phone 21 via the interface 25.
  • the remote monitoring means 12 a serving as a base station (host side) for performing overall control of the remote control type reactive oxygen species measurement system capable of forming and printing based on the present invention is required. It is installed with the supply of software (program), and operates the communication means 22 and the display means 23.
  • the communication means 22 attaches the concentration data of the reactive oxygen species received from the arithmetic and control means 24 to an e-mail and transmits it to the remote monitoring means 12a via the Internet IN, or conversely, the remote monitoring means 1 2 It is configured to receive the data sent from a via the Internet IN via IN.
  • the display means 23 displays the concentration data of the reactive oxygen species received from the arithmetic and control means 24, and displays the data on the health condition of the living body and the environmental state outside the living body, which will be described later, received from the remote monitoring means 12a. It is formed as follows.
  • the remote monitoring means 12a which is a base station (host side) that performs overall control of the remote control type reactive oxygen species measurement system, communicates with the communication means 22 on the reactive oxygen species measurement device side.
  • a communication means 26 for transmitting / receiving data via the Internet IN, and a CPU or memory (for processing data or performing related operations of each unit with respect to concentration data of active oxygen species and the like received from the reactive oxygen species measuring device)
  • a display means 28 for displaying the concentration of the active oxygen species and the like and the data processing results obtained by the calculation means 27.
  • the active oxygen species sensor 1 and the power supply means 2 calculates the active oxygen species concentration by performing an arithmetic operation on the input current value, performs necessary data processing, and sends the data to the mobile phone 21 through the interface 25.
  • the mobile phone 21 displays the concentration of the active oxygen species or the like on the display means 23 as an image of a numerical value or a graph on the display means 23 according to the instruction of the software already installed, and the communication means 22 displays the concentration of the active oxygen species or the like.
  • the evening is sent to the remote monitoring means 12a by e-mail via the Internet IN.
  • the calculation means 27 performs data processing on the concentration data of the reactive oxygen species and the like received by the communication means 26, and the health of the living body such as the person to be measured is measured. Determine the state and environmental state outside the body.
  • the display means 28 displays the concentration of active oxygen species and the like, the state of health of the living body, and the state of the environment outside the living body. Thereby, the health condition of the living body can be monitored from a remote place.
  • the data on the health condition of the living body and the like obtained on the remote monitoring means 12a side in this manner are transmitted to both the communication means 26, 22 and 22 of the remote monitoring means 12a side and the reactive oxygen species measuring device side.
  • the information is returned to the mobile phone 21 on the side of the measuring device for reactive oxygen species or the like via the Internet IN, and is displayed by the display means 23.
  • the remote monitoring means 12a as the base station, it is possible to simultaneously access a plurality of measuring devices for active oxygen species, etc., perform centralized management of various data, and, if necessary, use the base station.
  • a doctor based on various data by a doctor Diagnosis of conditions and disease states can be reported to the concentration measurement site.
  • a specialist at a remote location can make a diagnosis in real time, and the lifesaving work can be performed quickly and properly. Can be.
  • the remote monitoring means 12a can perform data processing that cannot be performed on the reactive oxygen species measurement device side, and send the obtained necessary processing data to the active oxygen species measurement device side. It is also possible to reduce the size of the measuring device for the reactive oxygen species and the like.
  • the calculation of the concentration of active oxygen species and the like based on the current value measured by the arithmetic control means 24 of the active oxygen species concentration measuring means 3a on the side of the active oxygen species measurement device is omitted, and the active oxygen species sensor 11
  • the received measured current value may be sent to the remote monitoring means 12a as it is, and the remote monitoring means 12a may calculate and obtain the concentration of active oxygen species or the like from the measured current value. This can further reduce the size of the measuring device for active oxygen species and the like.
  • the communication means 22 and the display means 23 of the measuring device for reactive oxygen species and the like are formed by the mobile phone 21, and the remote monitoring means 12 a and the data are transmitted via the Internet IN. Because it is configured to send and receive, it is possible to very easily measure reactive oxygen species, remote monitoring control, etc. using mobile phone 21 with excellent portability and Internet IN .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本発明の活性酸素種等測定装置は、活性酸素種等の存在を電流として検出可能な電極を備えている活性酸素種センサーと、この活性酸素種センサーに測定電圧を付与する電源手段と、前記活性酸素種センサーが検出した前記電流から前記活性酸素種等の濃度を計測する活性酸素種濃度計測手段とを有することを特徴とする。本発明によれば、生体内若しくは生体外のスーパーオキシドアニオンラジカル(02−・)等の活性酸素種等の濃度を確実に測定することができ、装置全体も小型に形成することができ、生体に常時装着可能であり、また測定したデータを遠隔地に送信することができ、更に遠隔地において求めた生体の健康状態等を活性酸素種等の測定側に戻して知らせることができ、活性酸素種等を測定して監視することにより生体の健康状態を監視することができる。

Description

活性酸素種等測定装置
技 術 分 野
本発明は、 生体内若しくは生体外のスーパ一ォキシドア二オンラジカル (02— · ) 、 過酸化水素、 明 · OH、 N〇、 ONOO— 等の活性酸素種等の 濃度を測定する活性酸素種等測定装置に関する。
細 背 景 技 術
一般に、 活性酸素種であるスーパーォキシドア二オンラジカル (02一 · ) は、 生体内ではキサンチン ·キサンチン酸化酵素 (XOD) によるキ サンチン並びにヒポキサンチンなどの尿酸への酸化および酸素のへモグロ ビンによる還元等により生成されるものであり、 生体内で生理活性物質の 合成、 殺菌作用、 老化現象などに関連して重要な役割を有している。 その 一方で、 スーパーォキシドア二オンラジカルから派生する種々の活性酸素 種は癌などの各種疾患を引き起こすといわれている。 従って、 生体内のス 一パーォキシドア二オンラジカルを含む活性酸素種の濃度測定は、 上記各 種疾患を特定するためにも重要なものであると考えられる。
このスーパ一ォキシドア二オンラジカルは、 基質の存在しない場合には、 式 (1) に示されるように不均化反応により過酸化水素 (H 202) と酸素 分子 (0 になる。 この不均化反応は、 スーパーォキシドア二オンラジカ ルへのプロトン付加による H02 ·の生成、 H02 · と酸素分子の反応によ る過酸化水素と酸素分子の生成、 および H02 ·同士の衝突による過酸化水 素と酸素分子の生成からなるものである (式 (1) 〜式 (4) ) 。
2 H+ + 202— · → H 202 + 02 …… ( 1 )
H+ + 02— · → H02 · …… (2)
H02 · + 02— · + H+ → H 202 + 02 …… (3) Η02 · + Η02 · → Η 202 + 02 …… (4) この反応系においては、 スーパーォキシドア二オンラジカルは電子受容 体 (酸化剤) 、 電子供与体 (還元剤) および水素イオンの受容体 (塩基) としてはたらくが、 このうちの前二者の性質を利用して、 スーパ一ォキシ ドア二オンラジカルの濃度測定が試みられていた。 例えば、 フェリチトク ローム c (3価) からフエロチトクローム c (2価) への変換反応や、 二 トロブル一テラゾリゥム (ΝΒΤ) からブルーホルマザンの生成反応およ びテトラニトロメタン (ΤΝΜ) の還元反応を利用して、 スーパーォキシ ドア二オンラジカルの濃度測定が試みられていたが、 これらは全て体外 (in vitro) での測定方法であった。
一方、 生体内 (in vivo) のスーパ一ォキシドア二オンラジカルの濃度 を定量的に検出する方法についての検討も行われていた。 例えば、 マック ネイル (McNeil) ら、 タリオフ (Tariov) ら、 ク一パー (Cooper) らは、 金や白金電極の表面を酵素である N—ァセチルシスティンで修飾し、 その 上にヘムといわれる鉄錯体を酸化還元中心とした金属蛋白質であるチトク ローム cなどの蛋白質を S— Au結合させて固定化させた酵素電極 (チト クローム c固定化電極) を作製し、 これによりスーパ一ォキシドア二オン ラジカルの濃度を電気化学的に検出することができると報告している (下 記文献 1から 3参照) 。
文献 1 C. J. McNeil et al. Free Radical Res. Coramun. , 7, 89 (1989) 文献 2
M. J. Tariov et al. J. Am. Chem. Soc. 113, 1847(1991)
文献 3
J. M. Cooper, K. R. Greenough and C. J. McNeil, J. Electroan al. Chem. , 347, 267 (1993)
この検出方法の測定原理は以下のとおりである。 すなわち、 チトクロー ム c (3価) (cyt.c (F e 3+) ) は、 ス一パーォキシドア二オンラジカ ルと式 (5) のように反応して、 チトクローム c (2価) (cyt.c (F e 2 +) ) に還元される。 次に、 式 (6) のように、 02—により還元されたチト クローム c (2価) を電気化学的に再酸化し、 その際の酸化電流を測定す ることにより、 間接的にスーパーォキシドア二オンラジカルの濃度を定量 的に検出するものである。
cyt.c (F e 3+) +〇2— → cyt.c (F e 2+) + 02 ······ (5) cyt.c (F e 2+) → cyt.c (F e 3+) + e_ (6) しかしながら、 チトクローム cは、 生体細胞内のミトコンドリアの膜上 に存在する電子伝達蛋白質であるため、 上記測定に十分な量のチトクロー ム cを固定化させた電極を作製するには、 1 05〜 1 06個という多量の細 胞が必要とされ、 また、 使用する酵素が数日間で失活してしまうという問 題もあった。 従って、 多量の酸素を必要とせず、 かつ使用する酵素の失活 の問題もなくスーパ一ォキシドア二オンラジカル等の活性酸素種等を検出 することができる電極の開発が望まれていた。
そこで、 本出願人は、 特願 2 0 0 0 - 3 8 7 8 9 9号において、 導電性 部材の表面に金属ポルフィリン錯体の重合膜を形成してなる活性酸素種用 電極、 この活性酸素種用電極、 対極および参照電極を含む活性酸素種濃度 測定用センサ一および金属ポルフィリン重合膜中の金属と活性酸素種の間 で生じる電流を前記センサ一で測定する試料中の活性酸素種の検出方法を 提案した。
これは、 ポルフィリン化合物の中心に金属原子を導入した金属ポルフィ リン錯体の重合膜を導電性部材の表面上に形成した電極は、 多量の酵素を 要せず、 また、 失活の問題もなく、 活性酸素種の存在や濃度を検出できる ことに基づくものである。 発 明 の 開 示
本発明は、 本出願人の前記提案を更に発展させて、 生体内若しくは生体 外のスーパ一ォキシドア二オンラジカル (0 2— · ) 等の活性酸素種等の濃 度を確実に測定することができ、 装置全体も小型に形成することができ、 生体に常時装着可能であり、 また測定したデ一夕を遠隔地に送信すること ができ、 更に遠隔地において求めた生体の健康状態等を活性酸素種等の測 定側に戻して知らせることができ、 活性酸素種等を測定して監視すること により生体の健康状態を監視することのできる活性酸素種等測定装置を提 供することを目的とする。
前記目的を達成するために本発明の活性酸素種測定装置は、 活性酸素種 等の存在を電流として検出可能な電極を備えている活性酸素種センサ一と、 この活性酸素種センサーに測定電圧を付与する電源手段と、 前記活性酸素 種センサーが検出した前記電流から前記活性酸素種等の濃度を計測する活 性酸素種濃度計測手段とを有することを特徴とする。 このように形成する ことにより電源手段から適正な測定電圧を活性酸素種センサーに付与する と、 活性酸素種センサ一の電極が活性酸素種等の存在を電流として検出し、 活性酸素種濃度計測手段が検出された電流から活性酸素種等の濃度を計測 することができる。
また、 前記活性酸素種濃度計測手段としては、 計測した活性酸素種等の 濃度を外部に出力する外部出力手段を備えており、 この外部出力手段の出 力を受けて活性酸素種等の濃度を監視する遠隔監視手段を有するように形 成するとよい。 これにより遠隔監視手段を用いて、 遠隔地において生体の 健康状態を監視することができる。
また、 前記遠隔監視手段は、 前記活性酸素種測定装置との間でデータを 送受信する通信手段と、 前記外部出力手段から受けた活性酸素種等の濃度 に対してデータ処理を施す演算手段と、 前記活性酸素種等の濃度および前 記演算手段によって得られたデータ処理結果を表示する表示手段を有して おり、 前記活性酸素種測定装置においては、 前記外部出力手段が前記遠隔 監視手段との間でデータを送受信する通信手段によって形成されており、 活性酸素種等の濃度および前記遠隔監視手段から受信したデータを表示す る表示手段が形成されていることを特徴とする。 このように形成すること により、 遠隔監視手段側において、 演算手段が活性酸素種等の濃度に対し てデータ処理を施して被測定対象となった人等の生体の健康状態や生体外 の環境状態を求め、 表示手段により活性酸素種等の濃度や生体の健康状態 や生体外の環境状態を表示することにより生体の健康状態等を遠隔地から 監視することができる。 更に、 遠隔地において求めた生体の健康状態等を 遠隔監視手段側と活性酸素種等測定装置側の通信手段を介して活性酸素種 等測定装置側に戻して、 表示手段によって表示させることにより知らせる ことができる。 また、 遠隔監視手段側を基地局とすることにより、 複数の 活性酸素種等測定装置側に対して同時アクセスしたり、 各種データの一元 管理行ったり、 活性酸素種等測定装置側においては演算不可能なデータ処 理を行って、 得られた必要な演算処理データを活性酸素種等測定装置側に 送ることができる。
また、 前記活性酸素種測定装置と遠隔監視手段との間のデータの授受は 無線若しくは有線の伝搬系を介して行われることを特徴とする。 このよう に形成することにより、 無線の伝搬系を用いると遠隔監視手段側と活性酸 素種等測定装置側の距離の大小に関係なく活性酸素種等の濃度を遠隔的に 監視制御することができ、 特に活性酸素種等測定装置側が移動する場合に おいても、 常に正常な動作を継続することができる。 無線の伝搬系として は、 電波、 可視光線、 赤外線、 紫外線、 超音波等やインターネット、 衛生 通信等の各種通信方法を用いた公知の方法を利用することができる。 また、 有線の伝搬系を用いると、 確実なデータの送受信が可能であり、 更に、 他 の電子機器等に対する電波障害を与えることがなく、 例えば、 病院等にお いて有効に利用することができる。
また、 前記活性酸素種測定装置の通信手段および表示手段は携帯電話機 によって形成されており、 前記遠隔監視手段とインターネットを介してデ 一夕の授受を行うように形成されていることを特徴とする。 これにより極 めて携帯性に優れている携帯電話機を用い、 更にィンタ一ネットも通して データ交換を行って、 完成酸素種等の測定を行うことができ、 測定操作が 容易となり、 携帯電話が通じる地域であればいつでも測定可能であり、 緊 急性にも確実に対応して活性酸素種等を測定して、 生体の健康監視を行う ことができる。
また、 活性酸素種センサーの電極は、 生体内の活性酸素種等の存在を電 流として検出可能な形状に形成するとよい。 これにより、 例えば人体や動 物等に電極を装着することにより、 生体内の活性酸素種等を測定すること ができ、 更に生体内の活性酸素種等を常時測定することができる。
また、 電源手段は、 活性酸素種センサーに付与する測定電圧を可変制御 自在に形成するとよい。 これにより測定すべき活性酸素種等に対応する適 正な測定電圧を活性酸素種センサーに付与して、 測定対象の活性酸素種等 を精度よく測定することができる。
また、 活性酸素種濃度計測手段は、 活性酸素種センサーが検出した電流 に基づいて計測した活性酸素種等の濃度を表示する表示手段と外部に出力 する外部出力手段との少なくとも一方を備えるように形成するとよい。 こ れにより、 表示手段により計測した活性酸素種等の濃度を明確に表示する ことができ、 外部出力手段によって計測した活性酸素種等の濃度を遠隔地 に送信することができ、 活性酸素種等の濃度を遠隔監視することができる。 更に、 より具体的には、 活性酸素種センサーの電極は、 活性酸素種等の 存在を電流として検出可能な素材を電極表面に備えているように形成する とよい。 これにより電極表面の前記素材を生体内または生体外の活性酸素 種等が存在する領域に置くことにより、 生体内または生体外における活性 酸素種等の濃度を確実に計測することができる。
また、 活性酸素種等の存在を電流として検出可能な素材は、 金属ボルフ イリン錯体の重合膜、 レドックス性の高分子またはその誘導体、 金属複合 体および錯体系化合物の中の少なくとも 1種によって形成するとよい。 こ のように形成されている素材によれば、 活性酸素種等の濃度を精度よく確 実に測定することができる。
また、 金属ボルフイリン錯体が下記式 ( I ) または式 (I I) によって形 成されたものとするとよレ
Figure imgf000010_0001
伹し、 式 ( I) 中、 Mは、 鉄、 マンガン、 コバルト、 クロム、 イリジゥ ムから選ばれる金属を示し、 4つの Rのうち少なくとも 1つは、 チオフリ ル基、 ピロリル基、 フリル基、 メルカプトフエニル基、 ァミノフエ二ル基、 ヒドロキシフエニル基から選ばれるいずれかの基であり、 他の Rは、 前記 のいずれかの基またはアルキル基、 ァリール (a r y l ) 基もしくは水素 を示している。
Figure imgf000010_0002
但し、 式 (II) 中、 Mおよび Rは上記した意味を有し、 2つの Lのうち 少なくとも 1つは. イミダゾ一ルおよびその誘導体、 ピリジンおよびその 誘導体、 ァニリンおよびその誘導体、 ヒスチジンおよびその誘導体、 トリ メチルァミンおよびその誘導体等の窒素系軸配位子、 チオフエノ一ルおよ びその誘導体、 システィンおよびその誘導体、 メチォニンおよびその誘導 体等の硫黄系軸配位子、 安息香酸およびその誘導体、 酢酸およびその誘導 体、 フエノールおよびその誘導体、 脂肪族アルコールおよびその誘導体、 水等の酸素系軸配位子であり、 他の Lは、 前記のいずれかのの軸配位子ま たは配位子のないものを示す。
これにより電極の表面に金属ポルフィリン錯体を確実に形成することが でき、 感度の優れた電極を得ることができる。
また、 金属ポルフィリン錯体を形成するポルフィリン化合物としては、 5, 1 0, 1 5, 20—テトラキス (2—チオフリル) ポルフィリン、 5
1 0, 1 5, 20—テトラキス (3—チオフリル) ボルフィリン、 5 , 1 0, 1 5, 20—テトラキス (2—ピロリル) ボルフイリン、 5 1 0
1 5, 20—テトラキス (3—ピロリル) ポルフィリン、 5, 1 0 1 5,
20—テトラキス (2—フリル) ポルフィリン、 5, 1 0 , 1 5 2 0 ― テトラキス (3—フリル) ポルフィリン、 5, 1 0, 1 5 , 2 0一テ卜ラ キス (2—メルカプトフエニル) ポルフィリン、 5, 1 0 , 1 5 2 0 ― テトラキス (3—メルカプトフエニル) ポルフィリン、 5 , 1 0 1 5 ,
20—テトラキス (4—メルカプトフエニル) ボルフイリン、 5 1 0
1 5, 20—テトラキス (2—ァミノフエ二ル) ポルフィリン、 5 , 1 0,
1 5, 2 0—テトラキス (3—ァミノフエニル) ポルフィリン、 5 1 0,
1 5, 20—テトラキス (4ーァミノフエニル) ポルフィリン、 5 1 0, 1 5, 2 0—テトラキス (2—ヒドロキシフエニル) ポルフィリン、 5, 1 0, 1 5, 20—テトラキス (3—ヒドロキシフエニル) ポルフィリン、 5, 1 0, 1 5, 20—テトラキス (4ーヒドロキシフエニル) ポルフィ リン、 [5, 1 0, 1 5—トリス (2—チォフリル) 一 20—モノ (フエ ニル) ] ポルフィリン、 [5, 1 0, 1 5—トリス (3—チオフリル) — 20—モノ (フエニル) ] ポルフィリン、 [5, 1 0—ビス (2—チオフ リル) 一 1 5, 20—ジ (フエ二ル) ] ポルフィリン、 [5, 1 0—ビス (3—チオフリル) — 1 5, 20—ジ (フエ二ル) ] ポルフィリン、 [5, 1 5—ビス (2—チオフリル) 一 1 0, 20—ジ (フエニル) ] ポルフィ リン、 [ 5, 1 5—ビス ( 3—チオフリル) 一 1 0, 20—ジ (フエ二 ル) ] ポルフィリン、 [5—モノ ( 2ーチオフリル) 一 1 0 , 1 5, 20 一トリ (フエニル) ] ポルフィリンおよび [5—モノ (3—チォフリル) 一 1 0, 1 5, 20—トリ (フエ二ル) ] ポルフィリンなる群から選ばれ るものによって形成するとよい。 これにより電極の表面に金属ポルフィリ ン錯体を確実に形成することができ、 感度の優れた電極を得ることができ る。
このように本発明の活性酸素種等測定装置は構成され作用するものであ るから、 生体内若しくは生体外のスーパ一ォキシドア二オンラジカル ( 0 2- - ) 等の活性酸素種等の濃度を確実に測定することができ、 装置全体も 小型に形成することができ、 生体に常時装着可能であり、 また測定したデ 一夕を遠隔地に送信することができ、 更に遠隔地において求めた生体の健 康状態等を活性酸素種等の測定側に戻して知らせることができ、 活性酸素 種等を測定して監視することにより生体の健康状態を監視することができ る等の優れた効果を発揮することができる。 図面の簡単な説明
図 1は本発明の活性酸素種等測定装置の 1実施の形態を示す回路図、 図 2 ( a ) は本発明の活性酸素種等測定装置に用いる活性酸素種センサ 一の 1実施形態を示す側面図、 同図 (b ) は同図 (a ) の左側面図、 図 3 ( a ) は本発明の活性酸素種等測定装置に用いる活性酸素種センサ 一の他の実施形態を示す側面図、 同図 (b ) は同図 (a ) の左側面図、 図 4は本発明の活性酸素種等測定装置に用いる活性酸素種センサーの更 に他の実施形態を示す側面図、
図 5は本発明の活性酸素種等測定装置に用いる活性酸素種センサーの更 に他の実施形態を示す側面図、
図 6 ( a ) は本発明の活性酸素種等測定装置に用いる活性酸素種センサ 一の更に他の実施形態を示すカバーを除いた状態の平面図、 (同図 b ) は 同図 (a ) の縦断面図、 同図 (c ) はカバ一を除いた状態の分解斜視図、 図 7は本発明の活性酸素種等測定装置の他の実施の形態を示す回路図で める。 発明を実施するための最良の形態
次に、 本発明の実施形態を図 1から図 7について説明する。
図 1は、 本発明の活性酸素種等測定装置の 1実施形態を示す。
本実施形態の活性酸素種等測定装置は、 活性酸素種等の存在を電流とし て検出可能な電極を備えている活性酸素種センサー 1と、 この活性酸素種 センサー 1に測定電圧を付与する電源手段 2と、 活性酸素種センサー 1が 検出した電流から活性酸素種等の濃度を計測する活性酸素種濃度計測手段 3とを有している。
本実施形態における活性酸素種センサ一 1は 2電極式に形成されており、 作用極 4および対極 5とシールド 6とによって形成されている。 なお、 図 示しない参照極を設けて 3電極式に構成してもよい。
前記電源手段 2は、 ぼたん電池ゃポテンシヨスタツト等の直流電源 7に スィッチ 8、 分圧抵抗 R l、 可変抵抗 V R 1、 分圧抵抗 R 2を直列接続し、 可変抵抗 V R 1および分圧抵抗 R 2の両端から測定電圧を可変出力するよ うに形成されている。 測定電圧は電圧計 9によつて計測されるようになつ ている。 電源手段 2による活性酸素種センサ一 1に付与する測定電圧は、 可変抵抗 V R 1の抵抗値を変更することにより、 測定対象となる活性酸素 種等に応じて可変制御される。 例えば、 スーパーォキシドア二オンラジカ ル (0 2 _ · ) は 0 . 5 V、 酸素分子 (0 2 ) は _ 0 . 8 V、 過酸化水素 (H 2 0 2) は一 1 . 0 V、 一酸化窒素ラジカルは 0 . 6 V等とするとよレ 電圧手段 2の測定電圧は装置抵坊 R 3を介して活性酸素種センサー 1の 対極 5と作用極 4とに付与されるように接続されている。
更に、 活性酸素種センサー 1の対極 5と作用極 4との間に流れる活性酸 素種等の濃度に対応する微弱電流を増幅して測定する活性酸素種濃度測定 手段 3が接続されている。 この活性酸素種濃度計測手段 3は、 活性酸素種 センサー 1が検出した電流に基づいて計測した活性酸素種等の濃度を表示 する表示手段 1 0と、 送信等によって外部に出力する外部出力手段 1 1と を有している。 表示手段 1 0および外部出力手段 1 1は少なくとも一方を 備えていればよい。 外部出力手段 1 1を設けた場合には、 受信手段 1 3を 備えている遠隔監視手段 1 2を設けて、 活性酸素種濃度測定手段 3から送 られてくる濃度検出結果を受信して、 活性酸素種等の濃度を遠隔監視する ようするとよい。 具体的には、 遠隔監視手段 1 2は、 図 1に示すように、 受信手段 1 3を備えていて、 活性酸素種濃度測定手段 3の外部出力手段 1 1から送られてくる濃度検出結果を受信して、 図示していない演算手段に よって活性酸素種測等の濃度に基づいて演算を行って測定対象となった生 体や生体外の健康状態や環境状態を求めて、 同じく図示していない表示手 段によって活性酸素種等の濃度並びに被測定対象となった生体の健康状態 や生体外の環境状態を表示して、 活性酸素種等の濃度を遠隔監視するよう に形成するとよい。
更に、 活性酸素種センサ一 1の電極となる作用極 4を説明する。
この作用極 4としては、 生体内の活性酸素種等の存在を電流として検出 可能な形状、 例えば生体内に外部から差し込むことのできる細い二一ドル 状に形成したり、 血管内に挿入できる微小のカテーテル状に形成したり、 皮膚表面に接合できる形状例えばピアスの軸部等に形成したりするとよい。 これにより、 例えば人体に作用極 4を装着して人体内の活性酸素種等を測 定することができたり、 生体内の活性酸素種等を常時測定することができ る。 この作用極 4および対極 5の具体的構成については後述する。
また、 作用極 4は、 活性酸素種等の存在を電流として検出可能な素材を 作用極表面に備えているように形成するとよい。 これにより作用極表面の 前記素材を生体の活性酸素種等の存在する領域に置くことにより生体内の 活性酸素種等の濃度を確実に計測することができる。
また、 活性酸素種等の存在を電流として検出可能な作用極 4の素材とし ては、 金属ボルフイリン錯体の重合膜、 レドックス性の高分子またはその 誘導体、 金属複合体および錯体系化合物の中の少なくとも 1種によって形 成するとよい。 このように形成されている素材によれば、 活性酸素種等の 濃度を精度よく確実に測定することができる。
次に、 作用極 4自身の素材と表面膜素材として好適な金属ポルフィリン 錯体の重合膜を形成することを説明する。
作用極 4を構成する導電性部材としては、 一般に電極用として使用され る部材であれば特に制限なく使用でき、 例えばグラッシ一カーボン (Glas sy Carbon: GC) , グラフアイト、 パイロリティックグラフアイト (Ρ G) 、 ハイリ一オリエンティッドパイロリテイツクグラファイ卜 (HOP G) 、 活性炭等のカーボン類、 又は白金、 金、 銀等の貴金属、 又は I n20 3/S n02 ( I TO) 等を使用することができるが、 特に経済性、 加工性、 軽量性などを考慮して、 グラッシ一カーボンを用いることが好ましい。 ま た、 導電性部材の形状は、 電極として使用できる形状であれば特には制限 はなく、 円柱状、 角柱状、 ニードル状、 繊維 (ファイバ一) 状等の各種形 状とすることができるが、 例えば、 生体内での活性酸素種等の濃度を測定 するためには、 前述したように、 ニードル状、 カテーテル状、 ピアス軸状 の形状とすることが好ましい。
作用極 4の導電性部材の表面に形成される金属ポルフィリン錯体の重合 膜の形成に使用される金属ポルフィリン錯体の例としては、 下記の式
( I ) または式 (II) で表されるものが挙げられる。
Figure imgf000016_0001
但し、 式 ( I ) 中、 Mは、 鉄、 マンガン、 コバルト、 クロム、 イリジゥ ムから選ばれる金属を示し、 4つの Rのうち少なくとも 1つは、 チオフリ ル基、 ピロリル基、 フリル基、 メルカプトフエニル基、 ァミノフエ二ル基、 ヒドロキシフエニル基から選ばれるいずれかの基であり、 他の Rは、 前記 のいずれかの基またはアルキル基、 ァリール (a r y l ) 基もしくは水素 を示す。
Figure imgf000017_0001
伹し、 式 (I I) 中、 Mおよび Rは上記した意味を有し、 2つの Lのうち 少なくとも 1つは、 イミダゾ—ルおよびその誘導体、 ピリジンおょぴその 誘導体、 ァニリンおょぴその誘導体、 ヒスチジンおょぴその誘導体、 トリ メチルァミンおよびその誘導体等の窒素系軸配位子、 チオフエノ一ルおよ ぴその誘導体、 システィンおょぴその誘導体、 メチォニンおょぴその誘導 体等の硫黄系軸配位子、 安息香酸およびその誘導体、 酢酸およびその誘導 体、 フエノールおよびその誘導体、 脂肪族アルコールおよびその誘導体、 水等の酸素系軸配位子であり、 他の Lは、 前記のいずれかのの軸配位子ま たは配位子のないものを示す。 上記式 ( I ) または式 (I I) で表される金属ボルフイリン錯体は、 ポル フィリン化合物に金属原子を配位させた錯体化合物である。 また、 このポ ルフイリン化合物は、 4つのピロ一ル環が a;位置で 4つのメチン基と交互 に結合した環状化合物であり、 4つの窒素原子が中心に向かい合って形成 されている。 この中心部に金属原子を挟み込むことで、 錯体化合物 (金属 ボルフイリン錯体) を形成することができる。 該錯体化合物を形成するに は、 通常使用される金属錯体の形成方法、 例えばメタレーシヨン (Me t a l a t i on) 等の方法を用いて、 金属原子をポルフィリンの中心に導入すればよ レ^ 本発明において、 ポルフィリン化合物の中心に導入できる金属として は、 鉄、 マンガン、 コバルト、 クロム、 イリジウム等の各種金属を用いる ことができる。
また、 この金属原子は測定対象の活性酸素種等の種類によって使い分け ることもできる。 例えば、 スーパーォキシドア二オンラジカルを測定対象 とするする場合は、 鉄、 マンガン、 コバルト等を、 分子状酸素を測定対象 とする場合は、 鉄、 コバルト、 マンガン、 クロム、 イリジウム等を、 過酸 化水素を測定対象とする場合は鉄、 マンガン等を、 さらに、 · O H、 N〇、 O N〇〇_ 等を測定対象とする場合は、 鉄、 マンガン等をそれぞれ用いる ことが好ましい。
本発明で使用されるポルフィリン化合物は、 無置換体であるポルフィン に対して、 1 U P A C命名法による位置番号の 5、 1 0、 1 5、 2 0の 4 位置のうち少なくとも 1位置を、 チォフリル基、 ピロリル基、 フリル基、 メルカブトフエニル基、 ァミノフエ二ル基、 ヒドロキシフエニル基等のい ずれかの基で置換したものであり、 さらに他の位置を、 前記の置換基また はアルキル基、 ァリル基若しくは水素となったものを使用するのが好まし い。 その具体例としては、 5, 1 0, 1 5, 20—テトラキス
フリル) ポルフィリン、 5 1 0, 1 5, 20—テトラキス ( 3—チオフ リル) ポルフィリン、 5 ? 1 0 , 1 5, 20—テトラキス (2—ピロリ ル) ポルフィリン、 5, 1 0 ? 1 5, 20—テトラキス (3—ピロリル) ポルフィリン、 5, 1 0 1 5 , 20—テトラキス (2—フリル) ボルフ ィリン、 5, 1 0, 1 5 2 0ーテトラキス ( 3 _フリル) ポルフィリン、
5 , 1 0, 1 5, 20—テトラキス (2—メルカプトフエニル) ポルフィ リン、 5, 1 0, 1 5, 2 0 ―テトラキス (3—メルカプトフエニル) ポ ルフィリン、 5, 1 0 , 1 5 20—テトラキス (4—メルカブトフエ二 ル) ポルフィリン、 5, 1 0 1 5 , 20—テトラキス (2—ァミノフエ ニル) ポルフィリン、 5 , 1 0 , 1 5, 2 0—テトラキス ( 3ーァミノフ ェニル) ポルフィリン、 5 , 1 0, 1 5, 20—テトラキス (4—ァミノ フエニル) ポルフィリン、 5 1 0, 1 5, 20—テトラキス (2—ヒド ロキシフエニル) ポルフィリン、 5 , 1 0, 1 5, 20—テトラキス ( 3 —ヒドロキシフエニル) ポルフィリン、 5, 1 0, 1 5, 20—テトラキ ス (4ーヒドロキシフエニル) ポルフィリン、 [5, 1 0, 1 5 トリス (2—チオフリル) — 2 0—モノ (フエニル) ] ポルフィ リン、 [5, 1 0, 1 5—.トリス (3—チオフリル) 一 20—モノ (フエニル) ] ボルフ ィリン、 [ 5 , 1 0—ビス ( 2—チオフリル) — 1 5, 20—ジ (フエ二 ル) ] ポルフィリン、 [5, 1 0—ビス (3—チオフリル) - 1 5, 20 ージ (フエ二ル) ] ポルフィ リン、 [5, 1 5—ビス (2—チオフリル) - 1 0, 20—ジ (フエニル) ] ポルフィリン、 [ 5 , 1 5—ビス ( 3— チォフリル) _ 1 0, 20—ジ (フエニル) ] ポルフィ リン、 [5—モノ (2ーチオフリル) - 1 0, 1 5 , 20—トリ (フエニル) ] ポルフィ リ ン、 [ 5 —モノ (3—チオフリル) 一 1 0, 1 5 , 2 0 —トリ (フエ二 ル) ] ポルフィリン等が例示される。
なお、 式 (I I) で示された化合物の Lで表される配位子のうち、 イミダ ゾ一ルの誘導体の例としては、 メチルイミダゾ一ル、 ェチルイミダゾ一ル、 プロピルイミダゾ—ル、 ジメチルイミダゾ一ル、 ペンズイミダゾール等が、 ピリジンの誘導体の例としては、 メチルピリジン、 メチルピリジルァセテ —ト、 ニコチンアミド、 ピリダジン、 ピリミジン、 ビラジン、 トリアジン 等が、 ァニリンの誘導体の例としては、 ァミノフエノール、 ジァミノベン ゼン等が、 ヒスチジンの誘導体の例としては、 ヒスチジンメチルエステル、 ヒスタミン、 ヒップリル—ヒスチジル—ロイシン等が、 卜リメチルァミン の誘導体の例としては、 トリェチルァミン、 トリプロピルアミン が、 チ ォフエノールの誘導体の例としては、 チォクレゾ一ル、 メルカブトフエノ ール、 メルカプト安息香酸、 アミノチオフエノ一ル、 ベンゼンジチオール、 メチルベンゼンジチオール等が、 システィンの誘導体の例としては、 シス ティンメチルエステル、 システィンェチルエステル等が、 メチォニンの誘 導体の例としては、 メチォニンメチルエステル、 メチォニンェチルエステ ル等が、 安息香酸の誘導体の例としては、 サリチル酸、 フ夕ル酸、 イソフ クル酸、 テレフクル酸等が、 酢酸の誘導体の例としては、 トリフルォロ酢 酸、 メルカプト酢酸、 プロピオン酸、 酪酸等が、 フエノールの誘導体の例 としては、 クレゾ一ル、 ジヒドロキシベンゼン等が、 脂肪族アルコールの 誘導体の例としては、 エチルアルコール、 プロピルアルコール等が挙げら れる。
本発明において、 作用極 4の導電性部材の表面に上記の金属ポルフィリ ン錯体の重合膜を形成させるには、 電解重合法、 溶液重合法、 不均一重合 法等の各種重合法を用いることができる。 このうち電解重合法を用いて重 合膜を形成するのが好ましく、 具体的には、 ジクロロメタン、 クロ口ホル ム、 四塩化炭素等の有機溶媒中、 テ卜ラプチルアンモニゥムパークロレ一 ト (TBAP : Bu4NC I 04) 、 テトラプロピルアンモニゥムパ一クロ レート (TP AP : P r 4NC I〇4) 、 テトラェチルアンモニゥムパーク 口レート (TEAP : E t 4NC I 04) 等適当な支持電解質を加え、 導電 性部材を作用極、 白金 (P t) 電極等の貴金属電極、 チタン電極、 カーボ ン類電極、 ステンレス綱電極等の不溶性電極を対極、 飽和カロメル電極 (S CE) 、 銀一塩化銀電極等を参照極として、 2電極 (作用極一対極) 式の電解、 あるいは 3電極 (作用極一対極-参照極) 式の定電位、 定電流、 可逆電位掃引、 パルス式の電解等を行い、 重合させることにより導電性部 材の表面に金属ポルフィリン重合膜を形成させることができる。
次に、 作用極 4および対極 5等の電極を備えている活性酸素種センサ一 1の具体的構成を図 2から図 5について説明する。
図 2 (a) (b) は生体内測定、 複合化測定、 臨床での診断 ·治療など を考慮して作用極 4および対極 5を一体化してニードル状の電極に形成し た活性酸素種センサー 1を示す。 図 2の活性酸素種センサー 1においては、 最外側を細いパイプからなる対極 5とし、 その内部に電気絶縁性材料 14 を介して作用極 4を形成する導電性部材を同心的に設けている。 そして、 作用極 4、 電気絶縁性材料 14および対極 5の先端を銳利な針先となるよ うに斜めに切断仕上げしてあり、 作用極 4が二一ドル状の対極 5の先端部 から外部に露出している部分に前記の金属ポルフィリン重合膜が形成され ている。 そして、 作用極 4および対極 5はそれぞれリード線 4 a、 5 aを もって電気的に接続されるように形成されている。 ' この対極 5の構成材料としては、 白金、 金、 銀等の貴金属、 チタン、 ス テンレス綱、 鉄一クロム合金等の耐食性合金、 カーボン類等の材料を使用 することができるが、 対極は生体内に入ることが多いため、 安全性の高い 材料 (例えば、 白金、 金、 銀等の貴金属、 チタン、 ステンレス綱、 カーボ ン類等) で構成することが好ましい。 また、 ニードル状の活性酸素種セン サ一 1を生体内に挿入させる場合には、 対極 5の外形をできる限り細く形 成することが好ましく、 例えば、 0 . 2〜 1 . 5 mm程度に形成するとよ レ^ また、 図示しない参照電極を用いる場合には、 その参照電極としては、 通常、 銀 Z塩化銀電極、 水銀/塩化第二水銀等の各種の参照電極を用いる ことができ、 また、 固体の基準電極を用いることもできる。
なお、 金属ボルフイリン錯体の重合膜の厚さは、 電極および金属ボルフ ィリン錯体の種類および測定する活性酸素の種類等により適宜決定される が、 電極活性、 修飾安定性等という点で、 1 / m以下であることが好まし い。
図 3 ( a ) ( b ) は図 2と同様に二一ドル状に形成した他の活性酸素種 センサ一 1 aを示している。
この図 3の実施形態の活性酸素種センサ一 1 aは、 不必要な生体内電流、 電流ノイズ等の除去、 感度、 シグナル Zノイズ比 (S ZN比) 等の向上を 目指して図 2の活性酸素種センサ一 1を改良したものである。 図 3に示す 電極は、 導電性部材からなる作用極 4を電気絶縁性材料 1 4中に入れ (2 層構造) 、 それらを対極 5中に入れ (3層構造) 、 更に、 それらを電気絶 緣性材料 1 4中に入れ (4層構造) 、 最終的にこの細管の外側をアースと なる金属等の材料で被覆 (5層構造) してアース部分 1 5としたものであ る。 そして、 作用極 4、 電気絶縁性材料 1 4、 対極 5、 電気絶縁性材料 1 4およびアース部分 1 5の先端を鋭利な針先となるように斜めに切断仕上 げしてあり、 作用極 4の導電性部材の端面上に金属ポルフィリン重合膜を 形成したものである。
なお、 金属ボルフイリン錯体の重合膜の厚さは、 電極および金属ボルフ ィリン錯体の種類および測定する活性酸素の種類等により適宜決定される が、 電極活性、 修飾安定性等という点で 1 以下であることが好ましい。 また、 図 3の構造を有する活性酸素種センサ一 1 aは複合化測定等にも用 いるので、 1 0数層程度までの多層構造が可能である。 なお、 アースの構 成材料としては、 白金、 金、 銀等の真金属、 チタン、 ステンレス鋼、 鉄ク ロム合金等の耐食性合金、 カーボン類等の材料を使用することができるが、 アースは生体内に入ることが多いため、 安全性の高い材料 (例えば、 白金、 金、 銀等の真金属、 チタン、 ステンレス鋼、 力一ボン類等) 等で構成する ことが好ましい。
図 2および図 3に示す各活性酸素種センサー 1、 1 aはそれぞれ電極部 分の鋭利な先端を生体内に挿し込むことにより活性酸素種等の測定を行う ことができる。
図 4はカテーテル状に形成した他の活性酸素種センサ一 1 bを示してい る。
この図 4の実施形態の活性酸素種センサー 1 bは、 図 2と同様に作用極 4、 電気絶縁性材料 1 4および対極 5からなる細い電極部分を形成すると ともに、 電極部分の先端を軸方向と直角に切断仕上げし、 更に作用極 4お よび対極 5の接続したリード線 4 a、 5 aと一緒に電極部分を外形が l m m程度の樹脂製パイプ 1 6の先端に固着して形成されている。 樹脂製パイ プ 1 6は生体内に挿入しても安全な素材によって形成されている。 図 4に示す各活性酸素種センサー 1 bは、 細い電極部分を生体内具体的 には血管内、 リンパ管内、 消化器官内、 臓器内等に挿入することにより活 性酸素種等の測定を行うことができる。 また、 先端部の電極部分の進行方 向を自由に遠隔操作できるように工夫するとよい。 例えば、 電極部分を樹 脂製パイプ 1 6の軸方向に対して若千傾斜させて取りつけておいて、 樹脂 製パイプ 1 6を軸回りに回転させることにより電極部分の進行方向を選定 できるようにしたり、 電極部分の近傍にに小型のバイメタルを設け、 通電 制御することによってバイメタルを任意の方向に屈曲させて進行方向を選 定できるようにしたり、 電極部分に小型磁石を設けておいて、 生体外より 磁場を付与して小型磁石の進行方向を選定できるようにするとよい。
図 5はピアス軸状に形成した他の活性酸素種センサ一 1 cを示している。 この図 5の実施形態の活性酸素種センサ一 1 cは、 図 2と同様に作用極 4、 電気絶縁性材料 1 4および対極 5からなる細い電極部分を形成すると ともに、 電極部分の軸方向の中間部分に対極 5の内側の作用極 4と電気絶 縁性材料 1 4を外周面にそれぞれ露出させ、 更にピアスの装飾部 1 7内に 設けた小型の電源手段 2および活性酸素種濃度測定手段 3に作用極 4およ び対極 5を接続して形成されている。
図 5に示す各活性酸素種センサー 1 cは、 細い電極部分を耳 1 8のピア ス孔 1 9に揷通させることにより活性酸素種等の測定を行うことができる。 図 6はチップ状に形成した更に他の活性酸素種センサー 1 dを示してい る。
前記各実施形態 1、 l a、 l b、 1 cが生体内に直接刺したり、 挿入し たり、 接触させるものであるが、 この図 6の実施形態の活性酸素種センサ 一 1 dは、 生体から取り出した微小の血液等の被測定液体の活性酸素濃度 を測定するものである。 図 6は説明の便を図るために誇張して図示してい るが、 チップの大きさは例えば平面形状が 5 mm X 2 0〜3 0 mmで、 厚 さが 0 . 5〜1 . 0 mm程度の大きさとされている。 この活性酸素種セン サー I dはガラス、 樹脂、 セラミックス等の絶縁性基板 3 0の上に中心部 に作用極 4、 その両側に対極 5およびアース部分 1 5を形成している。 作 用極 4、 対極 5およびアース部分 1 5の素材としては、 前記各実施形態と 同様に金、 白金、 銅、 ニッケル、 ニッケル—リンメツキ、 ステンレス、 力 一ボン、 その他の導電性金属等を用いることができる。 更にこれらの素材 を、 絶縁基板 3 0上にパターン形成する場合に、 湿式表面処理としての無 電解処理、 乾式表面処理としての真空蒸着、 イオンプレーティング、 イン クジエツトによるコーティング ·焼き付け等から選択して行うとよい。 更 に、 中央の作用極 4の端部の円形の計測部 4 bの表面には、 前記実施形態 と同様にして、 カーボン層 4 cを薄く形成し、 その上に金属ポルフィリン 錯体の重合膜 4 dを形成してある。 カーボン層 4 cはその上の金属ボルフ ィリン錯体の重合膜 4 dを設ける場合の計測部 4 bの材質等との関係から の必要性に応じて設ければよく、 省くこともできる。 カーボン層 4 cは作 用極 4、 対極 5およびアース部分 1 5と同様の方法によって形成するとよ い。 金属ボルフイリン錯体の重合膜 4 dは前記各実施例と同様に電解重合 法、 溶液重合法、 不均一重合法等の各種重合法を用いて形成することがで きる。 また、 作用極 4、 対極 5およびアース部分 1 5はそれぞれリ一ド線 4 a、 5 a、 1 5 aをもって電気的に接続されるように形成されている。 また、 各リード線 4 a、 5 a、 1 5 aを接続する部分に対して差し込み接 続可能な電極形式に形成して、 外部との接続をワンタッチ式に簡単に行う ことができるようにしてもよい。 更に、 絶縁基板 3 0の上には作用極 4、 対極 5およびアース部分 1 5を上から覆う絶縁性のカバー 3 1が固着され て、 作用極 4の計測部 4 bのある先端部分に毛管現象によって血液等を内 部に吸引する機能を有する計測空間 3 2を形成している。 絶縁基板 3 0に は計測空間 3 2を外部に連通するための小孔 3 3が穿設されている。 なお、 絶縁基板 3 0およびカバ一 3 1の形状は必要に応じて変形するとよく、 血 液等の被測定液体の計測空間 3 2への導入が確実かつ容易な形状とすると よい。 更に、 絶縁基板 3 0およびカバー 3 1の表面の状態が、 例えば血液 等の被測定液体との親和性の高い状態とすることによって、 被測定液体の 計測空間 3 2内への侵入を容易とさせるとよい。 また、 カバー 3 1は必要 に応じて省いてもよい。
図 6に示す各活性酸素種センサ一 1 dは、 例えば耳たぶから採取した微 量の血液を計測空間 3 2の先端開口部より毛管現象によって内部に吸引さ せることにより活性酸素種等の測定を行うことができる。
次に、 本実施形態の作用を説明する。
図 2および図 3に示す活性酸素種センサ一 1、 l aを用いる場合には、 尖っている電極の先端部を生体内に差し込み、 作用極 4および対極 5を生 体内に入れる。
図 4に示す活性酸素種センサー 1 bを用いる場合には、 樹脂製パイプ 1 6の先端に装着されている電極部分を、 直接若しくは光ファイバスコープ 等を利用して、 血管内、 リンパ管内、 消化器官内、 臓器内に導いて、 生体 内に作用極 4および対極 5を生体内に入れる。
図 5に示す活性酸素種センサー 1 cを用いる場合には、 ピアス軸部を耳 1 8のピアス孔 1 9に揷通させて軸部分に装着されている電極部分をピア ス孔 1 9の生体部分に作用極 4および対極 5を接触させる。 図 6に示す各活性酸素種センサー 1 dを用いる場合には、 例えば耳たぶ から採取した微量の血液を計測空間 32の先端開口部より毛管現象によつ て内部に吸引させて作用極 4および対極 5を接触させる。
このようにして活性酸素種センサー 1、 l a、 l b、 l c、 I dをスー パーォキシドア二オンラジカルが存在する測定系で使用すると、 作用極 4 の表面における重合膜を形成する金属ポルフィリン錯体中の金属がスーパ 一ォキシドア二オンラジカルにより還元される。 例えば、 当該金属が鉄で あれば、 スーパ一ォキシドア二オンラジカルにより、 63+から 6 2 +に 還元される (式 (7) ) 。
そして、 可変抵抗 VR 1を調節して電源手段 2から作用極 4および対極 5に対してスーパーォキシドア二オンラジカルにより還元された F e 2 +を 酸化されうる程度の電圧を付与して、 還元された F e 2 +を電気化学的に再 酸化し (式 (8) ) 、 この時に流れる電流 (酸化電流) を測定する。
Por (F e 3+) +02一 · →Por (F e 2+) + 02 …… (7) Por (F e 2+) → Por (F e 3+) + e - …… (8)
(式 (7) および式 (8) 中、 「por」 はポルフィリンを意味する) このようにして作用極 4および対極 5によって検出されたその電流値は、 スーパーォキシドア二オンラジカル濃度と対応するため、 その電流値に基 づいて生体内に存在しているスーパーォキシドア二オンラジカルの濃度と して定量的に検出することができる。 すなわち、 上記した式 (5) および 式 (6) と同様の原理により、 スーパーォキシドア二オンラジカルの濃度 測定が可能とされるものである。 本実施形態によれば、 活性酸素種濃度測 定手段 3によって作用極 4および対極 5によって検出された電流値をスー パーォキシドア二オンラジカルの濃度として定量的に検出することとなる。 更に、 本実施形態においては、 活性酸素種濃度計測手段 3の表示手段 1 0が各活性酸素種センサ一 1、 l a、 l b、 l c、 I dが検出した電流に 基づいて計測した活性酸素種等の濃度を表示するとともに、 外部出力手段 1 1が当該測定濃度を送信等によって遠隔監視手段 1 2側に出力する。 こ のようにして活性酸素種濃度測定手段 3の外部出力手段 1 1から送られて くる濃度検出結果は遠隔監視手段 1 2の受信手段 1 3によって受信され、 図示していない演算手段によって活性酸素種測等の濃度に基づいて演算を 行って測定対象となった生体の健康状態や生体外の環境状態を求め、 同じ く図示していない表示手段によって活性酸素種等の濃度並びに生体の健康 状態や生体外の環境状態を表示して、 活性酸素種等の濃度の遠隔監視を行 うことができる。
また、 これと同様な原理により、 過酸化水素、 · OH等の活性酸素種や 〇ゃ01^〇〇— 等の他のラジカル活性種等についても同様に定量的に検 出することができる。
このように本実施形態の各活性酸素種センサ一 1、 l a、 l b、 l c、 1 dを用いると、 生体外 (in vitro) はもちろん、 生体内 (in vivo ) の 環境であっても、 スーパーォキシドア二オンラジカル、 過酸化水素、 · 0 Η等の活性酸素種や、 他のラジカル活性種 (ΝΟ、 ΟΝΟΟ—等) の検出や、 これら活性酸素種等を定量測定できるので、 各種分野で広く利用すること ができる。
すなわち、 生体内 (in vivo ) においては、 各種疾病は生体内の活性酵 素種や他のラジカル活性種により特定することができるので、 例えば血液 中の活性酸素種の濃度を測定することにより、 ガン等の疾患の特定を行う ことが可能とされる。 一方、 生体外 (i n vi t ro) においても、 食品内の活性酸素種等やその濃 度を測定することにより、 該食品の腐敗状態を観察することができる。 ま た、 水道水や下水等の水中のの活性酸素種等やその濃度を測定することに より、 水質汚染の状態を観察することができる。
さらに、 スーパ一ォキシドア二オンラジカルおよび該ァニオンを消去す るはたらきを持つ酵素であるスーパ一ォキシドジスムターゼ (superox i de D i smut ase:以下、 「S O D」 とする) の濃度も、 S O Dを含む試料を加 えたときのスーパーォキシドア二オンラジカルの消失程度を測定すること により、 測定することが可能である。
図 7は本発明を遠隔監視を可能とするように更に具体的にした他の実施 形態を示すものである。
本実施形態においては、 活性酸素種測定装置側の活性酸素種濃度計測手 段 3 aと遠隔監視手段 1 2 a側の構成を更に具体的に形成したものであり、 活性酸素種センサー 1および電源手段 2は図 1の実施形態と同様に形成し てある。
本実施形態においては、 活性酸素種測定装置側と遠隔監視手段 1 2 a側 との間でィンタ一ネットを利用してデータを双方向で授受できるようにす るとともに、 より決めの細かい内容で活性酸素種等に基づく遠隔監視制御 を行うようにしたものである。
更に説明すると、 活性酸素種測定装置側の活性酸素種濃度計測手段 3 a においては、 携帯電話機 2 1を設けて遠隔監視手段 1 2 a側とデータの送 受信を行う通信手段 2 2とデータの表示を行う表示手段 2 3を兼ねるよう にしている。 また、 活性酸素種濃度計測手段 3 aにおいては、 増幅器や C P Uやメモリー (共に図示せず) 等を備えている演算制御手段 2 4を設け て、 活性酸素種センサー 1から送られて来る検出電圧を受けて活性酸素種 の濃度を求めたり、 そのデータを携帯電話機 2 3によって送信可能なデ一 夕に変換するようにしている。 演算制御手段 2 4からのデータはィンター フェイス 2 5を介して携帯電話機 2 1に送られる。 携帯電話機 2 1におい ては、 本発明に基づいて形成刷ることのできる遠隔制御式活性酸素種等測 定システムの全体制御を行う基地局 (ホスト側) となる遠隔監視手段 1 2 aから必要なソフト (プログラム) の支給を受けてインストールされてお り、 通信手段 2 2および表示手段 2 3を動作させるようになつている。 通 信手段 2 2は演算制御手段 2 4から受けた活性酸素種の濃度データをメー ルに添付してインターネット I Nを介して遠隔監視手段 1 2 aに送信した り、 逆に遠隔監視手段 1 2 aからイン夕一ネット I Nを介して送られてく るデ一夕を受信するように形成されている。 表示手段 2 3は演算制御手段 2 4から受けた活性酸素種の濃度データを表示したり、 遠隔監視手段 1 2 aから受けた後述する生体の健康状態や生体外の環境状態に関するデータ を表示するように形成されている。
遠隔制御式活性酸素種等測定システムの全体制御を行う基地局 (ホス卜 側) となる遠隔監視手段 1 2 aにおいては、 活性酸素種測定装置側の通信 手段 2 2との間でデ一夕をインタ一ネット I Nを介して送受信する通信手 段 2 6と、 活性酸素種測定装置側から受けた活性酸素種等の濃度データに 対してデータ処理を施したり各部を関連動作させる C P Uやメモリー (共 に図示せず) 等を備えている演算手段 2 '7と、 活性酸素種等の濃度および 演算手段 2 7によって得られたデータ処理結果を表示する表示手段 2 8を 設けている。
次に、 本実施形態の作用を説明する。 活性酸素種センサ一 1および電源手段 2を用いて、 図 1に示す実施形態 と同様にして測定された被測定対象となる生体または生体外部分の電流値 が活性酸素種濃度計測手段 3 aに入力される。 演算制御手段 2 4は入力さ れた電流値に対して演算を行い活性酸素種濃度を求め、 更に必要なデータ 処理を施してインターフェイス 2 5を通して携帯電話機 2 1に送る。 携帯 電話機 2 1は既にィンストールしてあるソフトの指示に従って、 表示手段 2 3に活性酸素種等の濃度を数値またはグラフ等による画像として表示し、 通信手段 2 2により活性酸素種等の濃度デ一夕をインターネット I Nを介 してメールによって遠隔監視手段 1 2 aに向けて送信する。 遠隔監視手段 1 2 aにおいては、 通信手段 2 6によって受信した活性酸素種等の濃度デ 一夕に対して演算手段 2 7がデータ処理を施して被測定対象となった人等 の生体の健康状態や生体外の環境状態を求める。 そして、 表示手段 2 8に より活性酸素種等の濃度や生体の健康状態や生体外の環境状態を表示する。 これにより生体の健康状態等を遠隔地から監視することができる。 更に、 このようにして遠隔監視手段 1 2 a側において求めた生体の健康状態等の データを、 遠隔監視手段 1 2 a側と活性酸素種等測定装置側の両通信手段 2 6、 2 2およびインタ一ネット I Nを介して活性酸素種等測定装置側の 携帯電話機 2 1に戻して、 表示手段 2 3によって表示させる。 これにより 活性酸素種の濃度測定現場側に生体の健康状態等のデータを知らせるサー ビスを提供することができ、 また、 測定現場側においてはその後の健康管 理の指針を得ることができる。 また、 遠隔監視手段 1 2 a側を基地局とす ることにより、 複数の活性酸素種等測定装置側に対して同時アクセスした り、 各種データの一元管理を行ったり、 必要に応じて基地局にいる医師に よって各種のデータに基づいて被測定対象となっている人等の生体の健康 状態や疾患状態を診断し、 その診断結果を濃度測定現場側に知らせること ができる。 特に、 救急作業中の現場において活性酸素種の濃度に基づく医 師の診断が必要な場合に、 遠隔地の専門医師によってリアルタイムに診断 をすることができ、 救命作業の迅速 ·適正化を図ることができる。 更に、 活性酸素種等測定装置側においては演算不可能なデータ処理を遠隔監視手 段 1 2 a側において行って、 得られた必要な演算処理データを活性酸素種 等測定装置側に送ることができ、 活性酸素種等測定装置側の小型化を図る こともできる。 また、 活性酸素種等測定装置側の活性酸素種濃度計測手段 3 aの演算制御手段 2 4による計測電流値に基づく活性酸素種等の濃度を 求める演算を省いて、 活性酸素種センサ一 1から受けた計測電流値をその まま遠隔監視手段 1 2 a側に送り、 遠隔監視手段 1 2 aにおいて計測電流 値から活性酸素種等の濃度を演算して求めるようにしてもよい。 これによ り更に活性酸素種等測定装置側の小型化を図ることができる。 また、 本実 施形態においては、 活性酸素種等測定装置の通信手段 2 2および表示手段 2 3を携帯電話機 2 1によって形成し、 遠隔監視手段 1 2 aとインターネ ット I Nを介してデータの授受を行うように形成しているので、 携帯性に 優れている携帯電話機 2 1とインタ一ネット I Nを用いて、 非常に簡単に 活性酸素種等の測定、 遠隔監視制御等を行うことができる。
なお、 本発明は前記実施の形態に限定されるものではなく、 必要に応じ て変更することができる。

Claims

請 求 の 範 囲
1 ) 活性酸素種等の存在を電流として検出可能な電極を備えている活 性酸素種センサーと、 この活性酸素種センサーに測定電圧を付与する電源 手段と、 前記活性酸素種センサ一が検出した前記電流から前記活性酸素種 等の濃度を計測する活性酸素種濃度計測手段とを有することを特徴とする 活性酸素種等測定装置。
2 ) 前記活性酸素種濃度計測手段は、 計測した活性酸素種等の濃度を 外部に出力する外部出力手段を備えており、 この外部出力手段の出力を受 けて活性酸素種等の濃度を監視する遠隔監視手段を有することを特徴とす る請求項 1に記載の活性酸素種測定装置。
3 ) 前記遠隔監視手段は、 前記活性酸素種測定装置との間でデータを 送受信する通信手段と、 前記外部出力手段から受けた活性酸素種等の濃度 に対してデータ処理を施す演算手段と、 前記活性酸素種等の濃度および前 記演算手段によって得られたデータ処理結果を表示する表示手段を有して おり、
前記活性酸素種測定装置においては、 前記外部出力手段が前記遠隔監視 手段との間でデータを送受信する通信手段によって形成されており、 活性 酸素種等の濃度および前記遠隔監視手段から受信したデータを表示する表 示手段が形成されている
ことを特徴とする請求項 2に記載の活性酸素種測定装置。 4 ) 前記活性酸素種測定装置と遠隔監視手段との間のデータの授受は 無線若しくは有線の伝搬系を介して行われることを特徴とする請求項 2ま たは請求項 3に記載の遠隔制御式活性酸素種等測定システム。 5 ) 前記活性酸素種測定装置の通信手段および表示手段は携帯電話機 によって形成されており、 前記遠隔監視手段とインタ一ネットを介してデ 一夕の授受を行うように形成されていることを特徴とする請求項 3に記載 の遠隔制御式活性酸素種等測定システム。 6 ) 活性酸素種センサーの電極は、 生体内の活性酸素種等の存在を電 流として検出可能な形状に形成されていることを特徴とする請求項 1から 請求項 5のいずれか 1項に記載の活性酸素種測定装置。
7 ) 電源手段は、 活性酸素種センサーに付与する測定電圧を可変制御 自在に形成されていることを特徵とする請求項 1から請求項 6のいずれか
1項に記載の活性酸素種等測定装置。
8 ) 活性酸素種濃度計測手段は、 活性酸素種センサーが検出した電流 に基づいて計測した活性酸素種等の濃度を表示する表示手段と外部に出力 する外部出力手段との少なくとも一方を有していることを特徴とする請求 項 1から請求項 7のいずれか 1項に記載の活性酸素種測定装置。
9 ) 活性酸素種センサーの電極は、 活性酸素種等の存在を電流として 検出可能な素材を電極表面に備えていることを特徴とする請求項 1から請 求項 8いずれか 1項に記載の活性酸素種等測定装置。
10) 活性酸素種等の存在を電流として検出可能な素材は、 金属ポル フイリン錯体の重合膜、 レドックス性の高分子またはその誘導体、 金属複 合体および錯体系化合物の中の少なくとも 1種からなることを特徴とする 請求項 9に記載の活性酸素種等測定装置。
1 1) 金属ボルフイリン錯体が下記式 (I) または式 (Π)
Figure imgf000035_0001
(式 I中、 Mは、 鉄、 マンガン、 コバルト、 クロム、 イリジウムから選 ばれる金属を示し、 4つの Rのうち少なくとも 1つは、 チォフリル基、 ピ 口リル基、 フリル基、 メルカプトフエニル基、 ァミノフエ二ル基、 ヒドロ キシフエニル基から選ばれるいずれかの基であり、 他の Rは、 前記のいず れかの基またはアルキル基、 ァリール (a r y l) 基もしくは水素を示 す)
Figure imgf000036_0001
(式 II中、 Mおよび Rは上記した意味を有し、 2つの Lのうち少なくと も 1つは. イミダゾールおよびその誘導体、 ピリジンおよびその誘導体、 ァニリンおよびその誘導体、 ヒスチジンおよびその誘導体、 トリメチルァ ミンおよびその誘導体等の窒素系軸配位子、 チォフエノールおよびその誘 導体、 システィンおよびその誘導体、 メチォニンおよびその誘導体等の硫 黄系軸配位子、 安息香酸およびその誘導体、 酢酸およびその誘導体、 フエ ノールおよびその誘導体、 脂肪族アルコールおよびその誘導体、 水等の酸 素系軸配位子であり、 他の Lは、 前記のいずれかの軸配位子または配位子 のないものを示す)
で表される請求項 1 0に記載の活性酸素種等測定装置。
1 2) 金属ボルフイリン錯体を形成するポルフィリン化合物が、 5, 1 0 , 1 5, 20—テトラキス (2—チォフリル) ポルフィリン、 5, 1 0 , 1 5 , 20—テトラキス (3—チオフリル) ポルフィリン、 5, 1 0 1 5 , 2 0一テ卜ラキス ( 2—ピロリル) ポルフィリン、 5, 1 0, 1 5 20一テ卜ラキス (3—ピロリル) ボルフィリン、 5, 1 0, 1 5, 20 ーテトラキス (2—フリル) ポルフィリン、 5, 1 0 , 1 5, 2 0一テ卜 ラキス ( 3—フリル) ポルフィリン、 5, 1 0, 1 5 , 2 0 - -テ卜ラキス
(2—メルカプトフエニル) ポルフィリン、 5, 1 0 , 1 5, 2 0一テ卜 ラキス (3—メルカプトフエニル) ポルフィリン、 5 , 1 0, 1 5, 20
—テトラキス (4—メルカプトフエニル) ボルフィ Uン、 5, 1 0, 1 5
20—テトラキス (2—ァミノフエニル) ポルフィリン、 5, 1 0, 1 5
2 0—テトラキス (3—ァミノフエニル) ポルフィ Vン、 5, 1 0, 1 5
20—テトラキス (4ーァミノフエニル) ポルフィ Vン、 5, 1 0, 1 5 20—テトラキス (2—ヒドロキシフエニル) ポルフィリン、 5 , 1 0,
1 5, 20—テ卜ラキス (3—ヒドロキシフエニル) ポルフィ Uン、 5,
1 0, 1 5, 20—テトラキス (4ーヒドロキシフエニル) ポルフィリン、 [5, 1 0, 1 5—トリス (2—チオフリル) 一 20—モノ (フエ二 ル) ] ポルフィリン、 [5, 1 0, 1 5—トリス (3—チオフリル) — 2 0—モノ (フエニル) ] ポルフィリン、 [5, 1 0—ピス (2—チオフリ ル) - 1 5, 20—ジ (フエニル) ] ポルフィリン、 [ 5 , 1 0—ビス ( 3—チオフリル) — 1 5 , 20—ジ (フエ二ル) ] ポルフィ リン、 [5, 1 5—ビス (2—チオフリル) 一 1 0, 20—ジ (フエニル) ] ポルフィ リン、 [5, 1 5—ビス (3ーチオフリル) 一 1 0, 2 0—ジ (フエ二 ル) ] ポルフィリン、 [ 5一モノ ( 2ーチオフリル) - 1 0, 1 5 , 20 —トリ (フエ二ル) ] ポルフィ リンおよび [ 5—モノ (3—チオフリル) 一 1 0, 1 5, 20—トリ (フエ二ル) ] ポルフィリンなる群から選ばれ るものであることを特徴とする請求項 1 0または請求項 1 1に記載の活性 酸素種等測定装置。
PCT/JP2004/002112 2003-02-24 2004-02-24 活性酸素種等測定装置 WO2004074828A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04713993.6A EP1600766B1 (en) 2003-02-24 2004-02-24 Active oxygen species measuring device
JP2005502808A JP5053547B2 (ja) 2003-02-24 2004-02-24 活性酸素種等測定装置
US10/547,142 US8298387B2 (en) 2003-02-24 2004-02-24 Reactive oxygen species measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003046392 2003-02-24
JP2003-046392 2003-02-24

Publications (1)

Publication Number Publication Date
WO2004074828A1 true WO2004074828A1 (ja) 2004-09-02

Family

ID=32905548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002112 WO2004074828A1 (ja) 2003-02-24 2004-02-24 活性酸素種等測定装置

Country Status (6)

Country Link
US (1) US8298387B2 (ja)
EP (1) EP1600766B1 (ja)
JP (1) JP5053547B2 (ja)
KR (1) KR20060002769A (ja)
CN (1) CN1754097A (ja)
WO (1) WO2004074828A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242784A (ja) * 2005-03-04 2006-09-14 Makoto Yuasa スーパーオキシドアニオンラジカルの測定方法
JP2006242783A (ja) * 2005-03-04 2006-09-14 Makoto Yuasa ポルフィリン電解重合膜修飾白金線状センサー
JP2007003408A (ja) * 2005-06-24 2007-01-11 Kyushu Institute Of Technology 細胞バイオセンサ
JP2008237529A (ja) * 2007-03-27 2008-10-09 Tokyo Univ Of Science 組織傷害の診断、治療装置
WO2009136436A1 (ja) * 2008-05-07 2009-11-12 学校法人東京理科大学 組織傷害の診断装置
WO2010061536A1 (ja) * 2008-11-26 2010-06-03 パナソニック株式会社 窒素酸化物検出エレメント、窒素酸化物検出センサとこれを使用した窒素酸化物濃度測定装置および窒素酸化物濃度測定方法
JP2019173112A (ja) * 2018-03-29 2019-10-10 グリーンケム株式会社 金属メッキ方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088290A1 (ja) * 2004-03-12 2005-09-22 Makoto Yuasa スーパーオキシドアニオン用電極およびこれを用いるセンサー
JP2006314871A (ja) * 2005-05-10 2006-11-24 Toyota Motor Corp ポルフィリン系電極触媒
AU2009244341B2 (en) * 2008-05-06 2012-01-19 Colgate-Palmolive Company Method of measuring effects of components on cell reactive oxygen species production
EP2602616A4 (en) * 2010-08-03 2014-10-15 Panasonic Healthcare Co Ltd NITRIC OXIDE DETECTOR ELEMENT
WO2012017605A1 (ja) * 2010-08-03 2012-02-09 パナソニックヘルスケア株式会社 一酸化窒素検出エレメント及びその製造方法
WO2012017623A1 (ja) * 2010-08-05 2012-02-09 パナソニック株式会社 ガス分子検知素子、ガス分子検知装置及びガス分子検知方法
KR101354975B1 (ko) * 2012-09-25 2014-01-24 (주)바이오닉스 암실모듈을 갖춘 활성산소 분석기
WO2020136414A1 (en) * 2018-12-26 2020-07-02 Universidad De Buenos Aires (Uba) Hno biosensor
CN111272851B (zh) * 2020-02-25 2021-07-27 华东师范大学 一种检测·oh的玻璃纳米孔传感器及其制备和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180263A (ja) * 1986-02-04 1987-08-07 Terumo Corp 酸素センサ−
JPH021537A (ja) * 1987-01-29 1990-01-05 Terumo Corp 酸素センサ
JP2000060807A (ja) * 1998-08-22 2000-02-29 Teruo Ido 遠隔監視医療通報システム
JP2002245177A (ja) * 2001-02-16 2002-08-30 Hitachi Ltd 健康情報管理方法及びその実施システム並びにその処理プログラム
JP2003024285A (ja) * 2001-07-17 2003-01-28 Sharp Corp 携帯身体測定機器,携帯無線通信機器,携帯身体測定無線通信システム,身体測定機能内蔵型携帯無線通信機器,健康管理システム,健康管理サービス付生命保険システムおよびその保険料割引方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2672561B2 (ja) * 1988-01-29 1997-11-05 テルモ株式会社 膜被履センサ
US5603820A (en) * 1992-04-21 1997-02-18 The United States Of America As Represented By The Department Of Health And Human Services Nitric oxide sensor
WO1994004507A1 (en) * 1992-08-21 1994-03-03 The Board Of Trustees Of The Leland Stanford Junior University Basket porphyrin oxygen carriers
US5806517A (en) * 1995-05-26 1998-09-15 The Regents Of The University Of Colorado In vivo electrochemistry computer system and method
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
JP2000028764A (ja) * 1998-07-07 2000-01-28 Yoshitaka Otomo 生物用酸化還元電位測定機能装置付き時計及び利用システム
JP2002055078A (ja) * 2000-08-07 2002-02-20 Masayuki Morinaka 生体中の活性酸素量のセンサーと測定方法
US6633772B2 (en) * 2000-08-18 2003-10-14 Cygnus, Inc. Formulation and manipulation of databases of analyte and associated values
JP2003087899A (ja) * 2001-09-12 2003-03-20 Sony Corp 音響処理装置
US7025734B1 (en) * 2001-09-28 2006-04-11 Advanced Cardiovascular Systmes, Inc. Guidewire with chemical sensing capabilities
WO2003054536A1 (en) * 2001-12-20 2003-07-03 Takebayashi, Hitoshi Electrode for active oxygen species and sensor using the electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180263A (ja) * 1986-02-04 1987-08-07 Terumo Corp 酸素センサ−
JPH021537A (ja) * 1987-01-29 1990-01-05 Terumo Corp 酸素センサ
JP2000060807A (ja) * 1998-08-22 2000-02-29 Teruo Ido 遠隔監視医療通報システム
JP2002245177A (ja) * 2001-02-16 2002-08-30 Hitachi Ltd 健康情報管理方法及びその実施システム並びにその処理プログラム
JP2003024285A (ja) * 2001-07-17 2003-01-28 Sharp Corp 携帯身体測定機器,携帯無線通信機器,携帯身体測定無線通信システム,身体測定機能内蔵型携帯無線通信機器,健康管理システム,健康管理サービス付生命保険システムおよびその保険料割引方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BARRY W. ALLEN: "Electrode materials for nitric oxide detection", NITRIC OXIDE, vol. 4, no. 1, 2000, pages 75 - 84, XP002967705 *
BRUNET A.: "Advantages and limits of the electrochemical method using Nafion and Ni-porphyrin-coated microelectrode to monitor NO release from cultured vascular cells", ANALUSIS, vol. 2, no. 6, 2000, pages 469 - 474, XP002967704 *
CHEN JIAN: "Superoxide snsor based on hemin modified electrode", SENSORS AND ACTUATORS B, vol. 70, no. 113, 2000, pages 115 - 120, XP004224589 *
KASANUKI TOMOHISA: "Hydrogen peroxide sensor based on carbon paste electrode containing a metal porphyrin complex", CHEMICAL SENSORS, vol. 17, no. SUPP B, 4 December 2001 (2001-12-04), pages 427 - 429, XP002967702 *
SHIOZAWA ASAKO ET AL.: "O2 sensor to shiteno kobunsika tetraaminophenylporphyrin shushoku denkyoku", POLYMER PREPRINTS, vol. 51, no. 14, 18 September 2002 (2002-09-18), JAPAN, pages 3717, XP002904068 *
YUASA MAKOTO ET AL.: "Cobalt oyobi tetsu porphyrin o fukumu kobunshika fukugo sakutai-kei no sanso kangen shokubai kassei", MATERIAL TECHNOLOGY, vol. 18, no. 6, 25 August 2000 (2000-08-25), pages 242 - 245, XP002904069 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242784A (ja) * 2005-03-04 2006-09-14 Makoto Yuasa スーパーオキシドアニオンラジカルの測定方法
JP2006242783A (ja) * 2005-03-04 2006-09-14 Makoto Yuasa ポルフィリン電解重合膜修飾白金線状センサー
JP4567490B2 (ja) * 2005-03-04 2010-10-20 真 湯浅 スーパーオキシドアニオンラジカルの測定方法
JP2007003408A (ja) * 2005-06-24 2007-01-11 Kyushu Institute Of Technology 細胞バイオセンサ
JP2008237529A (ja) * 2007-03-27 2008-10-09 Tokyo Univ Of Science 組織傷害の診断、治療装置
WO2009136436A1 (ja) * 2008-05-07 2009-11-12 学校法人東京理科大学 組織傷害の診断装置
JPWO2009136436A1 (ja) * 2008-05-07 2011-09-01 学校法人東京理科大学 組織傷害の診断装置
WO2010061536A1 (ja) * 2008-11-26 2010-06-03 パナソニック株式会社 窒素酸化物検出エレメント、窒素酸化物検出センサとこれを使用した窒素酸化物濃度測定装置および窒素酸化物濃度測定方法
US8508738B2 (en) 2008-11-26 2013-08-13 Panasonic Corporation Nitrogen oxide sensing element, nitrogen oxide sensor, nitrogen oxide concentration determination device using same, and method for determining nitrogen oxide concentration
JP5339305B2 (ja) * 2008-11-26 2013-11-13 パナソニック株式会社 窒素酸化物検出エレメント
JP2019173112A (ja) * 2018-03-29 2019-10-10 グリーンケム株式会社 金属メッキ方法

Also Published As

Publication number Publication date
JP5053547B2 (ja) 2012-10-17
US8298387B2 (en) 2012-10-30
KR20060002769A (ko) 2006-01-09
CN1754097A (zh) 2006-03-29
EP1600766A4 (en) 2010-09-22
EP1600766A1 (en) 2005-11-30
EP1600766B1 (en) 2019-06-26
JPWO2004074828A1 (ja) 2006-06-01
US20060289313A1 (en) 2006-12-28

Similar Documents

Publication Publication Date Title
WO2004074828A1 (ja) 活性酸素種等測定装置
JP7198243B2 (ja) 植え込み型マイクロバイオセンサ及びその操作方法
US5989409A (en) Method for glucose sensing
US20020019604A1 (en) Electrochemical sensor with dual purpose electrode
JP4128530B2 (ja) 活性酸素種用電極及び該電極を使用したセンサー
EP1011427A1 (en) Electrode with improved signal to noise ratio
EP3561507B1 (en) Diagnostic apparatus and diagnostic method for measurements on saliva
EP3771413B1 (en) Method for manufacturing implantable micro-biosensor
Hernández-Saravia et al. A Cu-NPG/SPE sensor for non-enzymatic and non-invasive electrochemical glucose detection
Li et al. Boosting the performance of an iontophoretic biosensing system with a graphene aerogel and Prussian blue for highly sensitive and noninvasive glucose monitoring
Liu et al. Efficient electrocatalytic reduction and detection of hydrogen peroxide at an IrIVOx· H2O nanostructured electrode prepared by electroflocculation
JP4382088B2 (ja) スーパーオキシドアニオン用電極およびこれを用いるセンサー
Feng et al. Recent Advances in Salivary Glucose Monitoring
WO2020136414A1 (en) Hno biosensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057015399

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048049614

Country of ref document: CN

Ref document number: 2005502808

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004713993

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006289313

Country of ref document: US

Ref document number: 10547142

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004713993

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057015399

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10547142

Country of ref document: US