CN101106131A - 半导体结构及其形成方法 - Google Patents

半导体结构及其形成方法 Download PDF

Info

Publication number
CN101106131A
CN101106131A CNA200610172428XA CN200610172428A CN101106131A CN 101106131 A CN101106131 A CN 101106131A CN A200610172428X A CNA200610172428X A CN A200610172428XA CN 200610172428 A CN200610172428 A CN 200610172428A CN 101106131 A CN101106131 A CN 101106131A
Authority
CN
China
Prior art keywords
source
drain
transistor
grid
semiconductor structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200610172428XA
Other languages
English (en)
Other versions
CN100499129C (zh
Inventor
彭远清
陈欣仪
卢叙伟
林学仕
陈伟铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN101106131A publication Critical patent/CN101106131A/zh
Application granted granted Critical
Publication of CN100499129C publication Critical patent/CN100499129C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76895Local interconnects; Local pads, as exemplified by patent document EP0896365
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823475MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type interconnection or wiring or contact manufacturing related aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823481MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/495Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/12Static random access memory [SRAM] devices comprising a MOSFET load element

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明提供一种半导体结构及其形成方法,其采用栅极置换工艺。半导体结构具有端接接触部结构(butted contact),其电性连接源极/漏极至栅极延伸部(gate extension)。上述的半导体结构还包括设于源极/漏极上并与其电性连接的接触垫。接触垫可降低电阻,也可减少端接接触部与源极/漏极间断路(open)的可能性。接触垫的上表面优选与栅极延伸部等高。

Description

半导体结构及其形成方法
技术领域
本发明涉及一种半导体结构及其形成方法,更特别涉及一种端接接触部(butted contact)。
背景技术
端接接触部已广泛应用于半导体元件的电性连接,由于只需较少的布局区域,特别适用于高密度集成电路,如静态随机存储存储器(static randomaccess memory,以下简称SRAM)。
图1、2所示为应用端接接触部的例子。图1显示已知的六晶体管SRAM(以下简称6T SRAM)单元,其具有通栅晶体管10及锁存器,锁存器包括晶体管12、14、16、及18。通栅晶体管10(pass gate transistor)的栅极1由字线WL控制,以选择特定的存储单元,锁存器则通过上拉晶体管12、下拉晶体管14、晶体管16及18来存储状态。通过位线BL可读取被存储的状态。
端接接触部可应用于图1中电路的多种电性连接。举例来说,端接接触部可应用于下述情况:通栅晶体管10的源极2,与晶体管16、18的栅极6的电性连接;晶体管16、18的栅极6,与晶体管12、14各自的漏极4、8的电性连接;以及晶体管12、14的栅极21,与晶体管16、18各自的漏极15、23的电性连接。
图2显示端接接触部42的剖面图,其介于晶体管16及18的栅极或栅极延伸部6,与通栅晶体管10的源极2之间。40指的是浅沟槽绝缘区(以下简称STI)。已知工艺的端接接触部有蚀刻负载效应的缺点,会形成非垂直的轮廓。如图3所示,其底部比顶部窄,其底部与晶体管10的漏极2的重叠区域44因此缩小,并增加端接接触部的电阻。最糟的情况为重叠区域44将完全消失并形成断路(open),使集成电路失效。
因此,现在需要设计新的端接接触部,以克服上述问题。
发明内容
本发明提供一种半导体结构,包括一浅沟槽绝缘区,位于一基板中;第一晶体管,包括一栅极位于该基板上,以及一源极/漏极邻接该浅沟槽绝缘区;一栅极延伸部,位于该浅沟槽绝缘区之上,且电性连接至一第二晶体管的一栅极;一端接接触部,位于该栅极延伸部之上,并电性连接至该栅极延伸部;一接触垫,电性连接该端接接触部与该第一晶体管的该源极/漏极,其中该接触垫位于该端接接触部之下,且该接触垫的上表面实质上与该栅极延伸部的上表面等高。
本发明进一步提供一种半导体结构,包括:一半导体基板;一绝缘结构,自该半导体基板的上表面延伸至该半导体基板中;一层间介电层,位于该半导体基板上;一第一晶体管,包括:一第一与一第二源极/漏极,位于该层间介电层之下,且该第一源极/漏极邻接该绝缘结构、一第一与一第二金属硅化层,各自介于该层间介电层及该第一与该第二源极/漏极之间、以及一栅极,位于该层间介电层中,且该栅极介于该第一与该第二源极/漏极之间,并具有与该层间介电层上表面等高的上表面;一接触垫,位于该层间介电层中及该第一金属硅化层之上;一栅极延伸部,位于该绝缘结构上;以及一端接接触部,电性连接该接触垫及该栅极延伸部。
本发明进一步提供一种半导体结构,包括一晶体管及其源极/漏极;一介电层,邻接该源极/漏极;一导电图案,位于该介电层上,并具有一上表面实质上高于该源极/漏极的上表面;一接触垫,位于该源极/漏极上,并电性连接至该源极/漏极;以及一端接接触部,电性连接该接触垫与该导电图案。
本发明还提供一种半导体结构的形成方法,其采用置换栅极工艺,包括形成一晶体管,该晶体管具有一虚置栅极;沉积一层间介电层并平坦化,该层间介电层的上表面高度与该虚置栅极的上表面等高;移除该虚置栅极,形成一第一开口;移除部分该层间介电层,形成一第二开口,且该第二开口至少露出该第一晶体管部分的源极/漏极;以金属填满该第一开口形成该第一晶体管的一金属栅极,并同时以金属填满该第二开口形成一接触垫;以及形成一端接接触部,其电性连接该接触垫与一浅沟槽绝缘上的一栅极延伸部,且该浅沟槽绝缘区邻接该第一晶体管的源极/漏极。
本发明优选实施例的接触垫可减少端接接触部的缩减距离,因此可增加接触面积并降低接触电阻,同时降低断路(open)的可能性。另一个优点是,现有的技术即可将接触垫整合至工艺中,而不一定需要额外的步骤及掩膜。
附图说明
图1为6T SRAM单元的电路图;
图2为端接接触部的剖面图,其电性连接一晶体管的漏极及另一晶体管的栅极延伸部,且该端接接触部具有垂直的轮廓;
图3为端接接触部的剖面图,其为负向轮廓,因底部较顶部窄;
图4为本发明优选实施例的半导体结构;
图5至图13为本发明优选实施例的剖面图,显示半导体结构的工艺。
【主要元件符号说明】
BL~位线;WL~字线;10~通栅晶体管;12、14、16、18~锁存器的晶体管;1~栅极;2~源极;6~栅极延伸部;40~浅沟槽绝缘区;42~端接接触部;48~接触垫;α~顶角;D1、D2~缩减距离;D3~接触垫与源极/漏极接触的宽度;D4~源极/漏极的宽度;H1、端接接触部的高度;H2~接触垫的高度;100~pMOS;200~nMOS;102~n型阱区;104~栅极介电层;108~侧壁间隔物;202~p型阱区;106、206、306~虚置栅极;109、209~金属硅化层;110、210~源极/漏极;112、116~开口;120~金属栅极;122~接触垫;305~浅沟槽绝缘区;308、320、~层间介电层;310、322~光阻层;318~金属层;324~接触开口;326~金属插塞;328~端接接触部。
具体实施方式
如图3所示,若以端接接触部的顶角α来分,端接接触部具有三种可能的轮廓。值得注意的是,邻接端接接触部的介电层已被省略以简化图示。当顶角α大于90度时,其为正向轮廓;等于90度时,其为垂直轮廓;小于90度时,其为负向轮廓。图2为垂直轮廓,而图3为负向轮廓。一般说来,优选垂直轮廓。
由于蚀刻负载效应,集成电路中各别的端接接触部其轮廓通常不一致。其中一些端接接触部具有垂直轮廓,其它则为正向轮廓或负向轮廓。端接接触部的轮廓控制可通过工艺参数调整,比如将介电层进行蚀刻/成形(shaping)的过蚀刻时间。举例来说,在介电层形成开口时可增加过蚀刻时间,如此则可解决端接接触部的轮廓问题。然而这会造成负作用,如开口的鸟嘴。
如图3所示,负向轮廓的端接接触部42,其底部缩减的距离为D1。当D1增加,将减少源极/漏极2与端接接触部42的接触区域,并增加接触电阻。最后,当顶角α够小时,接触区域将完全消失并形成断路(open)。缩减距离D1与端接接触部的高度H1的关系如下述公式:D1=H1*cot(α)。α趋近于90度或H1降低均有助于减少D1
图4为本发明的优选实施例,其可有效减少底部缩减的距离D1。端接接触部42电性连接一晶体管的栅极延伸部6以及另一晶体管的源极/漏极2,两者间设有一接触垫48。端接接触部的剖面优选为垂直轮廓的长方形,然而为了解释方便,其剖面为负向轮廓。源极/漏极2上更可包括一金属硅化层5。顾名思义,栅极延伸部6可电性连接栅极,但其也可电性连接至其它的导电图案。接触垫48的材料可为金属、金属硅化物、多晶硅、或其它合适的材料,其形成方法为一般已知的方法。若接触垫选用金属硅化物,其上表面的高度需高于已知技艺的金属硅化物。值得注意的是,端接接触部42具有一缩减距离D2=cot(α)*(H1-H2),且D2小于D1。接触垫48与栅极延伸部6的上表面优选为等高,两者上表面的高度差为ΔH。ΔH优选小于接触垫高度H2的10%,最优选为0。
接触垫48优选为延伸覆盖STI 40。为降低接触垫48与其下的源极/漏极2之间的接触电阻,两者间的重叠宽度D3优选大于源极/漏极2宽度D4的一半,最好D3等于D4。由于缩减距离D2减少,再加上接触垫48延伸覆盖至STI 40,因此更增加了接触垫48与其上的端接接触部42的接触面积,断路(open)的可能性与接触电阻均因此而明显地降低。
本发明实施例的一个优点是,额外的接触垫48并不需增加太多额外的工艺步骤。在仔细设计下,接触垫可整合至现有工艺,而不需增加掩膜或其它工艺。图5-图13显示本发明实施例应用栅极置换步骤的工艺。半导体元件具有虚置栅极(dummy gate)、侧壁间隔物、及源极/漏极,并进行热退火步骤。的后以金属栅极取代虚置栅极,可避免热退火对金属栅极的不利影响。
图5中,以STI 305分隔pMOS晶体管100与nMOS晶体管200。基板的102区域优选掺杂为n型阱区,202区域优选掺杂为p型阱区。值得注意的是,虽然图示中晶体管100及200的距离很近,但在实际应用上两者通常彼此远离。在优选实施例中,栅极介电层104、204可为HfO2。在其它实施例中,栅极介电层104、204可为硅酸盐,如HfSiO4、HfSiON、HfSiN、ZrSiO4、或其它合适的硅酸盐。其它合适的材料还包含金属氧化物、金属氮化物、过渡金属硅酸盐。源极/漏极110、210各自对应于元件100、200,活化方式优选为热退火。源极/漏极110、210优选为半导体材料各自掺杂适当的p型或n型杂质,并各自可具有金属硅化层109、209于其上。
优选实施例中,虚置栅极106、206具有TaN层于HfN层上的两层结构。在其它实施例中,虚置栅极为多晶硅。形成于STI 305上的栅极延伸部306优选电性连接至另一晶体管(未图示)的栅极,也可电性连接至其它的导电元件如源极/漏极、接点、或其它导电元件。栅极延伸部306的组成可为多晶硅或其它的导电材质如金属。
如图6所示,等厚沉积一层间介电层(Inter-layer dielectric,以下简称ILD)后进行平坦化步骤,使其上表面与虚置栅极106、206的上表面等高如图中ILD308所示。
接着形成光阻层310并图案化。优选的实施例中,以非等向蚀刻移除虚置栅极106以及部分的ILD 308,形成开口112与116。举例来说,蚀刻剂为HBr、Cl2、O2、CH2F2、CHF3、CF4、及Ar时,可移除材料为磷硅酸玻璃(PSG)或二氧化硅(SiO2)的ILD 308与多晶虚置栅极106。在另一实施例中,优选以HBr、Cl2、及O2蚀刻多晶虚置栅极106,以CF4蚀刻材料为磷硅酸玻璃(PSG)或二氧化硅(SiO2)的ILD 308。开口116将露出源极/漏极110。如图7所示,为了降低端接接触部的接触电阻,开口116优选邻接侧壁间隔物108,但本领域技术人员可视需要将开口远离侧壁间隔物108以避免对位误差(misalignment)。开口116优选延伸至STI 305。
如图8所示,沉积金属层318以填满开口112与116后进行平坦化步骤。优选的平坦化步骤为化学机械抛光(Chemical mechanical polish,以下简称CMP),金属层优选为高工作函数的金属。如图9所示,开口112与116中的金属分别形成金属栅极120与接触垫122。
如图10所示,另一ILD 320沉积于上述结构。ILD 320的材料优选为低介电常数材料如四乙基硅酸盐(TEOS),优选的形成方式为化学气相沉积(CVD)、等离子增强式化学气相沉积(PECVD)、低压化学气相沉积法(LPCVD)、或其它合适的沉积方法。ILD 320使MOS元件100、200及其上的金属线路彼此绝缘。此技艺人士自可依需要形成接触蚀刻停止层(因简化而未图示)于ILD 320下。
如图11所示,于ILD 320上形成光阻层322,之后图案化光阻层322以形成接触开口。图12显示光阻层322未屏蔽部分的ILD 320及ILD 308均被蚀刻。在形成接触开口324后,移除光阻层322。
如图13所示,以导电材料填满接触开口324以形成金属插塞326与端接接触部328,之后以CMP移除多余的导电材料,只留下金属插塞326与端接接触部328。合适的导电材料可为W、Al、Cu、或其它已知的导电材料。金属插塞326与端接接触部328也可为复合结构,比如含有阻挡层及粘着层如Ti/TiN、Ta/TaN、或其它类似的结构。
值得注意的是,图4可用来电性连接其它导电图案如接点、导电线路、或其它适合的半导体元件,而不限于电性连接源极/漏极。利用接触垫的观念,可降低端接接触部的高度,并减少其底部的缩减距离并增加底部的接触面积,进而改善可靠度与接触电阻。

Claims (10)

1.一种半导体结构,其特征在于,包括:
一浅沟槽绝缘区,位于一基板中;
一第一晶体管,包括一栅极位于该基板上,以及一源极/漏极邻接该浅沟槽绝缘区;
一栅极延伸部,位于该浅沟槽绝缘区之上,且电性连接至一第二晶体管的一栅极;
一端接接触部,位于该栅极延伸部之上,并电性连接至该栅极延伸部;
一接触垫,电性连接该端接接触部与该第一晶体管的该源极/漏极,其中该接触垫位于该端接接触部之下,且该接触垫的上表面实质上与该栅极延伸部的上表面等高。
2.如权利要求1所述的半导体结构,其特征在于,还包括一金属硅化层,位于该源极/漏极之上及该接触垫之下。
3.如权利要求1所述的半导体结构,其特征在于,该端接接触部的下表面比其上表面窄。
4.如权利要求1所述的半导体结构,其特征在于,该接触垫实质上覆盖该浅沟槽绝缘区。
5.一种半导体结构,其特征在于,包括:
一半导体基板;
一绝缘结构,自该半导体基板的上表面延伸至该半导体基板中;
一层间介电层,位于该半导体基板上;
一第一晶体管,包括:
一第一与一第二源极/漏极,位于该层间介电层之下,且该第一源极/漏极邻接该绝缘结构;
一第一与一第二金属硅化层,各自介于该层间介电层及该第一与该第二源极/漏极之间;以及
一栅极,位于该层间介电层中,且该栅极介于该第一与该第二源极/漏极之间,并具有与该层间介电层上表面等高的上表面;
一接触垫,位于该层间介电层中及该第一金属硅化层之上;
一栅极延伸部,位于该绝缘结构上;以及
一端接接触部,电性连接该接触垫及该栅极延伸部。
6.如权利要求5所述的半导体结构,其特征在于,该接触垫的上表面与该第一晶体管的该栅极的上表面等高。
7.一种半导体结构,其特征在于,包括:
一晶体管,包括一源极/漏极;
一介电层,邻接该源极/漏极;
一导电图案,位于该介电层上,并具有一上表面实质上高于该源极/漏极的上表面;
一接触垫,位于该源极/漏极上,并电性连接至该源极/漏极;以及
一端接接触部,电性连接该接触垫与该导电图案。
8.如权利要求7所述的半导体结构,其特征在于,该接触垫的上表面实质上与该导电图案的上表面等高。
9.一种半导体结构的形成方法,其采用置换栅极工艺,其特征在于,包括如下步骤:
形成一晶体管,该晶体管具有一虚置栅极;
沉积一层间介电层并平坦化,该层间介电层的上表面高度与该虚置栅极的上表面等高;
移除该虚置栅极,形成一第一开口;
移除部分该层间介电层,形成一第二开口,且该第二开口至少露出该第一晶体管部分的源极/漏极;
以金属填满该第一开口形成该第一晶体管的一金属栅极,并同时以金属填满该第二开口形成一接触垫;以及
形成一端接接触部,其电性连接该接触垫与一浅沟槽绝缘区上的一栅极延伸部,且该浅沟槽绝缘区邻接该第一晶体管的源极/漏极。
10.如权利要求9所述的半导体结构的形成方法,其特征在于,还包括形成一金属硅化层的步骤,该金属硅化层位于该第一晶体管的源极/漏极之上及该接触垫之下。
CNB200610172428XA 2005-12-27 2006-12-27 半导体结构及其形成方法 Active CN100499129C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/320,512 US7663237B2 (en) 2005-12-27 2005-12-27 Butted contact structure
US11/320,512 2005-12-27

Publications (2)

Publication Number Publication Date
CN101106131A true CN101106131A (zh) 2008-01-16
CN100499129C CN100499129C (zh) 2009-06-10

Family

ID=38192630

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200610172428XA Active CN100499129C (zh) 2005-12-27 2006-12-27 半导体结构及其形成方法

Country Status (3)

Country Link
US (1) US7663237B2 (zh)
CN (1) CN100499129C (zh)
TW (1) TWI323510B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7981801B2 (en) 2008-09-12 2011-07-19 Taiwan Semiconductor Manufacturing Company, Ltd. Chemical mechanical polishing (CMP) method for gate last process
CN103077887A (zh) * 2011-10-25 2013-05-01 台湾积体电路制造股份有限公司 半导体器件及其制造方法
CN103633026A (zh) * 2012-08-23 2014-03-12 中芯国际集成电路制造(上海)有限公司 一种半导体器件结构及其制作方法
CN103946971A (zh) * 2011-11-14 2014-07-23 超威半导体公司 用于形成自对准触点和局部互连的方法
CN104347684A (zh) * 2013-07-26 2015-02-11 台湾积体电路制造股份有限公司 通过器件隔离结构隔离的半导体开关器件
CN106057808A (zh) * 2015-04-14 2016-10-26 三星电子株式会社 半导体器件及制造其的方法
CN112103332A (zh) * 2020-11-09 2020-12-18 晶芯成(北京)科技有限公司 一种静态随机存取存储器及其制造方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7902608B2 (en) * 2009-05-28 2011-03-08 International Business Machines Corporation Integrated circuit device with deep trench isolation regions for all inter-well and intra-well isolation and with a shared contact to a junction between adjacent device diffusion regions and an underlying floating well section
US8299547B2 (en) 2011-01-03 2012-10-30 International Business Machines Corporation Lateral extended drain metal oxide semiconductor field effect transistor (LEDMOSFET) with tapered dielectric plates
US8901676B2 (en) 2011-01-03 2014-12-02 International Business Machines Corporation Lateral extended drain metal oxide semiconductor field effect transistor (LEDMOSFET) having a high drain-to-body breakdown voltage (Vb), a method of forming an LEDMOSFET, and a silicon-controlled rectifier (SCR) incorporating a complementary pair of LEDMOSFETs
US8473888B2 (en) * 2011-03-14 2013-06-25 Taiwan Semiconductor Manufacturing Company, Ltd. Systems and methods of designing integrated circuits
US8298939B1 (en) * 2011-06-16 2012-10-30 Nanya Technology Corporation Method for forming conductive contact
US9070784B2 (en) * 2011-07-22 2015-06-30 Taiwan Semiconductor Manufacturing Company, Ltd. Metal gate structure of a CMOS semiconductor device and method of forming the same
CN102437160A (zh) * 2011-09-08 2012-05-02 上海华力微电子有限公司 一种静态存储器有源区结构和sram版图
US8890551B2 (en) * 2011-11-01 2014-11-18 United Microelectronics Corp. Test key structure and method for measuring step height by such test key structure
US8735994B2 (en) * 2012-03-27 2014-05-27 Taiwan Semiconductor Manufacturing Company, Ltd. Electrical-free dummy gate
US20140011333A1 (en) * 2012-07-09 2014-01-09 Texas Instruments Incorporated Polycrystalline silicon efuse and resistor fabrication in a metal replacement gate process
US8933507B2 (en) 2012-07-10 2015-01-13 Taiwan Semiconductor Manufacturing Co., Ltd. Metal/polysilicon gate trench power mosfet
US9245960B2 (en) 2013-02-08 2016-01-26 Globalfoundries Inc. Lateral extended drain metal oxide semiconductor field effect transistor (LEDMOSFET) with tapered airgap field plates
US9379058B2 (en) * 2014-02-14 2016-06-28 Qualcomm Incorporated Grounding dummy gate in scaled layout design
US10038063B2 (en) 2014-06-10 2018-07-31 International Business Machines Corporation Tunable breakdown voltage RF FET devices
KR102145825B1 (ko) 2014-07-28 2020-08-19 삼성전자 주식회사 반도체 소자 및 그 제조 방법
US10361195B2 (en) * 2014-09-04 2019-07-23 Samsung Electronics Co., Ltd. Semiconductor device with an isolation gate and method of forming
US9324864B2 (en) 2014-09-30 2016-04-26 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device structure and method for forming the same
US9496394B2 (en) 2014-10-24 2016-11-15 Globalfoundries Inc. Semiconductor structures with field effect transistor(s) having low-resistance source/drain contact(s)
US9412745B1 (en) * 2015-02-12 2016-08-09 United Microelectronics Corp. Semiconductor structure having a center dummy region
US9741577B2 (en) 2015-12-02 2017-08-22 International Business Machines Corporation Metal reflow for middle of line contacts
US9960078B1 (en) 2017-03-23 2018-05-01 International Business Machines Corporation Reflow interconnect using Ru
TWI689080B (zh) * 2017-05-08 2020-03-21 聯華電子股份有限公司 記憶體裝置
US10672649B2 (en) 2017-11-08 2020-06-02 International Business Machines Corporation Advanced BEOL interconnect architecture
US10541199B2 (en) 2017-11-29 2020-01-21 International Business Machines Corporation BEOL integration with advanced interconnects
US11139212B2 (en) * 2018-09-28 2021-10-05 Taiwan Semiconductor Manufacturing Company Limited Semiconductor arrangement and method for making

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804846A (en) * 1996-05-28 1998-09-08 Harris Corporation Process for forming a self-aligned raised source/drain MOS device and device therefrom
US5866449A (en) * 1997-10-27 1999-02-02 Taiwan Semiconductor Manufacturing Company Ltd. Method of making polysilicon-via structure for four transistor, triple polysilicon layer SRAM cell including two polysilicon layer load resistor
TW434908B (en) * 1999-12-13 2001-05-16 United Semiconductor Corp Manufacturing method of metal oxide semiconductor transistor
JP2003179132A (ja) * 2001-12-10 2003-06-27 Mitsubishi Electric Corp 半導体装置およびその製造方法
US6921711B2 (en) 2003-09-09 2005-07-26 International Business Machines Corporation Method for forming metal replacement gate of high performance
US20050275043A1 (en) * 2004-06-10 2005-12-15 Chien-Chao Huang Novel semiconductor device design

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8390072B2 (en) 2008-09-12 2013-03-05 Taiwan Semiconductor Manufacturing Company, Ltd. Chemical mechanical polishing (CMP) method for gate last process
US7981801B2 (en) 2008-09-12 2011-07-19 Taiwan Semiconductor Manufacturing Company, Ltd. Chemical mechanical polishing (CMP) method for gate last process
CN103077887B (zh) * 2011-10-25 2016-04-06 台湾积体电路制造股份有限公司 半导体器件及其制造方法
CN103077887A (zh) * 2011-10-25 2013-05-01 台湾积体电路制造股份有限公司 半导体器件及其制造方法
CN103946971B (zh) * 2011-11-14 2016-11-09 超威半导体公司 用于形成自对准触点和局部互连的方法
CN103946971A (zh) * 2011-11-14 2014-07-23 超威半导体公司 用于形成自对准触点和局部互连的方法
CN103633026A (zh) * 2012-08-23 2014-03-12 中芯国际集成电路制造(上海)有限公司 一种半导体器件结构及其制作方法
US10141358B2 (en) 2013-07-26 2018-11-27 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor switching device separated by device isolation
US9704910B2 (en) 2013-07-26 2017-07-11 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor switching device separated by device isolation
CN104347684B (zh) * 2013-07-26 2018-06-22 台湾积体电路制造股份有限公司 通过器件隔离结构隔离的半导体开关器件
CN104347684A (zh) * 2013-07-26 2015-02-11 台湾积体电路制造股份有限公司 通过器件隔离结构隔离的半导体开关器件
US10468441B2 (en) 2013-07-26 2019-11-05 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor switching device separated by device isolation
US10734423B2 (en) 2013-07-26 2020-08-04 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor switching device separated by device isolation
US10910420B2 (en) 2013-07-26 2021-02-02 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor switching device separate by device isolation
CN106057808A (zh) * 2015-04-14 2016-10-26 三星电子株式会社 半导体器件及制造其的方法
CN113707658A (zh) * 2015-04-14 2021-11-26 三星电子株式会社 半导体器件及制造其的方法
CN106057808B (zh) * 2015-04-14 2022-01-04 三星电子株式会社 半导体器件及制造其的方法
CN113707658B (zh) * 2015-04-14 2023-11-10 三星电子株式会社 半导体器件及制造其的方法
CN112103332A (zh) * 2020-11-09 2020-12-18 晶芯成(北京)科技有限公司 一种静态随机存取存储器及其制造方法

Also Published As

Publication number Publication date
TW200802811A (en) 2008-01-01
US20070145519A1 (en) 2007-06-28
US7663237B2 (en) 2010-02-16
CN100499129C (zh) 2009-06-10
TWI323510B (en) 2010-04-11

Similar Documents

Publication Publication Date Title
CN100499129C (zh) 半导体结构及其形成方法
CN100407425C (zh) 半导体器件及其制造方法
KR100378183B1 (ko) 반도체 메모리 장치 및 그의 제조 방법
JP2001203263A (ja) 半導体集積回路装置の製造方法および半導体集積回路装置
US7888804B2 (en) Method for forming self-aligned contacts and local interconnects simultaneously
EP1064679A1 (en) Process for fabricating an integrated circuit with a self-aligned contact
US20070099125A1 (en) Fabrication Method for a Damascene Bit Line Contact Plug
KR100834739B1 (ko) 반도체 소자 및 그 제조 방법
US6461959B1 (en) Method of fabrication of a contact plug in an embedded memory
KR101078732B1 (ko) 반도체 소자의 제조방법
JP6510678B2 (ja) 予備パターン化された底部電極及び酸化障壁上に強誘電体ランダムアクセスメモリを製造する方法
JPH09283751A (ja) 半導体装置およびその製造方法
US20030205734A1 (en) Methods of forming ferroelectric capacitors on protruding portions of conductive plugs having a smaller cross-sectional size than base portions thereof
US20050164491A1 (en) Bit line contact hole and method for forming the same
US6903022B2 (en) Method of forming contact hole
JPH10223855A (ja) 半導体メモリ装置及び半導体メモリ装置の製造方法
KR100596845B1 (ko) 반도체 소자의 콘택 형성 방법
JP2006148052A (ja) 半導体素子の格納電極形成方法
US7045450B2 (en) Method of manufacturing semiconductor device
US6465364B2 (en) Method for fabrication of a contact plug in an embedded memory
KR100846384B1 (ko) 반도체 장치의 제조방법
US6444530B1 (en) Process for fabricating an integrated circuit with a self-aligned contact
US20030013307A1 (en) Method of fabricating a self-aligned landing via
US6753225B1 (en) Method of forming a gate structure
KR100732741B1 (ko) 반도체 소자의 비트 라인 형성 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant