CN101037232A - 一种制备粒径可控氧化铁中空球的方法 - Google Patents

一种制备粒径可控氧化铁中空球的方法 Download PDF

Info

Publication number
CN101037232A
CN101037232A CN 200710021707 CN200710021707A CN101037232A CN 101037232 A CN101037232 A CN 101037232A CN 200710021707 CN200710021707 CN 200710021707 CN 200710021707 A CN200710021707 A CN 200710021707A CN 101037232 A CN101037232 A CN 101037232A
Authority
CN
China
Prior art keywords
ferric oxide
hollow ball
ethanol
ferric
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200710021707
Other languages
English (en)
Inventor
俞海云
郑翠红
闫勇
朱伟长
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Technology AHUT
Original Assignee
Anhui University of Technology AHUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Technology AHUT filed Critical Anhui University of Technology AHUT
Priority to CN 200710021707 priority Critical patent/CN101037232A/zh
Publication of CN101037232A publication Critical patent/CN101037232A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compounds Of Iron (AREA)

Abstract

一种制备粒径可控的氧化铁中空球的方法。该制备方法首先以无机铁盐和尿素为原料,溶解于低级一元醇/水混合体系中,通过共沉淀技术得到含铁前驱体,然后将其分散于低级一元醇/水混合体系中,在混合溶剂热条件下,加热到一定温度并控制反应一定时间,可以得到分散性良好、粒度分布窄、具有单晶中空结构的三氧化二铁(α-Fe2O3)亚微米颗粒。通过简单调节体系配比可以得到粒径可控的中空球产物。该制备方法具有体系简单、产量高、颗粒均匀、产物纯净、易分离和产物结晶情况良好等特点,利于工业化生产。

Description

一种制备粒径可控氧化铁中空球的方法
技术领域:
本发明属于化学材料技术领域,具体涉及利用溶剂热技术制备粒径可控氧化铁中空球的方法。
背景技术:
氧化铁(α-Fe2O3)纳米颗粒良好的耐侯性、耐光性、磁性和对紫外线具有良好的吸收和屏蔽作用的同时,可广泛应用与闪光涂料、油墨、塑料、皮革、汽车面漆、电子、高磁记录材料、磁流体、催化剂、以及生物医学过程等方面。氧化铁(α-Fe2O3)纳米、亚微米中空球在具有氧化铁纳米颗粒上述特点的同时,由于本身具有空心结构,还在在磁流体、生物医学、微负载传输体系、表面功能化、传感器和催化剂载体等方面潜在的应用前景,其制备技术日益成为合成领域的焦点之一,国外的相关研究工作从20世纪90年代末开始,正在走向成熟。国内的相关研究从21世纪初开始。
氧化铁(α-Fe2O3)纳米、亚微米中空球的制备以液相法为主,包括模板法、自组装法和溶胶凝胶法等。利用模板法制备一般选用合适的软、硬球形模板(例如:胶束、囊泡、高分子微球等),首先通过对模板表面处理使其能够吸附含铁物质形成核壳结构,然后通过加热或腐蚀等手段使含铁物质转化为氧化铁并除去模板,得到终产物。自组装法通过对含铁前驱纳米颗粒表面修饰并通过多种物质严格控制液相体系条件使前驱颗粒进行自组装得到中空球。溶胶凝胶法则通过制备相应胶体再在特殊条件下加热陈化得到产物。
上述制备工艺存在一些共同的问题,例如均合成液相体系均由三种以上溶剂和表活剂构成、体系成分复杂,同时产率低、生产成本高、产物分离困难、结晶情况较差等。同时这些方法往往采用一步法进行反应,无法根据实际需要对对产物的粒径进行快速调节,不利于工业化生产。
发明内容:
本发明针对现有技术的不足,提供一种制备粒径可控氧化铁中空球的方法,即利用氧化氢氧化铁(FeOOH)纳米棒在醇/水体系中的无序聚集行为制备粒度可控的氧化铁中空球。制备过程分为两步,将前驱物的制备过程和中空球的制备过程完全分离,从而可以得到尺寸大小可调的前驱氧化氢氧化铁纳米棒,通过控制前驱大小达到控制中空球粒径的目的,同时通过更换第二步反应液相体系使中空球具有洁净表面和优良的结晶状况。
本发明所提供的一种制备粒径可控氧化铁中空球的方法,具体步骤如下:
(1)氧化氢氧化铁纳米棒的合成:
a.配制反应物氯化铁和尿素反应溶液,氯化铁溶液浓度为0.1M~0.5M,尿素溶液浓度为对应氯化铁浓度1.5倍(和Fe3+的摩尔比);
b.将上述反应溶液和碳链长度2~3个碳的低碳链一元醇混合形成醇/水混合体系,一元醇和反应溶液体积比为10∶1~1∶10;
c.将上述醇/水混合体系装入三口烧瓶,持续搅拌条件下加热到回流并恒温2-8小时;
d.所得产物经抽滤分离,产品用乙醇、蒸馏水洗涤数遍后于烘箱中60℃烘干得到氧化氢氧化铁纳米棒。
(2)氧化铁中空球的合成:
a.将步骤(1)所制得的氧化氢氧化铁纳米棒分散于体积比为10∶1~200∶1的乙醇/蒸馏水混合体系中,氧化氢氧化铁纳米棒加入量占混合溶剂质量的0.01~8%;
b.将混合体系搅拌均匀,装入不锈钢反应釜中,填充度60%~90%,封釜;
c.将不锈钢反应釜放入烘箱,在120~240℃处理1~14小时;
d.取出不锈钢反应釜在空气中自然冷却,所得产物经抽滤分离,用乙醇、蒸馏水洗涤后于烘箱中烘干即可得到不同粒径氧化铁中空球,所制得的氧化铁中空球具有单晶结构,中空球直径在400~700nm之间。
上述的不锈钢反应釜采用聚四氟乙烯为内衬。通过X射线粉末衍射(XRD)表征产物物相,通过透射电子显微镜(TEM)和扫描电子显微镜(SEM)表征产物形貌和结构,通过电子衍射(ED)表征产物结晶情况。
本发明所提供的制备方法简单、生产成本低、产物可调控性强、纯度高、表面洁净以及所得产品结晶优良等优点,所制得的氧化铁中空球产品结晶性良好,均为单晶结构,形貌规则,粒径分布均匀,可以满足人们目前以及未来科研和应用的需要。
附图说明:
图1为前驱氧化氢氧化铁纳米棒和所得产品氧化铁中空球的XRD图。
和标准谱图对照证明前驱(图1A)为氧化氢氧化铁,终产物(图1B)为氧化铁。(正丙醇/水体积比1∶1时对应产物)
图2为前驱氧化氢氧化铁纳米棒的透射电镜照片(TEM)和扫描电镜(SEM)照片。
图2A为透射电镜照片,图2B为扫描电镜照片。(正丙醇/水体积比1∶1时对应产物)
图3为所得产品氧化铁中空球的透射电镜照片。(正丙醇/水体积比1∶1时对应产物)
图4为所得产品氧化铁中空球的透射电镜照片、扫描电镜照片和电子衍射图。
图4A为低倍SEM照片,显示产物为球形外观,大小均匀且分散性好。图4B为通过研磨后的单个球体的高倍SEM照片,显示球体内部为空心结构。图4C为单个球体的TEM照片,球体内外不同的明暗衬度证明其为中空结构。图4D为对单个球体的电子衍射图,证明其为单晶结构,结晶情况良好。(正丙醇/水体积比1∶1时对应产物)
图5为所得产品具有不同粒径的氧化铁中空球的透镜照片、电镜照片、粒度分布图和对应——的前驱纳米棒的透镜照片。
图5A系列为使用平均长度200nm纳米棒时得到的氧化铁中空球的形貌、尺寸信息,中空球平均粒径654.9nm(实施例5);图5B系列为使用平均长度100nm纳米棒时得到的氧化铁中空球的形貌、尺寸信息,中空球平均粒径569.4nm(实施例6);图5C系列为使用平均长度50nm纳米棒时得到的氧化铁中空球的形貌、尺寸信息,中空球平均粒径428.5nm(实施例7)。
具体实施方式:
实施例1:首先将配制含有0.1M氯化铁和0.15M尿素的水溶液和乙醇(醇/水体积比=5∶1)混合后装入三口烧瓶中;持续搅拌条件下加热回流8小时;所得产物经抽滤分离,产品用乙醇、蒸馏水各洗涤3遍后于烘箱中60℃烘干得到氧化氢氧化铁纳米棒;将占乙醇/水混合体系重量比0.05%的氧化氢氧化铁纳米棒分散于体积比为20∶1的乙醇/水混合体系中搅拌均匀后装入不锈钢反应釜,填充度80%;在160℃处理8小时,自然冷却,产品用乙醇、蒸馏水各洗涤3遍后于烘箱中烘干后可获得氧化铁中空球。
实施例2:首先将配制含有0.3M氯化铁和0.45M尿素的水溶液和正丙醇(醇/水体积比=1∶1)混合后装入三口烧瓶中;持续搅拌条件下加热回流4小时;所得产物经抽滤分离,产品用乙醇、蒸馏水各洗涤3遍后于烘箱中60℃烘干得到氧化氢氧化铁纳米棒;将占乙醇/水混合体系重量比0.05%的氧化氢氧化铁纳米棒分散于体积比为30∶1的乙醇/水混合体系中搅拌均匀后装入不锈钢反应釜,填充度70%;在180℃处理10小时,自然冷却,产品用乙醇、蒸馏水各洗涤3遍后于烘箱中烘干后可获得氧化铁中空球。
实施例3:首先将配制含有0.3M氯化铁和0.45M尿素的水溶液和异丙醇(醇/水体积比=1∶5)混合后装入三口烧瓶中;持续搅拌条件下加热回流4小时;所得产物经抽滤分离,产品用乙醇、蒸馏水各洗涤3遍后于烘箱中60℃烘干得到氧化氢氧化铁纳米棒;将占乙醇/水混合体系重量比4.0%的氧化氢氧化铁纳米棒分散于体积比为10∶1的乙醇/水混合体系中搅拌均匀后装入不锈钢反应釜,填充度80%;在200℃处理4小时,自然冷却,产品用乙醇、蒸馏水各洗涤3遍后于烘箱中烘干后可获得氧化铁中空球。
实施例4:首先将配制含有0.5M氯化铁和0.75M尿素的水溶液和正丙醇(醇/水体积比=1∶1)混合后装入三口烧瓶中;持续搅拌条件下加热回流4小时;所得产物经抽滤分离,产品用乙醇、蒸馏水各洗涤3遍后于烘箱中60℃烘干得到氧化氢氧化铁纳米棒;将占乙醇/水混合体系重量比1.0%的氧化氢氧化铁纳米棒分散于体积比为40∶1的乙醇/水混合体系中搅拌均匀后装入不锈钢反应釜,填充度90%;在200℃处理2小时,自然冷却,产品用乙醇、蒸馏水各洗涤3遍后于烘箱中烘干后可获得氧化铁中空球。
实施例5:首先将配制含有0.3M氯化铁和0.45M尿素的水溶液水溶液和正丙醇(醇/水体积比=1∶5)混合后装入三口烧瓶中;持续搅拌条件下加热回流4小时;所得产物经抽滤分离,产品用乙醇、蒸馏水各洗涤3遍后于烘箱中60℃烘干得到氧化氢氧化铁纳米棒;将占乙醇/水混合体系重量比1.0%的氧化氢氧化铁纳米棒分散于体积比为40∶1的乙醇/水混合体系中搅拌均匀后装入不锈钢反应釜,填充度80%;在180℃处理6小时,自然冷却,产品用乙醇、蒸馏水各洗涤3遍后于烘箱中烘干后可获得氧化铁中空球。
实施例6:首先将配制含有0.3M氯化铁和0.45M尿素的水溶液水溶液和正丙醇(醇/水体积比=1∶1)混合后装入三口烧瓶中;持续搅拌条件下加热回流4小时;所得产物经抽滤分离,产品用乙醇、蒸馏水各洗涤3遍后于烘箱中60℃烘干得到氧化氢氧化铁纳米棒;将占乙醇/水混合体系重量比1.0%的氧化氢氧化铁纳米棒分散于体积比为40∶1的乙醇/水混合体系中搅拌均匀后装入不锈钢反应釜,填充度80%;在180℃处理6小时,自然冷却,产品用乙醇、蒸馏水各洗涤3遍后于烘箱中烘干后可获得氧化铁中空球。
实施例7:首先将配制含有0.3M氯化铁和0.45M尿素的水溶液水溶液和正丙醇(醇/水体积比=5∶1)混合后装入三口烧瓶中;持续搅拌条件下加热回流4小时;所得产物经抽滤分离,产品用乙醇、蒸馏水各洗涤3遍后于烘箱中60℃烘干得到氧化氢氧化铁纳米棒;将占乙醇/水混合体系重量比1.0%的氧化氢氧化铁纳米棒分散于体积比为40∶1的乙醇/水混合体系中搅拌均匀后装入不锈钢反应釜,填充度80%;在180℃处理6小时,自然冷却,产品用乙醇、蒸馏水各洗涤3遍后于烘箱中烘干后可获得氧化铁中空球。

Claims (2)

1、一种制备粒径可控氧化铁中空球的方法,其特征在于具体步骤如下:
(1)氧化氢氧化铁纳米棒的合成:
a.配制反应物氯化铁和尿素反应溶液,氯化铁溶液浓度为0.1M~0.5M,尿素溶液浓度为对应氯化铁浓度1.5倍;
b.将上述反应溶液和碳链长度2~3个碳的低碳链一元醇混合形成醇/水混合体系,一元醇和反应溶液体积比为10∶1~1∶10;
c.将上述醇/水混合体系装入三口烧瓶,持续搅拌条件下加热到回流并恒温2-8小时;
d.所得产物经抽滤分离,产品用乙醇、蒸馏水洗涤数遍后于烘箱中60℃烘干得到氧化氢氧化铁纳米棒;
(2)氧化铁中空球的合成:
a.将步骤(1)所制得的氧化氢氧化铁纳米棒分散于体积比为10∶1~200∶1的乙醇/蒸馏水混合体系中,氧化氢氧化铁纳米棒加入量占混合溶剂质量的0.01~8%;
b.将混合体系搅拌均匀,装入不锈钢反应釜中,填充度60%~90%,封釜;
c.将不锈钢反应釜放入烘箱,在120~240℃处理1~14小时;
d.取出不锈钢反应釜在空气中自然冷却,所得产物经抽滤分离,用乙醇、蒸馏水洗涤后于烘箱中烘干即可得到不同粒径氧化铁中空球,所制得的氧化铁中空球具有单晶结构,中空球直径在400~700nm之间。
2、据权利要求1所述得一种制备粒径可控氧化铁中空球的方法,其特征在于所述的不锈钢反应釜采用聚四氟乙烯为内衬。
CN 200710021707 2007-04-26 2007-04-26 一种制备粒径可控氧化铁中空球的方法 Pending CN101037232A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200710021707 CN101037232A (zh) 2007-04-26 2007-04-26 一种制备粒径可控氧化铁中空球的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200710021707 CN101037232A (zh) 2007-04-26 2007-04-26 一种制备粒径可控氧化铁中空球的方法

Publications (1)

Publication Number Publication Date
CN101037232A true CN101037232A (zh) 2007-09-19

Family

ID=38888440

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200710021707 Pending CN101037232A (zh) 2007-04-26 2007-04-26 一种制备粒径可控氧化铁中空球的方法

Country Status (1)

Country Link
CN (1) CN101037232A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101767835A (zh) * 2010-03-23 2010-07-07 青岛科技大学 一种高矫顽力α-Fe2O3介晶微球的制备方法
CN102134102A (zh) * 2011-02-15 2011-07-27 江苏大学 一种氧化铁纳米棒的制备方法
CN102259933A (zh) * 2011-05-09 2011-11-30 中国矿业大学 一种米粒状α-三氧化二铁的制备方法和应用
CN103172123A (zh) * 2011-12-20 2013-06-26 中国科学院合肥物质科学研究院 纳米羟基氧化铁及其制备方法
CN103579581A (zh) * 2013-07-23 2014-02-12 湖南大学 单晶多孔氧化铁粉体材料及其制备方法
CN103803660A (zh) * 2014-02-19 2014-05-21 陕西科技大学 一种α-氧化铁纳米空心球的制备方法
CN104211127A (zh) * 2014-09-15 2014-12-17 济南大学 一种α-Fe2O3中空微球的制备方法
CN104556242A (zh) * 2013-10-10 2015-04-29 中国石油化工股份有限公司 一种纳米α-Fe2O3的制备方法
CN107706413A (zh) * 2017-11-08 2018-02-16 苏州宇量电池有限公司 一种纳米三叶回旋镖型氧化铁负极材料及其制备方法
CN107758748A (zh) * 2017-11-28 2018-03-06 合肥学院 一种多面体三氧化二铁及其制备方法
WO2018187924A1 (zh) * 2017-04-11 2018-10-18 深圳市佩成科技有限责任公司 基于水热合成进行中空结构Fe2O3制备的方法
CN109112611A (zh) * 2018-09-02 2019-01-01 景德镇陶瓷大学 一种制备单晶Fe2O3纳米颗粒自组装疏松球状纳米结构的方法
CN110255625A (zh) * 2019-07-02 2019-09-20 浙江华源颜料股份有限公司 一种高活性催化剂氧化铁红的制备方法及其应用
CN111235625A (zh) * 2020-01-21 2020-06-05 江苏理工学院 氧化铁单晶纳米球形颗粒及其熔盐法合成方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101767835A (zh) * 2010-03-23 2010-07-07 青岛科技大学 一种高矫顽力α-Fe2O3介晶微球的制备方法
CN101767835B (zh) * 2010-03-23 2011-06-15 青岛科技大学 一种高矫顽力α-Fe2O3介晶微球的制备方法
CN102134102A (zh) * 2011-02-15 2011-07-27 江苏大学 一种氧化铁纳米棒的制备方法
CN102134102B (zh) * 2011-02-15 2013-07-17 江苏大学 一种氧化铁纳米棒的制备方法
CN102259933A (zh) * 2011-05-09 2011-11-30 中国矿业大学 一种米粒状α-三氧化二铁的制备方法和应用
CN103172123A (zh) * 2011-12-20 2013-06-26 中国科学院合肥物质科学研究院 纳米羟基氧化铁及其制备方法
CN103579581A (zh) * 2013-07-23 2014-02-12 湖南大学 单晶多孔氧化铁粉体材料及其制备方法
CN104556242A (zh) * 2013-10-10 2015-04-29 中国石油化工股份有限公司 一种纳米α-Fe2O3的制备方法
CN103803660A (zh) * 2014-02-19 2014-05-21 陕西科技大学 一种α-氧化铁纳米空心球的制备方法
CN103803660B (zh) * 2014-02-19 2016-03-23 陕西科技大学 一种α-氧化铁纳米空心球的制备方法
CN104211127B (zh) * 2014-09-15 2016-01-20 济南大学 一种α-Fe2O3中空微球的制备方法
CN104211127A (zh) * 2014-09-15 2014-12-17 济南大学 一种α-Fe2O3中空微球的制备方法
WO2018187924A1 (zh) * 2017-04-11 2018-10-18 深圳市佩成科技有限责任公司 基于水热合成进行中空结构Fe2O3制备的方法
CN107706413A (zh) * 2017-11-08 2018-02-16 苏州宇量电池有限公司 一种纳米三叶回旋镖型氧化铁负极材料及其制备方法
CN107706413B (zh) * 2017-11-08 2020-08-04 苏州宇量电池有限公司 一种纳米三叶回旋镖型氧化铁负极材料及其制备方法
CN107758748A (zh) * 2017-11-28 2018-03-06 合肥学院 一种多面体三氧化二铁及其制备方法
CN109112611A (zh) * 2018-09-02 2019-01-01 景德镇陶瓷大学 一种制备单晶Fe2O3纳米颗粒自组装疏松球状纳米结构的方法
CN109112611B (zh) * 2018-09-02 2020-03-17 景德镇陶瓷大学 一种制备单晶Fe2O3纳米颗粒自组装疏松球状纳米结构的方法
CN110255625A (zh) * 2019-07-02 2019-09-20 浙江华源颜料股份有限公司 一种高活性催化剂氧化铁红的制备方法及其应用
CN110255625B (zh) * 2019-07-02 2021-10-22 浙江华源颜料股份有限公司 一种高活性催化剂氧化铁红的制备方法及其应用
CN111235625A (zh) * 2020-01-21 2020-06-05 江苏理工学院 氧化铁单晶纳米球形颗粒及其熔盐法合成方法

Similar Documents

Publication Publication Date Title
CN101037232A (zh) 一种制备粒径可控氧化铁中空球的方法
Uekawa et al. Low-temperature synthesis of niobium oxide nanoparticles from peroxo niobic acid sol
CN100443414C (zh) 微结构可控纳米氧化铜的制备方法
Chu et al. Shape-controlled synthesis of nanocrystalline titania at low temperature
CN112607759B (zh) 一种勃姆石形貌控制方法
CN103936074B (zh) 一种水热法合成超细三氧化钨全纳米棒的方法
CN107033842B (zh) 一种复合吸波剂、制备方法及其应用
CN110548528B (zh) 一种核壳结构SiO2/SiC材料及其制备方法与用途
CN105731535A (zh) 一种氧化锌/二氧化钛复合纳米材料的制备方法
CN102923784B (zh) 一种FeWO4 纳米线的制备方法
CN109621961B (zh) 一种生长二维纳米片原位制备金属高分散催化剂的方法
CN110937620B (zh) 一种非化学计量比锌铝尖晶石及其制备方法
CN109292790B (zh) 碱式硼酸镁纳米棒的制备方法
Brewster et al. Role of aliphatic ligands and solvent composition in the solvothermal synthesis of iron oxide nanocrystals
CN1230472C (zh) 一种纳米氧化铁红的制备方法
CN1789131A (zh) 一种用自蔓延溶胶凝胶法制备纳米氧化镁的方法
CN102219263A (zh) 一种制备γ-MnOOH纳米棒的方法
CN112456556A (zh) 一种制备氧化钽纳米球的方法
CN109338466B (zh) 一种制备单晶Fe2O3纳米颗粒自组装椭圆球微纳米结构的方法
CN114988498B (zh) 一种羟基氯化镍微米花及其制备方法
CN103214026A (zh) 一种CaO/ZnO核-壳结构纳米材料的制备方法
CN101973573B (zh) 一种氧化锌纳米微球的制备方法
CN101654285B (zh) 一种由Co2O3粉末制备Co3O4纳米材料的方法
CN110902726B (zh) 微纳结构铁酸锌空心球及其制备方法
CN115259235A (zh) 纳米短棒堆垛而成的草垛结构三维氧化铁的简单合成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20070919