CN1008489B - 软磁材料复合体及其成型方法 - Google Patents

软磁材料复合体及其成型方法

Info

Publication number
CN1008489B
CN1008489B CN86102755A CN86102755A CN1008489B CN 1008489 B CN1008489 B CN 1008489B CN 86102755 A CN86102755 A CN 86102755A CN 86102755 A CN86102755 A CN 86102755A CN 1008489 B CN1008489 B CN 1008489B
Authority
CN
China
Prior art keywords
magnetic material
soft
composition
plasticizer
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CN86102755A
Other languages
English (en)
Other versions
CN86102755A (zh
Inventor
濑琦好司
永井耕一
阪内孚史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongyuan Chemical Industry Co ltd
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Zhongyuan Chemical Industry Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongyuan Chemical Industry Co ltd filed Critical Zhongyuan Chemical Industry Co ltd
Publication of CN86102755A publication Critical patent/CN86102755A/zh
Publication of CN1008489B publication Critical patent/CN1008489B/zh
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/58Processes of forming magnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Soft Magnetic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供一种由70~95%体积的软磁材料粉末和其余为液态热硬性树脂组成的软磁性材料。采用本发明所提供的方法,可生产在高密度条件下具有大初导磁率,高强度和高尺寸精度的高导磁性成型体。

Description

本发明是关于由软磁材料和作为粘接剂的液态热固树脂组成的成形性和磁导率良好的复合体及其成形方法。
以前,用作铁芯等的软磁材料,多使用在高周波范围内损耗少的尖晶石铁氧体,例如Mn-Zn铁氧体、Ni-Zn铁氧体等的烧结成形体,另一方面,日本专利公报51722/1982号公开的是用树脂包覆的铁氧体成型品的制法,该方法包括将磁性粉末与常温(室温)下呈液态的热固性树脂渗和;将上述混合物压缩成形,以获得具有粗糙表面的多孔状成形制品;然后用树脂覆盖该制品。虽然此文献阐述其软磁材料包括有Mn铁氧体和Ni铁氧体一类的软铁氧体,以及Ba铁氧体和Sr铁氧体之类的硬铁氧体,但该文献中所有实施例采用的皆是硬铁氧体(Ba铁氧体),这说明该文献实质上公开的是关于硬铁氧体的发明。然而,按照规定,Sr铁氧体和Ba铁氧体之类硬铁氧体,其晶粒大小最高约为1μm,因此其磁特性极低,即使其颗粒碎裂亦如此。反之,尖晶石型铁氧体却带来高的磁特性,包括高的μi值(此值基于磁畴壁移动的难易程度),因此若其颗粒碎裂的话,则μi值会显著降低。此外,该文献的成形制品由于表面粗糙而必须用树脂包覆。这是非常麻烦的,而且势必导致成本增加。而这些材料由于用粉末冶金方法制造,烧结时由于收缩,存在着尺寸精度差,获得形状复杂的制品困难等问题。特别是,烧结体冲击强度低。为了弥补这些缺点,近年来,用合成树脂将软磁材料粘合起来的所谓塑料软磁材料被提出来了。例如在特公昭51- 28356中提出了由粒子直径有特定范围的尖晶石铁氧体和粉末状热固性树脂组成的复合体。这种塑料软磁材料,由于以非磁性物质合成树脂作为粘合剂,缺点是成形的铁芯饱和磁化及磁导率较烧结体差。因此,要提高这种塑料软磁材料制作的铁芯的磁特性,必须在增加软磁体粉末含量的同时,增加成形压力,以降低空隙率,提高软磁体粉末的填充密度。
但是,以前的塑料软磁材料,如果软磁材料含量高,固化前成形体强度低,容易引起破损和变形,或固化后的成形体机械强度低。为进一步减小空隙率,而增加压力,在压缩成形时将引起大的变形,不仅软磁体粒子进一步破坏,铁芯的磁特性降低,而且由于模具的负载大,易造成模具损伤。
本发明者们鉴于上述各种问题,为了减轻由于加压造成变形的不良影响,同时增加成形体的密度,提高磁性能,减轻模具的负担,以及提高固化前的成形体的粘合强度,防止破损、变形,得到良好的尺寸精度,进行了深入研究,达到了本发明的目的。
本发明第1点,软磁材料复合体由体积含量70~95%软磁材料粉末和余量的液态热固性树脂、理想的是含有塑性剂的液态热固性树脂组成。本发明的第2点,由体积含量70~95%软磁材料粉末和余量的热固树脂组成的软磁材料复合体,在常温下加压成形后,于液态热固树脂固化温度使之固化,并以此为特征含塑料的高磁导率软磁材料复合体的成形方法。
本发明中使用的软磁材料粉末是尖晶石铁氧体,例如Mn-Zn铁氧体、Ni-Zn铁氧体、Mn-Mg铁氧体等,至少在1000℃以上,例如1100~1300℃烧结的粉末材料,此外软磁合金粉末是由下述一种或两种以上材料组成,例如铁粉、Fe-Ni合金粉、Fe-Al-Si合金粉、各种无定形软磁合金粉。在这些材料中,尖晶石铁氧体粉末工业上最容易得到。软磁材料是粉末状,要得到良好的磁特性,粒子直径分布很重要。希望软磁材料粉末主体粒子直径最小在0.3mm以上,最大到成形体的最小厚度。
本发明使用的液态热固树脂,在常温下是液态,如酚醛树脂、环氧树脂、尿素树脂、三聚氰酰胺树脂、呋喃树脂、不饱和聚酯树脂等,而酚醛树脂、尤其可溶性酚醛树脂是理想的。如作为粘合剂用液态热固树脂,与用固体粉末树脂相较,前者和软磁材料的混合格外良好。因为粘合剂本身的粘合力,使压缩成形后的强度高,不必担心固化前的破损和变形,而且固化后的强度也是良好的。
本发明的复合体,由体积含量70~95%软磁材料粉末和余量的液态热固性树脂构成。软磁材料粉末不足70%,不能得到所期望 的磁性能,超过95%,易引起破损或变形。
只使用液态热固性树脂作为粘合剂,虽然可得到如上述的复合体,而在其中如含有塑性剂能够提供更好的复合体。即,如使用含有塑性剂的液态热固性树脂作为粘合剂,则粘合剂粘度变低,更容易均匀地分布于软磁粉末表面,与此同时,由于减轻了加压成形时软磁粒子间的摩擦,容易得到高的填充密度,提高成形体密度和初始磁导率。而且,如使用这样的粘合剂,也使加压成形的压力降低,容易实现所期望的高的成形体密度和初始导磁率,由于减轻了模具负荷,便于工业化。
本发明使用的塑性剂是:聚酯系塑性剂、邻苯二甲酸酯系塑性剂、环氧化油塑性剂、脂肪酸酯系塑性剂及其它塑性剂。可根据液态热固性树脂的种类不同选择使用。特别是用酚醛树脂时,宜于使用己二酸聚酯系塑性剂、邻苯二甲酸聚酯系塑性剂、邻苯二甲酸二丁酯及环氧化大豆油等塑性剂。塑性剂添加量如果非常少,则效果不显著,如超过粘合剂热固性树脂的固体量,成形体的强度降低。因此,通常液态热固性树脂固体重量100份,塑性剂适宜的重量范围为5~100份。
另外,为改善本发明复合体的性质,最好加入少量偶联剂、润滑剂、热稳定剂、以及其它改善质量的添加剂。
上述复合体成形时,使用热压或冷压等压力成形方法,可是使用含有塑性剂或不含塑性剂的液态粘合剂时,加压成形后,固化前的成形体的强度大,因此,没有必要采用操作麻烦的热压工艺。即,本发明的复合体成形时,在常温下使其加压粘结,然后,于热固性树脂的固化温度固化,这样生产效率高,同时成形体尺寸精确,磁特性良好。 加压成形适宜的压力是2~6t/cm2。压力小于2t/cm2,即使用本发明的复合体,尽管能完成,填充密度也不够;施加压力超过6t/cm2不能期望显著地提高填充密度,反而因为软磁材料粉末粒子的破坏,导致磁性降低。
下面,根据实例说明本发明,但本发明不限于下述实例。
在下面的实例中,作为比较,把初始磁导率为1000~3000的Mn-Zn铁氧体烧结制品粉碎,得到直径为0.6~0.8mm和0.1~0.35mm的不同粒子,按重量比前者70%,后者30%混合,以此作为铁氧体原材料粉末使用。
实例1~6
以体积计把上述铁氧体原料86%和含有塑性剂的甲阶酚醛树脂14%,用带式混合机混合,得到不同混合物。甲阶酚醛树脂中添加的塑性剂的比例是重量为100份甲阶酚醛树脂加0~80份己二酸聚酯,如表1所示。将此混合物在常温下按表1所示的压力成形,制成尺寸为30mmφ×20mmφ×10mm的环状粘合体。操作容易,不碎,不裂。然后,将其在180℃,加热固化2小时,得到外观良好的成形体样品。密度和初始磁导率良好,如表1所示。
实例7~8
在实例4中,用重量为60份邻苯二甲酸聚酯或邻苯二甲酸二丁酯代替己二酸聚酯塑性剂,同样得到环状成形体。结果如表1,外观良好,无裂纹、不破碎。
实例9
将重量为100份热塑性酚醛树脂粉末和100份胺基硅烷偶联剂,在200份甲醇中,常温反应,甲醇挥发后,得到粘稠含有硅烷端基的 改性酚醛树脂。用改性酚醛树脂,得到和实例1和4一样具有良好外观的成形体。结果如表1所示。
比较例1~2
用热塑性酚醛树脂粉末,成形方法和实施1完全相同。比较例1施加2t/cm2压力,粘结成形体的强度非常低,没有得到供评定磁特性的试样。比较例2,施加6t/cm2压力,成形体的密度和初磁导率是非常不足的。
按照以上说明,本发明能够提供高密度、大的初始磁导率,强度高尺寸精度优良、生产率高的高磁导率成形体。这样的组合物及其以后得到的成形体,兼顾了成形性、强度、尺寸精度、磁性能诸方面。使可能精确地修正电流磁场。
比较例3和4
按照实例1或9的同样步骤进行操作,不同之处是不加增塑剂。所得成形体的μi值和密度皆是低劣的。
比较例5
按照说明书中实例5的同样操作步骤进行实验,不同之处是所用软磁铁氧体粉末的粒径为0.05至0.10mm。得到的环状成形体的μi值为30.2,密度为39.82g/cm3
与实例5比较,上述实验表明,当铁氧体粉末的粒径小于0.3mm时,所得成形体的初始导磁率大大降低,从而不能达到本发明的目的。
Figure 86102755_IMG1

Claims (5)

1、一种软磁材料复合体,包括尖晶石型铁氧体粉末和液态热固性树脂,其特征在于,该软磁材料复合体含有70-95%(体积)的,粒径至少在0.3mm以上的所述尖晶石型铁氧体粉末和余量的含增塑剂的液态热固性树脂。
2、按照权利要求1所述的软磁材料复合体,其中所说的增塑剂是选自聚酯系增塑剂和邻苯二甲酸酯系增塑剂中的至少一种增塑剂。
3、按照权利要求1所述的软磁材料复合体,其中100重量份液态热固性树脂的固态组分所相对的增塑剂含量为5至100重量份。
4、一种含有塑料的高导磁率的软磁材料复合体的成形方法,该方法包括:
将70-95%(体积)的粒径至少在0.3mm以上的尖晶型铁氧体粉末和余量的含增塑剂的液态热固性树脂所组成的软磁材料组合物在常温下压缩成形,
然后,使上述成形物在液态热固化树脂的固化温度下进行固化。
5、按照权利要求4所述的方法,其中压缩成形是在2-6t/cm2的压力下进行。
CN86102755A 1985-04-19 1986-04-19 软磁材料复合体及其成型方法 Expired CN1008489B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60085110A JPH0744099B2 (ja) 1985-04-19 1985-04-19 軟質磁性材料組成物
JP85110/85 1985-04-19

Publications (2)

Publication Number Publication Date
CN86102755A CN86102755A (zh) 1986-10-22
CN1008489B true CN1008489B (zh) 1990-06-20

Family

ID=13849485

Family Applications (1)

Application Number Title Priority Date Filing Date
CN86102755A Expired CN1008489B (zh) 1985-04-19 1986-04-19 软磁材料复合体及其成型方法

Country Status (7)

Country Link
US (1) US4879055A (zh)
EP (1) EP0220321B1 (zh)
JP (1) JPH0744099B2 (zh)
KR (1) KR900008382B1 (zh)
CN (1) CN1008489B (zh)
DE (1) DE3650039T2 (zh)
WO (1) WO1986006541A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160447A (en) * 1988-02-29 1992-11-03 Kabushiki Kaisha Sankyo Seiki Seisakusho Compressed powder magnetic core and method for fabricating same
US5069972A (en) * 1988-09-12 1991-12-03 Versic Ronald J Moldable microcapsule that contains a high percentage of solid core material, and method of manufacture thereof
JPH0756846B2 (ja) * 1989-02-22 1995-06-14 東光株式会社 プラスチックフェライトの製造方法
JPH0643100B2 (ja) * 1989-07-21 1994-06-08 株式会社神戸製鋼所 複合部材
EP0921534A4 (en) * 1996-08-21 2000-04-26 Tdk Corp MAGNETIC POWDER AND MAGNETIC MOLDED BODY
US5990588A (en) * 1996-12-13 1999-11-23 General Electric Company Induction motor driven seal-less pump
JP3838730B2 (ja) * 1997-02-13 2006-10-25 株式会社メイト 軟磁性複合材料
KR100420541B1 (ko) * 1998-12-07 2004-03-02 스미토모 긴조쿠 고잔 가부시키가이샤 수지 결합형 자석
US7678174B2 (en) 2004-09-01 2010-03-16 Sumitomo Electric Industries, Ltd. Soft magnetic material, compressed powder magnetic core and method for producing compressed power magnetic core
JP4693732B2 (ja) * 2005-10-11 2011-06-01 キヤノン電子株式会社 複合型金属成形体およびその製造方法
CN103862048B (zh) * 2012-12-07 2015-12-02 中国科学院理化技术研究所 一种通过热压制备软磁性复合材料的方法
US20140275915A1 (en) 2013-03-13 2014-09-18 Medtronic, Inc. Implantable medical device including a molded planar transformer
US9607759B2 (en) 2013-03-13 2017-03-28 Medtronic, Inc. Implantable medical device including a molded planar transformer
JP6330692B2 (ja) * 2015-02-25 2018-05-30 株式会社村田製作所 電子部品
DE102015105431A1 (de) * 2015-04-09 2016-10-13 Volkswagen Ag Verfahren zur Herstellung eines weichmagnetischen Körpers

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2563520A (en) * 1951-08-07 Powdered iron core
US3067140A (en) * 1959-06-16 1962-12-04 Raytheon Co Orientation of ferrites
US3668176A (en) * 1970-01-15 1972-06-06 Clyde O Childress Method of molding utilizing thermosetting resins and magnetized filler material
JPS5051109A (zh) * 1973-09-07 1975-05-07
JPS5052109A (zh) * 1973-09-11 1975-05-09
JPS5052107A (zh) * 1973-09-11 1975-05-09
JPS582444B2 (ja) * 1975-11-19 1983-01-17 株式会社クラレ ジシンザイリヨウヨウソセイブツ
JPS5364797A (en) * 1976-11-24 1978-06-09 Tdk Corp Rubber, plastic magnet and magnetic powder for them
DE2743972C2 (de) * 1977-09-30 1986-09-25 Philips Patentverwaltung Gmbh, 2000 Hamburg Verfahren zur Herstellung von kunststoffgebundenen Magnetkörpern
DE2812445C2 (de) * 1978-03-22 1983-10-13 Robert Bosch Gmbh, 7000 Stuttgart Verfahren zur Herstellung von Preßmassen mit weichmagnetischen Eigenschaften
DE2846623A1 (de) * 1978-10-26 1980-05-08 Basf Ag Verfahren zur herstellung von schichtmagnetogrammtraegern
US4200547A (en) * 1979-01-02 1980-04-29 Minnesota Mining And Manufacturing Company Matrix-bonded permanent magnet having highly aligned magnetic particles
US4327346A (en) * 1979-02-28 1982-04-27 Tdk Electronics Co., Ltd. Anisotropic polymeric magnet in the tubular form and process for producing the same
NL8004200A (nl) * 1980-07-22 1982-02-16 Philips Nv Kunststofgebonden electromagnetische component en werkwijze voor het vervaardigen daarvan.
JPS5744223A (en) * 1980-08-28 1982-03-12 Toyo Ink Mfg Co Ltd Magnetic recording medium
JPS58171802A (ja) * 1982-04-02 1983-10-08 Sumitomo Bakelite Co Ltd 強磁性樹脂組成物
JPS59127225A (ja) * 1983-01-06 1984-07-23 Tdk Corp 磁気記録媒体
JPS6012709A (ja) * 1983-07-02 1985-01-23 Tdk Corp 磁性材料
JPS6043224A (ja) * 1983-08-18 1985-03-07 Tdk Corp 磁気記録媒体
JPS60235412A (ja) * 1984-05-08 1985-11-22 Hitachi Powdered Metals Co Ltd 高強度の粉末磁心の製造法
JPS61124038A (ja) * 1984-11-20 1986-06-11 Toshiba Corp 電磁偏向型ブラウン管用偏向ヨ−ク及びその製造方法
JPH05128356A (ja) * 1991-11-01 1993-05-25 Toshiba Corp 乗車券自動発券装置

Also Published As

Publication number Publication date
JPS61242005A (ja) 1986-10-28
EP0220321A4 (en) 1988-11-02
DE3650039T2 (de) 1994-12-08
US4879055A (en) 1989-11-07
JPH0744099B2 (ja) 1995-05-15
CN86102755A (zh) 1986-10-22
EP0220321A1 (en) 1987-05-06
EP0220321B1 (en) 1994-08-24
WO1986006541A1 (en) 1986-11-06
DE3650039D1 (de) 1994-09-29
KR900008382B1 (ko) 1990-11-17
KR880700437A (ko) 1988-03-15

Similar Documents

Publication Publication Date Title
CN1008489B (zh) 软磁材料复合体及其成型方法
KR101077155B1 (ko) 연자성 복합분말 및 그 제조방법과 연자성 성형체의제조방법
US4867943A (en) Starting material for injection molding of metal powder and method of producing sintered parts
CA1193780A (en) Composition for injection molding
EP0538073A2 (en) Process for producing sintered body and magnet base
US4508567A (en) Press-molding process for preparing a powder compact
CN105268975A (zh) 高密度粉末冶金金属软磁材料的制备方法
CN1030291C (zh) 具有高残留磁通密度的注射成型纯铁烧结软磁性材料的制造方法
JP2812152B2 (ja) 磁性体およびその製造方法
JPH0254703A (ja) 射出成形による金属焼結体の製造方法
EP0289979A1 (en) Plastic magnets
JP2573168B2 (ja) 軟質磁性材料組成物の成形方法
CN1123645C (zh) 软磁性烧结组件的制造方法
JPH0715124B2 (ja) 磁気特性の優れた磁性複合材料の製造方法
TWI526544B (zh) Preparation of High Density Powder Metallurgy Metal Soft Magnetic Materials
JPS59126602A (ja) 永久磁石の製造方法
JPS63147302A (ja) 永久磁石材料組成物及びその成形方法
JPH0774012A (ja) ボンド型永久磁石の製造方法と原料粉末
JPH03129802A (ja) 樹脂結合希土類磁石
JPH01253209A (ja) 磁性体とその製造方法
JP2724740B2 (ja) ラジアル異方性ボンド磁石の製造方法
JPS5932107A (ja) 複合軟磁性材料
JPH0618130B2 (ja) 永久磁石材料組成物
JPH0383845A (ja) セラミックス焼結体の製造方法
JPH0279404A (ja) 高分子複合型希土類磁石及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CX01 Expiry of patent term