CN100475688C - 用火焰喷雾热解法生产的金属氧化物 - Google Patents

用火焰喷雾热解法生产的金属氧化物 Download PDF

Info

Publication number
CN100475688C
CN100475688C CNB038156261A CN03815626A CN100475688C CN 100475688 C CN100475688 C CN 100475688C CN B038156261 A CNB038156261 A CN B038156261A CN 03815626 A CN03815626 A CN 03815626A CN 100475688 C CN100475688 C CN 100475688C
Authority
CN
China
Prior art keywords
metal oxide
oxide
metal
cerium oxide
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB038156261A
Other languages
English (en)
Other versions
CN1665743A (zh
Inventor
W·J·施塔克
L·梅德勒
S·E·普拉特西尼斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eidgenoessische Technische Hochschule Zurich ETHZ
Original Assignee
Eidgenoessische Technische Hochschule Zurich ETHZ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eidgenoessische Technische Hochschule Zurich ETHZ filed Critical Eidgenoessische Technische Hochschule Zurich ETHZ
Publication of CN1665743A publication Critical patent/CN1665743A/zh
Application granted granted Critical
Publication of CN100475688C publication Critical patent/CN100475688C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • B01J35/23
    • B01J35/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/34Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of sprayed or atomised solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • B01J35/30
    • B01J35/394
    • B01J35/613
    • B01J35/615
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • C01P2006/13Surface area thermal stability thereof at high temperatures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Abstract

公开了一种生产金属氧化物特别是混合金属氧化物例如氧化铈/氧化锆的方法,以及可用所述的方法制得的金属氧化物。由于使用具有高羧酸含量的高焓溶剂,所述的金属氧化物有改进的性质。例如,在高锆含量下,一直到大于整个金属含量的80%下,氧化铈/氧化锆有极好的氧贮存容量。

Description

用火焰喷雾热解法生产的金属氧化物
相关申请书的相互参照
本申请要求2002年7月3日提交的欧洲专利申请02014100.8以及2002年7月9日提交的美国专利申请书60/394965的优先权,这些申请的公开内容作为参考并入本文。
技术领域
本发明涉及一种特定的火焰法以及可用所述方法制得的具有特定性质的金属氧化物,特别是具有极好热稳定性和高氧交换容量的氧化铈和氧化锆。
背景技术
金属氧化物特别是混合金属氧化物有广泛的应用,例如用作陶瓷、聚合物添加剂、填料、颜料、活性表面、催化剂、存储材料、研磨添加剂、膜、燃料电池等。其中,最重要的金属氧化物包括氧化铈,特别是铈-锆混合氧化物,下文称为氧化铈/氧化锆。氧化铈/氧化锆由于其高动态氧交换容量,在最新一代三元催化净化器(TWC)中用作关键组分[Trovarelli等(1996)、Kaspar等(1999)],而且还作为氧化催化剂、陶瓷、研磨剂和燃料电池等等。
在汽车废气的有害气体的处理中,氧化铈在其两种主要氧化状态Ce(III)和Ce(IV)之间转换从而吸收或释放用于燃烧过程产生的CO和残留物转化所需的电子。视氧分压而定,它吸收或释放氧并使空气/燃料比保持稳定,使CO氧化成为快速且可靠的过程[Taylor(1984)]。十分确定,氧化锆作为固溶体加到氧化铈中使Ce(IV)的还原性大大提高[Kundakovic(1998);Balducci(1995)]。但是,不同的生产方法得到不同的氧化铈和氧化锆的分子混合状态。发现充分混合形成氧化锆在氧化铈中的稳定固溶体的粉末具有最大的稳定性。这样形成的稳定相可含有大于30%(原子)锆。但是,大多数制备方法在较高的氧化锆含量下得到不稳定的材料。混合氧化物然后形成两种或两种以上不同组成的相。这可能使总的温度稳定性下降。
目前生产金属氧化物例如氧化铈和氧化铈/氧化锆的方法为机械法和机械/热法、基于湿相化学的方法和高温法例如火焰喷雾热解法(FSP)。
机械法和机械/热法为高能耗方法(研磨!),通常不足以达到原子水平混合,使相稳定性低和/或比表面积低。
基于湿相的方法需要巨大的溶剂费用,产生大量的废水以及在合成后需要煅烧步骤,使其费用增加。此外,虽然例如氧化铈/氧化锆的共沉积可得到有极高比表面积的混合氧化物粉末,但遗憾的是,刚制得的氧化物的温度稳定性具有在升温下比表面积巨大下降的特性。在高温下的制备可得到高稳定性的氧化物。这就促使人们试图用喷雾热解法来制备氧化铈。火焰喷雾热解法(FSP)为一种已知的方法,并已用于制备多种氧化物。但是,在氧化铈特别是氧化铈/氧化锆的情况下,适合前体的研究发现了许多与铈和锆的化合物的化学性质有关的问题。例如,Yoshioka等(1992)用FSP来制备铈氧化物,但他们得到一种低比表面积的粉末。WO 01/36332公开了一种得到含有粒度变化范围很宽的氧化铈颗粒的不均匀产物的FSP方法。Aruna等(1998)研究了通过氧化还原化合物的混合物燃烧以及金属前体氧化来合成氧化铈/氧化锆。这种高温制备法得到高表面积产物,在刚制备的粉末中显然有良好的相混合。但是,通过固体燃烧来制备氧化铈/氧化锆难以实现高的生产速率,因为这一过程可能很快失控。此外,它基本上为一间歇过程,重复性通常是一个问题。Laine等(1999)和Laine等(2000)使用一种喷雾热解单元来制备氧化铈/氧化锆,但产物粉末的比表面积仍较低,为10-15米2/克。EP 1 142 830还公开了一种由有机金属化合物在有机溶剂和/或水中制备氧化铈/氧化锆的FSP法。在EP 1 142 830中,公开的步骤集中在用火焰喷雾热解法生产的不含氯的粉末上,使用MeR型的前体溶液,其中R为有机残留部分,例如甲基、乙基,或相应的烷氧基或硝酸根阴离子。水或醇类用作溶剂。
最近,
Figure C0381562600071
等(2002B)公开了一种生产具有高表面积和均匀颗粒尺寸的纯氧化铈的FSP法。但是,现已发现这种溶剂体系不适合生产例如氧化铈/氧化锆。
所以,仍然需要这样一种生产金属氧化物特别是混合金属氧化物的高温法,所述的方法能得到提高产物均匀性的产品。
发明内容
因此,本发明的一般目的是提供一种适合生产具有各种改进特性所以具有更广泛应用的金属氧化物的方法,以及这样的金属氧化物。
本发明的另一目的是含有氧化铈优选氧化铈/氧化锆并具有整体结构的催化剂。
本发明的另一目的是本发明的金属氧化物作为催化活性体系的至少一部分的应用,特别是用于燃烧发动机或用于机械化学抛光。
本发明的另一目的是通过加入其他金属氧化物例如氧化铈或氧化钇使氧化锆稳定,以便用于燃料电池、传感器和作为结构陶瓷或用作涂层。
现在,为了实现本发明的这些目的和其他一些目的,随着以下描述这些目的将变得更加清楚,用各种特性来体现本发明的金属氧化物,它们可用本发明的方法得到。
生产本发明金属氧化物的方法的特征在于,将至少一种金属氧化物前体溶于一种高焓溶剂中形成溶液,所述的溶剂含有至少一种平均碳含量为>2个碳原子的羧酸,其数量为总溶剂的至少60%,以及其中所述的溶液形成液滴并火焰氧化。
已发现,正如在本发明范围内公开的,在FSP中使用前体混合物能生产具有原子水平良好混合的、极好比表面积(例如良好可接近性(accessibility))的和高相稳定性的混合氧化物,例如氧化铈/氧化锆。
FSP的前体或前体混合物分别需要将足够的金属送入火焰,使所述的金属在火焰中分布并维持稳定的燃烧和喷雾过程。在许多种金属例如铈的情况下,这带来以下问题:
-已知很少几种有机金属化合物,所有有机金属化合物都是相当贵的和/或含有其他常常不希望的元素例如卤素。
-廉价前体主要是水溶性的。但是,水对于FSP是十分不好的,因为为达到所需的高温,需要的费用高和设备多。
本发明的方法涉及一种廉价易得的前体混合物,它为FSP用于生产在原子水平上十分均匀的混合金属氧化物例如氧化铈/氧化锆为基础的混合氧化物提供了可能性。本发明的前体混合物的特征是能得到高浓度的溶解金属前体和高燃烧焓。通过在FSP中使用这样的前体混合物,可生产具有极好温度稳定性和相稳定性的高比表面积的金属氧化物,例如氧化铈为基础的材料。
附图说明
考虑到以下详述的内容,将更好地理解本发明,以及除了上述外的其他目的也将变得很清楚。这样的描述参考附图,其中:
图1A为刚制备的氧化铈/氧化锆Ce0.7Zr0.3O2的透射电子显微镜(TEM)图。
图1B为在900℃下热处理以后氧化铈/氧化锆Ce0.7Zr0.3O2的透射电子显微镜(TEM)图,表明这样的热处理得到类似形状的更大颗粒。
图2A为从纯氧化铈(x=1,下面的)到纯氧化锆(x=0)的氧化铈/氧化锆CexZr(1-X)O2的X射线衍射光谱图(XRD)。
图2B为在900℃下在空气中加热2小时以后图2A相同样品的XRD图,其中加热和冷却速率为5K/分。虽然纯氧化锆会发生相转变,但是加入氧化铈(x=0.1)使氧化锆完全稳定,而不发生相转变。
图3为本发明的CexZr(1-X)O2(正方形)和经煅烧的粉末(在900℃下空气中煅烧2小时,圆形)的比表面积。注意对于x=0.1到纯氧化锆,比表面积迅速下降,表明很大程度的稳定化。
图4为晶格常数a(呈立方晶系,CexZr(1-X)O2)随氧化铈含量增加的变化图,其中直线代表Kim(1989)发现的经验关系,在很宽的组成范围内对掺杂的氧化铈适用。
图5A为火焰喷雾法制备的氧化铈、氧化铈/氧化锆、湿相法制备的混合氧化物和商业样品的比表面积比较。
图5B给出从纯氧化铈到纯氧化锆的所有样品用XRD测定的平均晶体尺寸。10%氧化铈加到氧化锆中或10%氧化锆加到氧化铈中都使平均晶体尺寸明显下降,所以表明稳定化程度高。
图6给出氧贮存容量测量(OSC)的原理。
图7A比较了从纯氧化锆到纯氧化铈,催化剂用H2和CO还原的OSC。
图7B给出图7A的所有样品单位氧化铈的相对(纯氧化铈=1)氧贮存容量。
图8给出用CO脉冲化学吸附法测定的Pt在火焰喷雾法制备的氧化铈/氧化锆上的分布。
图9表示湿法或FSP制备的Pt/氧化铈/氧化锆可逆出现的氧质量增量和损失,在加热速率为3℃/分下测量的,两种样品升温到1100℃然后用反复的CO或H2脉冲和随后的O2脉冲进行氧化还原。
具体实施方式
可用这样一种方法来制得本发明的金属氧化物,其中将至少一种金属氧化物前体溶于含有至少一种羧酸的高焓溶剂中以便形成溶液,以及其中将所述的溶液形成液滴并火焰氧化。
在纯氧化铈的生产中,发现对于制备均匀的产品来说高焓含量是关键的。已发现,在前体的低焓供给下,供给金属在火焰中分布的能量不足。为了将氧化铈为基础的氧化物的生产与以前有关氧化铈的工作[
Figure C0381562600091
等(2002B)]比较,从具有类似焓和在火焰中有相同金属供给速率的两种不同前体制备了纯氧化铈。下表1列出燃烧焓、火焰高度、纯氧化铈的比表面积和通过对光谱进行立方晶系氧化铈拟合得到的XRD直径。
表1:焓和溶剂组成在火焰喷雾热解法(FSP)生产的氧化铈中的作用
  异辛烷溶液<sup>*</sup>   月桂酸溶液<sup>**</sup>
  燃烧热   23.0千焦/克   23.7千焦/克
  火焰高度   87毫米   94毫米
  CeO<sub>2</sub>的比表面积   174米<sup>2</sup>/克   167米<sup>2</sup>/克
  D<sub>XRD</sub>(CeO<sub>2</sub>)   8.2纳米   9.0纳米
  CeO<sub>2</sub>的比表面积,2小时,900℃   28米<sup>2</sup>/克   39米<sup>2</sup>/克
*按照等(2002B)的40%异辛烷、50%乙酸和10%2-丁醇(体积)的混合物
**本发明的混合物,50%月桂酸、50%乙酸(重量)
正如从表1所列的数据可以看出,两种粉末之间有某些类似性,这可能与焓和金属浓度的作用有关,它们作为氧化铈和氧化铈为基础的混合氧化物火焰喷雾热解中的重要工艺参数,但是还必需有其他因素,因为本发明制备的产品在加热后比表面积的损失小。
在纯氧化铈的情况下,40%异辛烷、50%乙酸和10%2-丁醇的混合物[
Figure C0381562600102
等(2002B)]可溶解足够的乙酸铈,但是与本发明制备的氧化铈比较,加热时表面稳定性较差,特别是溶液的贮存稳定性不够(溶剂的相分离、挥发性溶剂的蒸发),以致难以放大或仅能放大到有限程度,这一方法不能扩大到氧化铈/氧化锆的合成。已发现氧化铈和氧化锆前体的溶解度太低,因此产生沉淀形成不均匀的和不可靠的产品。从不同方法制备的氧化铈/氧化锆的X射线衍射图中十分清楚看出分子混合的存在或不存在的作用。喷雾用于获得纯氧化铈的乙酸/异辛烷为基础的混合物,在混合氧化物产品中产生早期的相分离。按照费伽定律(Vegard-rule)的趋势,使用本发明的前体混合物,得到均匀的产品(见图2A、2B、4)。
本发明的方法中使用的溶剂的羧酸重量含量为至少60%、优选至少65%、更优选至少75%、特别是至少90%、最优选大于90%。在本发明方法的更优选的实施方案中,溶剂基本上由羧酸组成(工业溶剂的普通杂质的存在是可接受的),特别是由一种羧酸或多种羧酸的混合物组成,以致溶剂的净燃烧热为至少15千焦/克、优选至少20千焦/克、更优选至少23千焦/克。这一点可通过具有每一羧基的平均碳原子为>2个碳原子的羧酸混合物来达到,通常至少2.2个碳原子、优选至少3个碳原子、更优选约4-10个碳原子、最优选4-8个碳原子。7个碳原子例如可对应于庚酸或相同摩尔数的乙酸(2个碳原子)和十二酸(12个碳原子)的混合物。只要上述条件满足,使用什么酸并不重要。
为了提高前体的溶解度,使用短链和长链羧酸的混合物常常是有利的,利用短链羧酸提高前体的溶解度,而长链羧酸确保得到高焓溶剂。优选的溶剂混合物包含选自C3-C18一元羧酸的羧酸、更优选C5-C16羧酸、最优选C7-C14羧酸,或两种或两种以上这样的羧酸与甲酸特别是乙酸的混合物。对于氧化铈/氧化锆混合金属氧化物,月桂酸和乙酸的混合物,特别是比例为1∶1时,得到有极好性能的产品。
如果酸变得太长,一方面,必需使用很短链的酸来提供溶解度,以致酸的相容性不再有保证,混合物可能变得不稳定。
虽然也可使用未取代的一元羧酸以外的其他酸,条件是它们得到适合的高焓溶剂,例如有极性取代基例如-OH、-NH2或-CONH2基的酸可用来将溶剂调节到特定的需要。在特定情况下,也可使用足够长链的二元羧酸或多元羧酸。此外,酸可为饱和的或不饱和的。
通过使用由羧酸组成的或由基本由羧酸组成的溶剂,溶剂混合物可得到很好的相容性以及很好的稳定性。正如上述,使用羧酸混合物进一步的优点是,通过一起使用长链酸和短链酸,可调节/优化溶解度和可得到的浓度范围。此外,在室温下是稳定的(没有相分离、没有可测量的蒸发)溶剂特别是溶剂混合物的使用也可使在这样的溶剂体系中生产的前体混合物的贮存稳定性提高。如果使用不是羧酸的其他溶剂,那么这样的溶剂通常是一种优选有一定链长的高焓溶剂,以致它可与溶剂体系中至少一种长链羧酸相容。通过这一措施,一方面相分离的危险可减少,而另一方面挥发性溶剂的蒸发也减少。
适合用于本发明方法的前体化合物为可溶于上述溶剂的化合物。虽然这样的前体可为任何足够稳定的盐类,但含有机基团的盐类是优选的,特别是纯的有机金属化合物或类有机金属化合物,例如至少一种(任选取代的)羧酸例如乙酸、甲酸的盐,但也可为二元羧酸、低聚羧酸和/或聚羧酸和/或其他常用的有机金属或类有机金属配体,例如乙酰基丙酮根、四甲基乙酰丙酮根、乙二胺和其它类似物的盐,任选为水合物。盐也可就地在溶剂混合物中生产,意味着适合的盐前体(即含金属的化合物例如氧化物、碳酸盐或纯金属,它与溶剂中至少一种组分反应生成溶液)加入到溶剂混合物,在那里它生成盐和溶剂的衍生物(例如溶剂中羧酸的羧酸盐)。
在本发明方法中,火焰的温度为至少1000℃、通常至少1500℃、优选至少约2000℃。对于许多应用来说,火焰温度的优选范围为1600-2600℃。
液滴的平均直径可随液体分配方案和液体本身的性质变化。通常,平均液滴直径为0.1-100微米、优选1-20微米。
在本发明一个优选的实施方案中,所述的方法用于生产氧化铈/氧化锆。对于这样的混合氧化物来说,现在优选的前体为水合乙酸铈和乙酰基丙酮锆。在由1∶1的月桂酸和乙酸组成的溶剂中使用这些前体,可得到有极好性能的混合氧化物,特别是Ce(0.9-0.1)Zr(0.1-0.9)O2、优选Ce(0.8-0.2)Zr(0.2-0.8)O2范围内的混合氧化物。
本发明的方法也可用于生产其他金属氧化物,特别是混合金属氧化物。可使用特定的羧酸作为溶剂,用本发明方法制备的其他氧化物体系例如是:
通常以氧化铈为基础的氧化物和通常以氧化锆为基础的氧化物,还有LiNbO3、BaTiO3、SrTiO3、CaTiO3、LiyMnOx及各种衍生物、NiO、LixTiOy、用于医学移植物的磷灰石、金属掺杂的氧化钛、稀土金属氧化物特别是镧为基础的钙钛矿、含稀土金属元素和过渡金属类的混合氧化物、含有选自碱金属和过渡金属的元素的混合氧化物、铝酸盐、硼酸盐、硅酸盐、磷酸盐、氧化铪、氧化钍和氧化铀等。
本发明的方法例如也可用于生产例如用于燃料电池的稳定的氧化锆。这样的氧化锆优选含有另外的金属氧化物,例如氧化铈、氧化钇和/或碱土金属。最适合的混合氧化物含有小于20%氧化铈或氧化钇、优选小于10%、最优选小于8%的其他氧化物。
通常,本发明的方法适用于生产任何金属氧化物,其中金属氧化物前体特别是有机金属化合物前体或类有机金属化合物前体特别是纯有机金属盐或纯类有机金属盐以足够的浓度溶于用于高温FSP的高焓溶剂中。刚制备的氧化物可直接进行后处理,以便生成氮化物、碳化物、硅化物、硼化物等。
用本发明的方法有可能首先提供有以下性质中至少一种性质的金属氧化物,特别是混合金属氧化物
-纯的和混合的金属氧化物:
--刚制备的颗粒有良好的颗粒均匀性,也就是没有夹杂较小颗粒的大的或中空的颗粒(例如仅生成一种类型的颗粒)
--刚制备的颗粒几乎没有团聚物
--在加热后有很好的颗粒尺寸稳定性(例如在空气中700℃、16小时或在空气中900℃、2小时)
--热稳定性高,例如在加热所述材料时没有相变化
-混合金属氧化物:
--在原子水平上有很好的均匀性
--良好的相稳定性
--完全确定的晶体尺寸分布
-氧化铈或氧化铈/氧化锆:
--刚制备的有很高的氧贮存容量
--加热处理后有很高的氧贮存容量(例如在空气中700℃、16小时)
--甚至在热处理后也有很高的相稳定性(例如在空气中900℃、2小时)
--均匀的形态
由于其改进的性质,本发明的金属氧化物特别是混合金属氧化物有许多其本身已知的应用以及扩大的应用范围。对于氧化铈/氧化锆,例如,一种优选的应用领域是例如在汽车工业中作为燃烧发动机废气的催化剂。对于在车辆中的各种应用来说,通常使用整体结构的含氧化铈/氧化锆的催化剂。这样的整体结构例如可通过以下步骤制得:将氧化铈或优选氧化铈/氧化锆混合,然后将所述的混合物制成所需的结构物,或首先由氧化铝或其他氧化制成所需的(优选整体的)结构物,然后再涂覆一层氧化铈或氧化铈/氧化锆。第一种方法和第二种方法的产品的区别在于,用第一种方法可制得均匀的混合物,其中一些催化剂由于废气可接近性下降而不能很好地使用,而在第二种方法中,由于随后将一层涂覆到已制成的载体结构物上,所以在生产过程中还需要另外的工艺步骤。此外,在磨损的情况下,不同方法制备的催化剂的寿命可能不同。
本发明的氧化铈/氧化锆催化剂可与其他有催化活性的物质一起使用,例如其他金属氧化物,例如氧化钛、氧化钒、氧化铬、锰、铁、钴、镍、氧化铜和/或贵金属,例如铂、钯、铑、钌、铼、铱(它们单独使用或与其一种或多种混合使用)或其合金。但是,由于本发明的催化剂有改进的性质,可能没有必要加入其他催化活性物质。
除了它们可能用作催化剂外,本发明的金属氧化物例如氧化铈、氧化锆或氧化铈/氧化锆由于其良好均匀性,还可用于机械化学抛光。
本发明制备的稳定氧化锆可用于燃料电池,其中高的相均匀性和原子水平的混合有利氧离子转移,如用OSC测量表明的。此外,本发明方法得到的极好程度的混合提供了高的热稳定性和机械稳定性,因为微晶仍很小(见图5B),因此使裂纹形成的机会下降。这一性质使本发明的氧化铈稳定的氧化锆十分适合于高温和低温燃料电池应用。由于均匀的颗粒结构,本发明的氧化物还适合用于生产涂料、结构陶瓷或金属上的保护层。
其他金属氧化物的应用是,例如作为多相催化剂、结构陶瓷、电池贮存材料、化学传感器、能源生产元件、太阳能生产元件、可循环电池装置中的电子贮存材料、电介质材料、气体可渗透膜、颜料、聚合物添加剂、稳定剂、磁流体、抛光粉、金属合金中的添加剂、护甲制备、微电子学材料、电极原料、射线敏感元件和显示器的荧光物质、化妆品、药品包装、食品和医药应用的添加剂、燃料电池、超导体等。
实施例
1.氧化铈、氧化锆和氧化铈/氧化锆
一般步骤
在实验室规模装置中用火焰喷雾热解法生产氧化铈/氧化锆混合氧化物粉末。将水合乙酸铈(III)(Aldrich,>99.7%)和四乙酰基丙酮合锆(Aldrich,>99%)按产品的组成混合,溶于月桂酸/乙酸混合物(重量比1∶1,加热到完全溶解)。在所有实验过程中,将前体混合物中的最终金属总浓度保持在0.15摩尔/升不变。刚制备的溶液是稳定的,可用注射泵(Inotech IR-232)以5毫升/分的速率送入FSP设备的火焰中[等(2002A),图1]。火焰由中心喷雾输送设备、预混合的圆形支持火焰(直径6毫米,狭缝宽度150微米)和圆片气体输送设备(烧结金属环,内径11毫米,外径18毫米,5升氧/分)组成。在所有实验中,氧(Pan Gas,99.8%)用作分散气体,以5升/分的速率输送。将甲烷(1.5升/分,Pan Gas,99%)和氧(3.2升/分)的混合物送入内狭缝,并形成预混合的火焰。所有的气体流速都用校正的质量流速控制器(Bronkhorst EL-Flow F201)来控制。粉末表示为(a/b)CexZr(1-X)O2,其中a为以毫升/分表示的液体流速,b为以升/分表示的分散气体流速,而x为以%(原子)表示的氧化铈在样品中的数量。
溶剂的制备
将500克乙酸(99.95%)和500克月桂酸混合,然后加热到50℃,使之完全溶解。这一高焓混合物能稳定数天,在长时间贮存后可能存在的少量沉淀的月桂酸可通过缓和加热来除去。
前体混合物的制备
将相应数量的水合乙酸铈和乙酰基丙酮合锆溶于上述混合物,使金属总浓度为0.15摩尔/升。这些前体溶液在环境条件下是稳定的,已可用于喷雾。其高焓与溶解易得到的极性金属离子的能力相结合使得这些混合物适合用于制备混合氧化物。
结果和讨论
图1A表示刚制备的氧化铈/氧化锆Ce0.7Zr0.3O2的透射电子显微镜(TEM)图。产品由直径4-10纳米的很好结晶的规整的(sharp edged)纳米颗粒组成。未观测到大块的氧化铈。这一点证实足够数量的焓输送和金属前体在火焰中的良好分散。
如果将本发明制得的粉末在900℃下加热2小时,那么可看出比表面积的明显差别(见图1B)。
Figure C0381562600161
等(2002B)公开的制备方法得到28米2/克的产品,而酸为基础的方法得到39米2/克的产品。热处理稳定性与均匀的形态有关。这一结果清楚地表明本发明方法生产的氧化铈有很好的性能(表1)。
图2A表示从纯氧化铈(x=1,底部)到纯氧化锆(x=0)的氧化铈/氧化锆CexZr(1-X)O2的XRD。从稳定的混合氧化铈/氧化锆相的宽信号缓慢地变到更高衍射的信号(2θ)。从纯氧化铈到纯氧化锆的这一平滑的转换证实刚制备的氧化铈/氧化锆的极好混合。50°附近的峰可最好地观测到连续变化。图2B给出在空气中900℃下加热2小时的相同样品的XRD信号。由于热处理,峰变得更窄。但是,甚至在这一高温处理以后,固溶体仍是稳定的。而且,峰从纯氧化铈变到氧化锆。现在,后者变成单斜相,显示不同的图。加入低至10%(原子)氧化铈可完全抑制这一转变,并制得极稳定的混合氧化物。
图3给出刚制备的CexZr(1-X)O2(正方形)和经煅烧的粉末(圆形)的比表面积。虽然含有氧化锆的粉末的比表面积通常是不变的,但发现纯氧化铈的比表面积下降。仅将10%(原子)锆加到氧化铈中已产生相当大稳定化作用。进一步提高氧化锆的含量对比表面积仅有很小的效果。有意义的是,在图5A中进一步比较,在空气中在900℃下热处理2小时后,所有的粉末都有类似的比表面积。
图4为立方晶系的CexZr(1-X)O2的晶格参数a随氧化铈含量增加变化的图。在氧化铈晶格中较小的锆阳离子Zr4+取代Ce4+离子并挤入晶体,得到有较小a的较小单元晶胞。图4中的线表示Kim(1989)发现的经验关系,适用于很宽组成范围的掺杂氧化铈。刚制备的粉末符合这一相互关系,有小的偏差。产品的热处理不影响混合氧化物相,而在任何样品中,用XRD不能测定分离相的生成。在900℃热处理后,不含纯的氧化锆,因为它改变其部分相。这些样品与费伽定律的相互关系证实前体的分子混合,决定CexZr(1-X)O2的整个性能。
图5A比较了火焰喷雾热解法制备的氧化铈、氧化铈/氧化锆和湿相法制备的混合氧化物以及商业Rhodia氧化铈/氧化锆的比表面积。Trovarelli等(1997)用高能球混合法制备氧化铈,但得到在原子水平上较差的混合。Terribile等(1998)用混合有机/无机途径制备氧化铈,得到极好的比表面积。但是,煅烧使表面积下降到约43米2/克。对于x=0.8和0.68,Terribile等(1998)制备的混合氧化物样品在900℃下煅烧后比表面积分别为56和40米2/克。Leitenburg等(1996)用沉淀法制备氧化铈/氧化锆,对于x=0.2,比表面积最高达到30米2/克。图5A进一步比较了本发明的材料和Rhodia商业提供的商品氧化铈/氧化锆。商业催化剂的比表面积为约50米2/克,而本发明材料的比表面积大大超过这一数值。
图5B显示,证明有极好混合程度的中间组成样品有极小的晶粒尺寸。
图6给出如Rocchini等(2000)和Trovarelli等(1997)描述氧贮存容量(OSC)测量。将样品(50毫克)放入热重天平中,经受氢和氧脉冲(2毫升)。质量损失是由于氧的脱除。用第二次脉冲使材料完全再氧化,得出动态氧贮存容量。对氢和CO测量OSC,得到相同的还原程度。
图7A比较了从纯氧化锆到纯氧化铈通过H2、CO还原催化剂的氧贮存容量(OSC)。在中间组成下,得到很高的氧贮存容量。从锆到铈的平滑转变与XRD得到的数据一致。在这里,相同的平滑转变证实两种组分的极好程度的混合。所有的测量都在700℃下进行。在测量以前,将样品在700℃下加热16小时。如果从氧化铈到氧化锆,商业催化剂(Rhodia)没有平滑的转变。OSC确切地表明在20%氧化锆(x=0.8)下有最大值,并且一直到40%氧化锆仍几乎保持不变,但随后迅速下降。Trovarelli等(1997)报导在x约0.8下有最大的动态OSC。在这一工作中,火焰法制备的样品在中间氧化锆含量(x约0.5)下有最大的与质量有关的OSC,所以对于单位质量的相同动态OSC来说,他们需要较少的氧化铈。
图7B给出所有样品每单位氧化铈的相对(纯氧化铈=1)氧贮存容量。很明显样品中每单位氧化铈的氧贮存容量有很大提高。这一点可能用于减少昂贵氧化铈在催化剂中的含量或减小整个催化剂的尺寸,因为有高活性。此外,数据有平滑的相互关系,与以前的XRD、TEM和BET比表面积测量的数据一致。Boaro等(2000)还报导了不同氧化铈/氧化锆样品的相对OSC。他们发现相对于纯氧化铈,x=0.2的样品OSC增加4倍。在本工作的样品中,对应的增加为14倍。
结论
可用火焰喷雾热解法制备有高比表面积和良好热稳定性的氧化铈/氧化锆混合氧化物。主要工艺参数、前体溶液组成、焓输送和火焰中的金属浓度能在宽的条件范围内控制生产过程。在本发明的范围内,可表明例如在氧化铈/氧化锆的合成中分子混合十分重要。这样的分子混合取决于相稳定性。由于在前体混合物中的不充分混合或部分沉淀,已发现对由这样的不均匀前体混合物制备的混合金属氧化物的性质的重大影响。
将低到10%(原子)氧化锆加到氧化铈中使温度稳定性提高。产品氧化铈/氧化锆可表征为紧密混合的固溶体,并一直到高氧化锆含量都形成稳定的相。与传统制备的氧化铈/氧化锆相比,可得到火焰法制备的高热稳定性的混合氧化物。这可能与有利于使热稳定性提高的预平衡结构和均匀形态的高制备温度有关。在氧化铈/氧化锆中高的分子混合得到高得多的氧化铈用量,使催化过程易于进行和生产费用降低,因为可大量使用较廉价的氧化锆前体,例如直到Ce0.2Zr0.8O2,已发现它仍有Ce0.8Zr0.2O2一样良好的OSC。
2.火焰喷雾热解法制备的Pt/氧化铈/氧化锆的高热稳定性(如果由 羧酸混合物制备)
制备
将乙酰基丙酮合铂加到刚描述的含铈和锆的液体中,然后将它火焰喷雾,得到有极好Pt分散的Pt/氧化铈/氧化锆纳米颗粒。在一个具体实施例中,制备了制备后比表面积为105米2/克的2%(重量)Pt/氧化铈/氧化锆(Ce0.5Zr0.5O2)。在空气中在700℃下烧结16小时,升温速率为5℃/分,表面积仅下降到97米2/克。这一点证实有极好的稳定性。象刚描述的氧化铈/氧化锆样品那样,将这一烧结样品进行动态氧交换容量测试。使它与按照前述部分(Leitenburg等(1996))制备的但有另外的Pt沉积浸渍步骤的参考样品比较。因此,2%(重量)铂用Silvestro-Albero(2002)的最初润湿浸渍法沉积。将这一样品进行相同的预处理(16小时,700℃,空气)。
氧交换容量
在加热速率为3℃/分下,将所述两种样品加热到1100℃,然后进行反复的CO或H2脉冲,随后进行O2脉冲,以便再氧化。图9表示相应可逆出现的氧质量增量和损失。然后将样品冷却,再重复进行相同的加热升温,以便检验稳定性。沉淀的样品显著变化,由Pt加入产生的有利影响明显下降。但是,火焰法制备的Pt/氧化铈/氧化锆仍保留其大部分活性。或换句话说,甚至这一在变化的气氛下加热到1100℃的苛刻处理也不能扼杀Pt加入的有利影响。
通过测量Pt在这样的催化剂表面上的分散进一步说明Pt在火焰制备的氧化铈/氧化锆的稳定性和有利分散。图8给出用CO脉冲化学吸附测量的Pt分散度(Micromeritics AutoChem II)。Pt在这样的样品上的高度分散度支持其独特性质。
虽然在这里已说明和描述了本发明的各种优选实施方案,但应清楚地认识到,本发明不限于此,在以下权利要求书的范围内可有其他各种各样地体现和实践。
参考文献
Laine,R.M.,Hinklin,T.,Williams,G.,Rand,S.C.;火焰喷雾热解法生产用于荧光和激光应用的低价纳米颗粒(Low CostNanopowders for Phosphor and Laser Applications by Flame SprayPyrolysis),J.Metastable Nanocryst.Mat.,2000,8,500.
Aruna,S.T.,Patil,K.C.;纳米结构的氧化铈/氧化锆固溶体的燃烧合成和性质(Combustion Syn-thesis and Properties ofNanostructured Ceria-Zirconia Solid Solutions),NanoStructuredMaterials,1998,10,955.
Laine,R.M.,Baranwal,R.,Hinklin,T.,Treadwell,D.,Sutorik,A.,Bickmore,C.,Waldner,K.,Neo,S.S.;用火焰喷雾热解法由前体生产纳米尺寸的氧化物粉末(Making nanosized oxidepowders from precursors by flame spray pyrolysis),Key.Eng.Mat.,1999,159,17.
Trovarelli,A.,Zamar,F.,Llorca,F.,Leitenburg,C.,Dolcetti,G.,Kiss,J.T.;用高能机械研磨法生产纳米相荧石结构的CeO2-ZrO2(Nanophase Fluorite-Structured CeO2-ZrO2 CatalystsPrepared by High-Energy Mechanical Milling),J.Catal.,1997,169,490.
Terribile,D.,Trovarelli,A.,Llorca,J.,Leitenburg,C.,Dolcetti,G.;用混合有机/无机途径制备的中孔高表面积氧化铈的合成和表征(The Synthesis an Characterization of MesoporousHigh-Surface Area Ceria Prepared Using a HybridOrganic/Inorganic Route),J.Catal.,1998,178,299.
Rocchini,E.,Trovarelli,A.,Llorca,J.,Graham,G.H.,Weber,W.H.,Maciejewski,M.,Baiker,A.;氧化硅掺杂的氧化铈的结构/形态改性和氧贮存-氧化还原性质之间的关系(Relationshipbetween  Structural/Morphological Modifications and OxygenStorage-Redox Behavior of Silica-Doped Ceria),J.Catal.,2000,194,461.
Catalysis,R.R.;www.rhodia-ec.com/site_ec_us/catalysis/page_automotive.htm,2002
Leitenburg,C.,Trovarelli,A.,Llorca,J.,Cavani,F.,Bini,C.;在异丁烷氧化中用锆掺杂CeO2的影响(The effect of doping CeO2with zirconium in the oxidation of isobutane),Appl.Catal.A,1996,139,161.
Terribile;D.,Trovarelli,A.,Llorca,J.,Leitenburg,C.,Dolcetti,G.;借助表面活性剂制备高表面积的CeO2-ZrO2混合氧化物(The preparation of high surface area CeO2-ZrO2 mixed oxides bya surfactantassisted approach),Catal.Today,1998,43,79.
Boaro,M.;de Leitenburg,C.;Dolcetti,G.;Trovarelli,A.;在静态和循环进料流组成下用CO氧化测量的氧化铈-氧化锆模型催化剂的氧贮存动力学(The dynamics of oxygen storage in ceria-zirconiamodel catalysts measured by CO oxidation under stationary andcycling feedstream compositions),Journal of Catalysis,2000,193,338-347.
Yoshioka,T.,Dosaka,K.,Sato,T.,Okuwaki,A.,Tanno,S.,Miura,T.;用喷雾热解法制备球形氧化铈掺杂的四方氧化锆(Preparation of spherical ceriadoped tetragonal zirconia by thespray pyrolysis method),J.Mater.Sci.Lett.,1992,11,51.
Kim,D.-J.;在荧石结构的MO2氧化物(M=Hf 4+,Ce 4+,Th 4+,U 4+)固溶体中的晶格参数、离子导电性和溶解度极限(LatticeParameters,Ionic Conductivities and Solubility Limits inFluorite-Structure MO2 Oxide(M=Hf 4+,Ce 4+,Th 4+,U 4+)SolidSolutions),J.Am.Ceram.Soc.,1989,72,1415.
Figure C0381562600221
L.,Kammler,H.K.,Mueller,R.,S.E.Pratsinis;用火焰喷雾热解法受控合成纳米结构的颗粒(Controlled synthesis ofnanostructured particles by flame spray pyrolysis),AerosolScience,2002A,33,369.
L.,Stark,W.J.,Pratsins,S.E.,火焰法制备的氧化铈纳米颗粒(Flame-made Ceria Nanoparticles),J.Mater.Res.,2002B,17,1356.
Taylor,K.C.in J.R.Anderson,M.Boudart (Eds.)″Catalysis-Science and Technology″,Chapter 2,Springer,Berlin(1984).
Balducci,G.,Fornasiero,P.,Di Monte,R.,Kaspar,J.,Meriani,S.,Graziani,M.,Catal.Lett.,1995,33,193.
Kundakovic,L.,Flytzani-Stephanopoulos,M.,在铈和锆的氧化物体系中氧化铜的还原特性(Reduction characteristics of copperoxide in cerium and zirconium oxide systems),Appl.Catal.A-Gen.,1998,1,13
Trovarelli,A.;氧化铈和含CeO2的材料的催化性质(Catalytic Properties of Ceria and CeO2-Containing Materials),Catal.Rev.-Sci.Eng.,1996;38(4),439.
Kaspar,J.,Pornasiero,P.,Graziani,M.;CeO2为基础的氧化物在三元催化中的应用(Use of CeO2-based oxides in the three waycatalysis),Catal.Today,1999,50,285.
J.Silvestro-Albero,J.Catal.,2002,210,127-136.

Claims (42)

1.一种生产金属氧化物的方法,其中将至少一种金属氧化物前体溶于羧酸溶剂中以形成溶液,所述羧酸溶剂具有至少15kJ/g的焓,并且以占整个溶剂至少60%重量的量含有至少一种羧酸,所述至少一种羧酸的每个酸基平均碳含量为至少3个碳原子,以及其中所述的溶液然后形成液滴并火焰氧化。
2.根据权利要求1的方法,其中所述羧酸溶剂中的所述羧酸含量为至少75重量%。
3.根据权利要求1或2的方法,其中所述羧酸溶剂中的所述至少一种羧酸具有每一酸基4至8的平均碳含量。
4.根据权利要求1或2的方法,其中所述羧酸溶剂中的所述羧酸选自C1-C18一元羧酸及其混合物。
5.根据权利要求4的方法,其中所述羧酸溶剂中的所述羧酸为甲酸和/或乙酸和至少一种有至少3个碳原子的酸的混合物。
6.根据权利要求1或2的方法,其中至少一种羧酸含有双键和/或取代基。
7.根据权利要求6的方法,其中所述取代基是选自-OH,-NH2和-CONH2的一个或多个极性取代基。
8.根据权利要求1或2的方法,其中所述溶剂的焓为至少20千焦/克。
9.根据权利要求8的方法,其中所述溶剂的焓为至少23千焦/克。
10.根据权利要求1或2的方法,其中所述金属氧化物前体为一种盐或盐前体。
11.根据权利要求10的方法,其中所述金属氧化物前体为含有有机基团的盐。
12.根据权利要求11的方法,其中所述盐是纯有机盐。
13.根据权利要求11的方法,其中所述金属氧化物前体为至少一种羧酸和/或乙酰基丙酮的盐。
14.根据权利要求1或2的方法,其中所述金属氧化物前体包含水合物。
15.根据权利要求1或2的方法,其中火焰的温度为至少1000℃。
16.根据权利要求15的方法,其中火焰的温度为1600-2600℃。
17.根据权利要求1或2的方法,其中液滴的平均直径为0.1-100微米。
18.根据权利要求17的方法,其中液滴的平均直径为1-20微米。
19.根据权利要求1或2的方法,其中所述金属选自碱金属族和/或碱土金属族和/或过渡金属族。
20.根据权利要求19的方法,其中所述金属是铈和/或锆。
21.一种通过权利要求1-20中任一项的方法制得的金属氧化物。
22.权利要求21的金属氧化物,在空气中在900℃下热处理2小时后其表面积为至少39米2/克。
23.根据权利要求22的金属氧化物,在空气中在900℃下热处理2小时后其表面积为大于50米2/克。
24.根据权利要求22或23的金属氧化物,它为一种混合金属氧化物。
25.权利要求24的金属氧化物,它是氧化铈和氧化锆的混合物。
26.权利要求25的金属氧化物,它为氧化铈和氧化锆的混合物,锆为金属原子总量的至多90%(原子)。
27.权利要求26的金属氧化物,它为氧化铈和氧化锆的混合物,锆为金属原子总量的至多80%(原子)
28.根据权利要求22或23的金属氧化物,它经空气中在900℃下加热2小时是相稳定的。
29.根据权利要求24的金属氧化物,其中所述两种或两种以上的金属在原子水平上是均匀混合的。
30.根据权利要求22或23的金属氧化物,在空气中在700℃下热处理16小时后其动态氧贮存容量为至少1.5升氧/公斤催化剂。
31.根据权利要求22或23的金属氧化物,它为用氧化铈和/或氧化钇稳定的氧化锆。
32.权利要求31的金属氧化物,其中铈和/或钇的数量为整个金属含量的至多10%(原子)。
33.权利要求22或23的金属氧化物,其通过权利要求1-20中任一项的方法得到。
34.一种含有权利要求22-33中任一项的金属氧化物的催化剂,其中所述金属氧化物是氧化铈和/或氧化铈-氧化锆。
35.权利要求34的催化剂,所述催化剂具有整体结构。
36.权利要求34的催化剂,所述的催化剂含有与提供整体结构的材料混合的氧化铈和/或氧化铈-氧化锆。
37.权利要求34的催化剂,所述的催化剂包括在覆盖整体结构载体的层中的氧化铈和/或氧化铈-氧化锆。
38.权利要求34的催化剂,所述的催化剂含有一种或多种另外的催化活性物质。
39.权利要求34-38中任一项的催化剂,所述的催化剂为负载在氧化铈-氧化锆上的铂。
40.权利要求22-30中任一项的金属氧化物作为催化活性体系的至少一部分的应用。
41.权利要求22-30中任一项的金属氧化物用于机械化学抛光的应用。
42.权利要求22-30中任一项的金属氧化物用于以下用途中至少一种的应用:多相催化剂、结构陶瓷、电池贮存材料、化学传感器、能源生产元件、太阳能生产元件、可循环电池装置中的电子贮存、介电材料、铁电体、气体渗透膜、颜料、聚合物添加剂、稳定剂、磁流体、抛光粉、金属合金中的添加剂、装甲制造、微电子材料、电极原料、射线敏感元件和显示器的荧光材料、化妆品、药品包装、食品和医药应用中的添加剂、燃料电池和/或超导体。
CNB038156261A 2002-07-03 2003-05-20 用火焰喷雾热解法生产的金属氧化物 Expired - Fee Related CN100475688C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP02014100A EP1378489A1 (en) 2002-07-03 2002-07-03 Metal oxides prepared by flame spray pyrolysis
EP02014100.8 2002-07-03
US39496502P 2002-07-09 2002-07-09
US60/394,965 2002-07-09

Publications (2)

Publication Number Publication Date
CN1665743A CN1665743A (zh) 2005-09-07
CN100475688C true CN100475688C (zh) 2009-04-08

Family

ID=29719687

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038156261A Expired - Fee Related CN100475688C (zh) 2002-07-03 2003-05-20 用火焰喷雾热解法生产的金属氧化物

Country Status (8)

Country Link
US (1) US7211236B2 (zh)
EP (2) EP1378489A1 (zh)
JP (1) JP4416651B2 (zh)
CN (1) CN100475688C (zh)
AU (1) AU2003228051A1 (zh)
BR (1) BR0312339A (zh)
CA (1) CA2488920A1 (zh)
WO (1) WO2004005184A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI755056B (zh) * 2019-09-13 2022-02-11 德商贏創運營有限公司 藉由噴霧熱解製備奈米結構的混合鋰鋯氧化物

Families Citing this family (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004103900A1 (en) 2003-05-20 2004-12-02 Eidgenössische Technische Hochschule Zürich Metal delivery system for nanoparticle manufacture
RU2420833C2 (ru) * 2003-11-14 2011-06-10 Зи Юнивесити оф Экрон Топливный элемент прямого электрохимического окисления (варианты) и способ выработки электроэнергии из твердофазного органического топлива (варианты)
CN1942396B (zh) * 2004-03-15 2010-09-01 苏黎世联合高等工业学校 金属盐纳米颗粒,特别是包含钙和磷酸根的纳米颗粒的火焰合成
EP1810001A4 (en) 2004-10-08 2008-08-27 Sdc Materials Llc DEVICE AND METHOD FOR SAMPLING AND COLLECTING POWDERS FLOWING IN A GASSTROM
WO2006078827A2 (en) * 2005-01-21 2006-07-27 Cabot Corporation Controlling flame temperature in a flame spray reaction process
DE102005029542A1 (de) * 2005-02-05 2006-08-10 Degussa Ag Verfahren zur Herstellung von Metalloxidpulvern
WO2006084390A1 (en) * 2005-02-11 2006-08-17 Eth Zurich Antimicrobial and antifungal powders made by flame spray pyrolysis
EP1866083B1 (en) * 2005-03-24 2021-06-30 University of Regina Nickel on Ceria/Zirconia catalyst
DE102005038136A1 (de) * 2005-08-12 2007-02-15 Degussa Ag Ceroxid-Pulver und Ceroxid-Dispersion
DE102005040156A1 (de) * 2005-08-25 2007-03-01 Degussa Ag Stabilisiertes Aluminium-Zirkon-Mischoxidpulver
EP1760043A1 (en) 2005-09-06 2007-03-07 ETH Zürich, ETH Transfer Reducing flame spray pyrolysis method for the production of metal, non-oxidic, ceramic and reduced metal oxide powders and nano-powders
US20070142224A1 (en) * 2005-12-16 2007-06-21 Akhtar M K DeNOx catalyst preparation method
JP4789794B2 (ja) * 2005-12-28 2011-10-12 第一稀元素化学工業株式会社 セリウム・ジルコニウム複合酸化物及びその製造方法
JP4851190B2 (ja) * 2006-01-13 2012-01-11 戸田工業株式会社 排気ガス浄化用触媒
JP2009113993A (ja) * 2006-03-03 2009-05-28 Hitachi Chem Co Ltd 金属酸化物粒子、これを含む研磨材、この研磨材を用いた基板の研磨方法及び研磨して得られる半導体装置の製造方法
KR101310883B1 (ko) 2006-03-29 2013-09-25 삼성에스디아이 주식회사 다공성 금속 산화물 및 그 제조방법
US7842200B2 (en) * 2006-05-30 2010-11-30 University Of Maryland, College Park Solid oxide fuel cell (SOFC) anode materials
DE102006032452B4 (de) 2006-07-13 2013-10-02 Süd-Chemie Ip Gmbh & Co. Kg Verfahren zur Herstellung nanokristalliner Metalloxide
EP2059477B1 (de) 2006-09-07 2015-11-18 IBU-tec advanced materials AG Verfahren zur herstellung nanokristalliner gemischter metalloxide
JP4787704B2 (ja) * 2006-09-15 2011-10-05 第一稀元素化学工業株式会社 自動車用排気ガス浄化装置に用いられる触媒系、それを用いた排気ガス浄化装置、及び排気ガス浄化方法
US20110150735A1 (en) * 2006-11-01 2011-06-23 Lawrence Livermore National Security, Llc. Fabrication of Transparent Ceramics Using Nanoparticles Synthesized Via Flame Spray Pyrolysis
US8357311B2 (en) 2006-12-28 2013-01-22 Kao Corporation Polishing liquid composition
JP5777337B2 (ja) 2007-04-04 2015-09-09 パーレン コンヴァーティング アクチェンゲゼルシャフトPerlen Converting AG 抗菌性材料
US9173967B1 (en) 2007-05-11 2015-11-03 SDCmaterials, Inc. System for and method of processing soft tissue and skin with fluids using temperature and pressure changes
CN104201399B (zh) * 2007-08-29 2016-08-17 昭和电工株式会社 电极催化剂层、膜电极接合体和燃料电池
US8507401B1 (en) 2007-10-15 2013-08-13 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
DE102008026658A1 (de) 2007-11-13 2009-05-14 Council Of Scientific & Industrial Research Verfahren zur Herstellung von Nanodrähten aus Metalloxiden mit Dotiermitteln in niedrigem Valenzzustand
DE102007058674A1 (de) 2007-12-06 2009-07-02 Süd-Chemie AG Nanopartikuläre Zusammensetzung und Verfahren zu deren Herstellung
DE102007059990A1 (de) 2007-12-13 2009-06-18 Süd-Chemie AG Verfahren zur Herstellung nanokristalliner Hydrotalcitverbindungen
CN101970347A (zh) * 2008-02-08 2011-02-09 尤米科尔公司 具有受控形态的掺杂二氧化铈研磨剂及其制备
USD627900S1 (en) 2008-05-07 2010-11-23 SDCmaterials, Inc. Glove box
DE102008026210B4 (de) 2008-05-30 2012-06-28 Süd-Chemie AG Nanokristallines Kupferoxid und Verfahren zu dessen Herstellung
US7601324B1 (en) 2008-07-11 2009-10-13 King Fahd University Of Petroleum And Minerals Method for synthesizing metal oxide
US20100102700A1 (en) * 2008-10-24 2010-04-29 Abhishek Jaiswal Flame spray pyrolysis with versatile precursors for metal oxide nanoparticle synthesis and applications of submicron inorganic oxide compositions for transparent electrodes
GB2469285A (en) * 2009-04-06 2010-10-13 Ntnu Technology Transfer As Ferroelectric niobate materials formed by spray pyrolysis
DE102009026599A1 (de) 2009-05-29 2010-12-02 Evonik Degussa Gmbh Metallmischoxidpulver, insbesondere Antimon-Zinn-Mischoxidpulver, und deren Herstellung
EP2292557A1 (en) * 2009-09-03 2011-03-09 Clariant International Ltd. Continuous synthesis of carbon-coated lithium-iron-phosphate
EP2324907A1 (en) 2009-10-20 2011-05-25 ETH Zurich Porous materials
US9090475B1 (en) 2009-12-15 2015-07-28 SDCmaterials, Inc. In situ oxide removal, dispersal and drying for silicon SiO2
US8557727B2 (en) 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8803025B2 (en) 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
US8470112B1 (en) 2009-12-15 2013-06-25 SDCmaterials, Inc. Workflow for novel composite materials
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US8545652B1 (en) 2009-12-15 2013-10-01 SDCmaterials, Inc. Impact resistant material
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9637820B2 (en) 2009-12-28 2017-05-02 Guardian Industries Corp. Flame guard and exhaust system for large area combustion deposition line, and associated methods
US9284643B2 (en) 2010-03-23 2016-03-15 Pneumaticoat Technologies Llc Semi-continuous vapor deposition process for the manufacture of coated particles
JP5547539B2 (ja) 2010-04-13 2014-07-16 株式会社豊田中央研究所 セリア−ジルコニア系複合酸化物及びその製造方法、並びにそのセリア−ジルコニア系複合酸化物を用いた排ガス浄化用触媒
EP2399867B1 (de) * 2010-06-25 2013-08-21 Evonik Degussa GmbH Verfahren zur Herstellung Lithium enthaltender Mischoxide
DE102010027070A1 (de) * 2010-07-13 2012-01-19 Eberhard-Karls-Universität Tübingen Gas-Sensor und Verfahren zu seiner Herstellung
US20120190537A1 (en) * 2011-01-25 2012-07-26 Basf Se Catalyst support from flame-spray pyrolysis and catalyst for autothermal propane dehydrogenation
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9102673B2 (en) 2011-07-12 2015-08-11 Merck Sharp & Dohme Corp. Substituted pyrrolo[3,2-c]pyridines as TrkA kinase inhibitors
MX2014001718A (es) 2011-08-19 2014-03-26 Sdcmaterials Inc Sustratos recubiertos para uso en catalisis y convertidores cataliticos y metodos para recubrir sustratos con composiciones de recubrimiento delgado.
EP2858501A4 (en) 2012-05-22 2015-12-09 Merck Sharp & Dohme TRK-A KINASE INHIBITORS, COMPOSITIONS AND METHODS THEREOF
WO2014027308A1 (en) * 2012-08-14 2014-02-20 Basf Se Ceria-zirconia-mixed oxide particles and process for their production by pyrolysis
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
FR2999975B1 (fr) 2012-12-20 2015-02-27 Michelin & Cie Renfort metallique pret a l'emploi dont la surface est pourvue de nanoparticules de sulfure metallique
CN103240088B (zh) * 2013-05-07 2015-01-07 中国石油大学(北京) 大孔氧化物担载核壳结构纳米颗粒的催化剂及其制备方法
JP5763711B2 (ja) 2013-06-13 2015-08-12 株式会社豊田中央研究所 セリア−ジルコニア系複合酸化物及びその製造方法、並びにそのセリア−ジルコニア系複合酸化物を用いた排ガス浄化用触媒
WO2014203179A2 (en) * 2013-06-18 2014-12-24 Basf Se Ceria-zirconia-mixed oxide particles and process for their production by pyrolysis of dispersions
WO2015013545A1 (en) 2013-07-25 2015-01-29 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters
WO2015039334A1 (en) 2013-09-22 2015-03-26 Merck Sharp & Dohme Corp. TrkA KINASE INHIBITORS, COMPOSITIONS AND METHODS THEREOF
WO2015039333A1 (en) 2013-09-22 2015-03-26 Merck Sharp & Dohme Corp. TrkA KINASE INHIBITORS, COMPOSITIONS AND METHODS THEREOF
JP5883425B2 (ja) 2013-10-04 2016-03-15 株式会社豊田中央研究所 セリア−ジルコニア系複合酸化物及びその製造方法、並びにそのセリア−ジルコニア系複合酸化物を用いた排ガス浄化用触媒
JP2016535664A (ja) 2013-10-22 2016-11-17 エスディーシーマテリアルズ, インコーポレイテッド リーンNOxトラップの組成物
KR20160074566A (ko) 2013-10-22 2016-06-28 에스디씨머티리얼스, 인코포레이티드 대형 디젤 연소 엔진용 촉매 디자인
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US20150360208A1 (en) * 2014-06-12 2015-12-17 Basf Se Formation Of Emission Control Catalysts
FR3022490B1 (fr) 2014-06-18 2018-05-18 Compagnie Generale Des Etablissements Michelin Renfort, metallique ou metallise, graphenise
FR3022559B1 (fr) 2014-06-18 2016-07-01 Michelin & Cie Graphenisation de surface d'un renfort metallique ou metallise par pyrolyse par projection de flamme
FR3022491B1 (fr) 2014-06-18 2016-07-01 Michelin & Cie Bandage comportant un renfort, metallique ou metallise, graphenise
US9755235B2 (en) 2014-07-17 2017-09-05 Ada Technologies, Inc. Extreme long life, high energy density batteries and method of making and using the same
FI20146177A (fi) * 2014-12-31 2016-07-01 Teknologian Tutkimuskeskus Vtt Oy Menetelmä katalyyttisen nanopinnoitteen muodostamiseksi
WO2016209460A2 (en) 2015-05-21 2016-12-29 Ada Technologies, Inc. High energy density hybrid pseudocapacitors and method of making and using the same
CN105017972B (zh) * 2015-07-20 2018-05-04 林州市清华·红旗渠新材料产业化发展中心 一种铈基抛光粉的制备方法
US10692659B2 (en) 2015-07-31 2020-06-23 Ada Technologies, Inc. High energy and power electrochemical device and method of making and using same
CN105905935B (zh) * 2016-04-26 2017-10-31 东北大学 喷雾热解制备大比表面积稀土氧化物或复合氧化物的方法
DE102017204488A1 (de) 2017-03-17 2018-09-20 Technische Universität Berlin Verfahren zur Herstellung von monodispersen Nanopartikeln aus einer flüssigen Mischung
US11024846B2 (en) 2017-03-23 2021-06-01 Ada Technologies, Inc. High energy/power density, long cycle life, safe lithium-ion battery capable of long-term deep discharge/storage near zero volt and method of making and using the same
WO2019040857A1 (en) 2017-08-24 2019-02-28 Forge Nano, Inc. MANUFACTURING METHODS FOR SYNTHESIZING, FUNCTIONALIZING, PROCESSING AND / OR ENCAPSULATING POWDERS, AND APPLICATIONS THEREOF
US10124320B1 (en) 2017-11-15 2018-11-13 King Abdulaziz University Vanadium oxide catalyst supported on CeO2—ZrO2 for dimethyl ether production via oxidative dehydration of methanol
TWI669208B (zh) * 2018-04-30 2019-08-21 國立臺灣科技大學 中空球複合結構顆粒及其製作方法
CN109052469A (zh) * 2018-10-16 2018-12-21 东北大学秦皇岛分校 一种可电场控制的喷雾热解合成纳米材料的装置
TWI770603B (zh) * 2019-09-13 2022-07-11 德商贏創運營有限公司 藉由噴霧熱解製備奈米結構的混合鋰鋯氧化物
EP3834853A1 (en) 2019-12-13 2021-06-16 EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Coatings, coated implants and manufacturing methods therefore
FR3105787B1 (fr) 2019-12-27 2022-03-25 Oreal Procede de preparation de particules d’oxyde de zinc enrobees par pyrolyse par projection de flamme
FR3105788A1 (fr) 2019-12-27 2021-07-02 L'oreal Procede de preparation de particules enrobees d’oxyde de silicium par pyrolyse par projection de flamme
FR3105789B1 (fr) 2019-12-27 2024-01-12 Oreal Particules d’oxyde de metal enrobees d’oxyde de terre rare et son procede de preparation par pyrolyse par projection de flamme
US11821091B2 (en) 2020-07-24 2023-11-21 Uchicago Argonne, Llc Solvent-free processing of lithium lanthanum zirconium oxide coated-cathodes
NL2026635B1 (en) * 2020-10-07 2022-06-07 Univ Delft Tech Integrated manufacturing of core-shell particles for Li-ion batteries
FR3116434B1 (fr) 2020-11-24 2022-12-02 Oreal Utilisation d’un oxyde métallique particulier pour la photoconversion de composés organiques sur les matières kératiniques
CN112495363B (zh) * 2020-12-14 2023-04-11 天俱时工程科技集团有限公司 用于臭氧化处理的催化剂的制备方法
CN112582626B (zh) * 2020-12-22 2022-03-25 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) 一种提升钙钛矿氧化物电催化活性的方法及其物质
CN112588296A (zh) * 2020-12-23 2021-04-02 甄崇礼 用于VOCs催化燃烧的催化剂及其制备方法
CN114713223A (zh) * 2021-01-04 2022-07-08 中国科学院大连化学物理研究所 一步制备四方相氧化锆的方法及其担载铜基催化剂和应用
FR3130563A1 (fr) 2021-12-21 2023-06-23 L'oreal Particules colorantes d’oxydes et de sous-oxydes de metaux enrobees, et leur preparation par pyrolyse par projection de flamme
FR3130566A1 (fr) 2021-12-21 2023-06-23 L'oreal Particules d’oxydes de metaux et de phosphore enrobees, et leur preparation par pyrolyse par projection de flamme
FR3130789A1 (fr) 2021-12-21 2023-06-23 L'oreal Particules de sous-oxydes de cerium enrobees et leur preparation par pyrolyse par projection de flamme
WO2023227605A1 (en) 2022-05-24 2023-11-30 Basf Se Method for the preparation of a supported mixed metal oxide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010036437A1 (en) * 2000-04-03 2001-11-01 Andreas Gutsch Nanoscale pyrogenic oxides

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19616780A1 (de) * 1996-04-26 1997-11-06 Degussa Ceroxid-Metall/Metalloidoxid-Mischung
WO2001036332A1 (en) * 1999-11-17 2001-05-25 Cabot Corporation Ceria composition and process for preparing same
EP1142830A1 (de) * 2000-04-03 2001-10-10 Degussa AG Nanoskalige pyrogene Oxide, Verfahren zur deren Herstellung und die Verwendung dieser Oxide
AU2003215291A1 (en) * 2002-02-19 2003-09-09 Tal Materials Mixed-metal oxide particles by liquid feed flame spray pyrolysis of oxide precursors in oxygenated solvents
US20040050207A1 (en) * 2002-07-17 2004-03-18 Wooldridge Margaret S. Gas phase synthesis of nanoparticles in a multi-element diffusion flame burner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010036437A1 (en) * 2000-04-03 2001-11-01 Andreas Gutsch Nanoscale pyrogenic oxides

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Flame-made ceria nanoparticles. MADLER,L ET AL.JOURNAL OF MATERIALS RESEARCH,Vol.17 No.6. 2002
Flame-made ceria nanoparticles. MADLER,L ET AL.JOURNAL OF MATERIALS RESEARCH,Vol.17 No.6. 2002 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI755056B (zh) * 2019-09-13 2022-02-11 德商贏創運營有限公司 藉由噴霧熱解製備奈米結構的混合鋰鋯氧化物

Also Published As

Publication number Publication date
US7211236B2 (en) 2007-05-01
BR0312339A (pt) 2005-04-12
EP1517853B1 (en) 2012-06-27
CA2488920A1 (en) 2004-01-15
CN1665743A (zh) 2005-09-07
AU2003228051A1 (en) 2004-01-23
WO2004005184A1 (en) 2004-01-15
EP1517853A1 (en) 2005-03-30
JP4416651B2 (ja) 2010-02-17
US20040126298A1 (en) 2004-07-01
EP1378489A1 (en) 2004-01-07
JP2005537204A (ja) 2005-12-08

Similar Documents

Publication Publication Date Title
CN100475688C (zh) 用火焰喷雾热解法生产的金属氧化物
EP0940176A2 (en) Catalyst support and catalyst and process for producing the same from a water in oil type emulsion
Stark et al. Flame-made nanocrystalline ceria/zirconia: structural properties and dynamic oxygen exchange capacity
JP5066090B2 (ja) 金属(m1)酸化物粒子の表面に金属(m2)酸化物超微粒子をコートする方法
CN102482116B (zh) 多孔复合金属氧化物、使用所述多孔复合金属氧化物的催化剂以及制造所述多孔复合金属氧化物和所述催化剂的方法
KR101431919B1 (ko) 비다공도를 갖는, 산화세륨 및 산화지르코늄을 포함하는 조성물, 그의 제조 방법 및 촉매작용에서의 그의 용도
Jossen et al. Morphology and composition of spray-flame-made yttria-stabilized zirconia nanoparticles
EP4241875A2 (en) High porosity cerium and zirconium containing oxide
JP2002248347A (ja) 複合酸化物粉末及び触媒とこれらの製造方法
JP2002211908A (ja) 複合酸化物粉末とその製造方法及び触媒
CN101218026A (zh) 氧化铝基钙钛矿催化剂和催化剂载体
Deng et al. Preparation of nanostructured CeO2-ZrO2-based materials with stabilized surface area and their catalysis in soot oxidation
JP2010207783A (ja) アンモニア分解触媒、それを用いたアンモニア分解方法、およびアンモニア分解反応装置
JP3265534B2 (ja) 排ガス浄化用触媒
US10329984B2 (en) Oxygen storage/release material
EP3444225A1 (en) Alumina-based composite oxide and method for producing same
US20060025301A1 (en) Process for preparing nanosized, thermally stable, and high surface area multi-component metal oxides
WO2000027527A1 (en) Preparation of nanocrystalline and dispersible supported metal catalysts
WO2007064228A1 (en) A method of sol-gel processing
JP2012187523A (ja) 排ガス浄化用触媒担体、それを用いた排ガス浄化用触媒及び排ガス浄化用触媒担体の製造方法
JP5690372B2 (ja) 酸化鉄−ジルコニア系複合酸化物およびその製造方法
JP2022179935A (ja) セリア-ジルコニア系微結晶粉末、それを用いた酸素吸放出材料、及びその製造方法
Lee et al. Synthesis, structural and optical characterization of sol–gel-derived Y-doped mesoporous CeO 2
Shih et al. Designing the morphology of ceria particles by precursor complexes
JP6615060B2 (ja) 排ガス浄化用触媒担体の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090408

Termination date: 20190520

CF01 Termination of patent right due to non-payment of annual fee