CN100468823C - 制造系统、制造方法、操作制造设备的方法及发光器件 - Google Patents

制造系统、制造方法、操作制造设备的方法及发光器件 Download PDF

Info

Publication number
CN100468823C
CN100468823C CNB031217826A CN03121782A CN100468823C CN 100468823 C CN100468823 C CN 100468823C CN B031217826 A CNB031217826 A CN B031217826A CN 03121782 A CN03121782 A CN 03121782A CN 100468823 C CN100468823 C CN 100468823C
Authority
CN
China
Prior art keywords
container
manufacture method
manufacturing installation
crucible
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB031217826A
Other languages
English (en)
Other versions
CN1440222A (zh
Inventor
村上雅一
大谷久
山崎舜平
桑原秀明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of CN1440222A publication Critical patent/CN1440222A/zh
Application granted granted Critical
Publication of CN100468823C publication Critical patent/CN100468823C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/246Replenishment of source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/50Forming devices by joining two substrates together, e.g. lamination techniques
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供了一种能够提高发光器件的可靠性和亮度的制造系统,它使用很高纯度的蒸发用的EL材料。该系统还能有效使用EL材料代替玻璃瓶,使用放入蒸发装置中的容器(第一容器11a),并且材料制造商(18)直接在容器中存储EL材料(12),或者通过升华来提纯和存储。容器然后输送到发光器件制造者(19)处进行蒸发。用该制造系统,可以防止杂质污染高纯度的EL材料。该系统还消除了从玻璃瓶给容器输送EL材料的麻烦。该容器可以由材料制造商回收,并且剩余在容器中的EL材料可以被收集,由制造系统重复使用。

Description

制造系统、制造方法、操作制造设备的方法及发光器件
技术领域
本发明涉及生产衬底上有EL元件的发光器件的制造系统,更具体地说涉及高纯有机化合物层的制造系统。本发明还涉及操作制造设备的方法,及通过该操作方法得到的发光器件。本发明还涉及有机化合物重复循环系统。
背景技术
近些年来,对使用诸如EL元件的发光元件的发光器件的研究非常活跃。具体地说,使用包含有机材料的EL材料的发光器件引起人们的注意。这类发光器件称作包含有机材料的EL显示器,或者包含有机材料的发光二极管。
需要注意的是,EL元件具有包含有机化合物的层(以后称作EL层)、阳极和阴极,有机化合物中,通过施加电场产生发光(电致发光)。当从单重激发状态(荧光)返回到基态时,就发光了,并且当从三重激发态(磷光)返回至基态时,在有机化合物中发光,并且可以将二种类型的发光用于通过本发明的膜形成装置和膜形成方法制造的发光器件。
与液晶显示器件不同,发光器件是自发光类型,所以不存在视角的问题。更具体地说,与液晶显示器比较,发光器件更适于用于在外面使用的显示器。因此,已经提出以不同形式使用发光器件。
另外,发光器件有两个系统,第一个是EL层形成在两种条形电极间,以便彼此正交,(无源矩阵),第二是EL层形成在矩阵排列的象素电极间,以便连接到TFT和反电极(有源矩阵系统)。
EL元件具有EL层夹在一对电极间的结构,并且该EL层通常具有叠层结构。叠层结构的示例可以包括“空穴迁移层/发光层/电子迁移层”,它们具有极高的发光效率。
另外,也可以使用这种结构:在阳极上依次层叠空穴注入层、发光层、电子迁移层;或在阳极上依次层叠空穴注入层、空穴迁移层、发光层、电子迁移层和电子注入层。可以在发光层中掺杂荧光颜料等。还有,所有这些层可以使用低分子量材料形成,或者一些层可以使用高分子量材料形成。
应当注意到,在阴极与阳极间形成的所有层,在本说明书中通常称作EL层。前述的空穴注入层、空穴迁移层、发光层、电子迁移层和电子注入层因此包括在EL层的范畴内。
另外,在说明书中,EL元件是形成在这样结构上的发光元件,在这种结构中,包括EL材料以及为EL材料引入载流子的有机或无机材料的层(以后称作EL层)夹在两个电极间(阳极和阴极),并且由阳极、阴极及EL层形成二极管。
使用由有机材料构成的EL材料的EL元件,通常使用EL材料和有机材料结合形成EL层结构。虽然由有机材料或无机材料构成的EL材料通常分为低分子量(单体基)材料和高分子量(聚合体基)材料,该低分子量材料主要是通过汽相淀积形成膜。
实际使用这些EL元件的最严重的问题在于该元件的寿命不够长。元件的衰变呈现这样的方式,随着长时间发光,不发光区(黑斑)在扩展,这是由于EL层的衰变引起的。
通过掺杂诸如氧和水,形成EL层的EL材料容易衰变。另外,在EL材料中掺杂其它的杂质,可能引起EL层的衰变。
使氧、水和其它杂质污染EL材料的主要工艺是蒸发,其包括在蒸发前在蒸发装置中放置EL材料的工艺和蒸发工艺。
通常,保存EL材料的容器放置在褐色的玻璃瓶内,并且,该瓶子有一个塑料盖。保存EL材料的容器的密封度可以不特别高。
在现有技术中,当通过蒸发形成膜时,一定量的蒸发材料从容器(玻璃瓶)取出放到形成膜的蒸发装置对面的容器(典型的是坩埚或蒸发舟)中。在移动蒸发材料期间杂质可能污染了蒸发材料。详细地说,使得EL材料衰变的氧、水和其它杂质可能与蒸发材料混合。
将蒸发材料从玻璃瓶中取出放到一个容器中的方法是手在配备有具有手套盒等的蒸发装置的预处理箱中操作。然而,配有手套盒的预处理箱不允许真空,并且该工作必须在大气压下进行。但是即使预处理箱中的潮气和氧气量不足够小时,也可以使用氮气环境。可以使用自动装置,但是不实际,因为不容易制造能够在两个容器间传送粉状蒸发材料的自动装置。这就使得难以建造一体化的封闭系统,在该系统中为了避免杂质污染,从在下电极上形成EL层直到形成上电极都是自动化完成的。
虽然发光器件制造商能够提纯从材料制造商购买的蒸发材料来进一步提高蒸发材料的纯度,但是提纯是繁琐的事情,且当蒸发材料放置到蒸发装置中时,蒸发材料仍然存在被杂质污染的可能性。
另外,EL材料是昂贵的,它的每一克成本大于每一克金的价格。因此希望尽可能有效使用EL材料。
发明内容
考虑到上述完成了本发明,因此本发明的一个目的是提供一种系统,在该系统中能够保持EL材料的高纯度,并且从在下电极上形成EL层直到形成上电极的步骤都是自动的,正象能够避免杂质污染的整合封闭系统那样,可以了改进生产能力。
本发明的另一个目的是有效地使用EL材料。
本发明另一个目的是通过使用高纯EL材料,提高发光元件的可靠性和亮度。
本发明避免了高纯EL材料通过制造系统造成的杂质污染,在该系统中,EL材料直接存储在放置在蒸发装置中的容器中,而不是保存EL材料的常规容器中,典型地说是褐色玻璃瓶等等,然后该容器被传送到用于蒸发的蒸发装置。为了在容器中直接存储EL材料,该EL材料可以在放置在蒸发装置中的容器中精确提纯,而不是在一些部分中加入得到的EL材料。在将来,本发明使进一步提高EL材料的纯度成为可能。
使用蒸发装置的发光器件的制造商希望制造或销售EL材料的材料制造商将EL材料直接存储到放置到蒸发装置中的容器中。本发明提供一种制造系统,其中,为了得到非常高纯度的EL材料并且使用该EL材料以生产高可靠性的发光器件,发光器件的制造商和材料的制造商彼此联合起来。本发明的系统不需要最后通常成为工业废弃物的玻璃瓶,因此,利于环保。另外,由于材料制造商直接在容器中存储、或提纯和存储材料,因此发光器件的制造商不需要过量地购买EL材料,并且可以有效地使用相对贵重的EL材料。总之,与现有技术不同,本发明能够避免在玻璃瓶中的EL材料过量或不足量。
本发明的系统不需要将EL材料从玻璃瓶中移到另一个容器。因此避免了材料转移过程中EL材料溢出的事故。由于发光器件制造商减少了在两个容器间转移EL材料的工作,因此发光器件制造商只需要将材料制造商事先储存EL材料,或者提纯和储存EL材料的容器放置到蒸发装置中。因此提高了生产量。
本发明提供了一种制造系统,在该系统中,与可以避免杂质污染的一体化封闭系统一样,工艺都是自动的,从而提高生产量。
不论材料制造商提供如何纯的EL材料,只要发光器件制造商像现有技术那样在容器间移动EL材料,总是有杂质污染的可能。因此,EL材料的纯度不可能保持纯度的上限。本发明使得发光器件制造商与材料制造商一道工作,以减少杂质的污染,从而直到材料在发光器件制造商的蒸发过程中经受蒸发后,可以保持由材料制造商提供的EL材料的最初极高的纯度。
根据本说明书中公开的本发明的结构,所提供的制造系统包括:
第一步骤,在材料制造商那里,在第一容器中存储、或提纯和储存蒸发材料,并且在第二容器中密封存储蒸发材料的第一容器;
第二步骤,将第二容器输送到发光器件制造商处;
第三步骤,将第二容器引入发光器件制造商的制造装置中,将第一容器从第二容器中取出,并放置第一容器;以及
第四步骤,为了蒸发,加热在制造装置中的第一容器。
不用说,材料制造商不需要准备和制造容器,而是可以从外面的供应商定货。最好是由为发光器件制造商提供蒸发装置的装置制造商制造蒸发装置中放置的容器。为了得到非常高纯度的EL材料,并且用该EL材料生产高可靠性的发光器件,本发明提供一种系统,在该系统中,装置制造商、发光器件制造商和材料制造商被联合在一起。
根据本说明书中披露的本发明的另一个结构,所提供的制造系统包括:
第一步骤,由装置制造商向材料制造商输送第一容器和第二容器;
第二步骤,在材料制造商处,在第一容器中存储、或提纯和存储蒸发材料,并且在第二容器中密封存储了蒸发材料的第一容器;
第三步骤,将第二容器输送给发光器件制造商;
第四步骤,将第二容器引入发光器件制造商的制造装置中,将第一容器从第二容器中取出,并放置第一容器;以及
第五步骤,为了蒸发,加热在制造装置中的第一容器。
另外,放置在蒸发装置中的容器可以由发光器件制造商制造和准备。
根据本说明书中披露的本发明的另一个结构,所提供的制造系统包括:
第一步骤,由发光器件制造商向材料制造商输送第一容器和第二容器;
第二步骤,在材料制造商处,在第一容器中存储、或提纯和存储蒸发材料,并且在第二容器中密封存储了蒸发材料的第一容器;
第三步骤,将第二容器输送给发光器件制造商;
第四步骤,将第二容器引入发光器件制造商的制造装置中,将第一容器从第二容器中取出,并放置第一容器;以及
第五步骤,为了蒸发,加热在制造装置中的第一容器。
而且,当通过蒸发形成EL层时,不蒸发存储在容器中的全部EL材料,且蒸发之后,未蒸发的EL材料附着到容器上。在上述制造系统中,该容器可以由材料制造商回收,且取出残留在容器中的EL材料回收再用。而且,在上述制造系统中,取出之后,残留在容器中的EL材料可以被提纯以增加回收再用的纯度。
根据本说明书中披露的本发明的另一个结构,所提供的制造系统包括:
第一步骤,由发光器件制造商向材料制造商输送第二容器和第一容器;
第二步骤,在材料制造商处,在第一容器中存储、或提纯和存储蒸发材料,并且在第二容器中密封存储了蒸发材料的第一容器;
第三步骤,将第二容器输送到发光器件制造商处;
第四步骤,将第二容器引入发光器件制造商的生产装置中,将第一容器从第二容器中取出,并放置第一容器;
第五步骤,为了蒸发,加热在生产装置中的第一容器。
第六步骤,将第一容器从制造装置中取出,并将在第二容器中的第一容器密封,以便将该容器从发光器件制造商处向材料制造商处转移。
另外,上述结构的特征在于为了循环使用,材料制造商在蒸发以后回收附着在第一容器内壁上的蒸发材料。如果蒸发材料被回收,最好是随后提纯回收的EL材料,同时将该材料密封在第二容器中,以避免杂质污染。
上述结构的特征在于,在惰性气体或真空下将第一容器存储在第二容器中,在蒸发材料储存、或者提纯和存储后将该容器放置在制造装置中,不要将该容器暴露在空气中。用该方法防止由于暴露在空气中,空气中的水和氧气附着在第一容器的外壁等上面。在本发明中,由于直接在运输的容器中存储EL材料、或提纯和存储EL材料,应当尽可能避免对放置在蒸发装置中的容器的污染。如果水和氧气附着其外壁等的容器放置在蒸发装置中,在蒸发过程中,杂质可能污染EL材料。
上述结构的特征在于,制造装置具有多个备有抽真空装置的处理室,从第二容器中取出第一容器的一个处理室,以及真空蒸发装置。该制造装置可以是多室型,或者是成一直线(in line)型。具体地说,其中密封了第一容器的第二容器被引入充满惰性气体的第一室(处理室),该第一室被抽真空,以便从其内部除去杂质,将惰性气体引入该室以返回到大气的压力,并且从第二容器中取出第一容器。然后第一室被抽真空,第一容器被转移到与第一室连接的第二室(真空蒸发装置是预先被抽真空的),第一容器放置到希望的位置。无疑,为了自动化,这些操作可以全部由自动化机械装置操作。可以在真空中从第二容器中取出第一容器。
在上述的结构中,对第一容器不作特别的限定,但最好是有效使用EL材料的坩埚。可以使用蒸发舟代替坩埚。第一容器可以是附带有密封盖的坩埚。
另外,在上述的结构中,对第二容器不作特别的限定,只要该容器是光屏蔽容器,但是最好是该容器可以承受减压和加压。
另外,在上述的结构中,在存储EL材料前,材料制造商最好清洁第一容器或第二容器。
另外,在上述的制造系统中,不仅EL材料是循环使用的,而且为了循环使用,材料制造商可以清洁容器。因此,可以节省所需容器的数量,并且也可以节省EL材料。
根据本说明书中披露的本发明的另一个结构,所提供的制造系统包括:
第一步骤,从发光器件制造商向材料制造商输送容器;
第二步骤,在材料制造商处,在容器中存储、或者提纯和存储材料;
第三步骤,向发光器件制造商输送容器;
第四步骤,将容器引入发光器件制造商的制造装置中;
第五步骤,为了蒸发,加热制造装置中的容器;以及
第六步骤,从制造装置中取出容器,以便从发光器件制造商向材料制造商输送该容器,并且在该容器中再次存储蒸发材料。
在上述结构中,该容器可以由第一容器替代,并且在输送期间第一容器可以密封在第二容器中。如果第一容器准备循环使用,最好是为了以后存储EL材料回收第一容器,同时在第二容器中密封第一容器,以避免杂质污染。如果EL材料准备循环使用,最好是为了以后提纯回收的EL材料,同时在第二容器中密封该EL材料,以避免杂质的污染。
另外,上述结构的特征在于该容器是坩埚或该容器是可以由附带密封盖密封的坩埚。
另外,上述结构的特征在于为了循环使用,材料制造商在第六步骤中,回收粘附在容器内壁上的蒸发材料。另外,上述的结构的特征在于材料制造商清洁该容器。此外上述结构的特征在于制造装置是真空蒸发装置。
此外,上述结构的特征在于制造装置是具有至少一个真空蒸发装置的多室型制造装置。
另外,本发明还提供了一种制造方法,其中,直接在容器(坩埚等)中通过升华提纯蒸发材料,所说的容器放置在用于蒸发的蒸发装置中。
根据本发明的另一个结构,提供的制造方法包括:
第一步骤,在容器中提纯蒸发材料;
第二步骤,将第二容器置于蒸发装置中,以便面对蒸发目标;以及
第三步骤,为了蒸发,加热置于蒸发装置中的容器。
在本说明书中,坩埚指具有较大开口的筒形容器,它是由烧结的BN、BN和AIN烧结的组合物、石英(quarts)、石墨、其它材料制成,这些材料能经受高温、高压和减压。坩埚的外部式样示于图12A。在蒸发装置中,蒸发源包括坩埚、加热器、绝热层、外筒、冷却管和窗口装置。加热器放置在坩埚的外面,散热材料均匀地夹在坩埚与加热器之间。在加热器的外面设置绝热层。外筒罩住坩埚、热均衡材料、加热器以及绝热层。冷却管缠绕在外筒上。窗口装置打开和关闭包括坩埚开口的外筒开口。
图12B示出了蒸发源置于真空蒸发装置中的典型示例的简化图。真空蒸发装置包括真空室、基底支架、多个蒸发源等。真空室可以通过真空排气装置(图中未示出来)保持在预定的减压状态。基底支架固定在该室的顶板上。蒸发源放置在基底支架下面,并面向支架。基底支架具有夹持基底的夹持单元(图中未示出)。旋转基底的旋转轴在基底支架的顶面的中心垂直竖立。在图12B中所示的示例中,在基板上设置了三个坩埚。然而,坩埚的数量不具体地限定,可以是一、二、三或四个或更多。
根据本发明的另一个结构,提供的操作制造装置的方法包括:
在第二容器中密封第一容器,第一容器存储着有机材料;
将第二容器引入具有真空排气装置的制造装置中;
将第一容器从第二容器中取出,并放置第一容器;
为了蒸发,加热第一容器。
另外,上述结构的特征在于第一容器的内壁上有通过升华提纯的有机材料。另外,上述结构的特征在于该有机材料是蒸发材料。
通过使用操作上述结构的制造装置的方法,使用高纯度材料制造的发光器件具有高可靠性和高亮度的特点。
在本发明中,电阻加热或使用电子枪的蒸发方法(该方法称为EB蒸发)可以用于蒸发。本发明中蒸发材料不限于包含有机化合物的物质,也可以是形成阴极和阳极的无机材料(包括合金材料)。当由与空气(其中的氧气,湿气等)接触时可能分解的金属材料形成阴极和阳极时,本发明特别地有效。
虽然本发明示例的方法主要使用蒸发性的粉状有机材料,也可以使用液体高分子量材料。换言之,当通过旋涂、铸造、LB、喷墨方法等等形成薄膜时,也可以应用本发明。当使用高分子量材料时,由材料制造商提供高纯度的液体高分子量材料,该材料存储在第一容器中,使用注射针和活塞式注射器通过拉动活塞减压,连续地将溶液注入到容器中,然后将第一容器存储和密封在第二容器中。
附图说明
图1是实施方式1的示图;
图2是实施方式2的示图;
图3是实施方式3的示图;
图4是实施方式4的示图;
图5是实施方式5的示图;
图6是实施例1的示图;
图7A和图7B是表示叠层结构(实施例2)的示图;
图8是表示多室型制造装置的示图;
图9A和9B是表示在调节室中传送坩埚的示图;
图10A和10B是表示在调节室中传送坩埚到蒸发源支架的示图;
图11是表示多室型制造装置(实施例5);
图12A和12B是分别表示坩埚外观和蒸发装置简化示图;以及
图13A和13D是表示为了蒸发,容器再次注满的示图。
具体实施方式
下面将描述本发明的实施方式
[实施方式1]
图1是本发明制造系统的解释示图。
在图1中,参考标记11a表示第一容器(坩埚),并且11b表示将第一容器与空气隔绝开来以防止污染的第二容器。12表示提纯的具有高纯度的EL材料。数字13表示可以抽出空气的工作室,数字14表示加热装置,数字15表示蒸发目标并且数字16表示蒸发膜。数字18表示材料制造商,其作为蒸发材料的有机化合物材料的制造商,生产和提纯该材料(具体地是原材料经销商)。数字19表示具有蒸发装置的发光器件制造商,发光器件的制造者(具体的工厂)。
下面将描述本发明的制造系统的流程。
首先,发光器件制造商19向材料制造商18发出定单10。接到定单10,材料制造商18准备第一容器11a和第二容器11b。材料制造商在在清洁室内的第一容器11a中存储、或提纯和存储超高纯度的EL材料,并且非常注意防止杂质(诸如氧气和潮气)混入该清洁室。此后,材料制造商最好在清洁室中将第一容器11a密封在第二容器11b中,以便避免不需要的杂质附在第一容器的内或外表面上。当密封第一容器时,第二容器11b最好抽出空气,或填充惰性气体。在存储、或提纯和存储超高纯度的EL材料12前,最好清洁第一容器11a和第二容器11b。
在本发明中,在随后蒸发期间第一容器11a被直接放在工作室中。第二容器11b可以起到包装膜的作用,它可以作为防止氧气和潮气的侵入的屏障。第二容器11b最好是固体的、屏蔽光的、筒形或箱式的容器,以便该容器能够自动取出。
接下来,从材料制造商18将密封了第一容器11a的第二容器11b输送给发光器件制造商19(出货17)。
接下来,将密封了第一容器11a的第二容器11b放入可以抽真空的处理室13中。注意到,处理室13是蒸发室,在其里面配置了加热装置14和基底支架(未示出)。此后,处理室13被抽真空,以清洁其内部,并尽可能清除氧气和潮气。然后将第一容器11a从第二容器11b中取出来,同时保持真空,可以通过将第一容器11a放入加热装置14中来准备蒸发源。注意,蒸发目标(这里是基底)15放置面对第一容器11a。
接下来,加热装置14通过电阻加热等加热蒸发材料,以便在面对蒸发源的蒸发目标15的表面上形成蒸发膜。从而获得了不含有杂质的蒸发膜。由该蒸发膜16形成的发光器件具有高可靠性和高亮度。
如上所述,没有暴露在空气中哪怕只暴露一次的第一容器11a被放入蒸发室13中,蒸发材料12被蒸发,并保持在制材料制造者处存储的材料的本来纯度。另外,由于材料制造商直接在第一容器11a中存储EL材料12,发光器件制造商不必过量购买EL材料,并且可以有效地使用较贵的EL材料。
由于在蒸发过程中材料的使用效率较低,通过例如图13A至13D所示的方法,可以经济地使用材料。在器件维护期间,新的EL材料902放入坩埚901(图13A)。如图13B所示,在蒸发进行一次后,903是未蒸发剩余的残留材料。下一次蒸发前,向坩埚重新再填充EL材料904。每次蒸发重复图13B和13C,直到下一次维护。用该方法,可以更有效地使用蒸发材料。然而,这种方法具有残留材料造成污染的缺点。另外,由于手工给坩埚再填充材料,由于再填充期间混有氧气和潮气,可能降低蒸发材料的纯度。图13D示出了这种方法再填充的材料数量的示例。已经蒸发过几次的坩埚将不再维护。为了避免杂质的污染,只用新的EL材料填充坩埚,并且每次蒸发后剩余的就废弃,这会导致成本的增加。
上述制造系统消除了对现有技术中需要玻璃瓶来存储蒸发材料的需求,而且也消除了从玻璃瓶向坩埚转移EL材料的工作。因此,防止了杂质的污染和提高了产量。
本发明提供一种制造系统,在该系统中处理过程完全是自动的,从而提高了产量,并且一体化封闭系统能够避免由材料制造商18提纯的蒸发材料12的杂质污染。
[实施方式2]
在实施方式1所示的例子中,通过两个制造商间的联合,可以保持高纯度EL材料的纯度。该实施方式表示一种示例,在该例子中,三个制造商相互联合以保持高纯EL材料的纯度。
图2是本发明的制造系统的解释示图。
在图2中,数字21a表示第一容器(坩埚),数字21b表示将第一容器与空气隔绝开以防止污染的第二容器。22表示提纯以具有高纯度的粉状EL材料。数字23表示可以排出空气的工作室,数字24表示加热装置,数字25表示蒸发目标并且数字26表示蒸发膜。另外,数字27是装置制造商,它制造蒸发装置。并且,数字28是材料制造商,它是作为蒸发材料的有机化合物材料的制造商,生产和提纯材料(具体的原材料经销商)。数字29是具有蒸发装置的发光器件制造商和发光器件的制造者(具体的工厂)。
下面将描述本发明的制造系统的流程。
首先,发光器件的制造商29向材料制造商28发出定单32。接受了该定单32,材料制造商28向装置制造商27发出定单33。装置制造商27是提供商,其制造蒸发装置和销售该蒸发装置给发光器件制造商29,在蒸发装置中的第一容器21a可以放入蒸发源。接受了定单33,装置制造商27制造第一容器21a和第二容器21b。在该示例中,第一容器21a和第二容器21b可以由相同的装置制造商27制造,但是它们也可以由分别的装置制造商制造。在制造完成后,最好清洁第一容器21a和第二容器21b。
在随后的蒸发期间,第一容器21a被直接放入工作室。第二容器21b可以用包装膜包装,该包装膜可以起到阻止氧气和潮气的阻挡层作用。第二容器21b最好是固体、屏蔽光的、筒形或箱形的容器,以便该容器可以自动取出。此后。装置制造商27最好在清洁室内密封第二容器21b中的第一容器21a,以便不允许不希望的杂质污染第一容器的内部和外部。
将密封了的第一容器21a的第二容器21b从装置制造商27输送给材料制造商28(出货30)。
在清洁室中材料制造商在第一容器21a中存储、或提纯和存储超高纯度的EL材料,同时特别注意防止杂质(诸如氧气和潮气)混入。此后,材料制造商28最好在清洁室中密封第二容器21b中的第一容器21a,以便不允许不希望的杂质粘附在第一容器的内外。当密封第一容器时,最好第二容器21b抽出空气或填充惰性气体。在存储或提纯和存储超高纯度的EL材料22前,最好清洁第一容器21a和第二容器21b。
将密封了第一容器21a的第二容器21b从材料制造商28输送给发光器件制造商(出货31)。
将密封了第一容器21a的第二容器21b放入可以被抽真空的处理工作室中。该工作室抽真空是为了清洁内部,并且尽可能多地除去氧气和潮气。然后,注入高纯惰性气体(氮气等),并且将该工作室设置在大气压下。从第二容器21b中取出第一容器21a。然后该工作室再次被抽出空气,并保持真空,第一容器21a放入与处理工作室相连的蒸发室23,并放入加热装置24中。蒸发源于是就准备好了。放置蒸发目标(这里是基底)25面向第一容器21a。
接下来,加热装置24通过电阻加热或类似的方式加热蒸发材料,在面向蒸发源的蒸发目标25的表面上形成蒸发膜26。从而得到了不含杂质的蒸发膜26。用该蒸发膜26形成的发光器件可以有高可靠性和高亮度。
如上所述,没有暴露在空气中哪怕只暴露一次的第一容器21a被放入蒸发室23中,蒸发材料22被蒸发,并保持在制材料造者处存储的材料的本来纯度。另外,由于材料制造商直接在第一容器21a中存储EL材料22,发光器件制造商不必过量购买EL材料,并且可以有效地使用较贵的EL材料。
上述制造系统消除了现有技术中需要玻璃瓶来存储蒸发材料的需求,而且也消除了从玻璃瓶向坩埚转移EL材料的工作。因此,防止了杂质的污染和提高了产量。
本发明提供了制造系统,在该系统中处理过程完全是自动的,从而提高了产量,并且一体化的封闭系统能够避免对材料制造商28提纯了的蒸发材料22的杂质污染。
在这里所示的示例中,发光器件制造商29向材料制造商28发出定单32。或者,发光器件制造商29可以向装置制造商27发出定单。
[实施方式3]
在这里所示的示例中,发光器件制造商29准备不同于实施方式1的容器。
图3是本发明制造系统的解释示图。
在图3中,参考标记41a表示第一容器(坩埚)并且41b表示为了防止污染,将第一容器与空气隔绝开来的第二容器。42表示提纯了的具有高纯度的粉状EL材料。43表示可以抽出空气的工作室,44表示加热装置,45表示蒸发目标,46表示蒸发膜。另外,47是材料制造商,其作为蒸发材料的有机化合物材料的制造商,并且生产和提纯材料(具体的原材料销售商)。48是具有蒸发装置的发光器件制造商,和发光器件制造者(具体的工厂)。
首先,发光器件制造商48准备和制造第一容器41a和第二容器41b。制造完成后最好清洁第一容器41a和第二容器41b。
从发光器件制造商48向材料制造商47输送第一容器41a和第二容器41b(出货40)。在出货40期间,第一容器41a最好在第二容器41b中密封,以便不允许不希望的杂质粘附在第一容器的内部和外部。出货40是发出定单的两倍。接收该出货,材料制造商47根据收到的第一容器的数目,从第二容器41b取出第一容器41a,并且在清洁室中在第一容器41a中存储、或提纯和存储超高纯度的EL材料42,同时特别注意防止杂质(诸如氧气和潮气)混入。此后,材料制造商47在清洁室中密封在第二容器41b中的第一容器41a,以便不允许杂质粘附在第一容器的内部和外部。在密封第一容器时,第二容器最好抽出空气,或者填充惰性气体。在存储、或提纯和存储超高纯度的EL材料42之前,最好清洁第一容器41a和第二容器41b。
然后,将密封第一容器41a的第二容器41b从料制造商处47向发光器件制造商48处输送(出货49)。
接着,将密封了第一容器41a的第二容器41b引入到可以抽真空的处理室中。该工作室抽真空以清洁其内部,并且尽可能多地除去氧气和潮气。将高纯惰性气体(氮气等)引入处理室,并调整到大气压下。从第二容器41b中取出第一容器41a。然后该处理室再次抽出空气,同时保持真空,第一容器41a放入与处理室连接的蒸发室43。该第一容器放入加热装置44。从而准备好了蒸发源。面向第一容器41a放置蒸发目标(这里是基底)45。
接下来,加热装置44通过电阻加热或类似的方式加热蒸发材料,在面向蒸发源的蒸发目标25的表面上形成蒸发膜26。从而得到了不含杂质的蒸发膜46。用该蒸发膜46形成的发光器件可以有高可靠性和高亮度。
如上所述,将没有暴露在空气中哪怕只暴露一次的第一容器41a放入蒸发室43中,蒸发材料42被蒸发,并保持在制材料造者处存储的材料的本来纯度。另外,由于材料制造商直接在第一容器41a中存储EL材料42,发光器件制造商不必过量购买EL材料,并且可以高效地使用较贵的EL材料。
[实施方式4]
这里所示的示例,部分不同于实施方式2。用相同的参考标记表示实施方式2和实施方式4共同的组成部分。
图4是本发明的制造系统的解释示图。
在图4中,参考标记50表示剩余的未蒸发EL材料。这个实施方式引进一个系统,在该系统中,在第一容器21a中剩余的EL材料由材料制造商28回收(回收51),以便重新使用未被污染的EL材料。
在这个实施方式中的制造系统的流程与实施方式2中直到得到蒸发膜26的流程相同。因此此处就省略了对其的解释。
在得到蒸发膜26以后,剩余的未蒸发的EL材料50凝固在第一容器21a的底部。一般地说,蒸发程度很大程度上取决于从EL材料的界面22到蒸发目标的距离,坩埚开口的宽度和坩埚的温度分布。由于在第一容器21a底部剩余的EL材料到蒸发目标的距离大于蒸发前的距离,重复蒸发直到在第一容器中剩余的EL材料完全蒸发是不可取的。裕量是避免重复蒸发直到在第一容器中剩余的EL材料完全蒸发的另一个原因。只有最初放入坩埚中的三分之一、四分之一或更少的EL材料在蒸发过程中被使用,这意味着材料的使用是低效的,并且剩余材料被浪费。
这个实施方式通过使材料制造商28回收从图4中所示的蒸发装置取出的第一容器21a(回收51)解决了这个问题,。在重新使用前,回收的EL材料50最好再次提纯以提高其纯度。在再提纯前最好尽可能防止杂质混入EL材料50。因此,第一容器21a最好从蒸发装置中取出时,在第二容器21b中密封,以免暴露在空气中。最好是在回收51期间,的第一容器21a被保持密封在第二容器21b中。
通过材料制造商回收剩余在第一容器21a中的EL材料,避免了资源的浪费,并且能够有效地使用或再利用较贵重的EL材料。
这个实施方式可以自由地与实施方式1至3中的任何一个结合。
[实施方式5]
这个实施方式参照图5描述了一个制造系统,它包括EL材料的再循环使用和坩埚的再循环使用。
在图5中,参考标记61表示容器(坩埚)。60表示提纯的高纯度粉状EL材料。63表示能够抽出空气的工作室,64表示加热装置,65表示蒸发目标并且66表示蒸发膜。67是未蒸发的剩余的EL材料。另外,78表示材料制造商,其制造作为蒸发材料的有机化合物材料,并生产和提纯材料(具体的原材料销售商)。69表示具有蒸发装置的发光器件制造商,发光器件的制造者(具体的工厂)。
下面将描述本发明的再循环系统的流程。
首先,材料制造商68提纯和生产高纯度的粉状EL材料60。
随后,材料制造商68在发光器件制造商69规定的容器61中存储提纯了的EL材料62。另外,该EL材料60可以直接在容器61中提纯。该容器61是可以放在蒸发装置的蒸发源处,具体地说是坩埚、蒸发舟等。
其中存储了EL材料62的容器61输送到发光器件制造商69处(出货70),然后放入蒸发室63中。
接下来,加热装置64通过电阻加热或类似的方式加热蒸发材料,以在面向蒸发源的蒸发目标65的表面上形成蒸发膜66。从而得到了不含杂质的蒸发膜66。用该蒸发膜66形成的发光器件可以具有高可靠性和高亮度。
然后,从蒸发装置中取出容器61,并且由材料制造商68回收(回收71)。在现有技术中,坩埚在蒸发之后就废弃了。
随后,清洁容器61,并且在重新使用前,回收的EL材料被再次提纯以提高其纯度。最好在提纯前,尽可能防止杂质混入EL材料67。另外,在回收期间,容器61最好保持密封。
通过使材料制造商68回收容器61中的EL材料67和进一步重新使用容器61,避免了资源的浪费,有效地使用和再使用较贵的EL材料。
并且,该实施方式能够自由地与实施方式1至4中的任何一个结合。
通过下面的实施例,对上述的本发明的结构进行更详细的说明。
[实施例1]
参照图6,这个实施例描述实施方式1至4中所示的第二容器的示例。
图6是存储第一容器的第二容器的剖视图。
在图6中,参考标记301表示第一容器,具体是坩埚,它存储EL材料302。该坩埚用坩埚盖303盖上,但该盖不是封闭得很严。该第二容器由两部分构成,上部分304a和下部分304b,它们是由O(圆)环305等密封。上部分304a配备有弹簧306,以使上盖307可移动。下部分304配备有环308以使下部分309可移动。坩埚301夹在上盖307与下盖309之间。该下盖309有一个凸出的部分(图中未示出),以使坩埚固定其上。坩埚盖303被上盖307压着。坩埚盖和上盖可以整合成一体。
第二容器的上部分和下部分304a和304b用惰性气体填充(具体是氮气)。
第二容器放入能够抽真空的处理室中。当该处理室被抽真空时,内部压力和外部压力的差能使弹簧发挥其弹性,并推动上部分304a离开。同时,坩埚301被弹簧的弹性推出。如上所述,图6中所示的第二容器通过将大气压变成真空可以相对容易地打开。在容器被打开后,能够使自动机械装置等进行工作,例如,移动上部分304a和坩埚盖303并取出第一容器。图6所示的第二容器还是抗碰撞的,因此适于运输。
这个实施方式可以自由地与实施方式1至5中的任何一个结合。
[实施例2]
这个实施例参照图7A和7B描述发光器件的具体的叠层结构。
由于从外部注入的电子与空穴复合能量,发光中心的激励使得由有机材料构成的EL元件发光。有机材料构成的EL元件具有三层结构。这里,说明具有两层结构(电子迁移层和空穴层)的元件。电子迁移层由3(8-喹啉)铝[tris(8-quinolinolate)aluminum](此后称为Alq3)等形成。空穴迁移层由4,4′-双[N-(苯甲酰基)-N-苯基-氨基]联苯基[4,4’-bis[N-(1-naphthyl)-N-phenyl-amino]-biphenyl](此后称为α-NPD)等形成。在这里描述的发光机理的示例中,ITO用于形成阳极,而阴极由MgAg形成。
当DC电压从外部施加到上述具有两层结构的EL元件时,从作为阳极的ITO电极注入空穴,空穴迁移直到它们到达有机化合物层的界面,并且注入到有机化合物层。另一方面从MgAg电极注入电子,电子迁移通过有机化合物层直到到达界面的附近,并且与发光分子中的空穴复合。因此,光发射分子被激励发射类似分子的荧光光谱的光。
图7A是表示EL元件叠层结构的例示图。在图7A中,参考标记200表示阳极(或阴极),201表示EL层,202表示阴极(或阳极),203表示保护膜。如果光按箭头方向(如果发出的光通过阴极202)发射的,阴极202最好使用透光的导电材料,或很薄的金属膜(诸如MgAg、MgIn、AILi和CaN或由铝和属于元素周期表中第一或第二族的元素共同蒸发形成的膜)或这些膜的叠层结构。
保护膜203可以是绝缘膜,它是经溅射(直流溅射或射频溅射)形成的,并且主要包含氮化硅或硝基氧化硅。另外,包含氢的DLC(类碳金刚石)膜也可以用作保护膜。在包含氮气或氩气的气氛中使用硅靶形成氮化硅膜。还有,如果发射的光通过保护膜透射出去,保护膜的厚度最好尽可能的小。
可以在保护膜之前形成氧化硅膜,以起到缓冲层的作用。当通过溅射形成氮化硅膜时,通过在透明导电膜与氮化硅膜之间淀积缓冲层,起缓冲层作用的氧化硅膜可以防止包含在透明导电膜中的杂质(诸如In,Sn,和Zn)混入氮化硅膜中去,否则,它们将互相接触。用上述的结构,缓冲层防止来自透明导电膜的杂质污染(诸如In和Sn),并且可以形成不具有杂质的优良的保护膜。
因此,保护了发光器件,并且提高了其可靠性。
还有,图7B是表示EL元件的叠层结构的例示图。在图7B中,参考标记400表示阳极(或阴极),401表示EL层,402表示阴极(或阳极)以及403表示保护膜。如果光以图中的箭头方向发射(如果发射的光通过电极400发射出去),电极400最好使用透光的导电材料。
本实施例表示一个示例,其中蒸发装置有6个蒸发源。第一个蒸发源具有可以注入空穴的有机化合物。第二个蒸发源具有可以迁移空穴的有机化合物。第三蒸发源具有可以迁移空穴的有机化合物,并且该有机化合物用作发光有机化合物的基质。第四蒸发源具有发光有机化合物。第五蒸发源具有能够阻挡载流子的有机化合物。第六蒸发源具有能够迁移电子的有机化合物。
最好是微处理器控制每个蒸发源,以调节膜形成速度。
一个蒸发源可以具有不止一个有机化合物。例如,蒸发源可以具有发光有机化合物以及起到掺杂剂作用的其他有机化合物。已知的有机化合物可以用于形成有机化合物膜,该膜有上述的多种功能,并且发红光。
在这个实施例中,该第一蒸发源具有能够注入空穴的铜酞花青有机化合物(之后称为Cu-Pc)。第二个蒸发源具有能够迁移空穴的4,4’-双[N-(苯甲酰基)-N-苯基-氨基]联苯基{4,4’-bis[N-(1-naphthyl)-N-phenyl-amino]-biphenyl}有机化合物(此后称之为α—NPD)。第三个蒸发源具有起到基质(以后称为主要材料)的4,4’-联咔唑-联苯基[4,4’-dicarbaxole-biphenyl](以后称为CBP)。第四蒸发源具有2,3,7,8,12,13,17,18-八乙基-21H,23H-卟啉-铂[2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphyrin-platinum](以后称为PtOEP)的发光有机化合物。第五蒸发源具有能够阻挡载流子的浴铜灵(bathocuproin)(此后称为BCP)有机化合物。第六个蒸发源具有能够迁移电子的3(8-喹啉)铝[tris(8-quinolinolate)](此后称为Alq3)有机化合物。
这些有机化合物顺序地蒸发。因此,在阳极上形成的有机化合物膜分成具有空穴注入功能、空穴迁移功能、发光功能、和电子迁移功能的区域。
以上是形成发红光的有机化合物膜的示例。为了形成发绿光的有机化合物膜,第一蒸发源具有能够注入空穴的Cu-Pc有机化合物,第二蒸发源具有能够迁移空穴的MTDATA有机化合物,第三蒸发源具有能够迁移空穴的α-NPD有机化合物,第四蒸发源具有能够迁移空穴的CBP基质材料,第五蒸发源具有3-(2-苯基吡啶)铱[tris(2-phenylpyridine)iridium](此后称为Ir(ppy)3)发光有机化合物,第六蒸发源具有能够阻挡载流子的BCP有机化合物,第七蒸发源具有能够迁移电子的Alq3有机化合物,这此有机化合物依次蒸发。因此,在阳极上形成的有机化合物膜分为具有空穴迁移功能、发光功能、阻挡功能和电子迁移功能的区域。
为了形成发蓝光的有机化合物膜,第一蒸发源具有能够注入空穴的Cu-Pc有机化合物,第二蒸发源具有发光有机化合物α-NPD,第三蒸发源具有能够阻挡载流子的BCP有机化合物,和第四蒸发源具有能够迁移电子的Alq3有机化合物。这些有机化合物依次蒸发。结果,在阳极上形成的有机化合物膜分为具有空穴注入功能、发光功能、阻挡功能和电子迁移功能的区域。
通过溅射(直流溅射或射频溅射)形成的保护膜403是绝缘膜,它主要包含氮化硅或硝基氧化硅。另外,包含氢的DLC膜能够用作保护膜。在包含氮和氩的气氛中使用硅靶形成氮化硅膜。可以用氮化硅靶替代。可以通过使用遥控等离子的膜形成装置形成保护膜403。氧化硅膜可以形成在保护膜上,以起到缓冲层的作用。
用该结构,保护了发光元件并提高了它的可靠性。
该实施例不但可以用于有源矩阵显示器件,还可以用于无源显示器件。
该实施例可以自由地与实施方式1至5或实施例1相结合。
[实施例3]
参照图8,这个实施例给出了多室型制造装置的示例,其中制造工艺直到形成上电极都是自动的。
在图8中,100a至100k,100m至100p,和100r至100u表示“门”,101表示制备室,119表示取出室,102,104a,108和114表示传送室。105,107和111表示移交室,106R,106B,106G,106H,109,110,和113是膜形成室。103表示预处理室,117表示密封基底装载室,115表示分配室,和116表示密封室。
下面示出将先前在其上具有TFT的基底放入图8中所示的制造装置,并形成图7A所示的叠层结构的工序步骤。
首先,将其上形成TFT及阳极200的基底放入制备室101。制备室101连接到抽真空处理室,最好是,该室抽了真空后,充入惰性气体并调整到大气压下。基底然后被传送到与制备室101连接的传送室102。传送室预先抽真空,并保持真空,以使该室几乎不含潮气和氧气。
为了该室抽真空,传送室102连接到抽真空处理室。该抽真空处理室装备有磁悬浮涡轮分子泵、低温泵或干燥泵。该泵可能使传送室达到10-5至10-6Pa.的真空水平。还可以防止杂质从泵端和抽真空系统的反向扩散。为了不让杂质进入装置的内部,引入氮气或稀有气体等的惰性气体。被引入装置的气体具有高纯度,并且在引入该装置内部之前通过气体提纯机器提纯。因此,在气体引入膜形成装置前,为了使气体具有高的纯度,需要气体提纯机器。用这种方法,氧气、潮气和其它的杂质预先从气体中除去,防止这些杂质进入该装置。
最好是,在真空中进行除气的退火来除去基底的潮气和气体。该基底从传送室102传送到连接的预处理室103,在这里,对基底进行退火。如果需要清洁阳极表面的话,为了清洁,基底从传送室102传送到连接的预处理室103。
如果必要,高分子量的有机化合物层可以形成在覆盖整个表面的阳极上。图8所示的制造装置可以有形成高分子量有机化合物层的膜形成室。当用旋涂、喷墨法或者溅射形成膜时,在大气压下放置该基底,使其膜形成面朝下。移交室105有基底反转机构,并且适当地反转该基底。如果使用水溶液形成该膜,其上形成膜的基底被传送到预处理室103,在这里,对基底在真空下进行热处理,以蒸发掉膜中的潮气。
接下来,基底104c从传送室102传送到移交室105而不将基底暴露在空气中。接着,基底104c传送到传送室104,在这里,传送机构104b输送基底到膜形成室106R。在膜形成室106R中,在阳极200上适当地形成发红光的EL层。在这里所示的示例中,通过蒸发形成EL层。在该基底拿到膜形成室106R之前,该基底被设置成面朝下地放置在移交室105中,并且膜形成室106R被抽真空。
例如,为了蒸发,膜形成室106R抽真空达到5×10-3托(0.665Pa)的真空水平,或者更低,最好是10-4至10-6Pa。在蒸发前,有机化合物通过电阻加热蒸发,并且当用于蒸发的窗口(图中未示出)打开时,蒸发的有机化合物朝着基底扩散。蒸发的有机化合物朝上扩散,通过金属掩模(图中未示出)上的开口(图中未示出),淀积在基底上。在蒸发期间,通过基底加热装置,基底温度(T1)被调整到50至200℃,最好是65至150℃。
在该实施例中,蒸发材料储存在的坩埚预先由材料制造商放入每个膜形成室106R,106B,106G和110。最好是坩埚放入膜形成室时,避免接触空气。在出货期间,从材料制造商处出货的坩埚,最好在实施例1中所示的一个第二容器中密封,并且在该状态下放入膜形成室。最好是具有抽真空装置的工作室连接到膜形成室106R,在真空条件下或者在这个室的惰性气体环境下,坩埚从第二容器中取出,然后该坩埚被放入膜形成室。用这种方法,坩埚和存储在坩埚中的EL材料免于污染。
当形成用于全彩色图像的三种EL层时,在膜形成室106R中形成发红光的有机化合物膜,在膜形成室106G中形成发绿光的有机化合物膜,在膜形成室106B中形成发蓝光的有机化合物膜。
在需要的EL层201形成在阳极200上后,在不暴露基底于空气中的情况下,将基底从传送室104a传送到移交室107。然后,基底从移交室107传送到传送室108,同时避免接触空气。
接下来,在传送室108中装备的传送机构将基底拿到形成室110以在EL层201上形成薄的金属层。然后,该基底被传送到膜形成室109,形成透明的导电膜。该薄的金属层和透明的导电膜形成叠层结构,以适当形成阴极202。这里,膜形成室110是具有作为蒸发源的Mg和Ag的蒸发装置,并且膜形成室109是具有至少由透明导电材料制成的靶的溅射装置。
接下来,基底从传送室108传送到膜形成室113,以形成保护膜203。这里,膜形成室113是具有硅靶或氮化硅靶的溅射装置。通过使膜形成装置的气氛为氮气或者包含氮气和氩气的气氛,形成作为保护膜的氮化硅膜。
通过上述步骤,在基底上形成了如图7所示的叠层结构,也就是覆有保护膜的发光元件。
然后,在其上形成了发光元件的基底从传送室108传送到移交室111,并且在不将基底暴露在空气的条件下传送至传送室114。
在其上形成了发光元件的基底从传送室114输送到密封室116。最好是预先在密封室116中制备在其上形成了密封部件的密封基底。
密封基底从外部放入密封基底装载室117中。为了除去潮气和杂质,密封基底最好预先在真空中在例如密封基底装载室117中经受退火。为了在密封基底上形成密封部件,传送室114调整在大气压下,密封基底从密封基底装载室输送到分配室115,然后,制成将密封基底键合在形成有发光元件的基底上的密封部件。在其上形成密封部件的密封基底输送到密封室116。
接下来,在其上形成发光元件的基底通过在真空中或在惰性气体气氛中退火去除气体。然后,将其上形成发光元件的基底与其上形成密封部件的基底互相键合。在基底间的密封空间充以惰性气体。在这里的示例中,密封部件形成在密封基底上。然而,这里没有特别的限定,并且密封部件可以形成在其上形成有发光元件的基底上。
使用由密封室116中提供的UV(紫外线)射线辐射装置固化密封部件,以用UV光辐射键合的一对基底。虽然这里的密封部件是UV固化树脂,这里不作具体的限定,任何粘合剂可以用作密封部件。
然后,键合的一对基底从密封室116传送到传送室114,并且传送到取出室119,在这里,一对基底从装置中取出。
如上所述,使用图8所示的制造装置,在发光元件完全密封在密封空间中前,使其有可能避免发光元件暴露在空气中。因此,可以制造高可靠性的发光器件。该装置使得自动放置蒸发材料成为可能,因为它仅放置预先储存蒸发材料的坩埚。在传送室114中,重复地交替变换真空与大气压下的氮气气氛。另一方面,传送室102,104a和108最好在所有的时间都是真空。
制造装置可以是成一直线型的形成装置。
下面给定的描述是有关TFT及阳极已经制作在基底上,以及该基底放入图8所示的制造装置后,形成如图7B所示多层结构的步骤。
首先,将其上形成了TFT及阳极400的基底放入制备室101。为了预先尽可能多地除去潮气和氧气,在该室抽真空后,最好通过引入惰性气体到制备室,以调节该制备室到大气压的状态。然后传送基底到与制备室101连接的传送室102。用诸如铟锡化合物或氧化锌的透明导电材料形成阳极400。接着该基底从传送室102传送到连接的预处理室103,在这里,阳极表面经过清洁、氧化处理、加热处理等。对于阳极表面清洁可以使用在真空下UV线辐射或氧等离子处理。对于氧化处理,在包含氧的气氛中用UV线辐射基底,同时将基底加热到100至120℃。当阳极是诸如ITO(或IZO)的氧化物时,氧化处理是有效的。对于加热处理,在真空中以等于或高于50℃但是不高于基底能承受的最高温度的温度加热基底,最好是在65至150℃。通过加热处理,附着在基底上的以及包含在基底上形成膜内的氧气、潮气及其它的杂质可以除去。由于EL材料容易受到诸如氧气和潮气杂质的污染而退化,蒸发前在真空中加热是特别有效的。
如果必要,通过将未暴露于空气的基底104c从传送室102传送到移交室105及传送室104a,传送机构104b将基底从传送室104a送入膜形成室106H,在阳极400上形成构成EL层的空穴迁移层或空穴注入层。空穴迁移层或空穴注入层二者可以在膜形成室106H中形成。在这里所示的例子中,通过蒸发形成EL层。基底放于膜形成室106H中,使该基底的膜形成面朝下。在基底放入之前,最好是将膜形成室抽真空。
随后,基底传送至膜形成室106R以便在阳极400上形成发红光的EL层。在这里所示的例子中,EL层是通过蒸发形成的。在基底拿入膜形成室106R前,在移交室105中将基底的膜形成面朝下放置,并且膜形成室抽真空。
例如,为了蒸发,膜形成室106R抽真空达到5×10-3托(0.665Pa)或更低的真空度,最好是10-4至10-6Pa。在蒸发前,有机化合物通过电阻加热蒸发,并且当用于蒸发的窗口(图中未示出)打开时,蒸发的有机化合物朝着基底扩散。蒸发的有机化合物向上扩散,通过金属掩模(图中未示出)的开口(图中未示出),淀积在基底上。在蒸发过程中,通过加热装置,基底的温度设定为50至200℃,最好是65至150℃。
材料制造商预先将存储有蒸发材料的坩埚放入膜形成室。最好是坩埚放入膜形成室时避免接触空气。在坩埚出货及将其放入膜形成室期间,从材料制造商处出货的坩埚最好像实施例1中所示的一个示例那样,密封在第二容器中,并以此状态放入膜形成室。最好是具有抽真空装置的室连接到膜形成室106R,在该室中,在真空状态下或惰性气体气氛中将坩埚从第二容器中取出,然后该坩埚放入该膜形成室。用这种方法,坩埚及存储在该坩埚中的EL材料免于污染。
当用于全彩色图像的三种EL材料层形成时,在膜形成室106R中形成发红光的有机化合物膜,在膜形成室106G中形成发绿光的有机化合物膜,在膜形成室106B中形成发蓝光的有机化合物膜。
在阳极400上形成希望的EL层401后,基底在不暴露于空气中的条件下,从传送室104a传送至移交室107。然后,在避免暴露于空气中的条件下,将基底从移交室107传送至传送室108。
如果必要,通过聚(聚乙烯二氧化噻吩)/聚(苯乙烯磺酸)的水溶液(poly(ethylene dioxythiophdnd)/poly(styrene sulfonic acid))(此后称为PEDOT/PSS),在阳极400上形成作为空穴注入层的膜,覆盖整个表面。图8所示的制造装置可以具有形成高分子量有机化合物层的膜形成室。当通过旋涂,喷墨方法或溅射形成膜时,在大气压下放置基底,使之膜形成面朝上。移交室105适当地反转该基底。当使用水溶液形成该膜时,其上形成膜的基底输送至预处理室103,在这里,在真空状态下,基底经受加热处理,以蒸发掉膜内的潮气。
接下来,传送室108配备的传送机构将基底放入膜形成室110,以在EL层401上形成用作阴极402的金属层。这时,膜形成室110是具有AILi蒸发源的蒸发装置。
接着,在不暴露在空气中的情况下,基底从传送室108传送至膜形成室113,以便在阴极402上形成保护膜403。这里,膜形成室113是具有硅靶或氮化硅靶的溅射装置。在氮气气氛或包含氮或氩的气氛下,形成作为保护膜的氮化硅膜。
通过上述步骤,图8所示的叠层结构,也就是在基底上形成有保护膜覆盖的发光元件。
接下来的步骤与上述的发光器件的制造步骤相同,发光元件具有图7A所示的多层结构。因此,它的解释就省略了。
如上所述,图8所示的制造装置能提供图7A所示的叠层结构和图7B所示的叠层结构。
还有,这个实施例可以自由地与实施方式1至5或实施例1或2结合。
[实施例4]
这个实施例,参照图9A,对用于传送的容器的模式做出具体的描述。用于传送的容器是第二容器,它被划分为上部分(721a)和下部分(721b)。第二容器具有固定部分706、弹簧705、把手710、气体入口708、O形环和扣合装置702。在第二容器的上部分提供有固定部件706以便固定第一容器。弹簧705给固定装置加压。在第二容器的下部分提供有气体入口708,它作为气体通路,并保持给第二容器减压。该O形环将上部分721a和下部分721b固定在一起。储存提纯了的蒸发材料的第一容器701放置在第二容器中。第二容器可以用包含的不锈钢材料制成。第一容器701可以由包含钛的材料制成。
材料制造商将提纯的蒸发材料密封在第一容器701中。然后,通过O形环将上部分721a和下部分721b放在一起,并用扣装置702将上部分721a和下部分721b固定在一起,从而将第一容器701密封在第二容器中。此后,第二容器中的压力减小,通过气体入口708气氛变为氮气气氛。调节弹簧705,第一容器701被固定装置706固定。可以将干燥剂放入第二容器。保持第二容器内部的抽真空、或者减压和氮气气氛,可以防止那怕是最小量的氧或水触及到蒸发材料。
在此状态下该容器输送到发光器件的制造商处,在这里,第一容器701放入蒸发室内。通过加热,使蒸发材料升华,以形成蒸发膜。
最好是其它部分,例如,膜厚度监视器(石英振荡器等)和窗口也一起发货,并放在蒸发装置中,不要将它们暴露在空气中。
在这个实施例中,调节室连接到膜形成室,在这里,在容器中真空密封的坩埚(填满蒸发材料的)从容器中取出,并放置在调节室中的蒸发源支架上,同时避免接触到空气。用自动传送装置将坩埚从调节室传送出来,不要暴露在空气中。最好是调节室也有抽真空装置,并且加热坩埚的装置也在调节室中提供。
参照图9A和9B描述将在第二容器721中密封的第一容器701输送到膜形成室的机械装置。
图9A示出了具有旋转座713,传送机械装置和升降机械装置711的调节室705的剖面图。旋转座713用于安装其中存储有第一容器的第二容器721,传送机械装置传送第一容器。调节室邻近膜形成室。由气压控制装置,通过气体入口可以控制调节室的气压。该实施例的传送机械装置不限定于图9B中所示的那种,它向下攫取第一容器,通过抓住容器的头部,以便将其拾起输送。通过抓住容器的侧面,传送机械装置可以输送第一容器。
在这个调节室中,第二容器放在扣合装置702松开的旋转座713上。由于内部是真空的,当扣合装置702松开时,容器没有松开。通过大气压控制装置,减少调节室中的压力。在调节室中的压力与第二容器中的压力相等时,第二容器变得容易打开。用升降机械装置711,将第二容器的上部分721a拿开,并且旋转座713绕旋转轴712旋转,以便移动第二容器的下部分721b和第一容器。然后用传送机械装置输送第一容器701到蒸发室中,在这里,第一容器701放置在蒸发源支架上(图中未示出)。
此后,通过在蒸发源支架处提供的加热装置,使蒸发源升华,以开始膜的形成。在膜形成期间,由于蒸发源支架中提供的窗口(图中未示出)被打开,升华的蒸发材料朝着基底扩散。扩散的蒸发材料淀积在基底上,形成发光层(包括空穴迁移层、空穴注入层、电子迁移层和电子注入层)。
在蒸发完成后,第一容器离开蒸发源支架,并传送到调节室中。然后第一容器放入第二容器的下部分(图中未示出),该下部分放在旋转座713上,并且通过将第二容器的上部分721a放在相应的位置,密封第一容器。最好是第一容器密封在相同的第二容器(上部分和下部分二者)中,在第二容器中的第一容器已经出货给发光器件制造商。将第一容器密封在第二容器后,调节室设置在大气压下。然后从调节室中取出第二容器,用扣合装置702紧固,并输送到材料制造商处。
图10A和10B示出了调节室的示例,在调节室中不止放置一个第一容器701。在图10A和10B中,调节室905具有旋转基座907,传送第一容器的传送机械装置902b和升降机械装置902a,在该基座上可以放置多个第一容器或多个第二容器。膜形成室906具有蒸发源支架903和移动蒸发源支架的机械装置(图中未示出该机械装置)。图10A是调节室的顶视图,图10B是调节室内部的透视图。通过闸门阀900,调节室905与膜形成室906连接在一起。气压控制装置通过气体入口控制调节室的气压。第二容器912的上部分被取下来,并且放置到单独位置一旁,虽然该位置在图中未示出。
另外,在与膜形成室连接的预处理室(调节室)中可以提供自动装置以移动整个蒸发源从膜形成室到预处理室,并且在预处理室中的蒸发源中放置蒸发材料。用这种方法,可以放置蒸发源,同时保持膜形成室的清洁。
还有,这个实施例可以自由地实施方式1至5中的任何一个以及实施例1至3结合。
[实施例5]
参照图11,该实施例给出了多室型制造装置的示例,在该装置中,从形成第一电极到密封的制造过程是自动的。
图11示出了多室制造装置,它具有闸门500a至500y,传送室502,504a,508,514和518,移交室505,507,和511,制备室501,第一膜形成室506H,第二膜形成室506B,第三膜形成室506G,第四膜形成室506R,第五膜形成室506E,其它的膜形成室509,510,512,513和532,调节室526R,526G,526B,526E,和526H,在这些调节室中,放置了蒸发源,预处理室503a和503b,密封室516,掩模库存室524,密封基底库存室530,盒子室520a和520b,托盘放置级521和取出室519。传送室504a装备有传送基底504c的传送机械装置。同样,其它的传送室装备有它们自己的传送机械装置。
下面表示其上已经制作了阳极(第一电极)和覆盖阳极一端的绝缘体(隔墙)的基底拿到图11所示的制造装置中后的发光器件的制造步骤。在要制造的器件是有源矩阵发光器件的情况下,连接到阳极的薄膜晶体管(电流控制TFT)与其它的薄膜晶体管(包括开关TFT)和由薄膜晶体管构成的驱动电路一道预先形成在基底上。图11中所示的制造装置也可以用于制造无源矩阵发光器件。
首先,基底放置在盒室520a或520b中。当基底是大尺寸的基底(例如300mm×360mm)时,基底放在盒室520b中。当基底是一般尺寸(例如127mm×127mm)时,基底放在盒室520a中。该盒传送到托盘放置级521,以便在托盘中(例如300mm×360mm)放置多个基底。
在盒室中放置的基底(在该基底上形成阳极和覆盖阳极一端的绝缘体)传送到传送室518。
最好是基底放置在盒室中前,基底用在碱性表面活性剂中浸过的多孔海绵(具体由PVA(聚乙烯醇)或尼龙制成)清洗第一电极(阳极)的表面,以除去表面上的灰尘和减少点缺陷。该清洗机械装置可以是具有圆形PVA刷的清洗装置,当围绕一个与基底表面平行的轴旋转时,刷子与基底表面接触。另外,该清洗机械装置可以是具有PVA盘形刷的清洗装置,当围绕一个与基底表面垂直的轴旋转时,该刷与基底表面接触。在包含有机化合物的膜形成前,为了除气,基底最好是在真空中经受退火。在与传送室518连接的烘烤室523中进行退火。
接下来,基底从装备有基底传送机械装置的传送室518传送到制备室501。在该实施例的制造系统中,在传送室518中提供的自动装置可以将基底颠倒,以便将翻过面的基底传送到制备室501中。在该实施例中,传送室518保持大气压。制备室501连接到抽真空处理室,并且在该室抽真空后,通过将惰性气体引进该室,调节到大气压下。
然后基底传送到与制备室501连接的传送室502。最好是传送室502预先抽真空,并保持真空,以使该室尽可能少地含有潮气和氧气。
抽真空处理室装备有磁悬浮涡轮分子泵、低温泵或干燥泵。该泵有可能使得连接到制备室的传送室达到10-5至10-6Pa的真空水平。还可以防止杂质从泵端和抽气系统反向扩散。为了不使杂质进入装置的内部,注入诸如氮气的惰性气体。在隋性气体注入装置内部之前,注入装置的气体必须有高的纯度,并且由气体提纯机提纯。因此,在注入膜形成装置前,需要气体提纯机提供高的气体纯度。用这种方法,预先从气体中除去氧气、水和其它的杂质,并且防止了这些杂质进入装置。
如果在不必要有膜的区域形成了包含有机化合物的膜,如果希望除去该膜,该基底传送到预处理室503a,选择性地除去该有机化合物的薄层。预处理室503a有等离子产生装置,通过激发从由Ar,H,F和O组成的一组气体中选择的一种或多种气体,产生用于干法刻蚀的等离子。使用掩模可以单独选择性地除去不必要的膜。预处理室503a可以有UV线辐射机械装置,用于阳极表面处理的UV线辐射。
为了避免收缩,在通过蒸发形成包含有机化合物膜前,基底最好立即在真空中加热。因此,基底传送到预处理室503b,在(50×10-3托(0.665Pa),或者更低,最好是10-4至10-6Pa)的真空中,对基底进行热处理,从基底中完全除去潮气和气体。预处理室503b使用平板加热器(具体的有罩子的加热器)均匀地加热多个基底。由于安装多个平板加热器,基底可以夹在平板加热器之间,以加热基底的两面。当然也可以单独从一面加热基底。当有机树脂用于形成层间绝缘膜和隔断壁时,由于一些有机树脂容易吸收潮气并且引起气体泄露,真空加热是特别有效的。在这种情况下,在形成包含有机化合物的层前,在100至250℃通过加热基底,去除吸收的潮气,最好是105至200℃,30分钟或更长的时间,然后基底自然冷却30分钟。
在上述真空加热后,基底从传送室502传送到移交室505,在不暴露在空气中的条件下,基底从505室传送到传送室504a。
然后基底传送到与传送室504a连接的膜形成室506R,506G,506B和506E,以形成需要的低分子量有机化合物层,这些层用作空穴注入层,空穴迁移层,发光层,电子迁移层和电子注入层。该基底可以从传送室502传送到用于蒸发的膜形成室506H。
在膜形成室512中,用喷墨法或旋涂的方法,在大气压下或减压条件下,用高分子量材料形成空穴注入层。基底可以在真空中垂直旋转,通过喷墨方法形成膜。在第一电极(阳极)上形成作为空穴注入层(阳极缓冲层)的膜是通过将聚(聚乙烯二氧化噻吩)/聚(苯乙烯磺酸)[poly(ethylene dioxythiophene)/poly(styrene sulfonic acid)](称作PEDOT/CSA)水溶液,聚苯胺/樟脑磺酸(polyaniline/camphor sulfonic acid)(称为PANI/CSA),PTPDES,Tt-PTPDEK,PPBA等水溶液加到整个表面,然后烘干该基底。该烘干最好是在烘干室523中完成的。通过旋涂或其它涂敷方法,由高分子量材料形成的空穴注入层改善了水平度,从而给予其上形成的膜以优异的覆盖和均匀的厚度。更具体地说,均匀厚度的发光层能提供均匀的发光。在这种情况下,通过蒸发形成膜前,在通过涂敷形成空穴注入层后,最好立即放入真空之中加热(100至200℃)。在预处理室503b中进行真空加热。例如用海绵清洗第一电极(阳极)的表面,该基底传送到盒室,然后到膜形成室,将聚(聚乙烯二氧化噻吩)/聚(苯乙烯磺酸)[poly(ethylene dioxythiophene)/poly(styrene sulfonic acid)](称作PEDOT/PSS)水溶液涂敷到其整个表面,以形成60nm厚度的膜,该基底传送到烘干室523,在80℃温度下预烘干10分钟,并在200℃下烘干该膜一小时,然后该基底传送到预处理室503b,在蒸发前立即经受真空加热(加热170℃,30分钟,然后冷却30分钟),该基底在不暴露基底于空气中的条件下传送到膜形成室506R,506G和506B,通过蒸发形成发光层。特别,如果用ITO膜形成阳极,并且在表面上有凹和凸或微小的颗粒,通过将PEDOT/PSS膜的厚度调整到30nm或多些,可以减少这些影响。
涂敷到ITO膜的PEDOT/OSS具有差的可湿性。通过用纯水清洗膜,然后通过旋涂第二次涂敷PEDOT/OSS,可以改善通过应用PEDOT/OSS得到的膜的可湿性。该操作随后是烘干,并且得到的膜具有优异的均匀性。在第一次涂敷后用纯水清洗,表面质量得到改善,并且同时得到了去除微细颗粒的效果。
通过旋涂形成的PEDOT/OSS膜覆盖在整个表面上。因此,最好是选择性地除去覆盖基底的端面和边界、接线端部分、阴极与下引线连接的区域、以及其它的连接区域的部分膜,。在预处理室503a中,使用掩模,通过O2灰化等进行选择性去除。
现在,对膜形成室506R,506G,506B,506E和506H进行描述。
膜形成室506R,506G,506B,506E和506H每一个都具有可移动的蒸发源支架。每个蒸发源支架有多个密封有EL材料的容器(坩埚)。此时,蒸发源支架放在膜形成室中。基底放置成面朝下的状态,蒸发掩模在使用CCD等的位置处对齐,并且进行电阻加热以通过蒸发形成膜。蒸发掩模存储在掩模储存室524,并传送到根据蒸发需要的膜形成室。由于在蒸发期间,掩模储存室是空的,在其上已经形成膜的基底或者已经完成处理过程的基底可以存储在掩模存储室。膜形成室532是形成包含有机化合物层或金属材料层的备用蒸发室。
最好是EL材料放在使用下面制造系统的这些膜形成室中。在该制造系统中,由材料制造商预先存储EL材料于其中的容器(坩埚)用于形成膜。坩埚最好从材料制造商处出货时密封在第二容器中,并且在这种状态下放入膜形成室,所以该容器不暴露在空气中。最好是具有抽真空装置的调节室526R,526G,526B,526H和526E连接到膜形成室506R,506G,506B,506H和506E,抽出空气和置于惰性气氛,以便从第二容器中取出坩埚,并且将坩埚放入膜形成室。在图9A,9B以及图10A和10B中示出了调节室的示例。这样,坩埚和存储在坩埚中的材料不受污染。金属掩模存储在调节室526R,526G,526B,526H和526E中。
根据选择在膜形成室506R,506G,506B,506H和506E中放置的选择材料EL,形成发射单色光(具体是白色)或用于用于全彩色图像的发射红、绿和蓝光的发光元件。例如,通过在膜形成室506H中形成空穴迁移层或空穴注入层得到发绿光的发光元件,在膜形成室506G中形成发光层(G),在膜形成室506E中形成电子迁移层或电子注入层,然后在该叠层上形成阴极。为了得到全彩色图像的发光元件,例如,在膜形成室506R中,使用用于红光的蒸发掩模。依次形成空穴迁移层或空穴注入层、发光层(R)和电子迁移层或电子注入层,然后,在膜形成室506G中,使用用于绿光的掩模。依次形成空穴迁移层或空穴注入层、发光层(G)和电子迁移层或电子注入层,接着在膜形成室506R中,使用用于蓝光的掩模。依次形成空穴迁移层或空穴注入层、发光层(B)和电子迁移层或电子注入层,最后形成阴极。
发白光及具有不同发光颜色的发光层的叠层结构的有机化合物层,或者是包括红,绿和蓝三基色的三波长类型,或者利用蓝和黄互补色或者蓝-绿和橙色的二波长型。在一个膜形成室中可以形成发白光元件。例如,当从三波长型有机化合物层得到发白光元件时,准备了多个膜形成室,该形成室具有放置多个坩埚的多个蒸发源支架。第一蒸发源支架具有密封在其内的芬芳二胺(称TPD)。第二个蒸发源支架有密封在其内的p-EtTAZ。第三个蒸发源支架有密封在其内的Alq3。第四个蒸发源支架有密封在其内的用奈尔-红(Nile-Red)的红发光颜料掺杂Alq3得到的EL材料。第五个蒸发源支架有密封在其内的Alq3。具有密封在其内的蒸发材料的蒸发源支架分别放在不同的膜形成室中。为了通过蒸发在基底上形成膜,并且分层这些膜,移动第一至第五蒸发源支架。具体地说,通过加热使第一蒸发源支架处的TPD升华,并且通过蒸发淀积在基底的整个表面。随后,第二蒸发源支架处的p-EtTAZ升华,第三蒸发源支架处的Alq3升华,第四蒸发源处的奈尔-红(Nile-Red)升华,和第五蒸发源支架处的Alq3升华,通过蒸发淀积该材料到基底的整个表面。然后形成阴极,以致完成发白光元件。
通过上述步骤,适当地叠层包含有机化合物的层。此后,在不暴露在空气的情况下,基底从传送室504a传送到移交室507,然后到传送室508。
接下来,放在传送室508中的传送机械装置将基底拿到膜形成室510,以便形成阴极。该阴极可以是通过使用电阻加热蒸发形成的无机膜(MgAg,MgIn,CaF2,LiF,CaN或其它的合金膜,或者通过共同蒸发铝和属于元素周期表中的1或2族的元素形成的膜,或这些膜的叠层)。也可以代之以溅射形成阴极。
如果制造以上发射型的发光器件,阴极最好是透明或半透明的,是以上金属中的一种的薄膜(1至10nm),或者以上金属中的一种的薄层(1至10nm)和透明导电膜的叠层结构用作阴极。在这种情况下,透明导电膜(ITO:銦锡氧化物合金),氧化銦—氧化锌合金(In2O3-ZnO)膜,氧化锌(ZnO)膜,或类似的膜在膜形成室509中通过溅射形成。
通过上述步骤完成具有叠层结构的发光元件的制造。
在密封前,基底传送到与传送室508连接的膜形成室513,以形成作为保护膜的氮化硅膜或硝基氧化硅膜。膜形成室513有硅靶、二氧化硅靶或氮化硅靶。例如,通过使用硅靶并调节膜形成室中的气氛为氮气或包含氮和氩的气氛,在阴极上形成氮化硅膜。另外,可以形成主要包含碳(DLC膜、CN膜或无定型碳膜)的薄膜作为保护膜。类金刚石碳膜(DLC膜)可以用等离子CVD(具体地说是射频等离子CVD、微波CVD、电子回旋加速器谐振(ECR)CVD、热灯丝CVD等)、加热方法、溅射、离子束蒸发、激光蒸发等形成。在形成膜过程中,氢气、碳氢气体(例如CH4、C2H2、或C6H6)用作反应气体,而且这些元素通过辉光放电电离,以加速离子,并使它们碰撞阴极,该阴极被加上负自偏压。使用反应气体C2H4和N2形成CN膜。DLC膜和CN膜是透明或半透明可见光的绝缘膜。“对可见光透明”意味着具有80%至100%的可见光透射系数,“对可见光半透明”意味着50%至80%的可见光透射系数。
在这个实施例中,形成第一无机绝缘膜,应力消除膜和第二无机绝缘膜的叠层结构,作为阴极上的保护膜。例如,在阴极形成后,通过将基底传送到膜形成室513形成第一无机绝缘膜,然后该基底传送到膜形成室532,通过蒸发以形成吸湿的和透明的压力消除膜(包含有机化合物或类似的层),接下来该基底返回膜形成室513以形成第二无机绝缘膜。
然后,其上形成发光元件的基底在不暴露在空气中的情况下,从传送室508传送到移交室511,接着,从移交室511传送到传送室514。其上形成发光元件的基底,从传送室514传送至密封室516。
从外面将基底放入密封到密封基底装载室517中,并接受制备。最好密封基底预先在真空中接受热处理,以除去潮气和其它杂质。如果将密封基底和其上形成有发光元件的基底粘合在一起的密封部件形成在密封基底上,该密封部件在密封部件形成室555中形成在密封基底上。然后,该密封基底传送到密封基底储存室530。在密封部件形成室555中密封基底可以具有干燥剂。在这里所示的示例中,在密封基底上形成密封部件。然而,这里不做特殊的限定,并且密封部件可以形成在发光元件已经形成在其上的基底上。
于是其上形成了发光元件的基底和在其上形成了密封部件的密封基底在密封室516中粘合在一起。使用在密封室516中提供的UV线辐射装置用UV光辐射键合基底,密封部件被固化。虽然这里的密封部件是UV可固化的树脂,但这里不做特别的限定,任何粘合剂都可以用作密封部件。
键合的一对基底从密封室516传送到传送室514,然后到取出室519,在这里该装置中取出这对基底。
如上所述,使用图11所示的制造装置,在发光元件完全密封在气密空间前,使发光元件避免暴露在空气中成为可能。因此,可以制造高可靠性的发光器件。在传送室514中,为了去除潮气,基底的传送是在真空和大气压下的气氛中交替进行的,所谓的大气压下的气氛是指大气压下的氮气气氛。另一方面,传送室502,504a和508最好是所有的时间都是真空的。传送室508保持在大气压下。
虽然图中未示出,为了自动化生产,制造装置具有用于控制膜形成室工作的控制装置,用于在处理室间传送基底的控制装置和用于控制移动基底到处理室路径的控制装置。
图11所示的制造装置能够形成向上发射类型的发光元件(或者是从两边发光的类型)。在这种情况下,具有由透明导电膜(或(TiN)膜)形成的阳极的基底拿入制造装置,形成了包含有机化合物的层,然后形成透明或半透明的阴极(例如,薄金属(Al或Ag)层和透明导电膜的叠层)。该术语“向上发射类型的发光元件”指在有机化合物层产生的光在其向外面发射出去前透过阴极的元件。
图11示出的制造装置还可以制造向下发射类型的发光元件。在这种情况下,具有由透明导电膜形成的阳极的基底放入制造装置,形成包含有机化合物的层,接着用金属(Al或Ag)膜形成阴极。术语“向下发射型发光元件”指在元件的有机化合物层中产生的光,从阳极朝着TFT穿越的元件,所说的阳极是透明电极,并且光通过基底射出。
还有,这个实施例可以自由地与实施方式1至5或实施例1,2或4结合。
本发明的系统不需要最终成为工业废品的玻璃瓶,因此利于环保。另外,由于材料制造商直接在容器中储存,或提纯和储存EL材料,发光器件制造商不需要购买过多的材料,以及可以有效地使用较昂贵的EL材料。
本发明取消了从玻璃瓶取出EL材料放入容器的需求。因此,发光器件制造商减轻了在容器间输送EL材料的工作,并且该制造商只进行将容器放入蒸发装置的简单操作,在所说的容器中,材料制造商预先存储、或提纯和存储EL材料。因此,提高了产量。
本发明还实现了一种制造系统,在其中,工艺完全自动化,从而提高了产量,以及一体化的封闭系统避免杂质污染。
不管材料制造商提供的EL材料有多纯,只要象现有技术中发光器件制造商在容器间移动EL材料,总有可能发生杂质污染。因此,不可能保持EL材料的纯度,并且加强了对纯度的限制。根据本发明可以保持材料制造商提供的极高的EL材料纯度,并且该材料在发光器件制造商处经受蒸发,而不减少它的纯度。也就是,本发明使得处理超高纯度的材料成为可能。

Claims (55)

1.一种制造方法包括:
在材料制造商处提纯蒸发材料;
在材料制造商处,在第一容器中存储蒸发材料,并且在第二容器中密封存储蒸发材料的第一容器;
传送第二容器到发光器件制造商处;
在发光器件制造商处将第二容器放入制造装置,并且从第二容器中取出第一容器;以及
为了蒸发,加热在制造装置中的第一容器。
2.根据权利要求1的制造方法,其中在惰性气体气氛和真空中的一种下将第一容器存储在第二容器中,并且在蒸发材料存储后,该容器在不暴露在空气中的情况下放入制造装置。
3.根据权利要求1的制造方法,其中制造装置具有多个装备有抽真空装置的处理室、从第二容器中取出第一容器的处理室和真空蒸发装置。
4.根据权利要求1的制造方法,其中第一容器是坩埚。
5.根据权利要求1的制造方法,其中第一容器是坩埚,该坩锅可以用附带的盖密封。
6.根据权利要求1的制造方法,其中第二容器是光屏蔽容器。
7.根据权利要求1的制造方法,其中第二容器是能够经受减压和加压的容器。
8.根据权利要求1的制造方法,其中材料制造商至少清洁第一容器和第二容器中的一个。
9.根据权利要求1的制造方法,其中材料制造商为了再循环使用,回收蒸发后粘在第一容器内壁的蒸发材料。
10.根据权利要求1的制造方法,其中制造装置是真空蒸发装置。
11.根据权利要求1的制造方法,其中制造装置是有至少一个真空蒸发装置的多室制造装置。
12.一种制造方法包括:
从装置制造商处输送第一容器和第二容器到材料制造商处;
在材料制造商处提纯蒸发材料;
在材料制造商处在第一容器中存储蒸发材料并且在第二容器中密封存储了蒸发材料的第一容器;
输送第二容器到发光器件制造商处;
在发光器件制造商处将第二容器放入制造装置中,并且从第二容器取出第一容器;以及
为了蒸发,加热在制造装置中的第一容器。
13.根据权利要求12的制造方法,其中在惰性气体气氛和真空中的一种下在第二容器中存储第一容器,并且在蒸发材料存储后,该容器在不暴露在空气中的情况下放入制造装置。
14.根据权利要求12的制造方法,其中制造装置具有多个装备有抽真空装置的处理室、从第二容器中取出第一容器的处理室和真空蒸发装置。
15.根据权利要求12的制造方法,其中第一容器是坩埚。
16.根据权利要求12的制造方法,其中第一容器是坩埚,该坩锅可以用附带的盖密封。
17.根据权利要求12的制造方法,其中第二容器是光屏蔽容器。
18.根据权利要求12的制造方法,其中第二容器是能够经受减压和加压的容器。
19.根据权利要求12的制造方法,其中材料制造商至少清洁第一容器和第二容器中的一个。
20.根据权利要求12的制造方法,其中材料制造商为了再循环使用,回收蒸发后粘附在第一容器内壁的蒸发材料。
21.根据权利要求12的制造方法,其中制造装置是真空蒸发装置。
22.根据权利要求12的制造方法,其中制造装置是有至少一个真空蒸发装置的多室制造装置。
23.一种制造方法包括:
从发光器件制造商处输送第二容器和第一容器到材料制造商处;
在材料制造商处提纯蒸发材料;
在材料制造商处,存储蒸发材料在第一容器中,并且在第二容器中密封存储蒸发材料的第一容器;
传送第二容器到发光器件制造商处;
在发光器件制造商处将第二容器放入制造装置,和将第一容器从第二容器中取出;以及
为了蒸发,加热在制造装置中的第一容器。
24.根据权利要求23的制造方法,其中在惰性气体气氛中和真空中的一种下在第二容器中存储第一容器,并且在蒸发材料存储后,该容器在不暴露在空气中的情况下放入制造装置。
25.根据权利要求23的制造方法,其中制造装置具有多个装备有抽真空装置的处理室,从第二容器中取出第一容器的处理室,和真空蒸发装置。
26.根据权利要求23的制造方法,其中第一容器是坩埚。
27.根据权利要求23的制造方法,其中第一容器是坩埚,该坩锅可以用附带的盖密封。
28.根据权利要求23的制造方法,其中第二容器是光屏蔽容器。
29.根据权利要求23的制造方法,其中第二容器是能够经受减压和加压的容器。
30.根据权利要求23的制造方法,其中材料制造商至少清洁第一容器和第二容器中的一个。
31.根据权利要求23的制造方法,其中材料制造商为了再循环使用,回收蒸发后粘附在第一容器内壁的蒸发材料。
32.根据权利要求23的制造方法,其中制造装置是真空蒸发装置。
33.根据权利要求23的制造方法,其中制造装置是有至少一个真空蒸发装置的多室制造装置。
34.一种制造方法包括:
从发光器件制造商处输送第一容器和第二容器到材料制造商处;
在材料制造商处提纯蒸发材料;
在材料制造商处,在第一容器中存储蒸发材料,并且在第二容器中密封存储蒸发材料的第一容器;
传送第二容器到发光器件制造商处;
在发光器件制造商处将第二容器放入制造装置,将第一容器从第二容器中取出;
为了蒸发,加热在制造装置中的第一容器;以及
从制造装置中取出第一容器,并在第二容器中密封第一容器,以便从发光器件制造商处输送该容器到材料制造商处。
35.根据权利要求34的制造方法,其中在惰性气体气氛中和真空中的一种下将第一容器存储在第二容器中,并且在蒸发材料存储后,该容器在不暴露在空气中的情况下放入制造装置。
36.根据权利要求34的制造方法,其中制造装置具有多个装备有抽真空装置的处理室、从第二容器中取出第一容器的处理室,和真空蒸发装置。
37.根据权利要求34的制造方法,其中第一容器是坩埚。
38.根据权利要求34的制造方法,其中第一容器是坩埚,该坩锅可以用附带的盖密封。
39.根据权利要求34的制造方法,其中第二容器是光屏蔽容器。
40.根据权利要求34的制造方法,其中第二容器是能够经受减压和加压的容器。
41.根据权利要求34的制造方法,其中材料制造商至少清洁第一容器和第二容器中的一个。
42.根据权利要求34的制造方法,其中材料制造商为了再循环使用,回收蒸发后粘附在第一容器内壁的蒸发材料。
43.根据权利要求34的制造方法,其中制造装置是真空蒸发装置。
44.根据权利要求34的制造方法,其中制造装置是有至少一个真空蒸发装置的多室制造装置。
45.一种制造方法包括:
在清洁室处在第一容器中提纯和存储蒸发材料;
在清洁室将第一容器密封在第二容器中;
在蒸发装置中放置第二容器,并将第一容器从第二容器中取出;以及
为了蒸发,加热在蒸发装置中的第一容器。
46.根据权利要求45的方法,其中第一容器是坩埚。
47.根据权利要求45的方法,其中第一容器是坩埚,该坩埚可以用附带的盖密封。
48.根据权利要求45的方法,其中第二容器是光屏蔽容器。
49.根据权利要求45的方法,其中第二容器是能够经受减压和加压的容器。
50.一种制造方法,包括:
在清洁室处在第一容器中存储蒸发材料;
在清洁室将该第一容器密封在第二容器中;
将第二容器放入具有抽真空装置的制造装置;
在制造装置中从第二容器中取出第一容器;以及
为了蒸发,加热在制造装置中的第一容器。
51.根据权利要求50的方法,其中第一容器在其内壁上有通过升华提纯的有机材料。
52.根据权利要求50的方法,其中第一容器是坩埚。
53.根据权利要求50的方法,其中第一容器是坩埚,该坩埚可以用附带的盖密封。
54.根据权利要求50的方法,其中第二容器是光屏蔽容器。
55.根据权利要求50的方法,其中第二容器是能够经受减压和加压的容器。
CNB031217826A 2002-02-05 2003-01-31 制造系统、制造方法、操作制造设备的方法及发光器件 Expired - Fee Related CN100468823C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28825/02 2002-02-05
JP28825/2002 2002-02-05
JP2002028825 2002-02-05

Publications (2)

Publication Number Publication Date
CN1440222A CN1440222A (zh) 2003-09-03
CN100468823C true CN100468823C (zh) 2009-03-11

Family

ID=27799980

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031217826A Expired - Fee Related CN100468823C (zh) 2002-02-05 2003-01-31 制造系统、制造方法、操作制造设备的方法及发光器件

Country Status (5)

Country Link
US (1) US7195801B2 (zh)
KR (1) KR100945469B1 (zh)
CN (1) CN100468823C (zh)
SG (1) SG114598A1 (zh)
TW (2) TWI275319B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104277825A (zh) * 2013-07-09 2015-01-14 信成素材株式会社 纯化有机发光材料至高纯度的方法

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7517551B2 (en) * 2000-05-12 2009-04-14 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a light-emitting device
JP4906018B2 (ja) * 2001-03-12 2012-03-28 株式会社半導体エネルギー研究所 成膜方法、発光装置の作製方法及び成膜装置
TWI275319B (en) 2002-02-05 2007-03-01 Semiconductor Energy Lab Manufacturing method and method of operating a manufacturing apparatus
TWI285515B (en) * 2002-02-22 2007-08-11 Semiconductor Energy Lab Light-emitting device and method of manufacturing the same, and method of operating manufacturing apparatus
SG113448A1 (en) * 2002-02-25 2005-08-29 Semiconductor Energy Lab Fabrication system and a fabrication method of a light emitting device
EP1369499A3 (en) 2002-04-15 2004-10-20 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating light-emitting device and apparatus for manufacturing light-emitting device
TWI336905B (en) * 2002-05-17 2011-02-01 Semiconductor Energy Lab Evaporation method, evaporation device and method of fabricating light emitting device
TWI277363B (en) * 2002-08-30 2007-03-21 Semiconductor Energy Lab Fabrication system, light-emitting device and fabricating method of organic compound-containing layer
CN100459220C (zh) * 2002-09-20 2009-02-04 株式会社半导体能源研究所 制造系统以及发光元件的制作方法
US7112113B2 (en) * 2002-12-25 2006-09-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of display device
JP2004210421A (ja) 2002-12-26 2004-07-29 Semiconductor Energy Lab Co Ltd 製造システム、並びに処理装置の操作方法
US20050241585A1 (en) * 2004-04-30 2005-11-03 Eastman Kodak Company System for vaporizing materials onto a substrate surface
JP2006057173A (ja) * 2004-08-24 2006-03-02 Tohoku Pioneer Corp 成膜源、真空成膜装置、有機elパネルの製造方法
EP1643568A1 (de) * 2004-10-04 2006-04-05 Novaled GmbH Verfahren zum Herstellen einer Schicht aus einem dotierten Halbleitermaterial und Vorrichtung
US20070020890A1 (en) * 2005-07-19 2007-01-25 Applied Materials, Inc. Method and apparatus for semiconductor processing
EP1780816B1 (en) 2005-11-01 2020-07-01 Novaled GmbH A method for producing an electronic device with a layer structure and an electronic device
EP1939320B1 (de) * 2005-12-07 2013-08-21 Novaled AG Verfahren zum Abscheiden eines Aufdampfmaterials
KR101361710B1 (ko) 2006-03-21 2014-02-10 노발레드 아게 도핑된 유기 반도체 물질을 제조하는 방법 및 이러한 방법에 사용되는 포뮬레이션
KR101353567B1 (ko) 2006-04-28 2014-01-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 전극 커버 및 증착장치
KR20080057080A (ko) * 2006-12-19 2008-06-24 삼성전자주식회사 증착장치 및 증착방법
JP5325471B2 (ja) * 2007-07-06 2013-10-23 株式会社半導体エネルギー研究所 発光装置の作製方法
US20090293810A1 (en) * 2008-05-30 2009-12-03 Stefan Bangert Arrangement for coating a substrate
WO2009144072A1 (en) * 2008-05-30 2009-12-03 Applied Materials, Inc. Arrangement for coating a substrate
JP2010159448A (ja) * 2009-01-07 2010-07-22 Canon Inc 成膜装置及び成膜方法
WO2010102272A2 (en) * 2009-03-06 2010-09-10 E. I. Du Pont De Nemours And Company Process for forming an electroactive layer
WO2010123004A1 (ja) * 2009-04-21 2010-10-28 株式会社アルバック 真空蒸着システム及び真空蒸着方法
RU2012108199A (ru) * 2009-08-28 2013-10-10 Уанс Инновэйшнс, Инк. Светодиодные лампы с упаковкой как в комплекте
KR101299006B1 (ko) * 2011-12-22 2013-08-23 에스엔유 프리시젼 주식회사 연속박막증착장치
CN102560375B (zh) * 2012-02-23 2014-01-29 上海中智光纤通讯有限公司 一种薄膜沉积设备
KR101225377B1 (ko) 2012-04-02 2013-01-25 주식회사 야스 유기물질 카트리지 및 박막제작에 이를 사용하는 방법
KR101268916B1 (ko) * 2012-09-10 2013-05-29 신상규 유기발광재료의 회수방법
KR101432514B1 (ko) * 2013-01-29 2014-08-21 한국기초과학지원연구원 플라즈마 보조 물리 기상 증착원
JP6111171B2 (ja) * 2013-09-02 2017-04-05 東京エレクトロン株式会社 成膜方法及び成膜装置
KR101348558B1 (ko) 2013-11-22 2014-01-09 주식회사 야스 유기물질 카트리지 및 박막제작에 이를 사용하는 방법
JP2015133444A (ja) * 2014-01-15 2015-07-23 株式会社東芝 半導体製造装置および半導体装置の製造方法
KR20160049319A (ko) * 2014-10-27 2016-05-09 삼성전자주식회사 진공 증착 장치 및 방법
JP7026404B2 (ja) * 2017-06-09 2022-02-28 株式会社高純度化学研究所 化学蒸着用原料、ならびに、化学蒸着用原料入り遮光容器およびその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6179923B1 (en) * 1997-08-22 2001-01-30 Fuji Electric Co., Ltd. Deposition apparatus for an organic thin-film light-emitting element
CN1283952A (zh) * 1999-07-23 2001-02-14 株式会社半导体能源研究所 制造电致发光显示装置的方法和形成薄膜的装置
CN1320718A (zh) * 2000-03-09 2001-11-07 城户淳二 有机化合物的汽相沉积法和精制法

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032791A (en) * 1976-06-16 1977-06-28 Gte Sylvania Incorporated Fluorescent screen and method of making
EP0104846B1 (en) * 1982-09-27 1987-03-25 Kabushiki Kaisha Toshiba Thin film electroluminescence device and method of manufacturing the same
US5118986A (en) * 1989-06-30 1992-06-02 Ricoh Company, Ltd. Electroluminescent device
US5427858A (en) * 1990-11-30 1995-06-27 Idemitsu Kosan Company Limited Organic electroluminescence device with a fluorine polymer layer
JP2707041B2 (ja) * 1993-05-25 1998-01-28 スタンレー電気株式会社 El用蛍光体の製造方法
JPH07176745A (ja) * 1993-12-17 1995-07-14 Semiconductor Energy Lab Co Ltd 半導体素子
US5505986A (en) * 1994-02-14 1996-04-09 Planar Systems, Inc. Multi-source reactive deposition process for the preparation of blue light emitting phosphor layers for AC TFEL devices
US5688551A (en) * 1995-11-13 1997-11-18 Eastman Kodak Company Method of forming an organic electroluminescent display panel
JPH09160180A (ja) * 1995-12-08 1997-06-20 Fuji Photo Film Co Ltd 完全遮光性写真感光材料用包装材料とこれを用いた写真感光材料用遮光袋
JPH09256142A (ja) * 1996-03-15 1997-09-30 Sony Corp 成膜装置
JP3552401B2 (ja) * 1996-03-22 2004-08-11 信越半導体株式会社 ルツボの洗浄方法
US5869134A (en) * 1996-06-21 1999-02-09 International Business Machines Corporation CVD of metals capable of receiving nickel or alloys thereof using iodide
US5902688A (en) * 1996-07-16 1999-05-11 Hewlett-Packard Company Electroluminescent display device
US5817366A (en) * 1996-07-29 1998-10-06 Tdk Corporation Method for manufacturing organic electroluminescent element and apparatus therefor
JP2815004B2 (ja) * 1996-10-30 1998-10-27 日本電気株式会社 表示装置およびその製造方法
JP4059946B2 (ja) 1996-12-06 2008-03-12 株式会社アルバック 有機薄膜形成装置及び有機材料の再利用方法
US5904961A (en) * 1997-01-24 1999-05-18 Eastman Kodak Company Method of depositing organic layers in organic light emitting devices
US6049167A (en) * 1997-02-17 2000-04-11 Tdk Corporation Organic electroluminescent display device, and method and system for making the same
JPH10321374A (ja) * 1997-05-20 1998-12-04 Tdk Corp 有機el素子
JP3525034B2 (ja) * 1997-07-31 2004-05-10 出光興産株式会社 有機エレクトロルミネッセンス素子
US6337102B1 (en) * 1997-11-17 2002-01-08 The Trustees Of Princeton University Low pressure vapor phase deposition of organic thin films
JP4109751B2 (ja) * 1998-06-11 2008-07-02 中外炉工業株式会社 Pvd装置における蒸発原料の充填方法
JP2000012218A (ja) * 1998-06-23 2000-01-14 Tdk Corp 有機el素子の製造装置および製造方法
JP4227220B2 (ja) 1998-07-10 2009-02-18 キヤノンアネルバ株式会社 インライン式蒸着装置における蒸着室への蒸発源の連続送り込み方法
JP2000068055A (ja) * 1998-08-26 2000-03-03 Tdk Corp 有機el素子用蒸発源、この有機el素子用蒸発源を用いた有機el素子の製造装置および製造方法
WO2000041443A1 (fr) * 1998-12-28 2000-07-13 Idemitsu Kosan Co., Ltd. Dispositif electroluminescent organique
JP4312289B2 (ja) 1999-01-28 2009-08-12 キヤノンアネルバ株式会社 有機薄膜形成装置
TW512543B (en) * 1999-06-28 2002-12-01 Semiconductor Energy Lab Method of manufacturing an electro-optical device
JP2001093848A (ja) * 1999-09-22 2001-04-06 Rohm Co Ltd 半導体装置の製造方法
JP2001093844A (ja) * 1999-09-22 2001-04-06 Rohm Co Ltd 半導体装置の製造方法
TW490714B (en) * 1999-12-27 2002-06-11 Semiconductor Energy Lab Film formation apparatus and method for forming a film
US7525165B2 (en) * 2000-04-17 2009-04-28 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
US7517551B2 (en) * 2000-05-12 2009-04-14 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a light-emitting device
US6342103B1 (en) * 2000-06-01 2002-01-29 The Boc Group, Inc. Multiple pocket electron beam source
JP2002082772A (ja) * 2000-06-28 2002-03-22 Hitachi Ltd タッチパネルとその製造方法および、このタッチパネルを用いた画面入力型表示装置
US6664732B2 (en) * 2000-10-26 2003-12-16 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
TW522577B (en) * 2000-11-10 2003-03-01 Semiconductor Energy Lab Light emitting device
US6646284B2 (en) * 2000-12-12 2003-11-11 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
CN101397649B (zh) * 2001-02-01 2011-12-28 株式会社半导体能源研究所 能够将有机化合物沉积在衬底上的装置
JP4906018B2 (ja) * 2001-03-12 2012-03-28 株式会社半導体エネルギー研究所 成膜方法、発光装置の作製方法及び成膜装置
US20030015140A1 (en) * 2001-04-26 2003-01-23 Eastman Kodak Company Physical vapor deposition of organic layers using tubular sources for making organic light-emitting devices
US6797314B2 (en) * 2001-07-03 2004-09-28 Eastman Kodak Company Method of handling organic material in making an organic light-emitting device
US20030026601A1 (en) * 2001-07-31 2003-02-06 The Arizona Board Of Regents On Behalf Of The University Of Arizona Vapor deposition and in-situ purification of organic molecules
JP2003089865A (ja) 2001-09-18 2003-03-28 Cluster Ion Beam Technology Kk 真空蒸着用蒸着材料収納容器及び真空蒸着装置、並びに真空蒸着装置への蒸着材料供給方法
US6852997B2 (en) * 2001-10-30 2005-02-08 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
SG114589A1 (en) * 2001-12-12 2005-09-28 Semiconductor Energy Lab Film formation apparatus and film formation method and cleaning method
TWI275319B (en) 2002-02-05 2007-03-01 Semiconductor Energy Lab Manufacturing method and method of operating a manufacturing apparatus
US6649436B2 (en) * 2002-02-11 2003-11-18 Eastman Kodak Company Using organic materials in making an organic light-emitting device
TWI285515B (en) * 2002-02-22 2007-08-11 Semiconductor Energy Lab Light-emitting device and method of manufacturing the same, and method of operating manufacturing apparatus
SG113448A1 (en) * 2002-02-25 2005-08-29 Semiconductor Energy Lab Fabrication system and a fabrication method of a light emitting device
JP4252317B2 (ja) 2003-01-10 2009-04-08 株式会社半導体エネルギー研究所 蒸着装置および蒸着方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6179923B1 (en) * 1997-08-22 2001-01-30 Fuji Electric Co., Ltd. Deposition apparatus for an organic thin-film light-emitting element
CN1283952A (zh) * 1999-07-23 2001-02-14 株式会社半导体能源研究所 制造电致发光显示装置的方法和形成薄膜的装置
CN1320718A (zh) * 2000-03-09 2001-11-07 城户淳二 有机化合物的汽相沉积法和精制法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
2002/0009538A1 2002.01.24

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104277825A (zh) * 2013-07-09 2015-01-14 信成素材株式会社 纯化有机发光材料至高纯度的方法
CN104277825B (zh) * 2013-07-09 2018-07-31 信成素材株式会社 纯化有机发光材料至高纯度的方法

Also Published As

Publication number Publication date
US20030180457A1 (en) 2003-09-25
US7195801B2 (en) 2007-03-27
CN1440222A (zh) 2003-09-03
TW200306131A (en) 2003-11-01
KR100945469B1 (ko) 2010-03-05
TWI275319B (en) 2007-03-01
TWI262034B (en) 2006-09-11
KR20030066459A (ko) 2003-08-09
SG114598A1 (en) 2005-09-28
TW200611604A (en) 2006-04-01

Similar Documents

Publication Publication Date Title
CN100468823C (zh) 制造系统、制造方法、操作制造设备的方法及发光器件
CN100354452C (zh) 发光器件制作系统和制作方法
KR100991445B1 (ko) 발광장치의 제조방법
CN1679375B (zh) 制造系统,发光装置以及含有有机化合物层的制造方法
CN1723741B (zh) 发光装置、制造装置、成膜方法及清洁方法
CN100468809C (zh) 发光器件制造方法及制造发光器件的设备
CN100550469C (zh) 蒸发方法、蒸发装置及制造发光器件的方法
US20050034671A1 (en) Deposition apparatus and manufacturing apparatus
JP4252317B2 (ja) 蒸着装置および蒸着方法
JP4408019B2 (ja) El素子の製造方法
JP4368633B2 (ja) 製造装置
JP4439827B2 (ja) 製造装置および発光装置の作製方法
JP2004288463A (ja) 製造装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090311

Termination date: 20180131