CN100420178C - 信道质量测量方法和设备、通信系统、自适应调制和编码方法 - Google Patents

信道质量测量方法和设备、通信系统、自适应调制和编码方法 Download PDF

Info

Publication number
CN100420178C
CN100420178C CNB02825273XA CN02825273A CN100420178C CN 100420178 C CN100420178 C CN 100420178C CN B02825273X A CNB02825273X A CN B02825273XA CN 02825273 A CN02825273 A CN 02825273A CN 100420178 C CN100420178 C CN 100420178C
Authority
CN
China
Prior art keywords
sequence
symbol
data element
channel
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB02825273XA
Other languages
English (en)
Other versions
CN1605171A (zh
Inventor
J·马
M·贾
P·朱
童文
D·于
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nortel Networks Ltd
Apple Inc
Original Assignee
Nortel Networks Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nortel Networks Ltd filed Critical Nortel Networks Ltd
Publication of CN1605171A publication Critical patent/CN1605171A/zh
Application granted granted Critical
Publication of CN100420178C publication Critical patent/CN100420178C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0631Receiver arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • H04L1/208Arrangements for detecting or preventing errors in the information received using signal quality detector involving signal re-encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • H04L25/0236Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols using estimation of the other symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03312Arrangements specific to the provision of output signals
    • H04L25/03318Provision of soft decisions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/067Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing soft decisions, i.e. decisions together with an estimate of reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Abstract

提供一种用于将导频符号和传输参数信令(TPS)信道组合在OFDM帧内的方法和设备。该方法使用差分空时块编码技术在OFDM发射机处编码快速信令消息。在OFDM接收机处,可以使用差分反馈来译码该编码的快速信令消息,从而恢复关于通常由导频符号携带的信道响应的信息。在采用自适应调制和编码技术的无线数据传输中,提供了与干扰来源无关的瞬时信道质量测量,这些干扰例如是邻近小区干扰、白热噪声或剩余多普勒频移。使用在已被符号解映射的信号与同样已被软译码和重编码的信号之间的相关性,产生信道质量指示符。另一个实施例通过译码TPS以及然后重编码TPS来使用TPS数据作为导频符号。

Description

信道质量测量方法和设备、通信系统、自适应调制和编码方法
技术领域
本发明涉及无线数据传输,更具体地涉及关于这种数据传输的信道质量测量。
背景技术
自适应调制和编码是使高速无线数据传输的概念和技术成为可能的关键。无线信道典型地是随机衰落信道。自适应编码和调制是一般采用的用于在这种未知信道上传输数据的解决方法。传统的设计方法学在传输信号功率中提供很大的衰落储备以对抗可能发生的深衰落。这样的衰落储备典型地至少是6dB,表示200%-300%的吞吐量损耗。使用自适应编码和调制的目的是通过在工作中动态地选择最佳的编码和调制配置,充分利用信道容量以及将使用这种衰落储备的需要降到最小。这要求发射机具有关于瞬时信道质量的精确信息。这样的瞬时信道质量信息在接收机处提取并反馈回发射机。传统的方法是在接收机前端测量信道(信号)与干扰功率比(CIR)。根据瞬时CIR和目标性能,发射机确定并应用适合的编码速率和调制。一般而言,由于复杂的传播环境,快速和精确的测量CIR是非常困难的任务。
传统的信道质量测量可以被分成两种类型:(1)基于导频的信道质量测量以及(2)基于判决反馈的信道质量测量。这些方法使用已知序列的相关,特别是伪噪声(PN)码,具有所希望的信号和干扰。对于具有充分测量时间的缓慢变化的信道,传统的方法能够提供精确的CIR测量。
参考图1,现在将描述传统的基于导频的CIR估计机制。在MIMO-OFDM(多输入多输出-正交频分复用)的环境中,传统的信道质量测量使用包含两个相同的已知OFDM符号的导频头,使当前信道质量的指示基于该OFDM符号。图1示出传送它们各自信号的第一、第二和第三基站收发信台(BTS)100、110和120,以及接收这些信号的移动台130。移动台130被配置成接收、解调和译码由第二基站收发信台110传送的信号。由第一基站收发信台100和第三基站收发信台120传送的信号被移动台130当作干扰接收。与由基站收发信台2(BTS2)110传送的具有接收信号功率C的信号相关的信道是其质量要被测量的信道。假设具有N个PN码,每个PN码的长度是N个码片,则得到:
PNi·PNj≈0      i≠j
PNi·PNi=N      1≤i≤N.
该PN码形成接近正交集的重要关系式允许使用导频信道PN码提取特定信道。在图1中只示出三个BTS,因此只有三个PN码。第二BTS110在编码器-2 112处将其相关的信道质量要被测量的信号编码。在最终通过天线118传输到移动台130之前,使用在此被标记为导频-PN2114的PN码调制该编码的信号。第一BTS 100在编码器-1102处编码信号,该信号表现为到移动台130的第一干扰信号。在最终通过天线108传输之前,使用PN码导频-PN1104调制这个编码的信号。第三BTS120在编码器-3122处编码信号,该信号表现为到移动台130的第二干扰信号。在最终通过天线128传输之前,使用在此被标记为导频-PN3124的PN码调制这个编码的信号。所有三个由天线108、118和128传输的信号都被移动台130在接收机前端134通过天线132接收。接收到的信号然后被传到译码器138,以便提取要被恢复的信道。接收到的信号还被传到第一相关器140、第二相关器142和第三相关器144。图1的相关器执行对应于乘法、求和以及绝对值平方的子操作,有效地执行对应于取两个输入的内积的操作。第一相关器140执行接收到的信号和PN码导频-PN1之间的相关并输出干扰功率I1,其中该PN码被用来调制对于移动台来说看起来是第一干扰信号的信号。第二相关器142执行该信号和PN码导频-PN2之间的相关并输出信号功率C,其中该PN码被用来调制其质量要被测量的信号。第三相关器144执行接收到的信号和PN码导频-PN3之间的相关并输出干扰功率I2,其中该PN码被用来调制对于移动台来说看起来是第二干扰信号的信号。计算操作150计算CIR,其在这种情况下仅仅是C/(I1+I2)。
一般而言,这种方法可以应用到M个基站收发信台。使BTSi(1≤i≤M)是M个相邻的基站收发信台,Ei是来自在移动台130测量的第i个基站的对应能量,S是移动台在接收机前端134处接收到的组合的总信号能量,并且BTS2是其相关的CIR要被测量的基站收发信台,则
C = max 1 ≤ i ≤ M ( S · PN i ) = E 2 · N i
I = Σ i ≠ 2 ( S · PN i ) = N · Σ i ≠ 2 E i .
在这些公式中C和I是能量,尽管为了确定比率C/I,既可以使用能量也可以使用功率。因为导频头包括两个相同的OFDM符号,所以CIR计算过程可以基于这两个符号的平均值,从而降低噪声。然而,如果该信道是多路径衰落信道和/或移动速度很高,则这些方法就不起作用了。一种解决方法是插入更多的导频以改善测量质量,然而,这引入了显著降低频谱效率的开销。例如,在2G和3G无线系统中,导频开销大约是20-35%,而且这些系统的导频设计不适合快速信道质量测量。情况如此是因为基本上信道质量测量的精确度被克莱默-劳(Cramer-Rao)下限所限制,这意味着只能在以更多的导频开销(时间或功率)为代价的情况下才能获得信道测量的精确度。
作为这种折衷的例子,在建议的MIMO-OFDM系统中,每个OFDM帧在10ms内(15个时隙)传送导频头。为了方便移动情形中的自适应调制,CIR估计必须每2ms(3个时隙)反馈回BTS。因此,基于导频头的CIR测量不能提供精确的瞬时信道质量信息。如果实际的CIR在该10ms期间没有显著改变,则通过测量导频的能量可以粗略地跟踪CIR。然而,这样做,则会因为干扰是常数的假设变得越来越不精确,而使精确度向着时隙的末端而减少。
上述讨论的信道质量测量用于自适应编码和调制,且在任何情况下都不涉及信道估计。
信道质量测量是不同于信道估计的概念。执行信道质量测量来测量信道质量,从而可以选择合适的编码和调制设置。执行信道估计来估计信道响应,从而可以实现相干检测。
在一些使用正交频分复用(OFDM)的无线通信系统中,发射机在MIMO(多输入,多输出)环境中将数据符号作为OFDM帧来传送到接收机。MIMO-OFDM系统的其中一个关键优点是通过使用更高的QAM大小、注水(water pouring)和/或自适应调制,在多路径衰落信道上传递高速数据的能力。在MIMO-OFDM系统中,有两个主要的设计难题:(1)对抗由于高速移动性造成的高多普勒扩展和快速衰落,(2)提供公共的快速信令信道来实现快速的物理和MAC层的适配信令。为了解决移动性的问题,通常在OFDM设计中使用导频信道;可以使用(时间和频率)分散的导频模式最优化这样的导频信道。公共的快速信令信道设计必须足够可靠,以允许大多数移动台能够检测信令,这引入相当大量的系统和频谱开销以维持该信令吞吐量。在传统的OFDM设计中,分散的导频和快速信令信道被安排为分离的开销信道。
由于信道的损害,数据符号的相位和振幅可能在沿信道传播期间改变。信道响应可以随时间和频率变化。为了允许接收机估计信道响应,导频符号分散在OFDM帧内的数据符号之中。接收机将接收到的导频符号的值和导频符号的已知传输值进行比较,估计在导频符号的频率和时间的信道响应,并且内插估计的信道响应以便估计在该数据符号的频率和时间处的信道响应。
传输参数信令(TPS)符号也和数据符号一起被传输。TPS符号在OFDM帧内的特定副载波上被传输,并用于提供公共的信令信道以允许快速物理和媒体访问控制层的适配信令。
导频符号和TPS符号都是开销,因为它们不携带数据。为了增加OFDM通信系统的数据速率,应该将OFDM帧内的开销减到最小。开销的最小化在多输入多输出(MIMO)OFDM系统中特别重要。在具有M个传送天线和N个接收天线的MIMO OFDM系统中,信号将在M×N个信道上传播,并且开销中有多达M组的导频符号。在图7中示出单输入、单输出情形下的具有专用的TPS和导频信道的OFDM帧格式的例子。水平轴704示出表示多个OFDM副载波的每一个的频率的周期。垂直轴706是时间,其中每一行表示一个OFDM符号。一组OFDM符号构成OFDM帧。在这个例子中,以分散的方式传输导频信道,使该导频符号在每第三个副载波传输,并且对于每个副载波是在每第六个帧传输。因此,第一副载波700在第一、第七(等等)OFDM符号中具有导频符号701。第四副载波702在第四、第十(等等)OFDM符号中具有导频符号705。此外,每个OFDM符号的第三、第九、第十五和第二十一副载波被用于传输TPS符号,共同地以708指示。其余的容量用于业务量。
发明内容
本发明的一个实施例提供了一种具有广泛应用(例如UMTS和3G无线系统演进)的简单精确而且健壮的信道质量测量方法。有利的是信道质量指示符(CQI)是间接地、简单地且精确地被测量的,并且该指示符与移动速度和多路径信道特性无关,而且避免了沃尔什编码相干损失。CQI是对信道的总体质量的测量,而不仅是对于诸如CIR的一个因子的测量。此外,该方法易于实现,因为它不需要任何附加的编码,例如用于CIR测量中的PN码。
根据一个广义的方面,提供了一种信道质量测量设备,该设备适于测量信道质量,在该信道上传输通过对源数据元素序列进行编码和星座映射(constellation mapping)而产生的符号序列。该设备具有符号解映射器(demapper),用于在其质量要被测量的信道上,将接收到的符号序列接收作为输入,该符号解映射器适于对所述接收到的符号序列执行符号解映射,以便产生软数据元素判决的序列。存在有软译码器,用于接收由该符号解映射器产生的软数据元素判决的序列作为输入,该软译码器适于对软数据元素判决的序列进行译码以便产生译码的输出序列。编码器接收由该软译码器产生的译码的输出序列作为输入,所述编码器适于使用一个与用于编码该源数据元素序列的码相同的码来重编码所述译码的输出序列,以便产生重编码的输出序列。最后,相关器接收由该解映射器产生的软数据元素判决序列和由该编码器产生的重编码的输出序列作为输入,所述相关器适于通过确定软数据元 素判决序列和重编码输出序列之间的相关性来产生信道质量指示符输出。
在一些实施例中,符号解映射器适于执行QPSK符号解映射。
在一些实施例中,符号解映射器适于执行欧几里德距离条件LLR符号解映射。
本发明的另一个广义方面提供了一种测量信道的信道质量的方法,在该信道上传输由编码和星座映射源数据元素序列产生的符号序列。该方法包括:通过其质量要被测量的信道来接收一个接收到符号的序列;符号解映射所述接收符号的序列以产生软数据元素判决的序列;译码所述软数据元素判决的序列以产生译码的输出序列;使用一个与用于编码该源数据元素序列的码相同的码来重编码所述译码的输出序列,以便产生重编码的输出序列;以及将所述重编码的输出序列和所述软数据元素判决的序列相关以便产生信道质量指示符输出。
在一些实施例中,该方法应用于测量OFDM信道质量。
本发明的另一个广义的方面提供了一种测量正交频分复用信道的正交频分复用信道质量的方法,在该信道上已传输正交频分复用符号序列,所述正交频分复用符号包含有编码和星座映射的源数据元素序列,该方法包括:通过其质量要被测量的正交频分复用信道接收正交频分复用符号的序列;符号解映射所述接收到符号的序列以产生软数据元素判决的序列;译码所述软数据元素判决的序列以产生关于所述源数据元素序列的、译码的输出序列;使用一个与用于编码该源数据元素序列的码相同的码来重编码所述译码的输出序列,以便产生重编码的输出序列;以及将所述重编码的输出序列和所述软数据元素判决的序列相关以产生信道质量指示符输出。
本发明的另一个广义的方面提供了一种通信系统,该系统具有一个发射机,适于通过信道传输由编码和星座映射源数据元素序列而产生的符号序列;以及一个接收机,该接收机具有a)符号解映射器,用于通过信道接收一个接收到符号的序列作为输入,所述符号解映射器适于对所述接收到符号的序列执行符号解映射,以便产生软数据元素判决的序列;b)软译码器,用于接收由该符号解映射器产生的软数据元素判决的序列作为输入,该软译码器适于对软数据元素判决的序列进行译码,以便产生译码的输出序列;c)编码器,用于接收由该软译码器产生的译码的输出序列作为输入,所述编码器适于使用一个与用于编码该源数据元素序列的码相同的码来重编码所述译码的输出序列,以便产生重编码的输出序列;以及d)相关器,用于接收由该解映射器产生的软数据元素判决的序列和由该编码器产生的重编码的输出序列作为输入,所述相关器适于通过确定软数据元素判决的序列和重编码输出序列之间的相关性来产生信道质量指示符输出。该接收机适于将信道质量指示符反馈回发射机,而该发射机适于使用所述信道质量指示符以确定适合的编码速率和调制并将其应用到源数据元素序列。
本发明的另一个广义方面提供了一种自适应调制和编码的方法,该方法包括:通过信道传输由编码和星座映射源数据元素序列产生的符号序列;通过该信道接收一个接收到符号的序列;符号解映射所述接收符号的序列以产生软数据元素判决的序列;译码所述软数据元素判决的序列以产生译码的输出序列;使用一个与用于编码该源数据元素序列的码相同的码来重编码所述译码的输出序列,以便产生重编码的输出序列;将所述重编码的输出序列和所述软数据元素判决的序列相关以便产生信道质量指示符输出;传输该信道质量指示符;以及使用所述信道质量指示符以确定适合的编码速率和调制并将其应用到源数据元素序列。
本发明的又一个广义方面提供了一种确定信道质量的方法,该方法包括将软数据元素判决的序列和一个第二数据元素序列相关,该第二数据元素序列是通过以下方式而产生的:译码该软数据元素判决序列以便产生一个译码的序列,以及然后重编码该译码的序列。
本发明的另一个广义方面提供了一种方法,该方法包括将前向误差编码应用到信令消息以生成编码的快速信令消息;MPSK映射该编码的信令消息以产生MPSK映射的编码信令消息;将该MPSK映射的编码信令消息映射到包括多个OFDM符号的OFDM帧内的多个副载波上;使用差分空时块编码(D-STBC)以时间方向编码该MPSK映射的编码信令消息的符号以生成编码的符号;以及在多个发射天线上发射该编码的符号,其中该编码的符号以作为信道状态的函数的、相对于OFDM帧内其他符号的增加的功率电平被发射。
在一些实施例中,该编码的符号以分散的模式被传输。
在一些实施例中,在多个天线上发射该编码的符号包括:在选择的副载波上每个天线分别通过N个连续OFDM符号来发射相应当N个编码的符号,其中N是用于发射的天线数目,对于全部N×N个传输的编码符号,该N×N个符号从D-STBC编码的MPSK映射编码信令流的L个符号得到,其中L和N确定STBC编码率。
在一些实施例中,该方法还包括在至少一个OFDM符号中传输一组导频副载波,以及使用该导频副载波作为在随后的OFDM符号期间传输的第一组D-STBC编码符号的参考。
在一些实施例中,在至少一个OFDM帧中传输一组导频副载波包括在每个天线上的各个不相交的多个副载波上传输多个导频。
在一些实施例中,每个不相交的多个副载波包括一组副载波,每个都由N-1个副载波分开,其中N是天线的数目。
在一些实施例中,导频副载波传输多个连续的OFDM帧,该帧的数量等于发射天线的数目。
还提供了适于实现任何一个上述方法的OFDM发射机。
本发明的另一个广义的方面提供了一种接收方法,该方法包括:在至少一个天线上接收包含接收的D-STBC编码的MPSK映射的编码信令消息符号在内的OFDM信号;从该OFDM信号恢复接收的信令消息符号;重编码、MPSK映射和D-STBC编码该接收的编码信令消息符号以产生重编码的D-STBC编码的MPSK映射的编码信令消息符号;以及通过将接收的D-STBC编码的映射编码信令消息符号和重编码的D-STBC编码的MPSK映射编码信令消息符号进行比较来确定信道估计。
在一些实施例中,为包含D-STBC编码的MPSK映射编码信令消息符号在内的OFDM信号中的每个(时间、频率的)位置确定信道估计。该方法还包括进行内插以便为OFDM信号中的其余每个(时间、频率的)位置确定信道估计。
在一些实施例中,该方法还包括接收不是D-STBC编码的导频符号,它们被用作D-STBC编码的MPSK映射编码信令消息符号的第一D-STBC块的参考。
还提供了适于实现任何一个上述方法的OFDM接收机。
还提供了包括计算机可读存储介质的制造物品,该计算机可读存储介质包括用于实现任何一个上面概述的方法的指令。
本发明的另一个广义的方面提供了一种从在正交频分复用(OFDM)接收机接收到的OFDM帧来生成导频符号的方法,该OFDM帧包含OFDM帧内的以编码符号形式的编码快速信令消息。该方法包括处理以分散导频模式为基础的编码符号以恢复编码快速信令消息,重编码快速信令消息以便生成分散模式的导频符号,以及使用判决反馈为编码符号恢复信道响应。
在一些实施例中,检查快速信令消息来看当前的传输是否包含用于OFDM接收机的内容。只有当包含该内容时,才继续用于当前传输的信道响应计算过程。
在一些实施例中,处理编码符号包括使用差分空时块编码(D-STBC)译码技术来差分译码该编码的符号,以便恢复编码快速信令消息;将前向纠错译码技术应用到编码快速信令消息以便恢复快速信令消息;分析快速信令消息以便确定其是否包含所需的用户识别;如果快速信令消息包括所需的用户识别,则使用前向纠错编码技术来重编码快速信令消息以便生成编码的快速信令消息,以及使用D-STBC重编码该编码的快速信令消息。
本发明的另一个广义方面提供一种适于在OFDM信号内在单个开销信道上组合导频和传输参数信令的发射机。
在一些实施例中,在开销信道上用强编码技术(strongencoding)传输一组传输参数信令符号,使得在接收机处,它们可以被精确地译码并重编码,该重编码的符号被当作已知导频符号,该已知的导频符号然后可以用于信道估计。
本发明的另一个广义方面提供了一种适于处理由上面概述的发射机产生的组合的单个开销信道的接收机。该接收机适于对包含被信道修改的编码传输参数信令符号在内的接收信号进行译码,重编码该译码的符号以产生已知的导频符号,将接收的符号和已知的导频符号进行比较以便产生信道估计。
结合附图参考下面对于本发明的具体实施例的描述,本发明的其他方面和特征对于本领域的普通技术人员来说将变得显而易见。
附图说明
现在将参考附图更详细地描速本发明,其中:
图1是使用已知信道质量测量技术的标准载波与干扰比(CIR)估计器的图;
图2是根据本发明实施例构成的信道质量指示符(CQI)估计器的图;
图3是示出QAM星座的图,说明根据本发明实施例的QPSK解映射;
图4是示出对于不同多普勒频率CQI相对SNR的仿真结果的图;
图5是示出CQI测量的统计结果的图;
图6是示出基于CQI的SNR测量误差的CDF的图;
图7是为专用导频和TPS信道分配的OFDM符号的图;
图8是在由本发明实施例提供的单个开销信道中采用组合的TPS和导频信令的OFDM系统的框图;
图9是示出时间和频率差分的OFDM符号分配图;
图10是示出导频和TPS符号位置的OFDM符号分配图的一个例子;以及
图11和12是图8系统的举例的性能结果。
具体实施方式
根据本发明的一个实施例,通过测量表示接收到的信号和参考信号星座之间平均距离的值获得对接收到的信号质量的测量。一般而言,越差的信道,在参考信号星座上的接收信号就越分散和随机,因此该信号和离它最近的星座参考点之间的平均距离就越大。
在一些实施方案中,如C/I估计的情况,信道质量测量的目的是为了成功的编码速率和调制指配。在此的“成功的”指配是得到所希望的性能特性。根据这个目的,提供了在此被称为“信道质量指示符”(CQI)的新的信道质量测量。CQI提供了信道质量的全面评估,包括干扰效果、多路径衰落和多普勒扩展。
在开发CQI时,来自解映射功能的软输出被用于获得信道质量的测量,因为软输出的振幅可以被用作信号可信度的指示。如果信道质量很高,则软输出值会很高,反之亦然。所有的信道损害都将反映在这样的指示符中,而与它们的源和特性无关。这已经被仿真结果证明了,仿真结果显示这样的指示符对于干扰、多路径衰落和多普勒扩展是不变的。
提出的优选实施例是基于MIMO-OFDM帧结构的,其中采用QAM星座,并且提供一种基于软QAM解调和解映射的间接信道质量测量方法。然而,一般而言,本发明的实施例提供任何一种采用具有相关的参考符号星座的调制和映射方法的帧结构,该星座可以被用在诸如PSK(相移键控)和PAM(脉幅调制)的软解调和解映射中以提出几个例子。
参考图2,现在将描述本发明的优选实施例。对于这个例子来说,假设来自第二基站收发信台210的信号是希望的信号,其相关的信道质量由移动台230测量,并且假设来自其他两个(第一和第三)基站200和220的信号可以被移动台230认为是噪声。可能还有其他的噪声源,而且信道可能引入诸如多径衰落、剩余多普勒频移和热白噪声的失真。第二BTS 210在编码器-2212处编码输入序列213(假设是比特序列,但更一般而言是数据元素序列),以便产生编码的比特序列。该编码的比特序列包含在接收机处允许某些检错/纠错的冗余。然后用符号映射器214将编码的比特序列映射到星座点。这些星座点被调制为信号并作为信号传输,该信号的相关信道质量要被测量。该信号通过天线218传输到移动台230。调制类型(和相关的星座)以及编码器-2212所采用的编码类型都是作为从移动台230反馈的信道质量指示符的函数而自适应选择的。
第一BTS 200用编码器-1202编码并用符号映射器204映射以产生信号,该信号对于移动台230来说是第一干扰信号。这个信号通过天线208传输。第三BTS 220用编码器-3222编码并用符号映射器224映射以产生信号,该信号对于移动台230来说是第二干扰信号。这个信号通过天线228传输。由天线208、218和228传输的所有三个信道在接收机前端234被移动台230通过天线232接收,尽管在这个例子中,来自第二基站收发信台210的信号才是希望的信号。根据该优选实施例,接着将接收到的信号传到符号解映射器236。符号解映射器236从接收机前端234取出原始符号数据,并且考虑在发射基站210处使用的已知信号星座来解映射该原始符号数据以便产生软比特判决序列。该解映射的符号(软比特判决)固有地构成可信度的表示并被用作到软译码器238的输入。符号解映射器236在输出端237将一个解映射输出信号既输出到软译码器238又输出到相关器250。软译码器238对解映射的输出信号执行软译码并输出软译码的输出信号到编码器240。该软译码的输出也在239处输出作为接收机输出,这是在输入序列213的接收机处最佳可得到的估计。可替换地,可以使用不同的接收机结构来生成接收机输出。编码器240重编码软译码器的输出以产生编码的输出信号,并且将这个编码的输出信号从输出端242输出到相关器250。使用与在基站210的编码器-2212处采用的编码技术相同的编码技术。假设使用适当的译码和重编码技术,编码器240的输出与编码器212在基站收发信台210处产生的编码序列相同。相关器250将来自编码器输出端242的重编码序列与来自符号解映射器输出端237的解映射输出信号(软比特判决序列)进行相关。相关器250输出这个相关性作为信道质量指示符(CQI)。这个相关性越高,平均的解映射符号就越接近传输的星座符号,因而信道质量就越高。在所述的例子中,相关器250用乘法器251将重编码的比特序列242和软比特判决序列相乘。用求和器252对它们求和,然后取平方绝对值,如在253处所示。也可以使用其他相关方法。
在一个示例性的实施方案中,符号解映射器236从接收机前端234取输入,并根据欧几里德距离执行解映射。将在QPSK解映射的上下文中描述该优选实施例,QPSK解映射是PSK解映射的一种特殊情况。一般而言,对于PSK调制来说,根据PSK信号是否已经归一化而存在有两种解映射方法。对于相干的解映射,因为精确的参考星座是已知的,所以最优化的解映射是基于欧几里德距离的;而对于不相干的解映射(当使用差分编码技术时通常是这种情况),解映射只能基于角度。基于角度的解映射方法是一种次最优的方法,因为它忽略了信号的振幅中携带的信息。作为PSK解映射的一种特殊情况,QPSK解映射不取决于信号归一化。作为解映射较高QAM信号的情况,QPSK解映射基于LLR(似然比的对数),在这个例子中,如参考图3描述的,使用欧几里德距离。在图3中所描述的星座是具有格雷映射的QPSK星座。对应于比特序列00,01,10和11分别是星座点S0,S1,S2和S3,它们的坐标分别是(x0,y0),(x1,y1),(x2,y2)和(x3,y3)。点(x,y)表示来自接收机前端234的信号输入。使用欧几里德距离LLR的软解映射比特b1b2可以表示为:
b 1 = log e - ( ( x - x 2 ) 2 + ( y - y 2 ) 2 ) / 2 σ 2 + e - ( ( x - x 3 ) 2 + ( y - y 3 ) 2 ) / 2 σ 2 e - ( ( x - x 0 ) 2 + ( y - y 0 ) 2 ) / 2 σ 2 + e - ( ( x - x 1 ) 2 + ( y - y 1 ) 2 ) / 2 σ 2
b 2 = log e - ( ( x - x 1 ) 2 + ( y - y 1 ) 2 ) / 2 σ 2 + e - ( ( x - x 3 ) 2 + ( y - y 3 ) 2 ) / 2 σ 2 e - ( ( x - x 0 ) 2 + ( y - y 0 ) 2 ) / 2 σ 2 + e - ( ( x - x 2 ) 2 + ( y - y 2 ) 2 ) / 2 σ 2 ,
其中σ2=2EN0,E是每个QPSK符号的能量。
可以简化比特b1的计算。因为四个QPSK星座点到原点(0,0)具有相等的距离:
x0 2+y0 2=x1 2+y1 2=x2 2+y2 2=x3 2+y3 2.
则b1简化成:
b 1 = log e - ( ( x - x 2 ) 2 + ( y - y 2 ) 2 ) / 2 σ 2 + e - ( ( x - x 3 ) 2 + ( y - y 3 ) 2 ) / 2 σ 2 e - ( ( x - x 0 ) 2 + ( y - y 0 ) 2 ) / 2 σ 2 + e - ( ( x - x 1 ) 2 + ( y - y 1 ) 2 ) / 2 σ 2
= log e ( xx 2 + yy 2 ) / σ 2 + e ( xx 3 + yy 3 ) / σ 2 e ( xx 0 + yy 0 ) / σ 2 + e ( xx 1 + yy 1 ) / σ 2
= log e ( xx 3 - yy 3 ) / σ 2 ( 1 + e ( xx 2 + yy 2 ) - ( xx 3 + yy 3 ) / σ 2 ) e ( xx 1 + yy 1 ) / σ 2 ( 1 + e ( xx 0 + yy 0 ) - ( xx 1 + yy 1 ) / σ 2 )
因为x0=x1且x2=x3
b 1 = log e ( xx 3 + yy 3 ) / σ 2 ( 1 + e y ( y 2 - y 3 ) / σ 2 ) e ( xx 1 + yy 1 ) / σ 2 ( 1 + e y ( y 0 - y 1 ) / σ 2 )
让D为I-Q曲线中S0和S1以及S2和S3之间的垂直距离。因此y0-y1=y2-y3=D,并且:
b 1 = log e ( xx 3 + yy 3 ) / σ 2 e ( xx 1 + yy 1 ) / σ 2
= 1 σ 2 log ( e x ( x 3 - x 1 ) + y ( y 3 - y 1 ) )
因为星座的对称性,x3-x1=-D。因为y1=y3,所以b1可以表示为:
b 1 = - D σ 2 x
类似地,b2可以表示为:
b 2 = - D σ 2 y
如果噪声是固定的,则QPSK解映射算法可以进一步简化成:
b1=-x
b2=-y,
这等价于两个BPSK信号并且非常容易计算。
在STBC(空时块编码)中,组合的QPSK信号x被因数δ2=|h11|2+|h21|2+|h12|2+|h22|2归一化,其中hn, m是MIMO(多输入多输出)信道矩阵的元素。假设这四个信道的噪声方差相同,即σ2,则噪声功率变为(σ/δ)2。因此具有STBC的b1是:
b 1 = - D ( σ / δ ) 2 ( x δ 2 )
= - D σ 2 x
因此,这证明了STBC解映射中的QPSK不会受到用于归一化的不同缩放因子影响。有条件的LLR软解映射比特b1b2被输出到软译码器238,该译码器使用这些解映射比特,并且考虑数据流历史信息,用于编码器-2212的编码算法,以便对原始未编码的码字作出最佳估计。这个从软译码器238输出的最佳估计被编码器240使用与编码器-2212相同的编码算法进行重编码。该重编码的码字从编码器输出端242输出到相关器250。相关器250将从符号解映射器236的输出端237输出的有条件LLR与从编码器240的输出端242输出的重编码码字进行相关。该相关的行为将有条件的LLR投射到重编码的码字上,其结果是用作为信道质量指示符(CQI)的内积输出。
有利地,因为CQI是对符号解映射器输出和重编码序列之间的相关性的测量,所以它指示信道失真。使用似然值既不依赖于编码类型(块码、卷积码或涡轮码),也不依赖于译码方法(硬或软),而且不区分干扰从何处起源,例如邻近小区干扰、白热噪声或剩余多普勒频移。CQI使用所有对于估计可用的信息,不只使用解映射输出的值,也使用是一个码字的似然性,它比只测量软输出的值更精确,特别是在编码率低的时候。在图4中,以双正交码(16,5)的不同多普勒频率下的归一化的CQI相对SNR的图来示出仿真结果。在图5中示出统计SNR测量误差结果,而在图6中以基于CQI的SNR测量误差的CDF示出仿真结果。这些图示出了对于给定的BER,CQI相对于各种多普勒频率和不同的信道模型来说是相对不变的。这意味着反过来说,不管信道状态如何都可以使用CQI提供BER的一致表示,因而使用CQI来执行自适应编码和调制判决,可以得到希望的BER。这通过将CQI反馈到发射机来实现,该发射机的信号与其质量要被测量的信道相关。根据CQI和希望的性能,发射机决定并应用适合的编码速率和调制。
组合的导频和TPS信道
在上述实施例中,在接收机处使用编码传输的数据来生成用于作出自适应编码和调制判决的信道质量指示符。在本发明的另一个实施例中,提供了一种以这样的方式来将导频符号与传输参数信令(TPS)符号组合在正交频分复用(OFDM)帧内的方法,即:仍然可以执行信道估计。该方法可以在SISO(单输入单输出)发射机上实现或者在多输入多输出(MIMO)OFDM发射机上实现,并且可以概括地描述为四个步骤。第一,用前向误差编码技术(FEC)编码快速信令消息以生成编码的快速信令消息。第二,将编码的快速信令消息映射到OFDM帧内的符号上。第三,使用差分空时块编码技术(D-STBC)编码这些符号以生成编码的符号。由于在其上传输分散的导频副载波的信道的信道响应通常沿频率方向变化比沿时间方向变化快得多,所以优选地在OFDM帧的时间方向上应用D-STBC编码,并且如果差分译码是关于沿时间方向分布的符号,则在OFDM接收机处的差分译码更有可能产生对信道响应的较好估计。第四,在OFDM帧内以相对于其他业务量数据符号增加的功率电平、以分散导频模式来传输编码的符号。在一些实施例中,如果信道状态很差,该功率电平只相对于其他业务量数据符号而增加。
该方法允许使用快速信令消息用作为导频符号,由此降低了OFDM帧内的开销。
还提供了一种从OFDM帧中提取导频符号的方法,在该OFDM帧中,如上所述,已经将导频符号和TPS符号相组合。当在OFDM接收机处接收包含有编码符号的OFDM帧时,在MIMO OFDM接收机处实现该方法,而且该方法可以概括描述为八个步骤。第一,OFDM接收机根据分散模式恢复编码的符号以恢复D-STBC块。第二,OFDM接收机使用D-STBC译码技术差分译码该恢复的D-STBC块,以便恢复FEC编码的快速信令消息。第三,OFDM接收机将FEC译码技术应用到FEC编码的快速信令消息,以便恢复快速信令消息。第四,OFDM接收机分析该快速信令消息以便确定它是否包含有需要的用户识别。如果该快速信令消息包含需要的用户识别,则OFDM接收机知道当前的TPS帧包含有用于用户的数据并且继续处理该OFDM帧。作为第五步骤,OFDM接收机使用FEC编码技术重编码快速信令消息。第六,OFDM接收机使用D-STBC编码技术重编码该编码的快速信令消息。如果该快速信令消息不包括接收机的用户识别,则由于不处理而节省了功率以便进行剩余的信道估计步骤。
现在已经被D-STBC重编码的TPS符号可以被用作导频。通过将已知的传输导频(重编码的TPS数据)与接收到的信号进行比较可以获得对于D-STBC编码符号的信道响应。为每个TPS插入点获得一个信道响应。这样确定的信道响应然后可以用于在OFDM帧内、在所有时间和频率为每个业务量数据符号来内插信道响应。优选地,这通过执行2维内插(以时间方向和频率方向)来实现,以便为没有插入TPS的一些点生成信道估计。随后,通过频率内插,为包含有TPS数据的OFDM符号的每个副载波生成信道估计。在一些实施例中,每个OFDM符号包含有一些TPS插入点,因此这样完成了内插过程。在其他实施例中,有一些OFDM符号不具有任何TPS插入点。为了得到对于这些OFDM符号的信道估计,执行对先前计算的信道估计的时间内插。在高移动性的应用中,应该在每个OFDM符号中都包括TPS以避免在时间步中对于这种最后内插的需要。
当根据分散模式计算离散傅立叶变换时,在OFDM接收机处可以应用一种快速算法,以便提取组合的导频和快速信令消息。这降低了OFDM接收机处的功率损耗。
已经关于MIMO-OFDM通信系统描述了本发明。本发明还可以用于单个发射机OFDM通信系统中,但是优点较少,因为作为开销传输的导频符号的数目比在MIMO OFDM通信系统中更加易于管理。
将导频符号和TPS信道相组合的方法和提取导频符号的方法,优选地由数字信号处理器以可读的软件指令的形式分别在OFDM发射机和OFDM接收机上实现。可替换地,这些方法可被实现为集成电路内的逻辑电路。一般而言,这些方法可以通过任何包含有用于执行所描述功能的逻辑部分的计算设备来实现。实现这些方法的计算设备可以是单个的处理器,多于一个处理器或是较大处理器的一部分。该逻辑部分可以包括存储在计算机可读介质上的外部指令,或者可以包括内部电路。
传统STBC的其中一个限制是对于精确的信道信息知识的需要。为了消除对于信道知识和导频符号传输的要求,D-STBC优选地用于高移动性应用。
尽管该技术可适用于任意数目的天线,但现在提供一个详细的例子,其中采用2输入2输出系统。此外,尽管可以采用任意数目的副载波,但对于这个例子,假设OFDM符号具有25个副载波。假设这个例子是对有16个OFDM符号的帧进行操作,但更一般而言可以采用任何长度的帧。
优选的D-STBC机制在图8中示出,并在下面详细描述。为了设计用于MIMO-OFDM的D-STBC,有3个主要问题需要解决。
1.差分方向
2.数据保护
3.初始化/复位
差分方向
对于任何差分编码的一个关键性假设是两个编码符号之间的信道变化应该充分小。对于如图9中所示的OFDM信号的时间-频率结构,沿频率轴的信道变化表示多径信道引起的频率选择性,沿时间轴的信道变化表示时间的衰落变化。差分编码方向应该被最优化。
频率差分被由多径延迟扩展所确定的信道相干带宽所限制。两个相邻导频之间的相移可能非常大,例如,对于ITU车辆(Vehicular)A信道来说,如果两个导频块分开16个仓(bin),则两个位置之间的信道的相移高达π,这使得不可能进行差分译码。为了解决这个问题,在频域的导频的跨距必须被减少。但是,这将进一步增加导频开销。
时间差分被由高速移动性造成的多普勒频率所限制。对于实际的信道模型,我们可以假设信道随着几个OFDM符号近似保持相同。沿时间方向的信道变化比沿频率方向的信道变化慢得多,因此,应该优选地沿时间方向编码D-STBC。根据本发明的优选实施例,由于STBC结构,在两个相邻的OFDM符号的相同频率索引(副载波)上分配一对STBC编码的TPS符号。两个可能的差分在图9中示出。时间差分编码通常用900指示,而频率差分编码通常用902指示。
数据保护
优选地将FEC编码技术应用到TPS数据,因为TPS数据的译码对于配置接收机以正确地检测业务量数据,以及正确地重编码TPS数据以便允许精确的判决反馈可靠地将TPS转换成分散的导频来说是关键的。例如可以使用(32,6)哈德马得(Hadamard)码。然而,编码选择并只不局限于这种码。
初始化和复位
D-STBC依靠两个连续接收的码块来对当前的数据块进行译码。因为由于频率偏移和采样频率估计等的原因,OFDM头可能没有采用D-STBC,所以第一个接收到的D-STBC块不具有任何先前的块来进行差分处理。这意味着TPS的第一个块不能携带任何信令信息。为了解决这个问题,优选地将导频信道OFDM符号周期性地插入OFDM符号中。图10中示出这样的一个例子,其中在每个副载波中周期性地插入导频符号,例如每20个OFDM符号中插入2个导频信道OFDM符号。在给定频率,优选地在某一时间只由一个天线发送在导频信道OFDM符号上传输的导频符号。例如,在具有两个天线的系统中,导频符号可以在第一和第二天线之间的频率中交替。这在图10中示出,其中两个OFDM符号910和912用于传输导频符号,每个奇数副载波用于第一天线,每个偶数副载波用于第二天线。然后,这些导频符号可以被用作随后的D-STBC符号的参考。对于每个天线,可以执行内插来获得导频信息,用于介于中间的未传输的副载波。这样,对于第一发射机对偶数副载波执行内插,对于第二发射机对奇数副载波执行内插。
然后,将从导频头获得的信道信息用于译码TPS的第一个块。因为导频头是周期性传输的,所以也以相同的频率复位D-STBC编码器。在处理过TPS的第一个块之后,用户还已经得到D-STBC参考的第一个块。此外,通过周期性的导频头执行的D-STBC编码器复位防止在判决反馈信道估计过程中的错误传播。
图10还示出TPS符号和数据符号的示例性的位置。在这个例子中,每20个符号周期的最初两个OFDM符号910和912包含如上所述的导频符号。第三到第二十个帧包含TPS或数据。菱形点阵模式被用于TPS符号,其中每第三个副载波包含有TPS符号,在第一、第七、第十三、第十九和第二十五副载波914、916、918、920、922上的三组两个TPS符号,以及在第四、第十、第十六和第二十二副载波924、925、926、928上的两组两个TPS符号之间交替。
不同于由每个副载波一个天线传输的帧910和912中传输的导频符号,对于图10中所示的每个TPS符号位置,TPS数据由所有天线传输(即,这个例子中的两个天线)。在两个天线上发射的TPS数据共同形成公共的TPS信道。
图11示出在各种多普勒频率下的TPS误码率相对SNR的曲线。可以从图中看到,对于多普勒扩展来说,它是非常健壮的。图12示出基于TPS辅助的信道估计的业务量信道的仿真结果。从这张图中可以看出,由于TPS译码误差造成的降级是可以忽略的。
现在将说明优选的D-STBC方法的细节。D-STBC包括传输矩阵的递归计算。通过“差分”是指当前传输的D-STBC块是先前传输的D-STBC块和当前STBC块输入之间的矩阵积运算。
如上所述,优选地,TPS数据为一组副载波的同一个副载波而在两个连续OFDM符号上传输,该组副载波可以从一组两个OFDM符号变到另一组两个OFDM符号。一般而言,对于具有N个天线的MIMO系统,TPS数据通过同一个副载波的N个连续的OFDM帧传输。传输矩阵是N×N矩阵,确定在N(连续的OFDM帧)×N(天线的数目)个可用的TPS符号位置上传输的是什么。对于该详细描述的例子,N=2。传输的TPS数据的实际数量L取决于D-STBC编码率。例如,如果有四个天线,则对来自MPSK映射的TPS信令流的三个符号进行编码可以获得4×4的STBC矩阵。
参考图10,由两个天线传输的第一副载波将在第三、第四、第九、第十和第十五、第十六帧上包含TPS数据。该数据既被时间差分编码又被空间差分编码,这意味着既有在不同时间(差分时间)发送的符号之间的差别的信息,又有在不同天线(差分空间)上发送的符号之间的差别的信息。
由第一天线在第一副载波上传输的第一和第二导频符号930(帧910)和932(帧912)以及由第二天线在第一副载波上传输的该第一导频和第二导频符号的内插值一起共同提供由这两个天线传输的最初两个TPS符号934和936的参考。随后的TPS符号依靠先前传输的TPS符号作为参考。
现在参考图8,要在给定副载波上传输的前向纠错的TPS数据被表示为序列{c1,c2...}950,实际上假设为多元的。这在952被M-PSK映射。然后,M-PSK符号被成对地处理(2×2的情况),令一对在时间i的M-PSK符号被称为{x1,i,x2,i}。空时块编码产生一个2×2的STBC矩阵Hx,i954,它在第一列中包含x1,i和x2,i,在第二列中包含-x2,i*和-x1,i*。对于TPS帧来说,STBC块的索引i每2个OFDM符号递增一次。计数器m将根据发射机STBC块的索引i,用第m和第m+1OFDM符号来表示OFDM符号,其中m=2i。在图中,在时间i的编码器输出被标识为Hz,i,956,而存储在延迟元件中的在时间i-1的输出被标识为Hz,i-1*Hz,i具有和Hx,i相同的结构。可以获得下列的编码器公式,输出作为输入的函数:
H z , i = 1 E x H x , i H z , i - 1
其中Hz,i是STBC块的索引为i的D-STBC矩阵,Hx,i是STBC块的索引为i的STBC输入矩阵,Ex是Hz,i中每个信号的能量。输出Hz,i是具有四个元素的2×2矩阵,其中第一行元素是在天线960上传输的,而第二行元素是在另一个天线962上传输的。对于图10的例子,矩阵Hz,i是在第一副载波的TPS符号位置934和936使用导频符号作为参考期间,由两个天线共同传输的。
再次参考图8,在单个的天线接收机处,天线通过每个副载波的两个OFDM帧m和m+1接收STBC块索引i的信号Y1=y1(m),y1(m+1)。这将会通过两个OFDM帧在单个副载波上接收。
为了理解D-STBC,注意观察下列对于天线1适用的关键公式:
y 1 ( m ) y 1 ( m + 1 ) = H z , i A 1 , i
= 1 E x H x , i H z , i - 1 A 1 , i
≈ 1 E x H x , i y 1 ( m - 2 ) y 1 ( m - 1 )
其中y1(m)和y1(m+1)是通过STBC块索引为i的两个OFDM帧接收到的信号,Hx,i是STBC块索引为i时的STBC块输入,Ex是Hx,i中信号元素的能量,A1,i是接收天线1的信道矩阵,表示STBC块索引为i时从第一发射天线到接收天线的信道响应h11以及h21表示从第二发射天线到接收天线的信道响应,并且Hz,i是STBC块索引为i时传输的D-STBC块信号。D-STBC只可以用于PSK调制,因此Ex是固定值。此外,Hz,i和Hx,i的格式相同,即:
H z , i = z 1 , i z 2 , i - z 2 , i * z 1 , i * .
根据该公式
y 1 ( m ) y 1 ( m + 1 ) ≈ 1 E x H x , i y 1 ( m - 2 ) y 1 ( m - 1 )
我们可以从四个连续接收到的信号y1(m-2),y1(m-1),y1(m)和y1(m+1)中得到Hx,i。注意在具有多个接收机天线的情况下,相同的表达适用于每个天线。因为D-STBC在STBC块上工作,所以它具有和STBC一样的软故障特性,即,只要仍有至少一个天线在工作,系统就不会由于发射天线的故障而被破坏。此外,用于MIMO信道的代码设计实际上是STBC的任务,与D-STBC不相关。因此,D-STBC可以容易地扩展到具有多于2的发射机分集级的情况。
其他系统设计考虑因素
编码
尽管在理论上差分编码是在STBC编码之后(即,先计算STBC矩阵Hx,i然后才计算Hz,i),但是实际上,这些步骤的顺序可以颠倒。颠倒顺序的主要优点是STBC编码过程可以统一,这使得它非常简单而且容易实现。为了说明起见,我们可以首先从x1,i和x2,i计算z1,i和z2,i,然后将z1,i和z2,i凿入(puncture)或插入到要被STBC编码的数据流中。元素z1,i和z2,i可以按如下计算:
z 1 , i = 1 E ( x 1 , i z 1 , i - 1 - x 2 , i x 2 , i - 1 * )
z 2 , i = 1 E ( x 1 , i z 2 , i - 1 + x 2 , i z 1 , i - 1 * )
上述公式是D-STBC编码器需要的唯一运算,其中不包括矩阵运算。合成矩阵Hz,i的一行,即z1,i和z2,i由一个天线传输,而另一行,即-z2,I *和z1,I *由另一个天线传输。
译码
考虑不需要信道估计的情况,对差分编码的STBC码进行译码可以简化成一个步骤,甚至比STBC译码本身更简单。注意在此的所有计算都在频域执行,因此,传输信号和信道之间的关系是相乘而不是卷积的关系。
定义:
m:OFDM符号对应时间的索引
i:OFDM信道估计索引=2m
k:OFDM副载波索引
x1,i:形成STBC块Hx,i的第一PSK符号
x2,i:形成STBC块Hx,i的第二PSK符号
yj(m):在天线接收到的信号,j=1,2
在时间m和m+1传输的STBC编码信号(即,在差分编码器之前)是:
x 1 , i x 2 , i - x 2 , i * x 1 , i * ,
其中列数是在空间域,而行数是在时间域。注意该关系在每一副载波的基础上适用。
在使用差分编码的情况下,对于STBC块索引在两个接收天线处接收到的信号可以为每个副载波用如下公式表示(未示出副载波索引),其中仍然m=2i:
y 1 ( m ) y 1 ( m + 1 ) = 1 2 x 1 , i x 2 , i - x 2 , i * x 1 * y 1 ( m - 2 ) y 1 ( m - 1 )
y 2 ( m ) y 2 ( m + 1 ) = 1 2 x 1 , i x 2 , i - x 2 , i * x 1 , i * y 2 ( m - 2 ) y 2 ( m - 1 )
根据上述两个公式,x1,i和x2,i的最大似然信号可以由如下公式得到:
x ~ 1 , i = y 1 ( m - 2 ) * y 1 ( m ) + y 1 ( m - 1 ) y 1 ( m + 1 ) *
+ y 2 ( m - 2 ) * y 2 ( m ) + y 2 ( m - 1 ) y 2 ( m + 1 ) *
x ~ 2 , i = y 1 ( m - 1 ) * y 1 ( m ) - y 1 ( m - 2 ) y 1 ( m + 1 ) *
+ y 2 ( m - 1 ) * y 2 ( m ) - y 2 ( m - 2 ) y 2 ( m + 1 ) *
或者以矩阵形式表示:
x ~ 1 , i x ~ 2 , i = y 1 ( m - 2 ) * y 1 ( m - 1 ) y 1 ( m - 1 ) * - y 1 ( m - 2 ) y 1 ( m ) y 1 ( m + 1 ) *
+ y 2 ( m - 2 ) * y 2 ( m - 1 ) y 2 ( m - 1 ) * - y 2 ( m - 2 ) y 2 ( m ) y 2 ( m + 1 ) *
以框图形式在图8的接收机路径中描述上述矩阵公式。
信道估计
因为最后传输的数据是D-STBC编码的,所以每条路径的信道参数只能在TPS已经被成功译码之后,才能通过重编码该译码的数据进行估计。这种判决反馈方法是如何使用TPS作为分散的导频的关键。
假设在D-STBC重编码之后,我们获得分别对应于x1,i和x2,i的z1,i和z2,i,然后从接收机天线1我们得到
y 1 ( m ) y 1 ( m + 1 ) = z 1 , i z 2 , i - z 2 , i * z 1 , i * h 11 ( m ) h 21 ( m ) .
通过求解上述公式,我们得到
h 11 ( m ) h 21 ( m ) = 1 δ 2 z 1 , i * - z 2 , i z 2 , i * z 1 , i y 1 ( m ) y 1 ( m + 1 ) ,
其中
δ2=|z1,i|2+|z2,i|2
用相似的方式,我们可以根据在接收机天线2处接收到的信号估计h12(m,k)和h22(m,k):
h 12 ( m ) h 22 ( m ) = 1 δ 2 z 1 , i * - z 1 , i z 2 , i * z 2 , i y 2 ( m ) y 2 ( m + 1 ) .
需要注意的是:对于每个STBC块,我们只能得到当前时间的一组信道信息,假设该信道在这段时期期间近似相同。如前面所指出的,这个条件很容易满足。此外,所有这些都是适合于用于传输导频/TPS数据的STBC块的副载波。
上述只是为了说明本发明的原理的应用。在不脱离本发明的精神和范围的情况下,本领域的技术人员可以实现其他的装置和方法。

Claims (16)

1. 一种适于测量信道质量的信道质量测量设备,在该信道上已传输由编码和星座映射源数据元素序列而产生的符号序列,该设备包括:
符号解映射器,用于通过其质量要被测量的信道,接收一个接收到的符号的序列作为输入,所述符号解映射器适于在所述接收到符号的序列上执行符号解映射,以便产生软数据元素判决的序列;
软译码器,用于接收由该符号解映射器产生的软数据元素判决的序列作为输入,该软译码器适于对软数据元素判决的序列进行译码以便产生译码的输出序列;
编码器,用于接收由该软译码器产生的译码的输出序列作为输入,所述编码器适于使用一个与用于编码该源数据元素序列的码相同的码来重编码所述译码的输出序列,以便产生重编码的输出序列;以及
相关器,用于接收由该解映射器产生的软数据元素判决序列和由该编码器产生的重编码的输出序列作为输入,所述相关器适于通过确定软数据元素判决序列和重编码输出序列之间的相关性来产生信道质量指示符输出。
2. 根据权利要求1所述的信道质量测量设备,其中所述符号解映射器适于执行QPSK符号解映射。
3. 根据权利要求1所述的信道质量测量设备,其中所述符号解映射器适于执行欧几里德距离条件对数似然比符号解映射。
4. 一种测量信道的信道质量的方法,在该信道上已传输由编码和星座映射源数据元素序列产生的符号序列,该方法包括:
通过其质量要被测量的信道接收一个接收到的符号的序列;
符号解映射所述接收到符号的序列以产生软数据元素判决的序列;
译码所述软数据元素判决的序列以产生译码的输出序列;
使用一个与用于编码该源数据元素序列的码相同的码来重编码所述译码的输出序列,以便产生重编码的输出序列;以及
将所述重编码的输出序列和所述软数据元素判决的序列相关以便产生信道质量指示符输出。
5. 根据权利要求4所述的测量信道的信道质量的方法,其中所述接收到符号的序列的符号解映射是QPSK符号解映射。
6. 根据权利要求4所述的测量信道的信道质量的方法,其中所述接收到符号的序列的符号解映射是欧几里德距离条件对数似然比符号解映射。
7. 一种测量正交频分复用信道的正交频分复用信道质量的方法,在该信道上已传输正交频分复用符号序列,所述正交频分复用符号包含有编码和星座映射的源数据元素序列,该方法包括:
通过其质量要被测量的正交频分复用信道接收正交频分复用符号的序列;
符号解映射所述接收到符号的序列以产生软数据元素判决的序列;
译码所述软数据元素判决的序列以产生关于所述源数据元素序列的、译码的输出序列;
使用一个与用于编码该源数据元素序列的码相同的码来重编码所述译码的输出序列,以便产生重编码的输出序列;以及
将所述重编码的输出序列和所述软数据元素判决的序列相关以产生信道质量指示符输出。
8. 根据权利要求7所述的测量正交频分复用信道的正交频分复用信道质量的方法,其中所述接收到符号的序列的符号解映射是QPSK符号解映射。
9. 根据权利要求7所述的测量正交频分复用信道的正交频分复用信道质量的方法,其中所述接收到符号的序列的符号解映射是欧几里德距离条件对数似然比符号解映射。
10. 根据权利要求7所述的测量正交频分复用信道的正交频分复用信道质量的方法,其中译码所述软数据元素判决的序列以便产生译码的输出序列还包括:使用软数据元素判决的历史;以及使用与编码通过所述信道传输的符号序列有关的信息。
11. 一种通信系统,包括:
一个发射机,适于通过信道传输由编码和星座映射源数据元素序列而产生的符号序列;以及
一个接收机,该接收机包括:
a)符号解映射器,用于通过信道接收一个接收到的符号的序列作为输入,所述符号解映射器适于在所述接收到符号的序列上执行符号解映射,以便产生软数据元素判决的序列;
b)软译码器,用于接收由该符号解映射器产生的软数据元素判决的序列作为输入,该软译码器适于对软数据元素判决的序列进行译码,以便产生译码的输出序列;
c)编码器,用于接收由该软译码器产生的译码的输出序列作为输入,所述编码器适于使用一个与用于编码该源数据元素序列的码相同的码来重编码所述译码的输出序列,以便产生重编码的输出序列;以及
d)相关器,用于接收由该解映射器产生的软数据元素判决的序列和由该编码器产生的重编码的输出序列作为输入,所述相关器适于通过确定软数据元素判决的序列和重编码的输出序列之间的相关性来产生信道质量指示符输出,
其中,该接收机适于将信道质量指示符反馈回发射机,而该发射机适于使用所述信道质量指示符以确定适合的编码速率和调制并将其应用到源数据元素序列。
12. 根据权利要求11所述的通信系统,其中所述符号解映射器适于执行QPSK符号解映射。
13. 根据权利要求11所述的通信系统,其中所述符号解映射器适于执行欧几里德距离条件对数似然比符号解映射。
14. 一种自适应调制和编码的方法,该方法包括:
发送方通过信道传输由编码和星座映射源数据元素序列产生的符号序列;
接收方通过该信道接收一个接收到的符号的序列;
符号解映射所述接收到符号的序列以产生软数据元素判决的序列;
译码所述软数据元素判决的序列以产生译码的输出序列;
使用一个与用于编码该源数据元素序列的码相同的码来重编码所述译码的输出序列,以便产生重编码的输出序列;
将所述重编码的输出序列和所述软数据元素判决的序列相关以便产生信道质量指示符输出;
接收方传输该信道质量指示符到发送方;以及
发送方使用所述信道质量指示符以确定适合的编码速率和调制并将其应用到源数据元素序列。
15. 根据权利要求14所述的自适应调制和编码的方法,其中所述接收到符号的序列的符号解映射是QPSK符号解映射。
16. 根据权利要求14所述的自适应调制和编码的方法,其中所述接收到符号的序列的符号解映射是欧几里德距离条件对数似然比符号解映射。
CNB02825273XA 2001-10-17 2002-10-15 信道质量测量方法和设备、通信系统、自适应调制和编码方法 Expired - Lifetime CN100420178C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US32951501P 2001-10-17 2001-10-17
US32951101P 2001-10-17 2001-10-17
US60/329,515 2001-10-17
US60/329,511 2001-10-17
US10/038,916 US7773699B2 (en) 2001-10-17 2002-01-08 Method and apparatus for channel quality measurements
US10/038,916 2002-01-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2008101442780A Division CN101355405B (zh) 2001-10-17 2002-10-15 信道质量测量方法和设备、通信系统、自适应调制和编码方法

Publications (2)

Publication Number Publication Date
CN1605171A CN1605171A (zh) 2005-04-06
CN100420178C true CN100420178C (zh) 2008-09-17

Family

ID=27365471

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB02825273XA Expired - Lifetime CN100420178C (zh) 2001-10-17 2002-10-15 信道质量测量方法和设备、通信系统、自适应调制和编码方法
CN2008101442780A Expired - Lifetime CN101355405B (zh) 2001-10-17 2002-10-15 信道质量测量方法和设备、通信系统、自适应调制和编码方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2008101442780A Expired - Lifetime CN101355405B (zh) 2001-10-17 2002-10-15 信道质量测量方法和设备、通信系统、自适应调制和编码方法

Country Status (7)

Country Link
US (3) US7773699B2 (zh)
EP (3) EP2264928A3 (zh)
KR (2) KR101020461B1 (zh)
CN (2) CN100420178C (zh)
AU (1) AU2002331504A1 (zh)
HK (1) HK1127678A1 (zh)
WO (1) WO2003034646A2 (zh)

Families Citing this family (218)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US7295509B2 (en) 2000-09-13 2007-11-13 Qualcomm, Incorporated Signaling method in an OFDM multiple access system
US6810236B2 (en) 2001-05-14 2004-10-26 Interdigital Technology Corporation Dynamic channel quality measurement procedure for adaptive modulation and coding techniques
US7773699B2 (en) * 2001-10-17 2010-08-10 Nortel Networks Limited Method and apparatus for channel quality measurements
US7245598B2 (en) * 2002-02-21 2007-07-17 Qualcomm Incorporated Feedback of channel quality information
US7986672B2 (en) * 2002-02-25 2011-07-26 Qualcomm Incorporated Method and apparatus for channel quality feedback in a wireless communication
JP4078848B2 (ja) * 2002-02-26 2008-04-23 Kddi株式会社 時空間ブロック符号を用いた適応符号化方法及び送信装置
JP3691449B2 (ja) * 2002-03-25 2005-09-07 三洋電機株式会社 ダイバーシティ回路およびこの回路を備えるダイバーシティ受信装置
US6898757B1 (en) * 2002-04-04 2005-05-24 Legend Silicon Corporation Decoding multi-block product code
US6829470B2 (en) * 2002-04-08 2004-12-07 Lucent Technologies Inc. Per stream rate control using APP decoding
US6801580B2 (en) * 2002-04-09 2004-10-05 Qualcomm, Incorporated Ordered successive interference cancellation receiver processing for multipath channels
US20050237919A1 (en) * 2002-06-21 2005-10-27 Hartmut Pettendorf Generation of orthogonal codes
CN1663144B (zh) * 2002-06-26 2010-04-28 美国博通公司 用于时空Turbo编码调制的装置及方法
US8194770B2 (en) 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
US20040081131A1 (en) 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
US8134976B2 (en) * 2002-10-25 2012-03-13 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8218609B2 (en) 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
US8570988B2 (en) 2002-10-25 2013-10-29 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8320301B2 (en) 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US8169944B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US7986742B2 (en) 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US8170513B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Data detection and demodulation for wireless communication systems
US8208364B2 (en) * 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US7002900B2 (en) 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US7324429B2 (en) 2002-10-25 2008-01-29 Qualcomm, Incorporated Multi-mode terminal in a wireless MIMO system
KR100542090B1 (ko) * 2002-12-16 2006-01-11 한국전자통신연구원 무선 통신 시스템에서의 오류 제어 방법, 매체 접속 제어프레임 설계 방법 및 단말기 등록 방법과 기록 매체
JP4256158B2 (ja) * 2002-12-26 2009-04-22 パナソニック株式会社 無線通信装置及び無線通信方法
US7280467B2 (en) * 2003-01-07 2007-10-09 Qualcomm Incorporated Pilot transmission schemes for wireless multi-carrier communication systems
DE10304751A1 (de) * 2003-02-05 2004-08-26 Siemens Ag Verfahren zur Übertragung von Daten in einem Mehrträger-Funkkommunikationssystem
US7379417B2 (en) * 2003-02-19 2008-05-27 Wipro Limited Orthogonal frequency division multiplexing transmitter system and VLSI implementation thereof
FR2853182B1 (fr) * 2003-03-25 2005-06-17 Thales Sa Procede permettant d'augmenter la capacite d'un systeme de transmission utilisant des formes d'onde
US7593363B2 (en) 2003-05-06 2009-09-22 Nokia Siemens Networks Gmbh & Co. Kg Data transmission method
DE10320156A1 (de) * 2003-05-06 2004-12-16 Siemens Ag Verfahren zur Datenübertragung
US8064528B2 (en) 2003-05-21 2011-11-22 Regents Of The University Of Minnesota Estimating frequency-offsets and multi-antenna channels in MIMO OFDM systems
US8018902B2 (en) * 2003-06-06 2011-09-13 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatus for channel quality indicator determination
WO2004114695A1 (ja) * 2003-06-19 2004-12-29 Mitsubishi Denki Kabushiki Kaisha 無線基地局装置と移動体通信システム
US20050025040A1 (en) * 2003-07-29 2005-02-03 Nokia Corporation Method and apparatus providing adaptive learning in an orthogonal frequency division multiplex communication system
CN101646246B (zh) * 2003-08-06 2013-01-16 松下电器产业株式会社 无线通信装置和无线通信方法
US7388847B2 (en) * 2003-08-18 2008-06-17 Nortel Networks Limited Channel quality indicator for OFDM
US7453946B2 (en) * 2003-09-03 2008-11-18 Intel Corporation Communication system and method for channel estimation and beamforming using a multi-element array antenna
US7382719B2 (en) * 2003-09-05 2008-06-03 Texas Instruments Incorporated Scalable and backwards compatible preamble for OFDM systems
KR100929094B1 (ko) * 2003-09-20 2009-11-30 삼성전자주식회사 직교 주파수 분할 다중 접속 방식을 사용하는 이동 통신시스템에서 동적 자원 할당 시스템 및 방법
US7616698B2 (en) 2003-11-04 2009-11-10 Atheros Communications, Inc. Multiple-input multiple output system and method
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
US7016297B2 (en) * 2003-12-10 2006-03-21 Clive K Tang Method and apparatus providing decentralized, goal-orientated adaptive learning in an adaptive orthogonal frequency division multiplex communication system
EP1542488A1 (en) * 2003-12-12 2005-06-15 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for allocating a pilot signal adapted to the channel characteristics
US20050190800A1 (en) * 2003-12-17 2005-09-01 Intel Corporation Method and apparatus for estimating noise power per subcarrier in a multicarrier system
KR100981580B1 (ko) * 2003-12-23 2010-09-10 삼성전자주식회사 8 개 이하의 송신 안테나를 사용하는 차등 시공간 블록 부호 송수신 장치
EP1712019B1 (en) 2004-01-29 2014-01-15 Neocific, Inc. Methods and apparatus for overlaying multi-carrier and direct sequence spread spectrum signals in a broadband wireless communication system
WO2005109705A1 (en) 2004-05-01 2005-11-17 Neocific, Inc. Methods and apparatus for communication with time-division duplexing
US7756003B1 (en) 2004-02-27 2010-07-13 Marvell International Ltd. Adaptive OFDM transmitter based on carrier frequency offset
EA009631B1 (ru) 2004-03-05 2008-02-28 Некстнет Уайрлесс, Инк. Система и способ адаптивной модуляции
CN103516459B (zh) 2004-03-15 2016-09-21 苹果公司 用于具有四根发射天线的ofdm系统的导频设计
EP1583277A1 (en) * 2004-03-31 2005-10-05 Infineon Technologies AG MIMO-OFDM backward-compatible transmission system
US8958493B2 (en) 2004-03-31 2015-02-17 Infineon Technologies Ag Operation for backward-compatible transmission
JP4750373B2 (ja) * 2004-04-28 2011-08-17 株式会社エヌ・ティ・ティ・ドコモ 無線制御装置、移動通信システムおよび通信制御方法
KR100635533B1 (ko) * 2004-05-07 2006-10-17 전자부품연구원 시변 채널에서 stbc-ofdm 신호 검출 방법 및 장치
CN100359959C (zh) 2004-06-01 2008-01-02 华为技术有限公司 一种在正交多路频分复用系统中实现信道估计的方法
EP1762032A1 (en) * 2004-06-21 2007-03-14 Koninklijke Philips Electronics N.V. Modulation of data streams with constellation subset mapping
WO2005125020A1 (en) * 2004-06-22 2005-12-29 Nortel Networks Limited Methods and systems for enabling feedback in wireless communication networks
CN102655446B (zh) * 2004-06-30 2016-12-14 亚马逊科技公司 用于控制信号传输的装置和方法、以及通信方法
WO2006002550A1 (en) * 2004-07-07 2006-01-12 Nortel Networks Limited System and method for mapping symbols for mimo transmission
US8000221B2 (en) * 2004-07-20 2011-08-16 Qualcomm, Incorporated Adaptive pilot insertion for a MIMO-OFDM system
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US7864659B2 (en) * 2004-08-02 2011-01-04 Interdigital Technology Corporation Quality control scheme for multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems
KR100719339B1 (ko) * 2004-08-13 2007-05-17 삼성전자주식회사 다중 입력 다중 출력 무선 통신 시스템에서 채널 추정을통한 프레임 송수신 방법
US20060088112A1 (en) * 2004-09-08 2006-04-27 Das Suvra S Process and a system for transmission of data
KR100913873B1 (ko) * 2004-09-13 2009-08-26 삼성전자주식회사 고속 전송률을 가지는 차등 시공간 블록 부호 장치 및 방법
KR101079102B1 (ko) * 2004-09-30 2011-11-02 엘지전자 주식회사 Ofdm/ofdma 무선 통신 시스템에서의 데이터 전송 및 채널정보 추정 방법
CN100566317C (zh) * 2004-10-22 2009-12-02 财团法人工业技术研究院 基于频率相关性的相干正交频分复用接收器同步方法与装置
US7123669B2 (en) * 2004-10-25 2006-10-17 Sandbridge Technologies, Inc. TPS decoder in an orthogonal frequency division multiplexing receiver
WO2006060892A1 (en) * 2004-12-10 2006-06-15 Nortel Networks Limited Ofdm system with reverse link interference estimation
KR100657511B1 (ko) 2004-12-11 2006-12-20 한국전자통신연구원 직교주파수 분할 다중 접속 방식의 기지국 복조 장치
CN1790976A (zh) * 2004-12-17 2006-06-21 松下电器产业株式会社 用于多天线传输中的重传方法
US7852822B2 (en) * 2004-12-22 2010-12-14 Qualcomm Incorporated Wide area and local network ID transmission for communication systems
US7499452B2 (en) * 2004-12-28 2009-03-03 International Business Machines Corporation Self-healing link sequence counts within a circular buffer
US20060159194A1 (en) * 2005-01-20 2006-07-20 Texas Instruments Incorporated Scalable pre-channel estimate phase corrector, method of correction and MIMO communication system employing the corrector and method
US8363604B2 (en) 2005-02-01 2013-01-29 Qualcomm Incorporated Method and apparatus for controlling a transmission data rate based on feedback relating to channel conditions
US8811273B2 (en) 2005-02-22 2014-08-19 Texas Instruments Incorporated Turbo HSDPA system
KR100698770B1 (ko) * 2005-03-09 2007-03-23 삼성전자주식회사 광대역 무선통신시스템에서 시공간 부호화 데이터의 부반송파 사상 장치 및 방법
US9246560B2 (en) * 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US8446892B2 (en) 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US9520972B2 (en) * 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9408220B2 (en) 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9036538B2 (en) 2005-04-19 2015-05-19 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US20060245509A1 (en) * 2005-04-27 2006-11-02 Samsung Electronics Co., Ltd Method and system for processing MIMO pilot signals in an orthogonal frequency division multiplexing network
EP2288100B1 (en) 2005-04-29 2013-06-05 Sony Deutschland Gmbh Transmitting device, receiving device and communication method for an OFDM communication system with new preamble structure
US7466749B2 (en) * 2005-05-12 2008-12-16 Qualcomm Incorporated Rate selection with margin sharing
EP3029846A3 (en) * 2005-05-13 2016-08-17 Dspace Pty Ltd Method and system for communicating information in a digital signal
US8565194B2 (en) * 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8611284B2 (en) 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
KR100800853B1 (ko) 2005-06-09 2008-02-04 삼성전자주식회사 통신 시스템에서 신호 수신 장치 및 방법
WO2006133599A1 (en) * 2005-06-15 2006-12-21 Huawei Technologies Co., Ltd. Method and system for channel quality estimation
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US8358714B2 (en) 2005-06-16 2013-01-22 Qualcomm Incorporated Coding and modulation for multiple data streams in a communication system
KR100880991B1 (ko) * 2005-06-16 2009-02-03 삼성전자주식회사 이동통신 시스템에서 다중 안테나를 이용한 파일럿 송수신장치 및 방법
US8599945B2 (en) * 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US7783267B1 (en) * 2005-06-23 2010-08-24 Magnolia Broadband Inc. Modifying a signal in response to quality indicator availability
EP1750405B1 (en) * 2005-08-01 2007-06-27 Alcatel Lucent Reducing overhead for channel allocation in downlink of a multicarrier system
US20070183386A1 (en) * 2005-08-03 2007-08-09 Texas Instruments Incorporated Reference Signal Sequences and Multi-User Reference Signal Sequence Allocation
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US7808883B2 (en) * 2005-08-08 2010-10-05 Nokia Corporation Multicarrier modulation with enhanced frequency coding
WO2007020512A2 (en) * 2005-08-12 2007-02-22 Nokia Corporation Method, system, apparatus and computer program product for placing pilots in a multicarrier mimo system
SG165389A1 (en) 2005-08-16 2010-10-28 Qualcomm Inc Methods and systems for adaptive server selection in wireless communications
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US20070041457A1 (en) 2005-08-22 2007-02-22 Tamer Kadous Method and apparatus for providing antenna diversity in a wireless communication system
WO2007022630A1 (en) 2005-08-23 2007-03-01 Nortel Networks Limited Methods and systems for ofdm multiple zone partitioning
EP3709554B1 (en) 2005-08-23 2021-09-22 Apple Inc. Pilot design for ofdm systems with four transmit antennas
US8644292B2 (en) 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
DE102005040067B4 (de) * 2005-08-24 2007-08-30 Siemens Ag Verfahren Sendevorrichtung und Empfangsvorrichtung zum Kodieren von Daten mit einem differenziellen Raum-Zeit-Blockkode
US9136974B2 (en) * 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
KR100965669B1 (ko) * 2005-09-27 2010-06-24 삼성전자주식회사 다중 입력 다중 출력 방식을 사용하는 이동 통신시스템에서 신호 송수신 시스템 및 방법
EP1944895A4 (en) * 2005-09-30 2014-03-05 Sharp Kk RADIO TRANSMITTER, RADIO RECEPTION DEVICE, WIRELESS COMMUNICATION SYSTEM, RADIO END METHOD AND RADIO RECEPTION PROCEDURE
US8363739B2 (en) 2005-09-30 2013-01-29 Apple Inc. Pilot scheme for a MIMO communication system
EP3576337A1 (en) 2005-09-30 2019-12-04 Apple Inc. Synchronization channel for scalable wireless mobile communication networks
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US8045512B2 (en) 2005-10-27 2011-10-25 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US8582509B2 (en) 2005-10-27 2013-11-12 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
ES2342493T3 (es) * 2005-10-27 2010-07-07 Qualcomm Incorporated Procedimiento y aparato para la generacion de una permutacion para salto de enlace inverso en un sistema de comunicacion inalambrico.
FR2893433B1 (fr) * 2005-11-16 2008-06-27 Commissariat Energie Atomique Procedes et dispositifs de demodulation souple dans un systeme ofdm-cdma.
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US7706328B2 (en) 2006-01-04 2010-04-27 Qualcomm Incorporated Methods and apparatus for position location in a wireless network
US8700082B2 (en) * 2006-01-05 2014-04-15 Qualcomm Incorporated Power control utilizing multiple rate interference indications
US8831607B2 (en) 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
DE102006002696B4 (de) * 2006-01-19 2008-05-15 Nokia Siemens Networks Gmbh & Co.Kg Verfahren zur Codierung von Datensymbolen
US7940640B2 (en) 2006-01-20 2011-05-10 Nortel Networks Limited Adaptive orthogonal scheduling for virtual MIMO system
KR101221706B1 (ko) * 2006-01-25 2013-01-11 삼성전자주식회사 고속 패킷 데이터 시스템의 순방향 링크에서 다중 입력 다중 출력 기술을 지원하는 송수신 장치 및 방법
WO2007087602A2 (en) 2006-01-25 2007-08-02 Texas Instruments Incorporated Method and apparatus for increasing the number of orthogonal signals using block spreading
KR100996417B1 (ko) * 2006-02-03 2010-11-25 삼성전자주식회사 디지털 멀티미디어 방송시스템에서 시그널링 파라미터를 송수신하는 방법 및 장치
KR100934656B1 (ko) 2006-02-06 2009-12-31 엘지전자 주식회사 다중 반송파 시스템에서의 무선 자원 할당 방법
KR100751509B1 (ko) * 2006-03-06 2007-08-22 재단법인서울대학교산학협력재단 부분적 공유를 이용한 선택적 채널 피드백 시스템 및 방법
US20070234189A1 (en) * 2006-03-31 2007-10-04 Sharon Levy System and method for reducing false alarm in the presence of random signals
KR101345351B1 (ko) * 2006-06-08 2013-12-30 코닌클리케 필립스 엔.브이. 공간-시간-주파수 코딩 방법 및 장치
US20080031308A1 (en) * 2006-08-03 2008-02-07 Samsung Electronics Co., Ltd. Communication apparatus for parallel reception and accumulative reception
KR100780673B1 (ko) 2006-09-07 2007-11-30 포스데이타 주식회사 직교 주파수 분할 접속방식을 지원하는 시스템을 위한디코딩 장치 및 방법
JP4816353B2 (ja) * 2006-09-12 2011-11-16 ソニー株式会社 Ofdm受信装置及びofdm信号受信方法
JP4961918B2 (ja) * 2006-09-12 2012-06-27 ソニー株式会社 Ofdm受信装置及びofdm受信方法
SG141259A1 (en) * 2006-09-12 2008-04-28 Oki Techno Ct Singapore Pte Apparatus and method for receiving digital video signals
JP2010506495A (ja) * 2006-10-02 2010-02-25 インターデイジタル テクノロジー コーポレーション チャネル品質インジケータビットおよびプリコーディング制御情報ビットを符号化するための方法および装置
DE602006006081D1 (de) * 2006-12-27 2009-05-14 Abb Technology Ag Verfahren zur Bestimmung von Kanalqualität und Modem
JP4954720B2 (ja) * 2007-01-09 2012-06-20 株式会社エヌ・ティ・ティ・ドコモ 基地局及びユーザ端末並びに受信チャネル品質測定用信号の送信制御方法
FR2915840B1 (fr) * 2007-05-04 2009-07-24 Eads Secure Networks Soc Par A Decodage de symboles d'un signal repartis suivant des dimensions frequentielle et temporelle
WO2008147159A1 (en) * 2007-05-31 2008-12-04 Lg Electronics Inc. Method of transmitting and receiving a signal and apparatus for transmitting and receiving a signal
KR20080105882A (ko) * 2007-06-01 2008-12-04 엘지전자 주식회사 데이터 전송 방법 및 데이터 수신 방법
EP2003835A1 (en) 2007-06-15 2008-12-17 Nokia Siemens Networks Oy Method for operating a radio communication system, receiver station and radio communication system
US20090028100A1 (en) * 2007-07-25 2009-01-29 Qualcomm Incorporated Methods and apparatus for transmitter identification in a wireless network
EP2028808A3 (en) 2007-07-25 2009-06-03 Qualcomm Incorporated Methods and apparatus for transmitter identification in a wireless network
US8077809B2 (en) * 2007-09-28 2011-12-13 Cisco Technology, Inc. Link adaptation based on generic CINR measurement according to log-likelihood ratio distribution
CN101179358B (zh) * 2007-12-11 2012-04-25 华为技术有限公司 空时编码实现方法及装置
US8139682B2 (en) * 2007-12-20 2012-03-20 Advanced Micro Devices Channel estimation of orthogonal frequency division multiplexed systems
EP2073419B1 (en) 2007-12-20 2011-10-26 Panasonic Corporation Control channel signaling using a common signaling field for transport format and redundancy version
US8165064B2 (en) * 2008-01-28 2012-04-24 Qualcomm Incorporated Enhancements to the positioning pilot channel
US8223808B2 (en) * 2008-02-05 2012-07-17 Texas Instruments Incorporated Data and control multiplexing in PUSCH in wireless networks
US20090238255A1 (en) * 2008-03-24 2009-09-24 Hong Kong Applied Science And Technology Research Institute Co, Ltd. Estimation of Error Propagation Probability to Improve Performance of Decision-Feedback Based Systems
US8432885B2 (en) * 2008-04-14 2013-04-30 Futurewei Technologies, Inc. System and method for channel status information feedback in a wireless communications system
WO2009132336A1 (en) * 2008-04-25 2009-10-29 Broadcom Corporation Method and system for predicting channel quality index (cqi) values for maximum likelihood (ml) detection in a 2x2 multiple input multiple output (mimo) wireless system
CN101567744B (zh) * 2008-04-25 2012-10-03 卓胜微电子(上海)有限公司 Dtmb系统中系统信息符号的解析方法
US20090274099A1 (en) * 2008-05-02 2009-11-05 Qualcomm Incorporated Methods and apparatus for communicating transmitter information in a communication network
US8149929B2 (en) * 2008-06-17 2012-04-03 Telefonaktiebolaget L M Ericsson (Publ) Receiver and method for processing radio signals using soft pilot symbols
TWI384816B (zh) * 2008-08-01 2013-02-01 Sunplus Technology Co Ltd For transmission parameter signaling (TPS) decoding systems in DTMB systems
CN101360083B (zh) * 2008-08-22 2011-08-31 凌阳科技股份有限公司 用于数字地面多媒体广播中的传输参数信令解码系统
US7907070B2 (en) * 2008-09-12 2011-03-15 Sharp Laboratories Of America, Inc. Systems and methods for providing unequal error protection using embedded coding
US8238482B2 (en) * 2008-10-14 2012-08-07 Apple Inc. Techniques for improving channel estimation and tracking in a wireless communication system
CN101771520B (zh) * 2008-12-30 2013-05-22 电信科学技术研究院 一种发送反馈信息的方法和装置
KR100973013B1 (ko) * 2008-12-22 2010-07-30 삼성전기주식회사 Ofdm 시스템의 샘플링 주파수 옵셋 추정 장치 및 그 방법
CN101771522B (zh) * 2009-01-05 2013-06-05 电信科学技术研究院 一种发送重复确认或否认反馈的方法、系统及用户设备
CN101867970B (zh) * 2009-04-15 2013-07-31 摩托罗拉移动公司 用于确定无线通信系统中的移动站的移动性的方法和装置
JPWO2010146985A1 (ja) * 2009-06-19 2012-12-06 シャープ株式会社 無線通信システム、送信機および無線通信方法
US8559887B2 (en) * 2009-07-09 2013-10-15 Cisco Technology, Inc. Coherence time estimation and mobility detection for wireless channel
EP2458764B1 (en) * 2009-07-24 2017-05-31 Panasonic Intellectual Property Corporation of America Wireless communication device and wireless communication method
TWI403131B (zh) * 2009-12-15 2013-07-21 Univ Nat Taiwan 通道估測方法以及收發機
KR101604702B1 (ko) * 2010-01-25 2016-03-18 엘지전자 주식회사 분산 안테나 시스템에서의 신호 송수신 방법 및 장치
US8699553B2 (en) * 2010-02-19 2014-04-15 Telefonaktiebolaget Lm Ericsson (Publ) Data-aided SIR estimation
US8442169B2 (en) * 2010-02-19 2013-05-14 Telefonaktiebolaget L M Ericsson (Publ) Blind SIR estimation using soft bit values
US8605813B2 (en) * 2010-02-26 2013-12-10 Hitachi Kokusai Electric Inc. Transmitter
WO2011125329A1 (ja) * 2010-04-07 2011-10-13 株式会社日立国際電気 送信機及び送信方法
US8767882B2 (en) * 2010-09-17 2014-07-01 Harris Corporation Mobile wireless communications device and receiver with demodulation and related methods
US9930677B2 (en) 2010-12-07 2018-03-27 Sharp Kabushiki Kaisha Prioritizing multiple channel state information (CSI) reporting with carrier aggregation
US8681627B2 (en) 2010-12-07 2014-03-25 Sharp Kabushiki Kaisha Prioritizing multiple channel state information (CSI) reporting with carrier aggregation
WO2012077299A1 (ja) 2010-12-10 2012-06-14 パナソニック株式会社 信号生成方法及び信号生成装置
JP5671328B2 (ja) * 2010-12-21 2015-02-18 株式会社日立国際電気 受信装置、通信システム及び通信方法
CN104145462B (zh) * 2012-03-02 2017-03-01 三菱电机株式会社 无线发送装置、无线接收装置以及数据传送方法
EP2642706B1 (en) * 2012-03-21 2017-10-04 Telefonaktiebolaget LM Ericsson (publ) Methods and devices for estimating channel quality
US20130286961A1 (en) * 2012-04-10 2013-10-31 Qualcomm Incorporated Systems and methods for wireless communication of long data units
US9362989B2 (en) 2012-05-22 2016-06-07 Sun Patent Trust Transmission method, reception method, transmitter, and receiver
WO2014055637A1 (en) * 2012-10-04 2014-04-10 Nec Laboratories America, Inc. Pair-wise symbol correlated high receiver sensitivity modulation format
KR102078221B1 (ko) * 2012-10-11 2020-02-17 삼성전자주식회사 무선통신시스템에서 채널 추정 장치 및 방법
US9154471B2 (en) 2013-11-26 2015-10-06 At&T Intellectual Property I, L.P. Method and apparatus for unified encrypted messaging
WO2015094313A1 (en) * 2013-12-20 2015-06-25 Intel Corporation Systems and methods for transmitting control information
WO2016000761A1 (en) * 2014-07-01 2016-01-07 Huawei Technologies Co., Ltd. Method and apparatus for interlaced space-time coding
US9444654B2 (en) * 2014-07-21 2016-09-13 Kandou Labs, S.A. Multidrop data transfer
US9654306B1 (en) * 2015-11-17 2017-05-16 Futurewei Technologies, Inc. System and method for multi-source channel estimation
US9800384B2 (en) 2015-11-17 2017-10-24 Futurewei Technologies, Inc. System and method for multi-source channel estimation
US10638479B2 (en) 2015-11-17 2020-04-28 Futurewei Technologies, Inc. System and method for multi-source channel estimation
CN107645360B (zh) * 2016-07-22 2022-02-18 深圳汇思诺科技有限公司 一种适用于OvXDM系统译码方法、装置及OvXDM系统
CN108023632B (zh) * 2016-11-04 2022-06-28 华为技术有限公司 数据处理方法和发送设备
EP3619812A1 (en) * 2017-05-05 2020-03-11 Telefonaktiebolaget LM Ericsson (PUBL) Adaptive selection and efficient storage of information bit locations for polar codes
CN110741582A (zh) * 2017-06-15 2020-01-31 三菱电机株式会社 发送装置、接收装置以及无线通信系统
GB201720550D0 (en) * 2017-12-08 2018-01-24 Decawave Ltd Ranging with simultaneous frames
US10797926B2 (en) * 2018-01-26 2020-10-06 California Institute Of Technology Systems and methods for communicating by modulating data on zeros
CN110636023B (zh) * 2019-10-11 2022-03-18 中科睿微(宁波)电子技术有限公司 Ofdm的采样偏差值估计方法及装置
WO2021205546A1 (ja) * 2020-04-07 2021-10-14 三菱電機株式会社 送信装置、基地局、無線通信システム、送信方法、制御回路および記憶媒体
CN112333757B (zh) * 2020-10-15 2022-11-08 成都市以太节点科技有限公司 一种无线通信测试方法及系统
US20230094919A1 (en) * 2021-09-23 2023-03-30 Hsinho Wu Techniques for monitoring and control of high speed serial communication link

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US627548A (en) * 1898-05-18 1899-06-27 Charles E Vail Bicycle saddle-carriage.
WO1995030289A2 (en) * 1994-04-29 1995-11-09 Telefonaktiebolaget Lm Ericsson A direct sequence cdma coherent uplink detector
WO1999008425A1 (en) * 1997-08-08 1999-02-18 Qualcomm Incorporated Method and apparatus for determining the rate of received data in a variable rate communication system
CN1286541A (zh) * 1999-08-31 2001-03-07 松下电器产业株式会社 正交频分复用通信装置及传播路径估计方法
US6215827B1 (en) * 1997-08-25 2001-04-10 Lucent Technologies, Inc. System and method for measuring channel quality information in a communication system
US6275485B1 (en) * 1998-12-03 2001-08-14 Qualcomm Inc. Noise characterization in a wireless communication system
WO2005030289A2 (en) * 2003-09-22 2005-04-07 Battelle Memorial Institute Press for removing supernatant from a flexible vessel

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW347616B (en) * 1995-03-31 1998-12-11 Qualcomm Inc Method and apparatus for performing fast power control in a mobile communication system a method and apparatus for controlling transmission power in a mobile communication system is disclosed.
FR2742613B1 (fr) 1995-12-14 1998-01-30 France Telecom Procede d'evaluation d'un facteur de qualite representatif d'un canal de transmission d'un signal numerique, et recepteur correspondant
EP0923824B1 (en) * 1996-09-02 2003-05-28 STMicroelectronics N.V. Improvements in, or relating to, control channels for telecommunications transmission systems
WO1998010545A1 (en) * 1996-09-02 1998-03-12 Telia Ab Improvements in, or relating to, multi-carrier transmission systems
DE19647833B4 (de) * 1996-11-19 2005-07-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur gleichzeitigen Funkübertragung digitaler Daten zwischen mehreren Teilnehmerstationen und einer Basisstation
US6359923B1 (en) * 1997-12-18 2002-03-19 At&T Wireless Services, Inc. Highly bandwidth efficient communications
US5995551A (en) * 1997-08-15 1999-11-30 Sicom, Inc. Rotationally invariant pragmatic trellis coded digital communication system and method therefor
US6215813B1 (en) * 1997-12-31 2001-04-10 Sony Corporation Method and apparatus for encoding trellis coded direct sequence spread spectrum communication signals
ES2308796T3 (es) * 1998-08-21 2008-12-01 Lucent Technologies Inc. Sistema cdma multi-codigo que utiliza una decodificacion iterativa.
WO2000027085A1 (en) * 1998-10-30 2000-05-11 Broadcom Corporation Fractional-bit transmission using multiplexed constellations
EP0998087A1 (en) * 1998-10-30 2000-05-03 Lucent Technologies Inc. Multilevel transmission system and method with adaptive mapping
US7058414B1 (en) * 2000-05-26 2006-06-06 Freescale Semiconductor, Inc. Method and system for enabling device functions based on distance information
US6721299B1 (en) * 1999-03-15 2004-04-13 Lg Information & Communications, Ltd. Pilot signals for synchronization and/or channel estimation
US6633601B1 (en) * 1999-05-28 2003-10-14 Koninklijke Philips Electronics N.V. Method and device for frame rate determination using correlation metrics and frame quality indicators
GB2355164B (en) 1999-10-07 2004-06-09 Oak Technology Inc Demodulator circuit
US6680902B1 (en) * 2000-01-20 2004-01-20 Nortel Networks Limited Spreading code selection process for equalization in CDMA communications systems
US6650694B1 (en) * 2000-02-18 2003-11-18 Texas Instruments Incorporated Correlator co-processor for CDMA RAKE receiver operations
WO2001073999A1 (en) * 2000-03-24 2001-10-04 Atheros Communications, Inc. Decoding system and method for digital communications
EP1290809B1 (en) * 2000-05-25 2005-11-23 Samsung Electronics Co., Ltd. Apparatus and method for transmission diversity using more than two antennas
SG99310A1 (en) * 2000-06-16 2003-10-27 Oki Techno Ct Singapore Pte Methods and apparatus for reducing signal degradation
EP2259480A3 (en) * 2000-11-20 2012-05-02 Sony Deutschland Gmbh Adaptive subcarrier loading
US6763244B2 (en) * 2001-03-15 2004-07-13 Qualcomm Incorporated Method and apparatus for adjusting power control setpoint in a wireless communication system
US7047016B2 (en) * 2001-05-16 2006-05-16 Qualcomm, Incorporated Method and apparatus for allocating uplink resources in a multiple-input multiple-output (MIMO) communication system
US7043210B2 (en) * 2001-06-05 2006-05-09 Nortel Networks Limited Adaptive coding and modulation
US7197282B2 (en) * 2001-07-26 2007-03-27 Ericsson Inc. Mobile station loop-back signal processing
US7773699B2 (en) * 2001-10-17 2010-08-10 Nortel Networks Limited Method and apparatus for channel quality measurements

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US627548A (en) * 1898-05-18 1899-06-27 Charles E Vail Bicycle saddle-carriage.
WO1995030289A2 (en) * 1994-04-29 1995-11-09 Telefonaktiebolaget Lm Ericsson A direct sequence cdma coherent uplink detector
CN1147321A (zh) * 1994-04-29 1997-04-09 艾利森电话股份有限公司 直接序列cdma相干上行线路检测器
WO1999008425A1 (en) * 1997-08-08 1999-02-18 Qualcomm Incorporated Method and apparatus for determining the rate of received data in a variable rate communication system
US6215827B1 (en) * 1997-08-25 2001-04-10 Lucent Technologies, Inc. System and method for measuring channel quality information in a communication system
US6275485B1 (en) * 1998-12-03 2001-08-14 Qualcomm Inc. Noise characterization in a wireless communication system
CN1286541A (zh) * 1999-08-31 2001-03-07 松下电器产业株式会社 正交频分复用通信装置及传播路径估计方法
WO2005030289A2 (en) * 2003-09-22 2005-04-07 Battelle Memorial Institute Press for removing supernatant from a flexible vessel

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CD3-OFDM: A New Channel Estimation Method To ImproveThe Spectrum Efficiency In Digital Terrestial TelevisionSystems. Mignone V, et al.International Broadcasting Convention,No.413. 1995
CD3-OFDM: A New Channel Estimation Method To ImproveThe Spectrum Efficiency In Digital Terrestial TelevisionSystems. Mignone V, et al.International Broadcasting Convention,No.413. 1995 *

Also Published As

Publication number Publication date
HK1127678A1 (en) 2009-10-02
KR100964203B1 (ko) 2010-06-17
KR101020461B1 (ko) 2011-03-08
AU2002331504A1 (en) 2003-04-28
US20100284480A1 (en) 2010-11-11
KR20040045857A (ko) 2004-06-02
US8594247B2 (en) 2013-11-26
US20030072395A1 (en) 2003-04-17
WO2003034646A3 (en) 2003-09-25
US8170155B2 (en) 2012-05-01
CN101355405B (zh) 2012-08-15
EP2264927A3 (en) 2011-08-10
KR20100021535A (ko) 2010-02-24
EP2264928A3 (en) 2011-08-10
EP2264927A2 (en) 2010-12-22
US20120219093A1 (en) 2012-08-30
EP1438800A2 (en) 2004-07-21
EP2264928A2 (en) 2010-12-22
US7773699B2 (en) 2010-08-10
CN1605171A (zh) 2005-04-06
WO2003034646A2 (en) 2003-04-24
EP2264927B1 (en) 2016-06-15
CN101355405A (zh) 2009-01-28

Similar Documents

Publication Publication Date Title
CN100420178C (zh) 信道质量测量方法和设备、通信系统、自适应调制和编码方法
US10797926B2 (en) Systems and methods for communicating by modulating data on zeros
CN100553186C (zh) Ofdm信道估计以及多发射天线跟踪
KR100918717B1 (ko) 다입다출력 직교주파수분할다중화 이동통신 시스템에서의신호 시퀀스 추정 방법 및 장치
KR20150090421A (ko) 이동통신 시스템에서 통신 채널 추정 방법 및 장치
CN115086114A (zh) 基于分散式放置正交时频空otfs导频的信道估计方法
CN109995404B (zh) 空频域调制的一种差分调制和解调方法
CN108847911B (zh) 一种基于独立性校验编码的ofdm信道训练鉴权方法
CN105812299A (zh) 基于联合块稀疏重构的无线传感网信道估计算法及系统
KR100934170B1 (ko) 다중 안테나 무선통신 시스템에서 채널 추정 장치 및 방법
CN101150555A (zh) 编码方法与装置和解码方法与装置
EP1768295B1 (en) System and method for transmitting/receiving signal in a mobile communication system using a multiple input multiple output (MIMO) scheme
CN108199751B (zh) 一种mimo系统下基于张量模型的波形生成方法和装置
Jing et al. A novel spatial CCK modulation design for underwater acoustic communications
KR20070037873A (ko) 다중안테나 직교주파수분할다중 시스템에서 크기가일정하지 않은 성상도를 위한차등시(주파수)공간블록부호의 복호, 동기화 장치 및 방법
KR101225649B1 (ko) 다중 안테나 통신시스템의 채널추정 장치 및 방법
KR102555056B1 (ko) 폐루프 다중 안테나 시스템 및 폐루프 다중 안테나 통신 보안 방법
Narendra Study of transmission characteristics of mimo system for different modulation techniques
Reza et al. Adaptive Modulation Coding for MIMO OFDM
Yeşilyurt et al. Hybrid SNR‐Adaptive Multiuser Detectors for SDMA‐OFDM Systems
Arteaga et al. Index Coding and Signal Detection in Precoded MIMO-OFDM Systems
Rahman et al. Development of OTFS Receiver System Using SDR
Zhang et al. Effects of channel estimation error on array processing based QO-STBC coded OFDM systems
Youssef et al. Enhancement of MIMO QoS Using RNS Coding over Various Channels
Hsieh et al. Phase-direct channel estimation for space-time OFDM

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: YANXING BIDEKE CO., LTD.

Free format text: FORMER OWNER: NORTEL NETWORKS LTD (CA)

Effective date: 20130412

Owner name: APPLE COMPUTER, INC.

Free format text: FORMER OWNER: YANXING BIDEKE CO., LTD.

Effective date: 20130412

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20130412

Address after: American California

Patentee after: APPLE Inc.

Address before: American New York

Patentee before: NORTEL NETWORKS LTD.

Effective date of registration: 20130412

Address after: American New York

Patentee after: NORTEL NETWORKS LTD.

Address before: Quebec

Patentee before: NORTEL NETWORKS Ltd.

CX01 Expiry of patent term

Granted publication date: 20080917

CX01 Expiry of patent term