CN100380070C - 紧凑高效的热电系统 - Google Patents

紧凑高效的热电系统 Download PDF

Info

Publication number
CN100380070C
CN100380070C CNB038195267A CN03819526A CN100380070C CN 100380070 C CN100380070 C CN 100380070C CN B038195267 A CNB038195267 A CN B038195267A CN 03819526 A CN03819526 A CN 03819526A CN 100380070 C CN100380070 C CN 100380070C
Authority
CN
China
Prior art keywords
heat
heat exchanger
module
power system
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB038195267A
Other languages
English (en)
Other versions
CN1714261A (zh
Inventor
L·E·贝尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSST LLC
Original Assignee
BSST LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSST LLC filed Critical BSST LLC
Publication of CN1714261A publication Critical patent/CN1714261A/zh
Application granted granted Critical
Publication of CN100380070C publication Critical patent/CN100380070C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • F25B21/04Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect reversible
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/021Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B33/00Boilers; Analysers; Rectifiers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F5/00Elements specially adapted for movement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Hybrid Cells (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Electromechanical Clocks (AREA)
  • Photovoltaic Devices (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

本发明描述了在可制造的系统中利用工作介质流动或运动方向中的热绝缘的优点的几种紧凑高效的热电系统。这类结构具有高的系统效率和功率密度。公开了利用多个热电模块或热电元件的几个不同的实施例和应用,该热电模块或热电元件被夹持在热交换器之间。

Description

紧凑高效的热电系统
技术领域
本发明涉及固态冷却、加热和发电系统的改进结构。
背景技术
热电装置(TEs)利用某些材料的特性在有电流时形成跨越材料的温度梯度。传统热电装置利用P型和N型半导体作为装置内的热电材料。它们以获得所需加热和冷却功能的方式被物理地和电气地配置,。
在热电装置中使用的最常见的结构如图1所示。通常,P型和N型热电元件102被排列在两个衬底104之间的矩形组件100中。电流I通过两种元件类型。这些元件通过铜分流器(shunts)106串行连接,该铜分流器106鞍坐(saddle)于元件102的末端。当施加DC电压108时,产生跨越TE元件的温度梯度。TEs通常用来冷却液体,气体和其它对象。
自从20世纪60年代以来,固态冷却、加热和发电(SSCHP)系统被用于军事和航空设备、温度控制和发电应用。商业用途受到限制,由于这类系统相对于所执行的功能价格昂贵,而且功率密度较低,所以这类SSCHP系统与商业上可接受的系统相比,体积太大、价格太贵、效率太低、重量太重,因此其商业引用受到制约。
近年来,材料的改进使此类系统的效率和功率密度增加到目前系统的100倍成为可能。
发明内容
在题为“Improved Efficiency Thermoelectrics Utilizing ThermalIsolation”的、共同待决的专利申请号09/844818中所描述的几何结构的效率增益对许多重要的应用产生额外的50%到100%的提高。连同所做出的材料上的改进,就有可能获得四倍或更多倍的系统效率增益。这些重要改进的前景已经重新点燃了人们对该技术的兴趣,并促使人们开发用于各种新应用的SSCHP系统。
总而言之,本发明公开了一组新型SSCHP结构。这些结构实现了紧凑高效的能量转换,并且成本相对较低。一般地,公开了几个实施例,其中热电元件或模块夹在热交换器之间。热电模块被有利地定向以便对于任意两个夹持热交换器的模块,相同温度类型侧(type side)面对热交换器。例如,每个夹持热交换器的热电元件的较冷侧面对相同的热交换器,并彼此相对。优选地,从而至少一种工作介质通过至少两个热交换器,以便对工作介质冷却或加热。该结构具有附加的益处,即其利用可制造的系统中热绝缘的优点,如美国专利申请号09/844818所描述的那样,该可制造的系统表现出高的系统效率和功率密度,如上面参考所指出的那样。如美国申请09/844818所解释的那样,一般地,热电设备通过细分热电元件的整个组件为热绝缘子组件(subassemblies)或部件(sections)以增加或提高效率。例如,热交换器可以被细分以便在工作介质流动的方向提供热绝缘。例如,热电系统具有多个形成热电阵列的热电元件,该热电元件具有冷却侧和加热侧,其中多个热电元件至少在跨阵列的一个方向上基本彼此绝缘。优选地,热绝缘是在工作介质流动的方向上。该热绝缘可通过如下方式提供:使热交换器按部件配置,以使热交换器在工作流体流动的方向上具有热绝缘的部分。
在本公开中,对于工作流体具有相同温度类型的热交换器的顺序使用本身提供了一种类型的热绝缘。此外,热交换器或TE元件,或TE元件的部分或任何组合可被配置以在工作流体流动的方向上提供热绝缘,该工作流体流动在由一系列或一序列热交换器所提供的热绝缘的正上方或上方,在热交换器的序列中至少有一种工作流体顺序流过。
对于冷却和/或加热应用所公开的原理同样可应用于发电应用。对于特定应用,可按某种方式调整该系统以使效率最大化,但总的原理都是适用的。
本申请中所描述的具体实施例降低了构造的复杂度和SSCHP装置的成本,同时还保持或提高了来自热绝缘的效率增益。
本公开的第一个方面涉及改进的热电系统,该热电系统具有多个热电模块,其中的至少一些彼此间是基本热绝缘的,每个模块具有一个较热侧和一个较冷侧。至少一种固态工作介质与顺序的多个热电模块中的至少两个是热连通(thermal communication)的,以使工作介质被热电模块中的至少两个按阶段(stage)地逐步冷却或加热。
在一个优选实施例中,工作介质包括多个固定到旋转轴的盘状介质,且该介质形成一种堆叠结构,且热电模块夹持盘状介质中的至少一些。有利的是,工作介质包括多个工作介质,其形成热电模块和工作介质交替的堆叠结构。优选地,工作介质基本热绝缘多个热电模块中的至少一些。
本发明的另一个方面涉及改进的热电系统,其具有多个热电模块,其中的至少一些彼此间是基本热绝缘的,每个模块具有一个较热侧和一个较冷侧。提供了多个热传递装置,每个和多个热电模块中的至少一个是热连通的,其中至少两个热传递装置接收一个第一工作流体,该工作流体流过热传递装置。至少一个导管连接在不同平面中的热传递装置中的至少两个,以使第一工作流体流过至少两个热传递装置中的第一个并随后继续流过至少两个热传递装置中的第二个,且随其经过至少两个热传递装置而按阶段被冷却或加热。
在一个实施例中,热传递装置中的至少一些中的每一个都被至少两个热电模块夹持。此外,优选地,至少两个热电模块具有面对被夹持的热传递装置的较冷侧。
在一个实施例中,热电模块和热传递装置形成一个叠层,较冷侧面对较冷侧并被至少一个热传递装置隔开,且较热侧面对较热侧并被至少一个热传递装置隔开。
在一个实施例中,热传递装置是热交换器,其包括外壳和热交换器翅片,热交换器翅片在工作流体流动的方向上形成台阶,以便为至少一个热电模块提供额外的热绝缘,与热交换器热交换。优选地,至少一个导管被配置以使工作流体流过至少两个热传递装置,其通过在同一方向上导管流动连接。
然而本发明的另一个方面涉及具有多个N型热电元件和多个P型热电元件的热电系统。提供多个热传递装置,以便形成堆叠结构的热电元件和热交换装置,多个热传递装置中的至少一些的每个都被至少一个N型热电元件和至少一个P型热电元件夹持。在一个实施例中,该系统进一步具有电耦合到该叠层的电流源,驱动电流串行地流过热传递装置和热电元件。优选地,热传递装置将P型热电元件中的至少一些与N型热电元件中的至少一些热绝缘。有利的是,热传递装置接收工作流体以在限定方向上使其流过其中。
在一个实施例中,热传递装置是热交换器,该热交换器包括一个外壳,该外壳内有分段形成的热交换器元件,且其中所述段中的至少一个与所述段中的至少另一个基本热绝缘。
在一个实施例中,至少一个导管提供从第一热交换器到第二热交换器的流体通路,以使流过第一热交换器和第二热交换器的工作流体被分阶段冷却或加热。
本发明的这些和其它的方面以及实施例将在下面结合附图更详细地说明。
附图说明
图1A和图1B描绘了传统的TE模块。
图2描绘了SSCHP系统的总布局,该SSCHP系统中具有热绝缘和其工作介质的反向流动运动。
图3描绘随着工作介质流过该系统发生在介质中的温度变化。
图4A和图4B描绘一个具有三个TE模块、翅片热交换器和液体工作介质的系统。
图5A和图5B描绘一个具有两个TE模块,和为实现热绝缘和液体介质的反向流动的分段的热交换器的系统。
图6描绘具有两个TE模块和为控制流体流动的管道式通风机(ducted fans)的气体介质系统。
图7A-图7D描绘了一个固态介质系统,该系统具有反向流动以进一步增强性能。TE元件利用高的长度对厚度比率实现附加的热绝缘。
图8描绘具有TE元件的系统,该TE元件被安置以便电流直接通过阵列并由此降低成本,重量和尺寸,同时提供改进的性能。
图9描绘一个具有TE元件、热管和热交换器的系统,该系统简单且成本低。热侧和冷侧被热传输热管分开。
图10描绘一种流体系统,其中流体通过热交换器和TE模块阵列抽吸,以便在一端实现低温从而从液体或气体中冷凝出水分或凝结水。该系统装配有分流器以分流工作流体从而通过降低跨越部分阵列的温度差而提高效率。
图11描绘一种阵列,其中工作流体进入并存在于多个位置,且其中该系统的部分以反向流动工作,部分以平行流动模式工作。
具体实施方式
在本说明书的上下文中,所用的术语热电模块或TE模块是指它们普通和习惯意义的广义理解,即其为(1)传统的热电模块,例如由Hi Z Technologies,Inc.of San Diego,California制造的热电模块,(2)量子隧穿转换器,(3)热离子模块,(4)磁热模块,(5)应用热电、磁热、量子隧穿和热离子效应中的一个或任何组合的元件,(6)上面(1)到(5)的任何组合、阵列、组件或其它的结构。术语热电元件更具体指单个元件,该元件使用热电、热离子、量子隧穿和这些效应的任何组合工作。
在下面的说明中,热电或SSCHP系统通过例子说明。然而,这样的技术和说明有意包括所有的SSCHP系统。
因此,本发明是通过使用例子引入,这些例子是用于描述和说明目的的具体实施例。下面所描述的多个例子说明了多种结构,并可用来实现所需的改进。按照本说明书,具体实施例和例子只是说明性的,并无意以任何方式限制本发明。此外,应该理解,术语冷却侧、加热侧冷侧、热侧、较冷侧和较热侧等不指任何具体温度,而是相对性的术语。例如,在热电元件或阵列或模块的“冷”侧温度比环境温度低的情况下,“热”侧可以是环境温度。反之亦然。因此,这些术语是彼此相对而言的,以指示热电装置的一边温度比指定的相反的温度侧高或低。
图2说明热电阵列200的一种有优势的布局的第一个一般化的实施例。阵列200具有多个TE模块201、211、212、213、218,它们与多个第一侧热交换器202、203、205和多个第二侧热交换器206、207、209具有良好的热连通。所谓的第一侧热交换器和第二侧热交换器并不暗示或表示热交换器在整个SSCHP系统的一侧或另一侧,而只是表示它们与热电模块的较冷侧或较热侧是热连通的。从附图中可看出这是显然的,因为热交换器实际上是夹在热电模块之间。从那个意义上说,它们与热电模块的第一侧或第二侧是热连通的。第一TE模块201的较冷侧和第一侧热交换器205热接触,而TE模块201的热侧与入口第二侧热交换器206热接触。第二工作介质215,例如某种流体,在图2的右上角通过入口第二侧热交换器206进入,且在左下角从最后的或出口第二侧热交换器209附近排出。第一工作介质216在上左角通过入口的一边热交换器202进入,并在下右角从最后的或出口的一边热交换器205离开。连接到电源(未示出)的电线210(对于其它TE模块也类似)连接至每个TE模块201、211、212、213、218。在图2中以线表示的第一导管208输送第二工作介质215,第二导管204输送第一工作介质216,依次通过多个热交换器202、203、205、206、207和209,如图所示。
在工作中,随着第二工作介质215向下通过入口第二侧热交换器206,第二工作介质215从TE模块201吸收热。第二工作介质215通过导管208且向上进入并通过第二侧热交换器207。TE模块211和212的较热侧与热交换器207具有良好的热连通,TE模块211和212被配置为它们各自的较热侧彼此面对以夹持第二侧热交换器207。随着第二侧工作介质215通过第二侧热交换器207,第二侧工作介质215进一步被加热。然后,第二侧工作介质215通过第二侧热交换器209,其中TE模块213和218的较热侧再次夹持并传递热至第二侧热交换器209,进一步加热第二侧工作介质215。从热交换器209,第二工作介质215从出口或最后的第二侧热交换器209离开阵列200。
类似地,在图2的左上角,第一工作介质216进入入口第一侧热交换器202。热交换器202与TE模块218的较冷侧具有良好的热连通。随着第一工作介质216通过入口第一侧热交换器202,接着通过另一个第一侧交换器203并最后通过出口第一侧热交换器205,第一工作介质216被冷却,第一工作介质216在出口第一侧热交换器205处作为较冷工作介质217排出。
通过电线210接入到TE模块218、和类似地接入到所有其它TE模块的电功率,提供了热电冷却和加热。
因此,综上所述,在阵列的左手边,工作介质与TE模块的冷侧具有良好的热接触,以便从介质中吸取热。然后介质接触第二和第三TE模块,其中额外的热被吸取,进一步冷却介质。随着介质通过所需数目的阶段进入到右边,渐进的冷却过程继续。在被冷却适当的量后,介质从右边离开。同时,第二工作介质在远处的右边进入系统,并且随着第二工作介质通过第一阶段,第二工作介质被逐渐加热。然后它进入下一阶段,这里其被进一步加热,依此类推。在第一阶段的热输入是从邻近TE模块的冷侧吸取热的结果,且电功率进入这些模块。随着其在总的从右向左的方向上运动,热侧介质被逐步加热。
除了上述几何形状,如果两种介质以同一温度进入并逐步变热和变冷,系统提供益处。相似地,可在阵列的任何位置处将介质从冷侧或热侧中除去或加入到冷侧或热侧中。该阵列可以是任何有用数目的段,例如5、7、35、64段和更大数目的段。
该系统也可按相反的过程工作,该过程具有与TE模块相接触的热和冷介质,并且热和冷介质从相反的末端运动(如图2所示,但热介质作为介质216进入,而冷介质作为介质215进入)。这样导致跨越TE模块的温度梯度产生电流和电压,因此将热功率转换为电功率。所有这些工作模式和下面描述的模式是本发明的一部分。
如图2所示,分为一系列阶段的热交换器在工作介质的流动方向上为TE模块之间提供了热绝缘。在2001年4月27日提交的、题为“FirstImproved Efficiency Thermoelectrics Utilizing Thermal Isolation”的美国专利申请号09/844818中,详细描述了热绝缘原理,这些热绝缘原理以多种具体的和实用的例子贯穿说明书以便易于制造。特此通过引用将该专利申请完全并入。
如题为“Improved Efficiency Thermoelectrics Utilizing ThermalIsolation”的美国专利申请09/844818所述,在如图2中所示的反向流动结构中,与相同条件下没有热绝缘益处的单个TE模块相比,介质的逐步加热和冷却可产生更高的热力效率。因此,图2所示的结构提供了一种SSCHP系统200,其通过以紧凑的易于制造的设计夹持在热电模块之间的热交换器段或阶段获得热绝缘。
除了上述特征之外,热电模块本身可被构造为在介质流动的方向上提供热绝缘,并且每个热交换器或热交换器中的一些可被配置以通过图5中进一步所描述的结构或其它适当的结构在单个热交换器中提供热绝缘。总的来说,热交换器可以是在介质流动的方向上分段,以沿单个TE模块(例如TE模块218)和入口热交换器202的介质流动提供逐步增强的热绝缘。
图3描绘如图2所示的相同的总设计的阵列300,该阵列300由多个TE模块301和所连接的较冷侧热交换器302、305和307组成,以便第一工作介质315通过后续的热交换器以加热所示的交换器通路。类似地,多个热侧热交换器309、311和313以顺序的或分阶段的方式在箭头所示的方向上输送较热侧工作介质317。TE模块301以如图2所示的方式安置和供电。
图3的下半部分描绘了较冷侧工作介质的冷侧温度或温度变化303、304、306、308,和较热侧工作介质的热侧温度310、312、314。
较冷侧工作介质315进入并通过入口较冷侧热交换器302。在通过入口较冷侧热交换器302中的工作介质的温度下降303由冷侧温度曲线TC中的下降303所指示。较冷侧工作介质315随着其通过下一阶段较冷侧热交换器305而进一步被冷却,如温度下降304所示,且随其通过第三较冷侧热交换器307具有相应的温度下降306。较冷侧工作介质315以处于温度308的较冷流体316离开。类似地,较热侧工作介质317进入第一或入口较热侧热交换器309,并以第一温度310离开,如图3中较热侧温度曲线TH所指示。加热侧工作介质通过分段的阵列300,如图2中所示,逐步变热,最后在通过出口加热侧热交换器313后作为处于较热温度314的较热工作流体318离开。可以看到,通过增加阶段(也就是TE模块和热交换器)的数目,可以增加冷却和加热功率的量,可降低每个热交换器产生的温度变化,和/或通过阵列的介质的量增加。如美国专利申请09/844818所述,在更多阶段的情况下,效率也可增加,虽然增加速率逐渐降低。
上面提到的实验和描述,说明了热绝缘和逐步加热和冷却可用图2和图3中的结构实现,并能导致显著的效率增益,因此是重要的。借助这样的系统,在实验测试中实现了超过100%的增益。
图4A所示的阵列400具有三个TE模块402、四个热交换器403和两个导管405,它们被构造为如图2和图3所述的那样。较冷和较热侧工作流体分别在较冷侧入口404和较热侧入口407处进入,并在分别在较冷侧出口406和较热侧出口408处离开。图4B是热交换器403的一个实施例的更详细的视图。其被示为适合流体介质的形式。热交换器组件403由外壳412,热交换器翅片414,和流体分配歧管413组成,外壳412具有入口410和出口411。阵列400的操作基本与图2和图3中描绘的相同。图4中的TE模块402的数目是3个,但可以是任何数目。有优势地,外壳412是导热的,其由合适的材料例如抗腐蚀铜或铝制成。在一个实施例中,有优势地,热交换器翅片414是焊接或熔接(braise)至外壳412的折叠的铜或铝,以便在跨越TE模块的界面上实现良好的导热性。翅片414可以是任何形式,但优选为适于实现系统所需的热传递特性的设计。详细的设计指南可在“CompactHeat Exchangers”,Third Edition by W.M.Kays and A.L.London中找到。可替换地,可使用任何其它合适的热交换器,例如穿孔的翅片,平行板,百叶状翅片,丝网等。这样的结构是本领域公知的,且用在图2至图11中任何一个中的任何结构中。
图5A描绘图4的结构的替换结构,以便导管连接提供从热交换器阶段到热交换器的流动。阵列500具有第一和第二TE模块501和510、三个热交换器502、503和506、以及导管504。当然,和前面的实施例和结构一样,两个第一侧热交换器502、503和一个第二侧热交换器506的具体数目不是限制性的,也可提供其它数目的热交换器。
图5B以放大的视图示出了热交换器502、503和506的优选实施例。图5B所示的热交换器结构对其它实施例也合适,且可用在图2-图8以及图11中的任何结构中。这类结构的一个或多个热交换器的有优势的实施例具有外壳516,和由间隙513分开的分段的热交换器翅片511。工作流体通过入口505进入并通过出口508离开。作为间隙的替换,热交换器可被制造,以便它是各向异性的,这样它对一个段是导热的,而对另一个段不导热的,而不是在热交换器翅片之间具有实际的物理间隙。要点是在流动方向上获得在一个热交换器段和另一个热交换器段的阶段之间的热绝缘。除了图2-图5中描述的实施例中的热交换器通过具有阶段而提供的热绝缘之外,这也提供了热绝缘。
有优势地,第一工作流体507(例如其可以是要被加热的流体)进入入口505并向下通过入口或第一热交换器502,第一热交换器502与第一TE模块501是热连通的。工作流体507从底部离开并通过导管504被送到下一个热交换器503,此处其再次在向下的方向上通过第二TE模块510,并作为较热的工作介质508离开。优选地,第二工作流体517从图5A中的底部通过入口518进入并向上流经第三热交换器506,通过TE模块501和510的较冷侧(在本例中)。热交换器506与TE模块501及510良好地热连通。通过这样的安置,工作流体507和517按照上面提到的美国专利申请09/844818所述形成反向流动系统。
优选地,详细示于图5B的热交换器502,503和506被构造成从TE模块501、510的正面(faces)通过外壳516到热交换器翅片511(示为四个绝缘的段)具有高导热性。然而,希望在流动的方向上具有低导热性,以便将每个热交换器段彼此热绝缘。如果绝缘是有效的,且TE模块501和510在垂直方向(工作流体流动的方向)没有高的内部导热性,阵列500将得益于热绝缘并能高效工作。实际上,阵列500可这样响应,如同其是由更多TE模块和更多热交换器构造的阵列。
图6描绘另一个加热器/冷却器系统600,其被设计来用工作气体有益地操作。加热器/冷却器600具有与第一侧热交换器603、605和第二侧热交换器604良好热连通的TE模块601、602。第一工作流体例如空气或其他气体606,被导管607,608,610包含,而第二工作流体616被导管615,613包含。鼓风机或泵609、614被安装在导管608,615中。
第一工作流体606通过入口导管607进入系统600。工作流体606流过第一热交换器603,在此,例如其被加热(或冷却)。然后工作流体606流经鼓风机609,鼓风机用于抽吸工作流体606通过导管608,并通过第二热交换器605,在此其被进一步加热(或冷却),并从出口导管610排出。类似地,工作流体,例如空气或另一种气体,通过入口导管615进入。工作流体被第二鼓风机或泵614推动通过第三热交换器604,在此,在该例子中,其被冷却(或加热)。冷却(或加热)的工作流体616通过出口导管613离开。
系统600可具有多个段,这些段由如图5B中所示的额外的TE模块和热交换器及绝缘的、分段的热交换器组成。系统600也可以具有多个鼓风机或泵以提供额外的抽吸力。此外,一个导管,例如607、608可具有一种流体,而其他导管613、615可以具有第二种气体。可替换地,一边可以具有液体工作流体,而另一边具有气体。因此,该系统不局限于工作介质是否是流体或液体。此外,应该指出出口导管613的线路可绕鼓风机导管609。
图7A描绘了有利地利用流体的加热和冷却系统700。该组件具有多个TE模块701,TE模块701具有多种第一侧工作介质703和多种第二侧工作介质704。在本例中,第一侧工作介质703和第二侧工作介质704可以形成盘状。第一侧工作介质703被固定在第一侧轴709上,而第二侧工作介质704被固定在第二侧轴708上。轴708,709又被分别固定在第一侧电动机706和第二侧电动机705以及相应的轴承707上。优选的电动机旋转方向由箭头710和711指示。
分离器717将阵列分为两部分并定位TE模块701。由分离器717保持在位置上的TE模块701被分开以便交替地夹持第一侧工作介质703和第二侧工作介质704。对于任何两个TE模块701,这些模块被定向以便它们的冷侧和热侧如前面的实施例那样彼此面对。工作介质703、704和TE元件701良好地热连通。热油脂(thermal grease)等被有利地提供于热电元件701和工作介质703、704之间的界面上。油脂的目的可从下面关于工作介质703、704的操作的讨论中变得明显。第一侧外壳部件714和第二侧外壳部件715包含由系统700所决定的流体。电线712、713连接到TE模块701以为TE模块提供驱动电流。
图7B是沿7B-7B剖切的图7A中系统700一部分的横截面视图。第一流体721和第二流体723和它们的流动方向由箭头721和723表示。第一流体按箭头722所示的方向离开,第二流体按箭头724所示的方向离开。系统700通过经由电线712和713通电至TE模块701而工作。TE模块701让它们的冷侧和热侧彼此面对,其按图2和图3中所述的方式安置。例如,它们邻近的冷侧都面对第一侧工作介质703,而它们的热侧面对第二侧工作介质704。分离器717提供定位TE模块701和将热侧与阵列700的冷侧分开的双重功能。
为了理解工作过程,假定,例如第二流体723将被冷却。冷却是通过与第二侧介质704的热交换而发生的。随着第二侧介质704旋转,它们的表面的部分和TE模块701的较冷侧接触以给定的时间被冷却。随着该部分通过第二电动机705的动作而旋转远离TE模块701,第二介质704冷却第二侧流体,然后该流体在出口724离开。第二流体通过外壳部件715和分离器717被限定在阵列700内。
类似地,第一流体721被与TE模块701的较热侧热接触的第一侧介质703加热。旋转(由箭头711表示)移动第一介质703的加热部分至第一流体721能经过它们并通过热接触而加热的地方。第一流体721被包含在外壳714和分离器717之间并在出口722处离开。
如上所述,导热性油脂或液体金属例如水银,可用来在接触区域在TE模块701和介质703、704之间提供良好的热接触。
如上所述,图7A和图7B的结构可有利地用于冷却或加热外部元件,如微处理器、激光二极管等。在这种情形下,这些盘就与使用热油脂或液体金属等的部件接触以传递热至该部件或从该部件将热传走。
图7C描绘了系统700的改进形式,其中TE模块701被分段以实现热绝缘。图7C示出阵列700的部分的详细视图,其中TE模块701和702传递热功率至热运动介质704和703(在该例中为旋转盘)。运动介质704和703分别绕轴733和734旋转。
在一个实施例中,有优势地,工作介质704和703在相反的方向上旋转,如箭头710和711所示。随着运动介质704、703旋转,热从TE模块701和702的不同部分进入与它们热接触的状态,并递增地改变运动介质704,703的温度。例如,第一TE模块726在特定位置加热运动介质704。在该位置的运动介质704的材料随着运动介质704逆时针旋转而运动到与第二TE模块725接触的位置。然后,运动介质704相同的部分运动到额外的TE模块段701上。随着运动介质703逆时针旋转,相反动作发生,并咬合TE模块701,然后是TE模块725和726。
有利地,运动介质704、703在径向和轴向具有良好的导热性,而在角方向上,也就是运动方向上的导热性差。借助这个特征,从一个TE模块725到另一个TE模块726经运动介质704和708由导热性产生的热传递被最小化,由此实现有效的热绝缘。
作为TE模块或段701、725、726的替换,单个TE元件或几个TE元件段可被替换。在这种情形下,如果TE元件701与它们在运动介质704、703的运动方向上的长度相比非常薄,且在该方向上具有相对差的导热性,那么它们将在长度方向上具有有效的绝缘。它们的导热和热响应如同它们是由分开的TE模块701构造的。该特征与在运动介质704、703的运动方向上的低导热性结合可以实现有效的热绝缘并由此提供性能增强。
图7D描绘了用于运动介质704、703的可替换结构,其中介质被构造成具有辐条727和731的轮状物(wheel)729和732的形式。在辐条727和731之间的空间内是热交换器材料728和730,并与之良好地热接触。
系统700可以如图7D所示的另一种模式工作。在该结构中,工作流体(未示出)沿阵列700的轴轴向运动,该阵列700在轴方向上相继地从一个介质704到下一种运动介质704穿过运动介质704、703,依此类推,直到通过最后的介质704并离开。类似地,分开的工作流体(未示出)轴向地通过单个运动介质703,该运动介质703通过阵列700。在该结构中,导管714和715及分离器717被成形,以便形成连续的绕运动介质704,703的环,并将介质704和介质703分开。
随着工作流体轴向流动,热功率通过热交换器材料728和730传递到工作流体。有利地,热侧工作流体,例如,通过热交换器728,在工作流体相反的方向上穿过热交换器730。在该工作模式下,阵列700用作反向流动热交换器,并且一连串的热交换器728和730递增地加热或冷却通过它们的各个工作流体。如图7C所示,热活性元件可以是TE模块701,该TE模块701可被构造以便在运动介质704、703的运动方向上具有有效的热绝缘。可替换地,TE模块701和702可以是如图7C所描绘的段。在后者的情形中,运动介质704、703的导热性在运动的方向上低具有进一步的优点,以便运动介质704、703的外部盘子729和732的部分被热绝缘。
可替换地,该设计可进一步在段729和732中包含径向狭缝(未示出),段729和732经受来自TE模块701和702的热传递以在运动方向实现热绝缘。
图8描绘热电系统800的另一个实施例,其在第一侧热交换器803和第二侧热交换器808之间具有多个TE元件801(有入口(hatched))和802(无入口的(unhatched))。电源805提供电流804并经电线806、807连接到热交换器808。该系统800具有导管和泵或鼓风机(未示出)以移动热和冷侧工作介质通过阵列800,例如,如图2、3、4、5,6和7所示的。
在该设计中,TE模块(具有多个TE元件)被TE元件801和802取代。例如,有阴影线的TE元件801可以是N型TE元件,而无阴影线的TE元件802可以是P型TE元件。对于该设计,配置热交换器803和808以便其具有非常高的导电性是有利的。例如,热交换器803、808的外壳和它们的内部翅片或其它类型的热交换器元件可以由铜或其它高导热和高导电的材料制成。可替换地,热交换器803和808可以与TE元件801和802良好地热连通,但电绝缘。在这种情形下,电分流器(未示出)可以连接到TE元件801和802的正面以电连接它们,其连接方式类似于图1中所示,但分流器与热交换器803和808形成环路。
无论什么结构,例如,从N型TE元件801到P型TE元件802的DC电流804将冷却夹在它们之间的第一侧热交换器803,而从P型TE元件802到N型TE元件801的电流然后将加热夹在它们之间的第二侧热交换器808。
阵列800具有最小的尺寸和热损失,因为标准TE模块的分流器,衬底和多个电连接器电线可被消除或减少。此外,TE元件801和802可以是异质结构(hetrostructures),如果元件被设计为具有高导电性和高电容量,该异质结构适应高电流。在这样的结构中,阵列800可产生高热功率密度。
图9描绘了如图8所示的同一类型的热电系统900,其在第一侧热传递元件903和第二侧热传递元件905之间具有P型TE元件901和N型TE元件902,且P型TE元件901和N型TE元件902与第一侧热传递元件903和第二侧热传递元件905具有良好的热接触。在该结构中,热传递元件903和905的形式为导热棒或热管。热交换器翅片904、906或类似物固定至热传递元件903和905,并与之良好地热连通。第一导管907限定第一工作介质908和909的流动,而第二导管914限定第二工作流体910和911的流动。电连接器912和913将电流传导至交替的P型和N型TE元件901、902叠层,如图8所示。
在工作中,以举例的形式,电流经第一连接器912进入阵列900,通过交替的P型TE元件901(有阴影线的)和N型TE元件902(无阴影线的),并通过第二电连接器913离开。在该过程中,第一工作介质908随着它被热传递翅片904的传导加热而逐步变热,该热传递翅片904又由通过第一热传递元件903的传导加热。第一导管907围绕并限定第一工作介质908,因此其以改变的温度作为工作流体909离开。第一导管907的部分将TE元件901和902及第二侧热传递元件905与第一(在该情形下是热的)工作介质908和909热绝缘。类似地,第二工作介质910通过第二导管914进入,当其通过第二侧热交换器906时被冷却(在该例中),并且作为被冷却的流体911离开。TE元件901、902提供对第二侧热传递元件905的冷却,从而对热交换器翅片906冷却。第二侧导管914用于限定第二(在该例中被冷却)工作介质910,从而将其与阵列900的其它部分绝缘。
虽然为图8一图9中实施例的单独的TE元件做了说明,TE模块可替换TE元件901、902。此外,在某些情形下,将TE元件901、902和热传递元件903、905电绝缘并将电流通过分流器(未示出)是有利的。而且,热交换器904,906可以是任何对系统功能有利的类型的设计。和其它实施例的情况一样,可以看出图8和图9的结构提供了相对容易制造的系统,其由热绝缘提供了增强的效率。例如,在图8中,在P型和N型热电元件之间交替的热交换器808、803要么是较冷的或较热的热交换器类型,但彼此合理地热绝缘,且让P型和N型热电元件彼此合理地热绝缘。
图10描绘另一种提供热绝缘的热电阵列系统(1000)。有利地,该结构可执行一个系统的功能,该系统使用相同的介质冷却和加热以除湿,或去除凝结物、雾霭、可凝结的水汽、反应产物等,并将介质返回至比其起始温度略高的温度。
系统1000由一叠交替的P型TE元件1001和N型元件1002组成,其中散布有冷侧热传递元件1003和热侧热传递元件1004。在所述的实施例中,热交换器翅片1005、1006是为较冷侧热传递元件1003和较热侧热传递元件1004提供的。较冷侧导管1018和较热侧导管1019在阵列1000中控制工作流体1007、1008和1009。鼓风机1010通过阵列1000推动工作流体1007、1008和1009。优选地,较冷侧绝缘件1012热绝缘工作流体1007,同时从TE元件叠层流经较冷侧,而较热侧绝缘件1020优选绝缘工作流体,同时从TE元件叠层流经较热侧。隔离板1010等将较冷和较热侧分开。在一个优选实施例中,隔离板1010具有用于工作流体1021通过的通道1010。类似地,在一个实施例中,流体通道1017允许流体1016进入热侧流动通道。
丝网1011或其它多孔工作流体流动限流器将阵列1000的较冷侧和较热侧分开。冷凝物、固态凝结物、液体等1013在阵列1000的底部积聚,并可以通过阀门1014并由喷口1015流出。
介质流(未示出)流过TE元件1001和1002,冷却较冷侧热传递元件1003,并加热较热侧热传递元件1004,如对图9的描述中所讨论的那样。在工作中,随着工作流体1007向下通过较冷侧,来自工作流体1007的凝结物、湿气或其它冷凝物1013可在阵列1000的底部收集。根据需要,阀门1014可被打开,且凝结物、湿气或冷凝物1013可通过喷口1015除去或通过任何合适的装置分离。
有利地,工作流体1021中的一些可通过旁路通道1020从较冷侧流至较热侧。借助该设计,不是所有的较冷侧流体1007流过流动限流器1011,限流器而是用来局部降低较热侧工作流体的温度,并由此提高阵列1000在某些情形下的热力效率。旁路通道1020和流动限流器1011之间适当比例的流量是通过系统流动特性的合适的设计而实现的。例如,可以包含阀门以控制流动,且特定的通道可以被打开或关闭。在某些用途中,流动限流器1011也可以用作过滤器以从流体或气体工作流体1008中除去凝结物,或从气态工作流体1008中除去湿气或雾霭。
有利地,额外的较热侧冷却剂1016可通过通道1017进入阵列1000,也用于降低较热侧的工作流体温度或增加阵列1000的效率。
该结构可在流动限流器1011中产生非常冷的条件,以便工作流体1008可具有除去相当量的凝结物、冷凝物或湿气的能力。在可替换的工作模式中,提供给鼓风机1010的功率可被反转,系统运行以便加热工作流体并将其返回至冷的状态。
这对除去加热过程形成的反应产物、凝结物、冷凝物、湿气等是有利的。在一个有利的实施例中,流动限流器1011,和/或热交换器1005和1006可具有催化(catalytic)特性,以增强、改变、使能、防止或影响系统中所发生的过程。对于液态工作流体,一个或更多泵可取代鼓风机/电动机1010以实现有利的性能。
图11描绘了热电阵列1100,其类似于图2和图3中的设计,但其中工作介质具有通过系统的替换路径。阵列1100具有TE模块1101,其散布在热交换器1102之间。多个入口端口1103、1105和1107通过阵列1100导通工作介质。多个出口端口1104,1106和1108通过阵列1100导通工作介质。
在工作中,以举例的方式来说明,要被冷却的工作介质进入第一个入口端口1103并通过热交换器1102中的几个,由此逐步冷却(在该例中),并通过第一出口端口1104离开。从阵列1000中带走热量的工作介质的一部分通过第二入口端口1105进入,通过热交换器1102,在该过程中被逐步加热,并通过第二出口端口1106离开。
带走热量的第二部分工作介质进入第三入口端口1107,随着它通过某些热交换器1102而被加热,并通过第三出口端口1108离开。
该设计允许从第一入口端口1103通到第二出口端口1104的冷侧工作介质被有效地冷却,因为在该例中热侧工作介质在两个位置进入,且最终的跨越TE模块1101的温度差平均低于如果工作介质在一个端口进入的情形。如果平均温度梯度低于平均值,那么在大多数情况下,最终的系统效率将更高。通过第二和第三入口端口1105和1107的相对流动速率可被调整以实现所需的性能或者以响应变化的外部条件。以举例的方式来说明,通过第三入口端口1107的较高的流动速率,和最有效地,通过该部分的流动方向的反转以致出口端口1108变成入口,可在冷侧工作介质中产生较冷的出口温度,该冷侧工作介质在第一出口端口1104处离开。所有这些变化。
应该指出的是,在不脱离本发明的情况下,可以组合上述特征。
上面的例子是根据通过施加功率至TE元件和模块而冷却和加热工作介质而讨论的。通过在TE元件和模块的两端施加温度梯度而提取电功率的相反的过程是本领域所公知的。具体地,示于图2、3、4、5、6、7、8、9和11中的结构本身可以用于发电。
一般地,这些图中所描述的系统工作于两种模式。有利地,可实施特定的改变以优化冷却、加热或发电的性能。例如,大温度差(200到2000)是可取的以在发电中实现高效率,这是本领域所公知的,而小温度差(10到60)是冷却和加热系统的特征。大温度差要求不同的构造材料和不同设计和材料的可能的TE模块和元件。然而,基本思想对于不同的工作模式是相同的。图5、图8和图9中所描述的设计对发电是有利的,因为它们提供了简单,结实,低成本设计和制造的可能性。然而,所有上面提到的设计对于特定的发电应用具有优点,且不能排除。
如上所述,虽然示出了几个例子,但上面的说明仅是本发明主要思想的说明,本发明主要思想在权利要求中给出。在权利要求中,所有术语被归结为它们普通和通常的意义,且上面的说明不限制各个术语为任何特定或具体限定的意义,除非特别地明确指出。

Claims (13)

1.一种热电系统,其包括:
多个热电模块,其中至少两个是彼此间基本热绝缘的,每个模块具有一个较热侧和一个较冷侧;以及
至少一种与所述多个热电模块中的所述至少两个依次地热连通的固态工作介质,以致所述工作介质由所述多个热电模块中的所述至少两个分阶段地逐步被冷却或加热。
2.根据权利要求1所述的热电系统,其中所述工作介质包括多个安装到一个旋转轴的盘状介质,且所述介质和所述热电模块形成一个堆叠结构,所述热电模块夹持所述盘状介质中的至少一个。
3.根据权利要求1所述的热电系统,其中所述工作介质包括多个工作介质,其形成热电模块和工作介质的交替的堆叠结构。
4.根据权利要求3所述的热电系统,其中所述工作介质使所述多个热电模块中的所述至少两个基本热绝缘。
5.一种热电系统,其包括:
多个热电模块,其中至少两个是彼此间基本热绝缘的,每个模块具有一个较热侧和一个较冷侧;
多个热传递装置,每个均与所述多个热电模块中的至少一个热连通,所述热传递装置中的至少两个热传递装置接收第一工作流体,所述第一工作流体流过所述热传递装置;以及
至少一个导管,其连接至在不同平面中的所述至少两个热传递装置,以致所述第一工作流体穿过所述至少两个热传递装置中的第一热传递装置,并随后穿过所述至少两个热传递装置中的第二热传递装置,且随着它们穿过所述至少两个热传递装置而被分阶段地冷却或加热。
6.根据权利要求5所述的热电系统,其中所述热传递装置中的至少一个被夹持在至少两个热电模块之间。
7.根据权利要求6所述的热电系统,其中所述至少两个热电模块的较冷侧面对所述被夹持的热传递装置。
8.根据权利要求5所述的热电系统,其中所述热电模块和热传递装置形成一个叠层,且较冷侧面对较冷侧并被至少一个热传递装置分开,较热侧面对较热侧并被至少一个热传递装置分开。
9.根据权利要求5所述的热电系统,其中所述热传递装置是包括外壳和热交换器翅片的热交换器,所述热交换器翅片在所述工作流体流动的方向上形成阶段,以便为与所述热交换器热连通的所述多个热电模块中的至少一个提供额外的热绝缘。
10.根据权利要求5所述的热电系统,其中所述至少一个导管被配置以便工作流体以同一方向流过由所述导管连接的所述至少两个热传递装置。
11.根据权利要求8所述的热电系统,其中所述热传递装置接收的工作流体以一限定方向流过所述热传递装置。
12.根据权利要求11所述的热电系统,其中所述热传递装置是热交换器,其包括一个外壳,所述外壳内具有分段形成的热交换器元件,且其中各分段中的至少一个与各分段中的至少另一个是基本热绝缘的。
13.根据权利要求12所述的热电系统,进一步包括至少一个导管,其提供从所述热交换器中的第一热交换器到所述热交换器中的第二热交换器的流体通路,以便流经所述第一热传递装置和所述第二热传递装置的工作流体分阶段地被冷却或加热。
CNB038195267A 2002-08-23 2003-08-07 紧凑高效的热电系统 Expired - Fee Related CN100380070C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/227,398 US7231772B2 (en) 2001-02-09 2002-08-23 Compact, high-efficiency thermoelectric systems
US10/227,398 2002-08-23

Publications (2)

Publication Number Publication Date
CN1714261A CN1714261A (zh) 2005-12-28
CN100380070C true CN100380070C (zh) 2008-04-09

Family

ID=31946338

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038195267A Expired - Fee Related CN100380070C (zh) 2002-08-23 2003-08-07 紧凑高效的热电系统

Country Status (9)

Country Link
US (1) US7231772B2 (zh)
EP (2) EP1573256A4 (zh)
JP (1) JP4340902B2 (zh)
KR (1) KR100972545B1 (zh)
CN (1) CN100380070C (zh)
AU (1) AU2003259085A1 (zh)
BR (1) BR0306200A (zh)
RU (1) RU2355958C2 (zh)
WO (1) WO2004019379A2 (zh)

Families Citing this family (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6672076B2 (en) 2001-02-09 2004-01-06 Bsst Llc Efficiency thermoelectrics utilizing convective heat flow
US7946120B2 (en) 2001-02-09 2011-05-24 Bsst, Llc High capacity thermoelectric temperature control system
US7273981B2 (en) 2001-02-09 2007-09-25 Bsst, Llc. Thermoelectric power generation systems
US7231772B2 (en) 2001-02-09 2007-06-19 Bsst Llc. Compact, high-efficiency thermoelectric systems
US7942010B2 (en) 2001-02-09 2011-05-17 Bsst, Llc Thermoelectric power generating systems utilizing segmented thermoelectric elements
US6959555B2 (en) * 2001-02-09 2005-11-01 Bsst Llc High power density thermoelectric systems
US8490412B2 (en) 2001-08-07 2013-07-23 Bsst, Llc Thermoelectric personal environment appliance
US7426835B2 (en) 2001-08-07 2008-09-23 Bsst, Llc Thermoelectric personal environment appliance
US6812395B2 (en) 2001-10-24 2004-11-02 Bsst Llc Thermoelectric heterostructure assemblies element
US6893086B2 (en) * 2002-07-03 2005-05-17 W.E.T. Automotive Systems Ltd. Automotive vehicle seat insert
US20110209740A1 (en) * 2002-08-23 2011-09-01 Bsst, Llc High capacity thermoelectric temperature control systems
US6857697B2 (en) * 2002-08-29 2005-02-22 W.E.T. Automotive Systems Ag Automotive vehicle seating comfort system
US7308008B2 (en) * 2002-11-08 2007-12-11 Finisar Corporation Magnetically controlled heat sink
DE10259648B4 (de) * 2002-12-18 2006-01-26 W.E.T. Automotive Systems Ag Klimatisierter Sitz und Klimatisierungseinrichtung für einen ventilierten Sitz
US7338117B2 (en) * 2003-09-25 2008-03-04 W.E.T. Automotive System, Ltd. Ventilated seat
US7274007B2 (en) * 2003-09-25 2007-09-25 W.E.T. Automotive Systems Ltd. Control system for operating automotive vehicle components
US7370911B2 (en) * 2003-10-17 2008-05-13 W.E.T. Automotive Systems, Ag Automotive vehicle seat insert
US7425034B2 (en) * 2003-10-17 2008-09-16 W.E.T. Automotive Systems Ag Automotive vehicle seat having a comfort system
US7461892B2 (en) * 2003-12-01 2008-12-09 W.E.T. Automotive Systems, A.C. Valve layer for a seat
US20050150539A1 (en) * 2004-01-13 2005-07-14 Nanocoolers, Inc. Monolithic thin-film thermoelectric device including complementary thermoelectric materials
US20050150536A1 (en) * 2004-01-13 2005-07-14 Nanocoolers, Inc. Method for forming a monolithic thin-film thermoelectric device including complementary thermoelectric materials
US20050150537A1 (en) * 2004-01-13 2005-07-14 Nanocoolers Inc. Thermoelectric devices
US20050160752A1 (en) * 2004-01-23 2005-07-28 Nanocoolers, Inc. Apparatus and methodology for cooling of high power density devices by electrically conducting fluids
US8028531B2 (en) * 2004-03-01 2011-10-04 GlobalFoundries, Inc. Mitigating heat in an integrated circuit
US7380586B2 (en) * 2004-05-10 2008-06-03 Bsst Llc Climate control system for hybrid vehicles using thermoelectric devices
US20060076046A1 (en) * 2004-10-08 2006-04-13 Nanocoolers, Inc. Thermoelectric device structure and apparatus incorporating same
US7587901B2 (en) 2004-12-20 2009-09-15 Amerigon Incorporated Control system for thermal module in vehicle
US7296417B2 (en) * 2004-12-23 2007-11-20 Nanocoolers, Inc. Thermoelectric configuration employing thermal transfer fluid flow(s) with recuperator
US7293416B2 (en) * 2004-12-23 2007-11-13 Nanocoolers, Inc. Counterflow thermoelectric configuration employing thermal transfer fluid in closed cycle
US7475551B2 (en) 2004-12-23 2009-01-13 Nanocoolers, Inc. System employing temporal integration of thermoelectric action
US7743614B2 (en) 2005-04-08 2010-06-29 Bsst Llc Thermoelectric-based heating and cooling system
DE102005018445B3 (de) * 2005-04-20 2006-06-29 W.E.T. Automotive Systems Ag Klimatisierungseinrichtung für einen Sitz
US8039726B2 (en) * 2005-05-26 2011-10-18 General Electric Company Thermal transfer and power generation devices and methods of making the same
US7847179B2 (en) * 2005-06-06 2010-12-07 Board Of Trustees Of Michigan State University Thermoelectric compositions and process
CN101213679B (zh) * 2005-06-28 2010-09-29 Bsst有限责任公司 用于可变热功率源的热电发电机
US8783397B2 (en) * 2005-07-19 2014-07-22 Bsst Llc Energy management system for a hybrid-electric vehicle
US7478869B2 (en) * 2005-08-19 2009-01-20 W.E.T. Automotive Systems, Ag Automotive vehicle seat insert
US7870745B2 (en) 2006-03-16 2011-01-18 Bsst Llc Thermoelectric device efficiency enhancement using dynamic feedback
US7952015B2 (en) 2006-03-30 2011-05-31 Board Of Trustees Of Michigan State University Pb-Te-compounds doped with tin-antimony-tellurides for thermoelectric generators or peltier arrangements
CN101517764B (zh) * 2006-07-28 2011-03-30 Bsst有限责任公司 高容量热电温度控制系统
JP5014427B2 (ja) 2006-07-28 2012-08-29 ビーエスエスティー エルエルシー セグメント型熱電素子を使用する熱電発電システム
US20100155018A1 (en) * 2008-12-19 2010-06-24 Lakhi Nandlal Goenka Hvac system for a hybrid vehicle
US8222511B2 (en) * 2006-08-03 2012-07-17 Gentherm Thermoelectric device
US20080087316A1 (en) 2006-10-12 2008-04-17 Masa Inaba Thermoelectric device with internal sensor
DE102007027828A1 (de) * 2006-11-14 2008-05-15 Proseat Gmbh & Co.Kg Modul für ein Polster
US8143554B2 (en) 2007-03-16 2012-03-27 Amerigon Incorporated Air warmer
CN110254159A (zh) 2007-05-25 2019-09-20 詹思姆公司 分配式热电加热和冷却的系统和方法
US20080289677A1 (en) * 2007-05-25 2008-11-27 Bsst Llc Composite thermoelectric materials and method of manufacture
KR100859555B1 (ko) * 2007-07-09 2008-09-22 주식회사 하라시스템 열전소자를 이용한 능동 히트파이프
US9105809B2 (en) 2007-07-23 2015-08-11 Gentherm Incorporated Segmented thermoelectric device
DE102007060312B4 (de) 2007-08-24 2012-12-06 W.E.T. Automotive Systems Ag Elektrothermischer Wandler und Temperiereinrichtung
WO2009036077A1 (en) 2007-09-10 2009-03-19 Amerigon, Inc. Operational control schemes for ventilated seat or bed assemblies
WO2009090442A1 (en) 2007-12-27 2009-07-23 Vacuumschmelze Gmbh & Co. Kg Composite article with magnetocalorically active material and method for its production
US20090178700A1 (en) * 2008-01-14 2009-07-16 The Ohio State University Research Foundation Thermoelectric figure of merit enhancement by modification of the electronic density of states
WO2009097572A1 (en) 2008-02-01 2009-08-06 Amerigon Incorporated Condensation and humidity sensors for thermoelectric devices
GB2490820B (en) * 2008-05-16 2013-03-27 Vacuumschmelze Gmbh & Co Kg Article for magnetic heat exchange and methods for manufacturing an article for magnetic heat exchange
US8701422B2 (en) 2008-06-03 2014-04-22 Bsst Llc Thermoelectric heat pump
WO2010009422A1 (en) 2008-07-18 2010-01-21 Amerigon Incorporated Climate controlled bed assembly
US20100011781A1 (en) 2008-07-21 2010-01-21 Lents Charles E Heat exchanger assembly for an aircraft control
JP5520306B2 (ja) 2008-10-01 2014-06-11 ヴァキュームシュメルツェ ゲーエムベーハー ウント コンパニー カーゲー 少なくとも一つの磁気熱量活性相を有する製品,及び少なくとも一つの磁気熱量活性相を有する製品の加工方法
GB2463931B (en) 2008-10-01 2011-01-12 Vacuumschmelze Gmbh & Co Kg Method for producing a magnetic article
WO2010048575A1 (en) * 2008-10-23 2010-04-29 Bsst Llc Multi-mode hvac system with thermoelectric device
ES2756398T3 (es) 2008-11-18 2020-04-27 Phoebus Energy Ltd Sistema de calentamiento híbrido
DE202009017049U1 (de) 2008-12-21 2010-05-12 W.E.T. Automotive Systems Ag Belüftungseinrichtung
WO2010088405A1 (en) * 2009-01-28 2010-08-05 Amerigon Incorporated Convective heater
US8359871B2 (en) * 2009-02-11 2013-01-29 Marlow Industries, Inc. Temperature control device
DE202010002050U1 (de) * 2009-02-18 2010-07-15 W.E.T. Automotive Systems Ag Klimatisierungseinrichtung für Fahrzeugsitze
DE102009030491A1 (de) * 2009-03-18 2010-09-23 W.E.T. Automotive Systems Ag Klimatisierungseinrichtung für einen klimatisierten Gegenstand in einem Fahrzeuginnenraum
US20100243228A1 (en) * 2009-03-31 2010-09-30 Price Richard J Method and Apparatus to Effect Heat Transfer
WO2010120697A1 (en) * 2009-04-13 2010-10-21 The Ohio State University Thermoelectric alloys with improved thermoelectric power factor
US9773591B2 (en) 2009-05-06 2017-09-26 Vacuumschmelze Gmbh & Co. Kg Article for magnetic heat exchange and method of fabricating an article for magnetic heat exchange
JP5457549B2 (ja) 2009-05-18 2014-04-02 ビーエスエスティー リミテッド ライアビリティ カンパニー 熱電素子を有する温度制御システム
DE102009058550A1 (de) * 2009-07-21 2011-01-27 Emcon Technologies Germany (Augsburg) Gmbh Thermoelektrisches Modul, Baugruppe mit Modul, thermoelektrische Generatoreinheit und Abgasleitungsvorrichtung mit Generatoreinheit
JP5893556B2 (ja) 2009-07-24 2016-03-23 ジェンサーム インコーポレイテッドGentherm Incorporated 熱電型の発電装置、熱電型発電装置を製造する方法、および熱電型発電装置を用いて発電する方法
CH702645A1 (de) * 2010-02-05 2011-08-15 Mentus Holding Ag Thermisch aktiver Isolator.
US20110248209A1 (en) 2010-03-12 2011-10-13 Northwestern University Thermoelectric figure of merit enhancement by modification of the electronic density of states
DE102011014516A1 (de) 2010-04-06 2012-05-10 W.E.T. Automotive Systems Ag Multifunktionsprodukt
US8484966B2 (en) 2010-05-03 2013-07-16 Spx Corporation Rotary heat exchanger
US20110277473A1 (en) * 2010-05-14 2011-11-17 Geoffrey Courtright Thermal Energy Transfer System
DE102010021901A1 (de) * 2010-05-28 2011-12-01 Volkswagen Ag Wärmetauschen zwischen Fluidströmen mittels einer thermoelektrischen Vorrichtung
GB2482880B (en) 2010-08-18 2014-01-29 Vacuumschmelze Gmbh & Co Kg An article for magnetic heat exchange and a method of fabricating a working component for magnetic heat exchange
JP5449104B2 (ja) 2010-09-29 2014-03-19 株式会社東芝 熱交換容器ユニット、および熱サイクルユニット
US9121414B2 (en) 2010-11-05 2015-09-01 Gentherm Incorporated Low-profile blowers and methods
US20130228205A1 (en) * 2011-01-25 2013-09-05 Yury Vernikovskiy Apparatus for reversibly converting thermal energy to electric energy
US8795545B2 (en) 2011-04-01 2014-08-05 Zt Plus Thermoelectric materials having porosity
US9006557B2 (en) 2011-06-06 2015-04-14 Gentherm Incorporated Systems and methods for reducing current and increasing voltage in thermoelectric systems
WO2012170443A2 (en) 2011-06-06 2012-12-13 Amerigon Incorporated Cartridge-based thermoelectric systems
WO2013052823A1 (en) 2011-10-07 2013-04-11 Gentherm Incorporated Thermoelectric device controls and methods
KR101272195B1 (ko) 2011-10-31 2013-06-07 (주) 엠티이엑스 열전소자를 이용한 정수기
DE102012020516A1 (de) 2011-12-09 2013-06-13 W.E.T. Automotive Systems Ag Temperier-Einrichtung für eine elektrochemische Spannungsquelle
EP2641035A1 (en) * 2012-02-06 2013-09-25 Huawei Technologies Co., Ltd. Liquid cooling system and method for cooling at least one heat generating component
US9989267B2 (en) 2012-02-10 2018-06-05 Gentherm Incorporated Moisture abatement in heating operation of climate controlled systems
KR101264356B1 (ko) 2012-03-02 2013-05-14 한국전기연구원 적층형 열전모듈의 압착 압력 조절 시스템
US20130291555A1 (en) * 2012-05-07 2013-11-07 Phononic Devices, Inc. Thermoelectric refrigeration system control scheme for high efficiency performance
CN102710174B (zh) * 2012-05-25 2015-11-11 中国华能集团清洁能源技术研究院有限公司 多级温差发电组件、发电装置和发电系统
US20140030560A1 (en) * 2012-07-25 2014-01-30 GM Global Technology Operations LLC Battery with solid state cooling
WO2014022428A2 (en) 2012-08-01 2014-02-06 Gentherm Incorporated High efficiency thermoelectric generation
KR101421956B1 (ko) 2012-12-31 2014-07-22 현대자동차주식회사 자동차용 적층형 열전발전장치
CN108400410A (zh) 2013-01-30 2018-08-14 詹思姆公司 基于热电的热管理系统
US9662962B2 (en) 2013-11-05 2017-05-30 Gentherm Incorporated Vehicle headliner assembly for zonal comfort
DE112015000816T5 (de) 2014-02-14 2016-11-03 Gentherm Incorporated Leitfähiger, konvektiver klimatisierter Sitz
US11857004B2 (en) 2014-11-14 2024-01-02 Gentherm Incorporated Heating and cooling technologies
US11639816B2 (en) 2014-11-14 2023-05-02 Gentherm Incorporated Heating and cooling technologies including temperature regulating pad wrap and technologies with liquid system
WO2016077843A1 (en) 2014-11-14 2016-05-19 Cauchy Charles J Heating and cooling technologies
US10603976B2 (en) 2014-12-19 2020-03-31 Gentherm Incorporated Thermal conditioning systems and methods for vehicle regions
JP2016152363A (ja) * 2015-02-18 2016-08-22 東日本旅客鉄道株式会社 温度差発電装置
KR102051644B1 (ko) * 2015-10-01 2019-12-03 주식회사 엘지화학 열전 모듈을 이용한 전력 저장 장치 및 이를 포함하는 에너지 저장 시스템
US10625566B2 (en) 2015-10-14 2020-04-21 Gentherm Incorporated Systems and methods for controlling thermal conditioning of vehicle regions
CN105509297B (zh) * 2016-02-04 2018-06-08 山东大学 一种快速恒温水制取装置
RU187505U1 (ru) * 2017-06-29 2019-03-11 Алексей Игоревич Салмин Система охлаждения космического или наземного аппарата
KR101966140B1 (ko) * 2017-10-30 2019-08-14 한국에너지기술연구원 유체조화장치 및 이를 구비한 온실
US20200035898A1 (en) 2018-07-30 2020-01-30 Gentherm Incorporated Thermoelectric device having circuitry that facilitates manufacture
US10811748B2 (en) 2018-09-19 2020-10-20 International Business Machines Corporation Cryogenic on-chip microwave filter for quantum devices
WO2020112902A1 (en) 2018-11-30 2020-06-04 Gentherm Incorporated Thermoelectric conditioning system and methods
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board
CN112477549B (zh) * 2020-11-23 2022-03-18 艾泰斯热系统研发(上海)有限公司 一种多负载热泵系统的冷却液冷热源切换装置
CN112985132B (zh) * 2021-03-05 2022-10-25 太原理工大学 一种斯特林发电及强制对流散热的重力热管装置
CN113300634B (zh) * 2021-05-08 2022-06-21 江苏大学 一种基于热管传热的两级温差发电余热回收装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3663307A (en) * 1968-02-14 1972-05-16 Westinghouse Electric Corp Thermoelectric device
CN1335472A (zh) * 2000-07-25 2002-02-13 石磊明 开放式共等电位半导体电致冷组件及电制冷总成件
CN1351245A (zh) * 2001-06-19 2002-05-29 沈康明 半导体致冷器件冷热交换式制热、制冷器及其制作方法
CN2504569Y (zh) * 2001-11-07 2002-08-07 王彬 分体式热电制冷器

Family Cites Families (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126116A (en) 1964-03-24 Check valveb nipple
GB817077A (en) 1956-08-22 1959-07-22 Gen Electric Improvements in or relating to thermoelectric cooling units
DE460762C (de) * 1924-03-21 1928-06-05 Alice Sandberg Geb Mohlin Waermeaustauschvorrichtung
US2944404A (en) 1957-04-29 1960-07-12 Minnesota Mining & Mfg Thermoelectric dehumidifying apparatus
DE1071177B (zh) 1958-01-17
US2997514A (en) * 1958-03-11 1961-08-22 Whirlpool Co Refrigerating apparatus
US2949014A (en) 1958-06-02 1960-08-16 Whirlpool Co Thermoelectric air conditioning apparatus
US3006979A (en) 1959-04-09 1961-10-31 Carrier Corp Heat exchanger for thermoelectric apparatus
US3129116A (en) 1960-03-02 1964-04-14 Westinghouse Electric Corp Thermoelectric device
US3004393A (en) 1960-04-15 1961-10-17 Westinghouse Electric Corp Thermoelectric heat pump
US3178895A (en) 1963-12-20 1965-04-20 Westinghouse Electric Corp Thermoelectric apparatus
US3527621A (en) 1964-10-13 1970-09-08 Borg Warner Thermoelectric assembly
US3213630A (en) 1964-12-18 1965-10-26 Westinghouse Electric Corp Thermoelectric apparatus
US3391727A (en) * 1966-11-14 1968-07-09 Ford Motor Co Disc type rotary heat exchanger
DE1539330A1 (de) 1966-12-06 1969-11-06 Siemens Ag Thermoelektrische Anordnung
SE329870B (zh) 1967-10-31 1970-10-26 Asea Ab
DE1944453B2 (de) 1969-09-02 1970-11-19 Buderus Eisenwerk Peltierbatterie mit Waermeaustauscher
SE337227B (zh) 1969-11-24 1971-08-02 Asea Ab
DE1963023A1 (de) 1969-12-10 1971-06-16 Siemens Ag Thermoelektrische Vorrichtung
US3626704A (en) 1970-01-09 1971-12-14 Westinghouse Electric Corp Thermoelectric unit
US3599437A (en) * 1970-03-03 1971-08-17 Us Air Force Thermoelectric cooling device
US3817043A (en) 1972-12-07 1974-06-18 Petronilo C Constantino & Ass Automobile air conditioning system employing thermoelectric devices
DE2262084C2 (de) * 1972-12-19 1981-12-10 Kálmán 7553 Muggensturm Andrásfalvy Vorrichtung zur Pulverrückgewinnung aus einem Pulver-Luftgemisch, insbesondere in Anlagen zur elektrostatischen Pulverbeschichtung
US3779814A (en) 1972-12-26 1973-12-18 Monsanto Co Thermoelectric devices utilizing electrically conducting organic salts
FR2315771A1 (fr) 1975-06-27 1977-01-21 Air Ind Perfectionnements apportes aux installations thermo-electriques
US4125122A (en) * 1975-08-11 1978-11-14 Stachurski John Z O Direct energy conversion device
US4065936A (en) 1976-06-16 1978-01-03 Borg-Warner Corporation Counter-flow thermoelectric heat pump with discrete sections
GB2027534B (en) 1978-07-11 1983-01-19 Air Ind Thermoelectric heat exchangers
FR2452796A1 (fr) * 1979-03-26 1980-10-24 Cepem Dispositif thermoelectrique de transfert de chaleur avec circuit de liquide
US4297841A (en) 1979-07-23 1981-11-03 International Power Technology, Inc. Control system for Cheng dual-fluid cycle engine system
JPS5618231A (en) 1979-07-25 1981-02-20 Masahiro Morita Cool sleep system
DE3164237D1 (en) 1980-12-23 1984-07-19 Air Ind Thermo-electrical plants
FR2542855B1 (fr) 1983-03-17 1985-06-28 France Etat Armement Installation thermoelectrique
US4494380A (en) * 1984-04-19 1985-01-22 Bilan, Inc. Thermoelectric cooling device and gas analyzer
FR2570169B1 (fr) * 1984-09-12 1987-04-10 Air Ind Perfectionnements apportes aux modules thermo-electriques a plusieurs thermo-elements pour installation thermo-electrique, et installation thermo-electrique comportant de tels modules thermo-electriques
JPS6368641A (ja) * 1986-09-09 1988-03-28 Hitachi Chem Co Ltd ポリイミド成形品の表面処理方法
US4731338A (en) 1986-10-09 1988-03-15 Amoco Corporation Method for selective intermixing of layered structures composed of thin solid films
JPH0777273B2 (ja) 1986-12-24 1995-08-16 キヤノン株式会社 スイッチング素子およびその駆動方法
JPH0814337B2 (ja) * 1988-11-11 1996-02-14 株式会社日立製作所 流体自体の相変化を利用した流路の開閉制御弁及び開閉制御方法
US5092129A (en) 1989-03-20 1992-03-03 United Technologies Corporation Space suit cooling apparatus
CA1321886C (en) * 1989-03-20 1993-09-07 Stephen A. Bayes Space suit cooling apparatus
US5038569A (en) 1989-04-17 1991-08-13 Nippondenso Co., Ltd. Thermoelectric converter
US4905475A (en) 1989-04-27 1990-03-06 Donald Tuomi Personal comfort conditioner
US5097829A (en) 1990-03-19 1992-03-24 Tony Quisenberry Temperature controlled cooling system
JPH04165234A (ja) 1990-10-30 1992-06-11 Nippondenso Co Ltd 熱電変換装置
CA2038563A1 (en) 1991-03-19 1992-09-20 Richard Tyce Personal environment system
US5232516A (en) * 1991-06-04 1993-08-03 Implemed, Inc. Thermoelectric device with recuperative heat exchangers
US5213152A (en) * 1991-11-05 1993-05-25 Abb Air Preheater, Inc. Temperature control system for a heat detector on a heat exchanger
US5228923A (en) 1991-12-13 1993-07-20 Implemed, Inc. Cylindrical thermoelectric cells
JPH05219765A (ja) 1992-02-03 1993-08-27 Fuji Electric Co Ltd 熱電気発電装置
GB2267338A (en) 1992-05-21 1993-12-01 Chang Pen Yen Thermoelectric air conditioning
US5193347A (en) 1992-06-19 1993-03-16 Apisdorf Yair J Helmet-mounted air system for personal comfort
JP2636119B2 (ja) 1992-09-08 1997-07-30 工業技術院長 熱電素子シートとその製造方法
US5592363A (en) 1992-09-30 1997-01-07 Hitachi, Ltd. Electronic apparatus
WO1994012833A1 (en) 1992-11-27 1994-06-09 Pneumo Abex Corporation Thermoelectric device for heating and cooling air for human use
US5900071A (en) 1993-01-12 1999-05-04 Massachusetts Institute Of Technology Superlattice structures particularly suitable for use as thermoelectric materials
US5429680A (en) 1993-11-19 1995-07-04 Fuschetti; Dean F. Thermoelectric heat pump
US5524439A (en) 1993-11-22 1996-06-11 Amerigon, Inc. Variable temperature seat climate control system
CN1140431A (zh) 1994-01-12 1997-01-15 海洋工程国际公司 热电式冰箱的箱体及其实现方法
US5584183A (en) 1994-02-18 1996-12-17 Solid State Cooling Systems Thermoelectric heat exchanger
JPH07253264A (ja) 1994-03-17 1995-10-03 Hitachi Ltd 冷蔵庫
KR100242758B1 (ko) 1994-07-01 2000-03-02 안자키 사토루 공조장치
US6082445A (en) * 1995-02-22 2000-07-04 Basf Corporation Plate-type heat exchangers
US5682748A (en) 1995-07-14 1997-11-04 Thermotek, Inc. Power control circuit for improved power application and temperature control of low voltage thermoelectric devices
JPH0942801A (ja) 1995-07-25 1997-02-14 Hitachi Ltd 冷却パネル
JP3675017B2 (ja) * 1996-01-16 2005-07-27 株式会社デンソー 車両用空調装置
JP3676504B2 (ja) 1996-07-26 2005-07-27 本田技研工業株式会社 熱電モジュール
WO1998005060A1 (en) * 1996-07-31 1998-02-05 The Board Of Trustees Of The Leland Stanford Junior University Multizone bake/chill thermal cycling module
JP3926424B2 (ja) 1997-03-27 2007-06-06 セイコーインスツル株式会社 熱電変換素子
JP3556799B2 (ja) * 1997-03-28 2004-08-25 三菱重工業株式会社 熱電発電装置
US5860472A (en) * 1997-09-03 1999-01-19 Batchelder; John Samual Fluid transmissive apparatus for heat transfer
US5966941A (en) 1997-12-10 1999-10-19 International Business Machines Corporation Thermoelectric cooling with dynamic switching to isolate heat transport mechanisms
US5867990A (en) 1997-12-10 1999-02-09 International Business Machines Corporation Thermoelectric cooling with plural dynamic switching to isolate heat transport mechanisms
JPH11274574A (ja) * 1998-03-20 1999-10-08 Kubota Corp 熱電発電装置用熱交換ブロックの作製方法
US6000225A (en) 1998-04-27 1999-12-14 International Business Machines Corporation Two dimensional thermoelectric cooler configuration
US6119463A (en) * 1998-05-12 2000-09-19 Amerigon Thermoelectric heat exchanger
US6050326A (en) * 1998-05-12 2000-04-18 International Business Machines Corporation Method and apparatus for cooling an electronic device
US6510696B2 (en) 1998-06-15 2003-01-28 Entrosys Ltd. Thermoelectric air-condition apparatus
US6359725B1 (en) 1998-06-16 2002-03-19 Xtera Communications, Inc. Multi-stage optical amplifier and broadband communication system
US5987890A (en) 1998-06-19 1999-11-23 International Business Machines Company Electronic component cooling using a heat transfer buffering capability
US6366832B2 (en) 1998-11-24 2002-04-02 Johnson Controls Technology Company Computer integrated personal environment system
KR100317829B1 (ko) 1999-03-05 2001-12-22 윤종용 반도체 제조 공정설비용 열전냉각 온도조절장치
US6319744B1 (en) 1999-06-03 2001-11-20 Komatsu Ltd. Method for manufacturing a thermoelectric semiconductor material or element and method for manufacturing a thermoelectric module
JP2001024240A (ja) * 1999-07-07 2001-01-26 Komatsu Ltd 温度調整装置
US6446442B1 (en) * 1999-10-07 2002-09-10 Hydrocool Pty Limited Heat exchanger for an electronic heat pump
US6347521B1 (en) 1999-10-13 2002-02-19 Komatsu Ltd Temperature control device and method for manufacturing the same
US6346668B1 (en) 1999-10-13 2002-02-12 Mcgrew Stephen P. Miniature, thin-film, solid state cryogenic cooler
US6282907B1 (en) 1999-12-09 2001-09-04 International Business Machines Corporation Thermoelectric cooling apparatus and method for maximizing energy transport
US6563039B2 (en) 2000-01-19 2003-05-13 California Institute Of Technology Thermoelectric unicouple used for power generation
US6401462B1 (en) 2000-03-16 2002-06-11 George Bielinski Thermoelectric cooling system
GB0021393D0 (en) * 2000-08-31 2000-10-18 Imi Cornelius Uk Ltd Thermoelectric module
US6530231B1 (en) 2000-09-22 2003-03-11 Te Technology, Inc. Thermoelectric assembly sealing member and thermoelectric assembly incorporating same
US6481213B2 (en) 2000-10-13 2002-11-19 Instatherm Company Personal thermal comfort system using thermal storage
US6530842B1 (en) 2000-10-17 2003-03-11 Igt Electronic gaming machine with enclosed seating unit
US6367261B1 (en) 2000-10-30 2002-04-09 Motorola, Inc. Thermoelectric power generator and method of generating thermoelectric power in a steam power cycle utilizing latent steam heat
JP3472550B2 (ja) 2000-11-13 2003-12-02 株式会社小松製作所 熱電変換デバイス及びその製造方法
US6412287B1 (en) 2000-12-21 2002-07-02 Delphi Technologies, Inc. Heated/cooled console storage unit and method
KR100442237B1 (ko) 2000-12-29 2004-07-30 엘지전자 주식회사 열전냉방기
US6539725B2 (en) 2001-02-09 2003-04-01 Bsst Llc Efficiency thermoelectrics utilizing thermal isolation
US6598405B2 (en) * 2001-02-09 2003-07-29 Bsst Llc Thermoelectric power generation utilizing convective heat flow
US7231772B2 (en) 2001-02-09 2007-06-19 Bsst Llc. Compact, high-efficiency thermoelectric systems
US6672076B2 (en) 2001-02-09 2004-01-06 Bsst Llc Efficiency thermoelectrics utilizing convective heat flow
US7273981B2 (en) 2001-02-09 2007-09-25 Bsst, Llc. Thermoelectric power generation systems
US6637210B2 (en) 2001-02-09 2003-10-28 Bsst Llc Thermoelectric transient cooling and heating systems
US6959555B2 (en) 2001-02-09 2005-11-01 Bsst Llc High power density thermoelectric systems
US6625990B2 (en) 2001-02-09 2003-09-30 Bsst Llc Thermoelectric power generation systems
US6580025B2 (en) * 2001-08-03 2003-06-17 The Boeing Company Apparatus and methods for thermoelectric heating and cooling
US6812395B2 (en) 2001-10-24 2004-11-02 Bsst Llc Thermoelectric heterostructure assemblies element
JP2003156297A (ja) 2001-11-16 2003-05-30 Komatsu Ltd 熱交換器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3663307A (en) * 1968-02-14 1972-05-16 Westinghouse Electric Corp Thermoelectric device
CN1335472A (zh) * 2000-07-25 2002-02-13 石磊明 开放式共等电位半导体电致冷组件及电制冷总成件
CN1351245A (zh) * 2001-06-19 2002-05-29 沈康明 半导体致冷器件冷热交换式制热、制冷器及其制作方法
CN2504569Y (zh) * 2001-11-07 2002-08-07 王彬 分体式热电制冷器

Also Published As

Publication number Publication date
AU2003259085A8 (en) 2004-03-11
WO2004019379A2 (en) 2004-03-04
EP1573256A4 (en) 2008-03-26
EP2275755A2 (en) 2011-01-19
CN1714261A (zh) 2005-12-28
RU2355958C2 (ru) 2009-05-20
EP2275755A3 (en) 2012-11-28
WO2004019379A3 (en) 2005-07-14
JP4340902B2 (ja) 2009-10-07
KR20060066046A (ko) 2006-06-15
JP2005536976A (ja) 2005-12-02
US20030005706A1 (en) 2003-01-09
US7231772B2 (en) 2007-06-19
AU2003259085A1 (en) 2004-03-11
BR0306200A (pt) 2004-12-28
RU2005108566A (ru) 2006-01-20
EP1573256A2 (en) 2005-09-14
KR100972545B1 (ko) 2010-07-28

Similar Documents

Publication Publication Date Title
CN100380070C (zh) 紧凑高效的热电系统
US6959555B2 (en) High power density thermoelectric systems
JP5014427B2 (ja) セグメント型熱電素子を使用する熱電発電システム
US7942010B2 (en) Thermoelectric power generating systems utilizing segmented thermoelectric elements
US7946120B2 (en) High capacity thermoelectric temperature control system
US5860472A (en) Fluid transmissive apparatus for heat transfer
US5884691A (en) Fluid transmissive moderated flow resistance heat transfer unit
CN101517764A (zh) 高容量热电温度控制系统
US7937953B2 (en) Thermoelectric heat pump for heat and energy recovery ventilation
CN104205382A (zh) 用于热回收系统的模块化热电单元及其方法
US20180135897A1 (en) Vehicle Thermoelectric Cooling System
CN210745036U (zh) 一种基于半导体晶片的传热装置、空调组件、热水器、制冷装置与温差发电装置
CN110855185A (zh) 一种基于半导体晶片的传热装置及采用该装置的设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080409

Termination date: 20120807