CN100378245C - 溅射成膜装置 - Google Patents

溅射成膜装置 Download PDF

Info

Publication number
CN100378245C
CN100378245C CNB200410076691XA CN200410076691A CN100378245C CN 100378245 C CN100378245 C CN 100378245C CN B200410076691X A CNB200410076691X A CN B200410076691XA CN 200410076691 A CN200410076691 A CN 200410076691A CN 100378245 C CN100378245 C CN 100378245C
Authority
CN
China
Prior art keywords
plasma
substrate
target
filming device
vacuum vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB200410076691XA
Other languages
English (en)
Other versions
CN1605653A (zh
Inventor
野田俊成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1605653A publication Critical patent/CN1605653A/zh
Application granted granted Critical
Publication of CN100378245C publication Critical patent/CN100378245C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0047Activation or excitation of reactive gases outside the coating chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Abstract

一种溅射成膜装置,其包括:配置于真空容器(30)的内部的一对靶(31);与这一对靶(31)大致垂直,并配置于离开一对靶(31)构成的空间的位置上的基板托架(33);在该基板托架(33)的附近通过余辉等离子体而产生反应用等离子体的等离子体源(37);连接该等离子体源(37)和真空容器(30)的导入管(38)。由于可在基板托架(33)的附近生成由余辉等离子体构成的反应用等离子体,所以对体积特性接近的化合物薄膜没有等离子体造成的损伤,并可以在低基板温度下进行成膜。

Description

溅射成膜装置
技术领域
本发明涉及溅射成膜装置,特别涉及在成膜时一边发生反应一边进行膜生成的对置靶溅射装置。
背景技术
在日本专利特开平2-38310号公报公开了使用现有的对置靶溅射装置来制作反应性的溅射膜的方法。在该公开例中,在基板表面上部局部地产生氧等离子体,与从靶飞出的溅射粒子发生氧化反应而制作氧化物超导薄膜。图4是表示该现有的对置靶溅射装置的主要部分结构的剖面外观示意图。
在图4中,一对靶4隔开一定的间隔并相对配置。在这些靶4的后方,分别配置用于在一对靶4之间形成磁场空间的磁铁3。基板5配置在与各个靶4相对的面垂直的方向上,并且面对由配置于靶4的背面的磁铁3形成的磁场空间。放电用的气体导入口9设置在靶4的侧面附近。从该气体导入口9向配置有一对靶4的真空室中导入氩气作为放电用气体。在气体导入后,通过从直流电源8将直流电压施加在一对靶4上,生成在磁场空间封闭的等离子体。
此外,在基板5和屏蔽盖1的空间部中作为反应用的气体设置有喷出氧气的气体喷出口6。而且,在其喷出口6的内部配置有与用于产生反应气体等离子体的高频电源2连接的电极7。另外,气体喷出口6也可以设置在相对于电极7的前侧或后侧。这些喷出口配置在真空室10内,在通过真空泵(未图示)将真空室内排气后,导入放电气体并产生等离子体。通过产生的等离子体而使从靶4溅射飞出的溅射粒子与基板5附近配置的电极7的附近生成的等离子体进行反应,并在基板5的表面上例如形成氧化膜。
在这样的现有的使用对置靶式溅射方式的反应性的溅射装置中,为了产生反应气体等离子体而将连接到高频电源2的电极7配置在基板5的附近。因此,由于基板5暴露在电子温度高的等离子体中,所以形成于基板5表面的薄膜在成膜中受到等离子体造成的损伤。而且,由于基板5通过等离子体加热,所以有不能在期望的基板温度下进行成膜的问题。
对于这样的问题,在日本专利特开平6-252098号公报中,公开了向基板照射活化的中性粒子束来进行表面处理的装置。由高密度的离子束生成高密度的中性粒子束,并通过该中性粒子束可在高速度下进行表面处理。图5是该等离子体源的示意剖面图。
该等离子体源包括等离子体室15、余辉输送室18和处理室24。即,在等离子体室15使气体放电产生等离子体100。在余辉输送室18中,将该等离子体100作为余辉引出,同时一边输送该等离子体余辉102,一边将其中所含的离子中性化并形成中性粒子束。在处理室24中,导入在余辉输送室18中生成的中性粒子束并对基板25进行表面处理。根据这样的结构,由于在基板25上仅照射中性粒子,所以即使被处理体是绝缘体,也可以进行表面处理而不进行充电。
以下,说明等离子体源的具体结构。
等离子体室15可使用电子回旋共振(ECR)产生微波等离子体。即,在等离子体室15的外周部中配置用于ECR的电磁铁11并且形成由波导管13传送来的微波通过窗口12导入内部的结构。此外,在该等离子体室15中,设置有第一气体导入管14,从该第一气体导入管14供给放电用气体。
在等离子体室15和余辉输送室18的边界位置设置有开口部16,通过该开口部16将等离子体室15中产生的等离子体100作为等离子体余辉102引出到余辉输送室18。
在余辉输送室18中,在其外周部上卷绕用于磁场整形的电磁铁17。由此,在从等离子体室15到处理室24的方向上形成静磁场104。此外,在余辉输送室18的内周部中配置有环状的气体喷出部19,将从第二气体供给管20供给的用于电荷交换的气体从气体喷出部19供给至等离子体余辉102。
因此,等离子体余辉102在其直径由静磁场104束缚成一定形状的状态下向处理室24的方向输送。由此,等离子体余辉102中所含的正离子其飞翔方向受到控制并成为离子束。该离子束在中途通过与用于电荷交换的气体的电荷交换反应而被中性化。其结果,形成飞翔方向一致的中性粒子束。在该阶段中,在中性粒子束中残存电子和负离子或正离子。
在余辉输送室18和处理室24的边界位置,相邻配置有电子排斥电极21和离子排斥电极22。通过电子排斥电极21将中性离子束中残存的电子和负  离子排斥除去。另一方面,通过电子排斥电极21的正离子被离子排斥电极
22排斥除去。其结果,在处理室24中,仅导入中性粒子束106。
处理室24可通过连接到排气口23的真空泵(未图示)而排气到期望的真空度。此外,在其内部配置有基板托架26,在基板托架26上安装有基板25。
但是,在将这样的等离子体源作为图4所示的反应用等离子体发生源时,有以下问题。即,这样形成的中性粒子束106因其直径方向分布不均匀,所以通过该中性粒子束106反应生成的薄膜容易使其膜质和膜厚的表面分布不均匀。此外,中性粒子束106有时向靶方向上飞翔,作为该粒子束与靶材料产生反应而在靶表面上生成化合物的结果,在成膜中靶的表面上产生电弧放电,使溅射不稳定,同时在成膜的薄膜中还产生溅射。
发明内容
本发明用于解决上述以往的课题,其目的在于提供一种对置靶溅射装置,
其可防止反应用等离子体的向靶方向的侵入,防止成膜中发生电弧放电,同
时制作的薄膜不受到等离子体造成的损伤,并且可以进行其表面分布均匀的
成膜。
本发明的溅射成膜装置包括:真空容器;一对靶,其配置于所述真空容
器内;基板托架,其与所述一对靶互相相对的各表面大致垂直,并配置在离
开所述一对靶相对的各表面间的空间的位置上;等离子体源,其产生高密度
等离子体,作为该高密度等离子体的余辉等离子体在所述基板托架的附近产
生反应用等离子体;导入管,其连接所述等离子体源和所述真空容器。
通过形成这样的结构,由于可在基板托架的附近生成由余辉等离子体构
成的反应用等离子体,所以可以在没有等离子体造成的损伤,比较低的基板
温度下进行体积特性接近的化合物膜的成膜。
附图说明
图1是表示本发明实施例的溅射装置结构的剖面示意图;
图2是表示通过该实施例的溅射装置形成的等离子体分布的说明图;
图3A和图3B是表示该实施例的溅射装置中使用的导入管的前端部的分支结构的剖面示意图;
图4是现有的对置靶溅射装置的主要部分结构的剖面外观示意图;
图5是通过中性粒子束在高速度下进行表面处理的现有结构的等离子体源的示意剖面图。
具体实施方式
以下,用图1至图3B来说明本发明实施例的对置靶溅射装置的整体结构。
图1是表示本发明的溅射装置结构的剖面示意图,图2是表示本发明的形成于溅射装置的等离子体分布的说明图,图3A和图3B是表示本发明的溅射装置中使用的导入管的前端部的分支结构的剖面示意图。
在图1和图2中,在真空容器30的内部将一对靶31隔开一定空间,大致平行相对配置。在离开由一对靶31的各自表面形成的空间的位置上配置有基板托架33。期望一对靶31之间的距离为100mm~180mm左右,从连结一对靶31的相对面中心的中心轴至基板34的距离为100mm~180mm。其中,该距离也可以根据使用的基板形状而进一步增大,但期望靶31间的距离和中心轴与基板34的距离之比与上述相同。
此外,为了获得大的成膜速度,一对靶31使用表面电阻率为0.01Ω·cm左右的导电性的靶为好。在基板托架33的附近设置有用于监视反应用等离子体的等离子体参数的等离子体检测器46。将该等离子体检测器46设置在距基板托架33的外周部5mm以内为好。另外,作为等离子体检测器46,例如可以使用等离子体分光分析装置、兰米尔探头或吸光光度分析和荧光分析等光学分析装置。
在基板托架33上,设置基板34,以对置由一对靶31彼此形成的空间。在一对靶31的背面侧中分别设置用于封闭溅射等离子体的磁铁35,其用于在由一对靶31形成的空间中形成磁场80。而且,这一对用于封闭溅射等离子体的磁铁35各自对置的部分配置成对极。通过这样的配置,将磁场80从靶31的一方向另一方形成。另外,对于磁铁35的材质来说,可以使用铝镍钴磁铁、铁氧体磁铁、钐/钴合金磁铁、钕/铁/硼合金磁铁等各种众所周知的磁铁。
在相对于基板托架33的基板34的安装位置的相反侧或基板34的安装位置的外周区域部中,设置有用于在基板34的表面上形成平行的磁场82的反应用等离子体封闭磁铁36。反应用等离子体封闭磁铁36也与用于封闭溅射等离子体的磁铁35同样,可以使用各种众所周知的磁铁。此外,设置屏蔽盖32以覆盖靶31的表面的外周部。屏蔽盖32如图所示接地。
在真空容器30的外侧配置有多个等离子体源37,通过导入管38将真空容器30和等离子体源37连接。将多个导入管38以基板为中心配置在对称的位置为好。用于向等离子体源37施加电力的直流电源、高频电源或微波电源(未图示)可准备与等离子体源37相同数量,也可以用一台电源向多个等离子体源37提供电力。期望导入管38的材质是以石英玻璃为代表的非磁性体,并且是耐热性好的。如果在导入管38的材质上使用磁性体,则因设置于导入管38中的磁场发生部40产生的磁场84没有有效地施加在导入管38的内部,所以使用磁性体并不好。另外,作为磁场发生部40,可通过在线圈中施加电流来产生磁场,也可以使用永久磁铁。
导入管38的形状可使用圆筒形状、矩形形状等各种形状。例如,比较一下导入管38的形状。在圆筒形状的剖面的直径和矩形形状的剖面的正方形的一边长度相等的情况时,因为矩形形状因管壁中的表面再耦合产生的削减等离子体的影响小,容易获得高密度的余辉等离子体,所以作为导入管38的形状,矩形形状较好。
在导入管38和真空容器30的连接部区域的周围设置有磁屏蔽39。该磁屏蔽39可以使用软铁、坡莫合金、铁氧体等软磁性体的板材和其他各种众所周知的磁屏蔽材料。通过设置磁屏蔽39,可在真空容器30的外侧对设置于导入管38中的磁场发生部40中从设置在真空容器外的区域部分产生的磁场和等离子体源37产生的磁场进行磁屏蔽。因此,由于可以防止这些磁场进入真空容器30内部,所以对在真空容器30的内部产生的磁场和等离子体分布没有这些磁场的干扰。总之,可以独立并最合适地控制真空容器30的外侧和内侧的各自磁场。另外,在用高斯仪测量磁场80和磁场82的分布时,可获得设计的分布。由此,可确认在真空容器30的外侧产生的磁场对真空容器30的内部不产生影响。
图3A和图3B是表示相对基板34的导入管38的前端部的分支结构的剖面示意图。该图是从基板34的上面侧看的图,导入管38表示为在平行于基板34的表面的方向上切断。
如图3A和图3B所示,导入管38至少分支为多个,延长至基板34附近。导入管38的分支管都形成相等的形状。即,以使通过任一分支的路径都相等来设定从导入管38的等离子体导入侧的端部至等离子体喷出侧的端部的距离。此外,在导入管38中,设置有用于在等离子体源37和真空容器31之间产生平行于导入管38的管轴方向的磁场的磁场发生部40。磁场发生部40的外周区域部由软磁体构成的导入管盖41覆盖。因此,可以防止从磁场发生部40产生的磁场造成的对真空容器30内的磁场分布和等离子体分布的干扰。
在图3A和图3B中,如上所述,导入管38和磁场发生部40的结构为相同形状,但等离子体喷出部区域的导入管盖41的形状局部不同。即,在图3A中,导入管盖41还包含分支部分并与导入管38形成同轴形状。通过形成这样的形状,可以减小设置空间。另一方面,在图3B中,导入管盖41的分支部分形成为可一体地容纳分支管。如果是这样的形状,可简单地制造导入管41。另外,导入管盖41的形状,不限定于图3A和图3B中说明的形状,也可以是朝向基板34方向构成喷出余辉等离子体88的结构。此外,在导入管38在真空容器内分支的情况下,不仅可如上述地分支为两个,也可以分支为三个以上。而且,也可以将各个分支的喷出部的余辉等离子体88的喷出方向朝向基板34的中心方向。通过这样配置,可以使反应用等离子体90的基板34的表面上的分布进一步均匀。
下面参照图1和图2来说明使用如上构成的本实施例的对置靶溅射装置,一边进行反应一边进行成膜的反应性成膜过程。另外,图2是表示图1所示的装置结构中的等离子体发生状态的图。
首先,如图1和图2所示,将氧气或氢气等反应气体从反应气体导入口45导入等离子体源37。反应气体通过直流等离子体、高频等离子体、微波等离子体、回旋共振等离子体、螺旋波激励等离子体或感应耦合激励等离子体等构成的等离子体源37激励,生成高密度等离子体86。另外,作为反应气体,在通过兰米尔测量仪测量使用氧气情况下的高密度等离子体86的电子密度的结果中,可获得1011~1013cm-3左右的密度非常高的等离子体。
由等离子体源37生成的高密度等离子体86通过从反应气体导入口45导入的反应气体的气体流作为余辉等离子体88导入到导入管38的内部。在导入管38的周围,由于设置有用于在导入管38的管轴方向上产生平行的磁场84的磁场发生部40,所以可通过磁场84抑制余辉等离子体88向管轴方向的扩散。因此,可以抑制余辉等离子体88在导入管38的管壁上表面再耦合造成的减少,余辉等离子体88可以维持高密度状态。
此外,作为反应气体,如果使用氧气或氢气,则因为余辉等离子体88中被激励的氧或氢与电子反复进行弹性碰撞,所以电子温度急剧地下降。因此,可以防止由电子温度使基板34的温度上升。
另一方面,作为反应气体,如果使用氮气,则在余辉等离子体88中存在许多被亚稳能级激励的氮。处于该亚稳能级的氮和电子产生非弹性碰撞。因此,因其能量转嫁给电子,使电子被再加热,电子温度上升。因此,基板34因电子温度上升而被加热,容易产生其温度上升。但是,在基板的温度上升没有什么问题的薄膜工序中也可以使用氮气。
而且,也可以使用氩气、碳化氢类气体、二氧化碳气体、一氧化碳气体、硅烷类气体等各种气体。
余辉等离子体88通过反应气体产生的气体流进一步导入至导入管38的基板托架33的侧端部。然后,从导入管38的端部向基板托架33的方向喷出余辉等离子体88,在基板托架33附近形成由低电子温度且高密度的余辉等离子体构成的反应用等离子体90。等离子体源37和导入管38配置为多个。此外,如图3A和图3B所示,导入管38在真空容器30的内部至少分支为多个并延长到基板托架33的附近,分支后的各个管的路径长度相等。由此,可以使反应用等离子体90均匀地分布在基板34的表面上。
此外,在基板托架33中,在与基板34相反侧的位置上设置用于封闭反应用等离子体的磁铁36,通过该磁铁36在基板34的表面上产生平行的磁场82。因此,反应用等离子体90在基板34形成整个表面上均匀的分布并封闭的状态。由于反应用等离子体90是电子温度低且密度高的等离子体,所以通过反应用等离子体90,成膜于基板34的表面上的膜不受损伤,而且还可以防止基板的温度上升。另外,可以确认作为反应气体,在使用直径10mm的圆筒状的导入管38导入氧气在平行于管轴方向上产生1500Gauss的磁场84时,反应用等离子体90的电子密度为1010cm-3左右,电子温度在1eV以下,并获得电子温度低且密度高的等离子体。
此外,对基板34表面的电子密度和电子温度的表面分布进行了测量,它们大致是均匀的。
这样,在基板34的表面上形成反应用等离子体90的状态下,从溅射气体导入口42导入以氩气、氪气这样的惰性气体为代表的溅射气体。接着,从连接到一对靶31的直流电源43以一对靶31作为阴极来施加电压。通过施加该电压,一对靶31相对的靶表面间的空间中的溅射气体离子化,生成溅射等离子体92。溅射等离子体92通过电场96将一对靶31的各个靶溅射。
在一对靶31的各自的背面侧,设置有用于封闭溅射等离子体的磁铁35,在从靶31的一个到另一个的方向上产生磁场80。通过该磁场80和电场96,因为溅射等离子体92在一对靶31的各个靶表面之间的空间中封闭,所以基板34暴露在溅射等离子体92中并不受损伤。通过溅射等离子体92被溅射的溅射粒子也在基板34的方向上飞行。并且,飞行的溅射粒子在基板34的表面与基板表面34上生成的反应用等离子体90发生反应,并在基板34的表面上形成反应的薄膜。在本实施例中,如图1和图2所示,因为使用氧气作为反应气体,所以可以形成氧化物薄膜。另外,如果将氢气用作反应气体,则可以形成氢化物薄膜。而且,也可以使用其他的反应气体。
因为反应用等离子体90在基板34的表面上以均匀的表面分布来生成,所以成膜的薄膜均匀地发生反应并在基板34的整个面上形成均匀的膜质。
此外,因为相对于基板托架33的基板安装位置,在位于相反侧的真空容器30的壁部设置有排气口44,所以从一对靶31方向向排气口44的方向产生气体流94。此外,反应用等离子体90通过用于反应用等离子体封闭的磁铁36在基板34的表面上封闭,所以反应用等离子体90不在靶31方向上侵入。由此,一对靶31在其表面上不与反应用等离子体90发生反应。因此,在靶31的表面上,靶材料和反应用等离子体90不会发生反应也不生成反应生成物。其结果,可防止成膜中电弧放电的产生。在成膜中,用设置于基板托架33附近的等离子体检测器46时常监视反应用等离子体90的各种等离子体参数,调整反应气体的流量和施加到等离子体源37的电力并控制反应用等离子体的等离子体状态,以获得规定的组成的反应生成物。
以下,说明使用本发明的溅射装置时的具体实验例。
作为靶31,使用掺杂硼、电阻率为0.02Ω·cm的硅靶。作为溅射气体,导入50sccm~100sccm的氩气,作为反应气体,导入20sccm~40sccm的氧气。作为基板34,使用直径四英寸的硅晶片,在该硅晶片上制作氧化硅(SiO2)膜。在一对靶31上,由直流电源43施加2kW~3kW的电力,在由一对靶31形成的空间中由氩等离子体产生溅射等离子体92,对一对靶31进行溅射。
在基板34的表面上,生成电子密度为1010cm-3左右、电子温度1eV以下的低电子温度、高密度的用于反应的氧等离子体90。在上述条件下,在作为基板34的硅晶片上制作SiO2膜。其结果,成膜中几乎不产生电弧放电,可将基板温度最高抑制在80℃。此外,成膜速度为40nm/min~60nm/min,可获得普通的磁控管溅射的5倍左右的成膜速度。
使用波长分散型EPMA(Electron Probe Micro Analysis)对制作的SiO2膜的组成进行分析时,可获得摩尔比Si∶O=1∶2的化学计量组成非常好的膜。此外,使用棱镜耦合器测量膜的折射率时,获得1.457(波长633nm)的折射率。该折射率是与SiO2的体积相等的折射率,而且在硅晶片上的折射率的表面分布低于0.05%,可获得非常良好的结果。
另一方面,使用图4所示的现有的反应性溅射装置进行SiO2膜的成膜。基板、靶、溅射气体和反应气体与本实施例的实验例相同。在靶上施加2.0kW以上的电力时,在成膜中产生电弧放电,在膜中混入多种夹杂物,不能控制膜的组成。而在靶上接通1.5kW的电力进行成膜时,因基板附近的氧等离子体造成的碰撞而使基板被加热,基板温度达到130℃以上。成膜速度为20nm/min以下,硅晶片上的折射率的表面分布为0.08%以上。
综上所述,本发明的对置靶溅射装置将由设置于真空容器30之外的等离子体源37生成的高密度的余辉等离子体构成的反应用等离子体90导入基板34的表面,可以以均匀的表面分布封闭。其结果,从由溅射等离子体92溅射的一对靶31中飞出的溅射粒子在基板34的表面与反应用等离子体90产生反应并可将由反应生成物构成的薄膜成膜在基板34上。
此外,相对在位于基板托架33的基板安装位置相反侧的真空容器30的壁部中设置有排气口44,所以可产生从一对靶31方向至排气口44的方向的气体流94。由此,抑制了反应用等离子体90向靶31的方向的飞行。由此,靶31和反应用等离子体90不发生反应也不在靶31的表面上形成它们的反应生成物。因此,可以防止成膜中电弧放电的发生。
另外,在本实施例中说明了在成膜过程中,在基板34的表面上形成反应用等离子体90后,产生溅射等离子体92并进行成膜的情况,但本发明不限于此。例如,也可以用风门(未图示)覆盖基板34的表面形成在基板34上溅射粒子不飞散的状态,产生溅射等离子体92后,在基板34的表面上形成反应用等离子体90然后打开风门(未图示)进行成膜。
另外,在本发明中,如上所述,期望导入等离子体源的气体为氧气或氢气。余辉等离子体中的被激励的氧或氢与电子反复进行弹性碰撞,可使电子温度急剧下降,所以基板不受到电子冲击,可防止基板的温度上升,在低温下形成高质量的氧化膜和氢化膜。

Claims (11)

1.一种溅射成膜装置,其包括:
真空容器;
一对靶,其配置于所述真空容器内;
基板托架,其与所述一对靶相对的各表面大致垂直,并配置在离开所述一对靶相对的各表面间的空间的位置上;
等离子体源,其产生高密度等离子体,作为该高密度等离子体的余辉等离子体在所述基板托架的附近产生反应用等离子体;
导入管,其连接所述等离子体源和所述真空容器。
2.如权利要求1所述的溅射成膜装置,其中,至少配置两个所述等离子体源和所述导入管。
3.如权利要求1所述的溅射成膜装置,其中,以磁屏蔽方式覆盖连接所述等离子体源和所述真空容器的所述导入管周围。
4.如权利要求1所述的溅射成膜装置,其中,导入所述等离子体源的气体为氧气或氢气。
5.如权利要求1所述的溅射成膜装置,其中,在相对于所述基板托架的基板安装位置,在相反侧或外周区域部设置反应用等离子体封闭的磁铁,其相对所述基板安装位置表面产生平行磁场。
6.如权利要求1所述的溅射成膜装置,其中,将所述导入管在所述真空容器内至少分支为两个并延长到所述基板托架附近。
7.如权利要求1所述的溅射成膜装置,其中,在所述导入管的轴方向上设置产生平行磁场的磁场发生部。
8.如权利要求7所述的溅射成膜装置,其中,用软磁性体覆盖所述磁场发生部的外周区域。
9.如权利要求1所述的溅射成膜装置,其中,相对所述真空容器内的基板安装位置,在位于相反侧的所述真空容器的壁部设置排气口。
10.如权利要求1所述的溅射成膜装置,其中,所述等离子体源为直流等离子体、高频等离子体、微波等离子体、回旋共振等离子体、螺旋波激励等离子体或感应耦合激励等离子体中的至少一种。
11.如权利要求1所述的溅射成膜装置,其中,在所述基板托架的附近设置用于检测等离子体状态的等离子体检测器。
CNB200410076691XA 2003-07-16 2004-07-16 溅射成膜装置 Expired - Fee Related CN100378245C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003197560A JP2005036250A (ja) 2003-07-16 2003-07-16 スパッタ装置
JP197560/03 2003-07-16
JP197560/2003 2003-07-16

Publications (2)

Publication Number Publication Date
CN1605653A CN1605653A (zh) 2005-04-13
CN100378245C true CN100378245C (zh) 2008-04-02

Family

ID=34055868

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200410076691XA Expired - Fee Related CN100378245C (zh) 2003-07-16 2004-07-16 溅射成膜装置

Country Status (3)

Country Link
US (1) US7338581B2 (zh)
JP (1) JP2005036250A (zh)
CN (1) CN100378245C (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4405973B2 (ja) * 2006-01-17 2010-01-27 キヤノンアネルバ株式会社 薄膜作製装置
JP2007291420A (ja) * 2006-04-21 2007-11-08 Canon Inc スパッタ装置
JP4969919B2 (ja) * 2006-05-30 2012-07-04 株式会社アルバック 成膜装置及び成膜方法
JP2010245366A (ja) * 2009-04-08 2010-10-28 Fujifilm Corp 電子素子及びその製造方法、並びに表示装置
US20100320456A1 (en) * 2009-06-19 2010-12-23 Epv Solar, Inc. Method for Fabricating a Doped and/or Alloyed Semiconductor
WO2011037008A1 (en) 2009-09-24 2011-03-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor film and method for manufacturing semiconductor device
JP2011129631A (ja) 2009-12-16 2011-06-30 Showa Shell Sekiyu Kk Cis系薄膜太陽電池の製造方法
TWI456082B (zh) * 2010-03-26 2014-10-11 Univ Nat Sun Yat Sen 磁控式電漿濺鍍機
WO2012090421A1 (ja) * 2010-12-28 2012-07-05 キヤノンアネルバ株式会社 プラズマcvd装置
US9466524B2 (en) * 2012-01-31 2016-10-11 Applied Materials, Inc. Method of depositing metals using high frequency plasma
KR20140101610A (ko) * 2013-02-12 2014-08-20 삼성디스플레이 주식회사 증착 장치 및 이를 이용한 유기 발광 표시 장치의 제조 방법
EP2811508B1 (en) * 2013-06-07 2019-04-24 Soleras Advanced Coatings bvba Gas configuration for magnetron deposition systems
US9934950B2 (en) 2015-10-16 2018-04-03 Samsung Electronics Co., Ltd. Sputtering apparatuses and methods of manufacturing a magnetic memory device using the same
CN109825808B (zh) * 2019-03-01 2024-05-24 酒泉职业技术学院(甘肃广播电视大学酒泉市分校) 一种掺杂类金刚石薄膜制备装置及方法
CN111074225A (zh) * 2020-01-09 2020-04-28 上海嘉森真空科技有限公司 一种微波等离子辅助的溅射光学成膜方法
DE102020212353A1 (de) 2020-09-30 2022-03-31 Carl Zeiss Smt Gmbh Verfahren zur Herstellung eines optischen Elements, optisches Element, Vorrichtung zur Herstellung eines optischen Elements, Sekundärgas und Projektionsbelichtungsanlage
TWI799766B (zh) * 2020-12-16 2023-04-21 進化光學有限公司 使用濺鍍技術製作半導體薄膜之方法
US20220384194A1 (en) * 2021-05-28 2022-12-01 Applied Materials, Inc. Apparatus for generating magnetic fields on substrates during semiconductor processing
CN113862624B (zh) * 2021-09-27 2023-03-21 上海集成电路材料研究院有限公司 溅射沉积设备及溅射沉积方法
CN114561617A (zh) * 2022-03-03 2022-05-31 季华实验室 一种金属氧化物薄膜的制备方法及金属氧化物薄膜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149965A (ja) * 1987-12-07 1989-06-13 Hitachi Ltd プラズマ反応装置
CN1038036A (zh) * 1988-05-10 1989-12-20 公共供应公司 用余辉等离子体清洗表面的方法
JPH0238310A (ja) * 1988-07-29 1990-02-07 Ricoh Co Ltd 酸化物高温超電導薄膜の製造方法
JPH03207864A (ja) * 1986-09-26 1991-09-11 Hitachi Metals Ltd 立方晶窒化硼素の製造方法
JPH06252098A (ja) * 1993-02-26 1994-09-09 Kawasaki Steel Corp 表面処理装置
JPH10284297A (ja) * 1998-04-01 1998-10-23 Nec Corp プラズマ処理方法及びその装置
US6169127B1 (en) * 1996-08-30 2001-01-02 Novartis Ag Plasma-induced polymer coatings

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058793B2 (ja) * 1980-03-24 1985-12-21 日電アネルバ株式会社 プラズマ分光監視装置
US5178739A (en) * 1990-10-31 1993-01-12 International Business Machines Corporation Apparatus for depositing material into high aspect ratio holes
US5346600A (en) * 1992-08-14 1994-09-13 Hughes Aircraft Company Plasma-enhanced magnetron-sputtered deposition of materials
JP3868020B2 (ja) * 1995-11-13 2007-01-17 キヤノンアネルバ株式会社 遠距離スパッタ装置及び遠距離スパッタ方法
US6140773A (en) * 1996-09-10 2000-10-31 The Regents Of The University Of California Automated control of linear constricted plasma source array
JP4355036B2 (ja) * 1997-03-18 2009-10-28 キヤノンアネルバ株式会社 イオン化スパッタリング装置
JPH111770A (ja) * 1997-06-06 1999-01-06 Anelva Corp スパッタリング装置及びスパッタリング方法
EP0918042A1 (de) * 1997-11-20 1999-05-26 Balzers Hochvakuum AG Mit mindestens einer MgO-Schicht beschichtetes Substrat
US6150030A (en) * 1997-11-20 2000-11-21 Balzers Hochvakuum Ag Substrate coated with an MgO-layer
US6676814B1 (en) * 1997-11-20 2004-01-13 Unaxis Trading Ag Substrate coated with an MgO layer
US6106676A (en) * 1998-04-16 2000-08-22 The Boc Group, Inc. Method and apparatus for reactive sputtering employing two control loops
US6165312A (en) * 1998-04-23 2000-12-26 Sandia Corporation Method and apparatus for monitoring plasma processing operations
US6610184B2 (en) * 2001-11-14 2003-08-26 Applied Materials, Inc. Magnet array in conjunction with rotating magnetron for plasma sputtering
US20010050220A1 (en) * 1999-11-16 2001-12-13 Applied Materials, Inc. Method and apparatus for physical vapor deposition using modulated power
JP2001200357A (ja) * 2000-01-19 2001-07-24 Nippon Sheet Glass Co Ltd 成膜装置と成膜方法
DE10010126C2 (de) * 2000-03-03 2002-10-10 Cobes Gmbh Nachrichten Und Dat Verfahren und Vorrichtung zum Plasmabehandeln der Oberfläche von Substraten durch Ionenbeschuß
US20030159925A1 (en) * 2001-01-29 2003-08-28 Hiroaki Sako Spattering device
US7274015B2 (en) * 2001-08-08 2007-09-25 Sionex Corporation Capacitive discharge plasma ion source
JP2003147529A (ja) * 2001-11-12 2003-05-21 Tohoku Ricoh Co Ltd 金属酸化物薄膜の製造方法及び製造装置
JP4493284B2 (ja) * 2003-05-26 2010-06-30 キヤノンアネルバ株式会社 スパッタリング装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03207864A (ja) * 1986-09-26 1991-09-11 Hitachi Metals Ltd 立方晶窒化硼素の製造方法
JPH01149965A (ja) * 1987-12-07 1989-06-13 Hitachi Ltd プラズマ反応装置
CN1038036A (zh) * 1988-05-10 1989-12-20 公共供应公司 用余辉等离子体清洗表面的方法
JPH0238310A (ja) * 1988-07-29 1990-02-07 Ricoh Co Ltd 酸化物高温超電導薄膜の製造方法
JPH06252098A (ja) * 1993-02-26 1994-09-09 Kawasaki Steel Corp 表面処理装置
US6169127B1 (en) * 1996-08-30 2001-01-02 Novartis Ag Plasma-induced polymer coatings
JPH10284297A (ja) * 1998-04-01 1998-10-23 Nec Corp プラズマ処理方法及びその装置

Also Published As

Publication number Publication date
US7338581B2 (en) 2008-03-04
CN1605653A (zh) 2005-04-13
US20050011757A1 (en) 2005-01-20
JP2005036250A (ja) 2005-02-10

Similar Documents

Publication Publication Date Title
CN100378245C (zh) 溅射成膜装置
TWI485279B (zh) 同軸型微波輔助之沉積與蝕刻系統
US5144196A (en) Particle source, especially for reactive ionic etching and plasma-supported CVD processes
JP2840699B2 (ja) 被膜形成装置及び被膜形成方法
US5006219A (en) Microwave cathode sputtering arrangement
KR101006057B1 (ko) 스퍼터링 장치 및 성막 방법
KR19990006564A (ko) 플라즈마 처리장치
US5053244A (en) Process for depositing silicon oxide on a substrate
US5531877A (en) Microwave-enhanced sputtering configuration
JP5475506B2 (ja) スパッタリング薄膜形成装置
JP4969919B2 (ja) 成膜装置及び成膜方法
US11640900B2 (en) Electron cyclotron rotation (ECR)-enhanced hollow cathode plasma source (HCPS)
JPH07130494A (ja) マイクロ波プラズマ処理装置
JPS61238962A (ja) 膜形成装置
JP2021535554A (ja) 均一な高密度プラズマシートを発生させ処理するための方法
JPH0645093A (ja) プラズマ発生装置
JPS63227777A (ja) 薄膜形成装置
JP2646664B2 (ja) マイクロ波プラズマ膜推積装置
JPS6417869A (en) Microwave plasma chemical vapor deposition device
JPS6267822A (ja) プラズマ処理装置
JPS63278221A (ja) 薄膜形成装置
JPH0291935A (ja) マイクロ波プラズマ膜堆積装置
JPS63182822A (ja) マイクロ波プラズマ処理装置
JPS59133364A (ja) 放電化学反応装置
JP2021535555A (ja) 高密度プラズマ処理装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080402

Termination date: 20140716

EXPY Termination of patent right or utility model