CN100375289C - 用于包含各向异性半导体薄板的写一次存储器的二极管-和-熔丝存储元件 - Google Patents

用于包含各向异性半导体薄板的写一次存储器的二极管-和-熔丝存储元件 Download PDF

Info

Publication number
CN100375289C
CN100375289C CNB031084168A CN03108416A CN100375289C CN 100375289 C CN100375289 C CN 100375289C CN B031084168 A CNB031084168 A CN B031084168A CN 03108416 A CN03108416 A CN 03108416A CN 100375289 C CN100375289 C CN 100375289C
Authority
CN
China
Prior art keywords
diode
thin plate
alignment
line
fuse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB031084168A
Other languages
English (en)
Other versions
CN1462073A (zh
Inventor
C·M·佩尔洛夫
S·福雷斯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HP Inc
Original Assignee
Hewlett Packard Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Co filed Critical Hewlett Packard Co
Publication of CN1462073A publication Critical patent/CN1462073A/zh
Application granted granted Critical
Publication of CN100375289C publication Critical patent/CN100375289C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • H10K19/202Integrated devices comprising a common active layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0014RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/16Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/16Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
    • G11C17/165Memory cells which are electrically programmed to cause a change in resistance, e.g. to permit multiple resistance steps to be programmed rather than conduct to or from non-conduct change of fuses and antifuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/102Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including bipolar components
    • H01L27/1021Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including bipolar components including diodes only
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/71Three dimensional array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/72Array wherein the access device being a diode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/701Organic molecular electronic devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Read Only Memory (AREA)

Abstract

交叉点二极管存储器的电子存储阵列(118)中采用的施主和受主有机结薄板(606)。施主和受主有机结薄板(606)关于电流的流动是各向异性的,而且在超过临界电流时物理上不稳定。因而,在二维存储阵列网格点上的行线(602)和列线(604)之间的施主和受主有机结薄板(206)的体充当二极管-熔丝存储元件的二极管部件(210)和熔丝部件(208)并与相邻网格点交叉之间的施主和受主有机结薄板的相似的体在电气上绝缘。

Description

用于包含各向异性半导体薄板的写一次存储器的二极管-和-熔丝存储元件
技术领域
本发明涉及存储器设备,尤其涉及采用各向异性半导体薄板作为熔丝-二极管存储元件二维阵列的交叉点二极管存储器设备。
背景技术
随着计算机处理器和数字数据存储设备在消费类电子设备中用得越来越普通,对大容量、低价格的数字存储设备的需求大大增加了。有些情况下,缺乏足够便宜、大容量的数字存储设备已经阻碍了需要在操作期间存储大量数字数据的消费类电子设备的销售。需要便宜、大容量的数字存储器的消费类电子设备的一个例子是高分辨率数码相机。虽然正在不断地流行,但数码相机对大众化的消费水平来说仍然显得过于昂贵。此外,可以制造出更高分辨率的数码相机,但高分辨率数码相机捕捉到的更高分辨率的图像对数字数据的存储需求进一步增加了它们的操作成本。
数字数据通常存储在旋转磁盘驱动器上或基于半导体的存储器中,例如EEPROM和闪存。磁盘驱动器昂贵、消耗大量的电能,而且对很多消费类设备来说不够安全。闪存更安全一些,但因为它们是用生产微处理器和其它半导体电子设备的照相平版印刷技术生产的,目前如果用在便宜的消费类电子设备或写一次消费应用(例如,存储由数码相机捕捉到的数字图像)中它们仍然显得过于昂贵。
最近,开发出了一种新的交叉点二极管存储器用作消费类电子设备(例如,数码相机)中的大容量写一次存储器。图1是一部分交叉点二极管存储器模块的切面立方图。交叉点二极管存储器模块包括多个相同的、堆积起来的层。图1中显示了层101-113。每层包括一个基片116,在基片上形成了二维存储阵列118。二维存储阵列包括行和列导电元件或导线,它们一起构成了一个网格状的模式。二维存储阵列的行线通过行多路复用器/多路分解器电路124电子耦合到输入/输出(“I/O”)导线120-123。列线通过列路复用器/多路分解器电路130耦合到列I/O导线126-129。行I/O导线120-123和列I/O导线126-129用接触单元进行电子连接,例如行I/O导线120连接到接触单元132,132沿着交叉点二极管存储器模块的边伸长以对存储器模块的所有层101-113的行I/O导线和列I/O导线进行电子互连。二维存储阵列118中行线和列线的每个网格点交叉代表一个二进制存储单元。注意,如下所述,行线并不在网格点交叉点上和列线有物理接触,但通过存储元件和列线耦合。可以通过在接触元件(例如,接触元件132)中产生适当的电流来电子访问每个存储元件进行读写。
图2描述了来自一层交叉点二极管存储设备的二维存储阵列的单个存储元件。在图2中,显示了行线202和列线204的一部分,列线204在行线202上与其正交。如上所述,行线202和列线204的交叉点对应于所存储的数字信息的一个位。在交叉点二极管存储器中,交叉行线和列线(例如图2中的行线202和列线204)是通过存储元件206进行耦合的。用电子术语来说,存储元件串联地包括熔丝208和二极管210。
数字二进制位(或位)可以是两个可能值“0”和“1”中的一个。在数字存储设备中存储数字数据的物理介质通常有两种能够互相反转的不同的物理状态并且可以通过物理信号被访问。在交叉点二极管存储元件(例如图2中的存储元件206)这种情况下,两个二进制状态中的一个由完整的熔丝208表示,另一个由熔断的熔丝208表示。和读/写存储器(例如,硬盘驱动器)不同,交叉点存储元件只能从熔丝-完整状态转换到熔丝-熔断状态一次,因此交叉点存储器通常都是写一次存储器。存储元件206的二极管210部件的作用是消除行线和列线间不合乎需要的电子通路。当存储元件206的熔丝部件208保持完整时,存储元件206的电阻相对较低,电流能够在行线202和列线204之间通过。为了把存储元件的状态从熔丝-完整状态转换到熔丝-熔断状态,需要用高得多的电流通过行线202和列线204之间的存储元件,导致熔丝部件208的电子故障。一旦熔丝部件208出现故障,存储元件206的电阻就相对变高了,只有相当小的电流甚至没有电流能够通过存储元件206从行线202传递到列线204。因而,可以通过高电流信号写交叉点二极管存储器的存储元件或把它的状态从熔丝-完整状态改变到熔丝-熔断状态,通过判断存储元件是否能够传递很低的电流信号可以确定存储元件的状态。
假如能够找到制造熔丝-二极管存储元件(例如,图2中所示的熔丝-二极管存储元件206)的便宜有效的技术,图1和图2中所示的交叉点二极管存储器模块可以用作消费类电子设备中的大容量、低价格的数字数据存储部件。因而,设计师和制造商、需要低价格、大容量的数字数据存储部件的消费类电子设备已经认识到对制造交叉点二极管存储元件的低廉且有效的方法的需要。
发明内容
本发明的一种实施方案提供了一种能够夹入在交叉点二极管存储层的二维存储阵列的行线和列线之间的各向异性半导体薄板。各向异性半导体材料由能够,一个在另一个上面,形成稳定薄膜或者能够共同分层的小分子有机化合物组成,以产生施主和受主有机结设备。施主和受主有机结设备其实质就是二极管。制造出的薄膜在与薄膜的平面垂直的方向上有相对较低的电阻系数,在薄膜平面上有相对较高的电阻系数,因而是各向异性的。因为半导体板关于电阻系数是各向异性的,存储元件就不需要用昂贵的照相制板技术来制造或相反地制造用来与行线和列线尺寸和方向对应,但相反地通过对存储器阵列网格结点的接近以各向异性施主和受主有机结材料来制造的增加了。
各向异性半导体板在二维存储阵列的交叉行列线之间的一个方向上传递电流。当高电压或高电流信号通过列线和行线之间时,形成各向异性半导体板的小分子化合物蒸发,在通过高电流或高电压信号的行线和列线的交叉点上在各向异性半导体板中留下一个缝隙。一旦缝隙形成,相对较低的电流信号就不能在列线和行线之间通过,并且因此各向异性半导体板充当交叉点二极管存储元件的熔丝部件。由小分子有机化合物的薄膜组成的各向异性半导体板因此充当交叉点二极管存储设备的二维存储阵列的每个网格点上的熔丝-二极管存储元件阵列。
本发明的技术方案包括:
(一)一种连续的二极管薄板,用在电子存储阵列中,它连接二维存储阵列中的行线到列线,电子存储器阵列的每个交叉行线和列线网格点上的二极管薄板的体用作二极管-熔丝存储元件,该连续二极管薄板包括一个半导体结薄板,该半导体结薄板:
在正向偏压下在与二极管薄板垂直的方向上有高电导率,但在反向偏压下有低电导率,由此构成一个二极管;
行线和列线之间通过大于临界电流的电流时行线和列线之间的体减小,由此充当熔丝;并且
在与薄板平行的方向上阻挡电流流过,以使电子存储器阵列的行线和列线网格点之间的二极管体与电子存储器阵列的其它行线和列线网格点之间的所有其它二极管薄板体在电气上相对隔离;并且
其中该连续二极管薄板包括由铜酞菁薄膜组成的第一层和由3,4,9,10-苝四羧酸-二苯并咪唑薄膜组成的第二层,第一层与第二层相结合。
(二)一个包括上述连续二极管薄板的电子存储器阵列包括:
一组实际上平行的导电行线;
一组实际上平行的导电列线;和
一组导电行线和-组导电列线之间的连续二极管薄板有实际上与导电行线组和导电列线组平行的顶部和底部表面,在行线和列线的每个交叉点上的二极管薄板的局部体构成二极管-熔丝存储元件。
(三)一种构造二维存储阵列的方法,该方法包括:
提供具有第一组平行导线的基片;
在第一组平行导线的顶部上使施主和受主有机结薄板成层,该施主和受主有机结薄板:
在与薄板垂直的一个方向上传导电流,并由此充当二极管,
在行线和列线之间的体中物理不稳定,在该行线和该列线之间不传递大于临界电流的电流,和
在与薄板平行的方向上阻挡电流流过,以使二维存储阵列的行线和列线网格结点之间的施主和受主有机结薄板材料的体在电气上与二维存储阵列的其它行线和列线网格点之间的施主和受主有机结薄板的所有其它体相对隔离;
在施主和受主有机结薄板的顶部放置与第一组平行导线列线垂直的第二组平行导线;并且
提供与行线和列线耦合的从外部能够访问的导电连接器。
附图说明
图1是部分交叉点二极管存储模块的切面立方图。
图2描述来自交叉点二极管存储器的一层的二维存储阵列的单个存储元件。
图3-5描述施主和受主有机结设备。
图6描述代表本发明的一种实施方案的单个存储元件。
图7沿着列线和行线之间较高电流的通路描述图6中所示的二维网格点交叉。
图8A描述铜酞菁的化学结构;图8B描述3,4,9,10-苝四羧酸-二苯并咪唑的化学结构。
具体实施方式
本发明的一种实施方案提供了一种包含小分子有机化合物的板状、各向异性的半导体材料,该小分子有机化合物被放置在二维交叉点二极管存储阵列的行线和列线之间来充当阵列中每个网格结点的熔丝-二极管存储元件。该各向异性半导体材料包括形成的或共同分层的由不同的小分子有机化合物组成的两层来提供施主和受主有机结设备。由化学上分离的两层之间的分界面表示的施主和受主有机结产生存储元件的二极管功能,并且容易蒸发,组成薄膜的小分子有机化合物提供存储元件的熔丝功能。因为半导体板是各向异性的并且电流通常不能流过半导体板的平面,因此可以在存储阵列网格的行线和列线之间夹入一个单独的各向异性半导体板来提供存储阵列网格的所有存储元件。
一个分子通过共价键包含结合在一起的原子,通常结合在分子范围内的两个或多个原子间共享的电子所占用的分子轨道。分子的电子以不连续的能级占据分子轨道,或者换句话说,占据量子化的能级状态或量子状态。在固体中,固体中相邻分子的分子轨道可以联合产生离域轨道,离域轨道允许固体内的离域分子轨道中的电子在固体中相对自由地移动。这种移动性允许占据了离域轨道的电子携带电流通过固体。
可以用分子轨道电子能极的行为来解释有机二极管的运行。在0度时最高能级占据的分子轨道表示为HOMO,最低能级没有占据的分子轨道表示为LUMO。两种有机材料的施主和受主结合可以由图3中所示的能量图表示。施主材料可以是铜酞菁(“CuPc”),受主材料可以是3,4,9,10-苝四羧酸-二苯并咪唑(“PTCBI”)。在偏压下,能级倾斜,如图3和4所示。在图4中结合处是正向偏压。电子被从阴极402注入施主的LUMO,由此注入受主的LUMO并形成到阳极的电路。
图5显示反向偏压中的结合。这里电子被注入受主的LUMO,并被能垒E 502阻止进入施主的LUMO。因而施主-受主的动作和二极管类似,在正向偏压下自由地传递电流并在反向偏压下阻止电流通过。
熔丝是用来保护电路免受过大电流损坏的简单电子设备。在电路中插入熔丝以使当电流超过一定阈值时熔丝熔断,从而切断电路并防止在电路中出现超过阈值的电流。在电路断路器面板出现之前,简单的旋入式熔丝在家庭电路中是非常普遍的。这些家用熔丝拧入管套中并控制透过熔丝上的透明窗口能够看到的薄金属带中的电流。当家用电路中的电流超过阈值时,金属箔将被烧毁,断开电路,从而保护里面的家用电路免于损坏。
通过照相制版方法能够从基于硅的半导体材料形成图1和2中所示的二维存储阵列,用相同的方式可以制造出微芯片中的复杂电路。用这种方法,可以在阵列的每个网格点上把熔丝-二极管存储元件放在行线和列线之间。不幸的是,照相制版方法尽管对微处理器和RAM存储器来说很经济,因为微处理器和RAM存储器通常都在高端计算机和电子设备中被反复使用,但对写一次的消费性应用就显得过于昂贵,例如与存储底片上的模拟图像类似的存储数码相机中的数字图像。
本发明起于对能够在不需要昂贵的微制造技术的情况下用各向异性的施主和受主-有机材料的连续薄片充当交叉点二极管存储器的一层的整个二维存储阵列的认识。图6描述代表本发明的一种实施方案的单个存储元件。图6描述二维存储阵列中的行线602和列线604之间的交叉,如前面图2中所示。但是,代替不连续的、微制作的存储阵列元件(图2中的206),依照本发明的一种实施方案构造出的存储元件在行线602和列线604之间包含施主和受主-有机结合板材料606的体。有机板包括相对于薄施主层610而形成或分层的薄受主层608。在图6所示的方向中,电流可以从列线604传递到行线602,但只有小的反向电流能够从行线602传递到列线604。因而,施主和受主-有机结合板606能够充当图2中所示的存储元件的二极管部件。
因为施主和受主有机结板606在临界电流以上处于物理不稳定状态,施主和受主有机结板还能充当图2中所示的存储元件的熔丝部件。图7沿着超出列线604和行线602之间的施与者/受主有机-结合板的故障临界电流的电流的通路描述图6中所示的二维网格点交叉。高于临界值的电流已经在在行线602和列线604之间留下空区域或缝隙702的网格点交叉的邻近地方或其中蒸发了施与者/受主有机结板的体。缝隙处充满了空气,等价于在行线602和列线604之间插入电阻器。作为选择,施与者/受主有机结板层可以在高电压上的网格点交叉之间或在其中局部地分层,并等价地未能沿着分层传导电流。因而,图6和图7描述依照本发明的一种实施方案构造的二维阵列网络点上的存储元件的两个二进制状态,图6描述熔丝-完整状态,图7表示熔丝-熔断状态。熔丝-完整状态可以代表二进制值“1”,熔丝熔断状态可以代表二进制值“0”,或者用一种替代习惯,熔丝-完整状态代表二进制值“0”,熔丝-熔断状态代表二进制值“1”。
本发明的一种实施方案的施主和受主有机结板需要的附加属性是它在与板的平面垂直的方向传导电流,但在与板的平面平行的方向传递很小的电流或不传导电流。这种电流携带的各向异性在不需要存储元件的微制作的情况下在每个二维存储阵列网格点上提供了电子上离散的存储元件。因为在与板的平面平行的方向上不传导电流,所以电流不能从一个活动网格点流经施主和受主有机结板到一个不活动网格点并由此短路二维存储阵列。此外,当在一个网格点上采用强电流以在写操作期间烧断存储元件时,强电流不能在施主和受主有机结板中横向流动来熔断其它网格点的存储元件熔丝。
因而,对上述在二维存储阵列中的应用来说施主和受主有机结板必须有下列属性:(1)好的整流比例,或者换句话说,施主和受主有机结板应该在与板的平面垂直的正方向中以非常低的电阻传导电流,但在相反方向上以非常高的电阻传导电流;(2)在比存储器读操作期间所施加的电压更高的电压上的物理不稳定性;(3)正方向上的低电阻或高电导率;(4)正方向上稳定的电阻或高电导率。另外,希望施主和受主有机结板能够易于制造并满足预先确定的偏差,相对便宜,并且在低于或等存储器读操作期间所施加的电压上在物理上稳定,并且能够暴露在一定范围的温度下。
用作交叉点二极管存储器中的二维存储阵列的多个存储元件的连续施主和受主有机结板可以制作成在受主类型材料PTCBI的薄膜上分层或形成的施主类型材料的薄膜,CuPc。图8A显示了CuPc的化学结构,图8B显示了PTCBI的化学结构。对本节前面讨论过的交叉点二极管存储器应用来说,包含CuPc层和PTCBI层的双层施主和受主有机结板有必要的电流-流动各向异性和在高电流下的物理不稳定性。能够依照本发明的用在交叉点二极管存储器中的施主和受主有机结板的许多其它化学合成物也可以使用。每层由一种或多种小分子化合物组成的双层有机板是合适的,但也可以使用带有适当的各向异性和高电流不稳定性的多层施主和受主有机结。例如,可以用许多取代酞菁或相关有机分子,例如紫菜碱、四苯并紫菜碱或四氮杂紫菜碱代替CuPc,也可以用适当取代苝或其它大的熔环分子,例如多种苝四羧酸氨基化合物和苝四羧二酰亚胺来代替PTCBI。
尽管已经通过特定的实施方案描述了本发明,但这并意味着限制本发明为这个实施方案。对本领域的技术人员来说在本发明思想范围内的更改都是显而易见的。例如,如上所述,任意有图2和4-5中所示的连续板存储元件应用所需要的电流携带各向异性和高电流物理不稳定性的单层、双层或多层施主和受主有机结板都在本发明的范围内。注意,假如用本发明的连续施主和受主有机结板用于多个二极管-熔丝存储元件,本发明可以用在图1中所示的交叉点二极管存储器设备中,但也可以用在有不同内部结构的写一次存储器设备中。
为了方便说明起见,以上描述使用特定的命名法来提供对本发明的完整理解。但是,对本领域的技术人员来说实现本发明并不需要特定的细节也是显而易见的。在其它实例中,以框图形式描述了众所周知的电路和设备以避免不必要的描述干扰真正的发明。因而,为说明和描述起见给出了本发明的特定实施方案的以上描述;它们并不意味着详尽无遗或限制本发明为所公开的准确形式,考虑到上述教义很明显也可能有很多更改和变动。选择并描述该实施方案是为了最好地解释本发明的原理和它的实际应用并由此使本领域的技术人员能够最好利用本发明和带有适用于所计划的特定应用的更改的不同实施方案。意思是本发明的范围由下列权利要求和它们的等价物来规定。

Claims (9)

1.一种连续的二极管薄板(606),用在电子存储阵列中,它连接二维存储阵列中的行线(602)到列线(604),电子存储器阵列的每个交叉行线和列线网格点上的二极管薄板的体(206)用作二极管-熔丝存储元件(208、210),该连续二极管薄板包括一个半导体结薄板,该半导体结薄板:
在正向偏压下在与二极管薄板垂直的方向上有高电导率,但在反向偏压下有低电导率,由此构成一个二极管;
行线和列线之间通过大于临界电流的电流时行线和列线之间的体减小,由此充当熔丝;并且
在与薄板平行的方向上阻挡电流流过,以使电子存储器阵列的行线和列线网格点之间的二极管体与电子存储器阵列的其它行线和列线网格点之间的所有其它二极管薄板体在电气上相对隔离;并且
其中该连续二极管薄板(606)包括由铜酞菁(610)薄膜组成的第一层和由3,4,9,10-苝四羧酸-二苯并咪唑(608)薄膜组成的第二层,第一层与第二层相结合。
2.一个包括权利要求1的连续二极管薄板(606)的电子存储器阵列包括:
一组平行的导电行线(602);
一组平行的导电列线(604);和
一组导电行线和一组导电列线之间的连续二极管薄板(606)有与导电行线组和导电列线组平行的顶部和底部表面,在行线和列线的每个交叉点上的二极管薄板的局部体构成二极管-熔丝存储元件。
3.权利要求2的电子存储器阵列,其中二极管薄板的电阻是各向异性的,在与二极管薄板的顶部和底部表面垂直的方向上有低电阻,在相反方向上有以及和二极管薄板的顶部和底部表面平行的所有方向上有高电阻。
4.权利要求3的电子存储器阵列还包括与行线和列线耦合的能在外部访问的导电连接器(120-123,126-129)。
5.权利要求3的电子存储器阵列,其中每个二极管-熔丝存储元件(206、208、210)存储一个信息位。
6.权利要求5的电子存储器阵列,其中熔断的二极管-熔丝存储元件(702)代表位″1″,完整的二极管-熔丝存储元件代表位″0″。
7.权利要求5的电子存储器阵列,其中熔断的二极管-熔丝存储元件(702)代表位″0″,完整的二极管-熔丝存储元件代表位″1″。
8.一种构造二维存储阵列(118)的方法,该方法包括:
提供具有第一组平行导线的基片(116);
在第一组平行导线的顶部上使施主和受主有机结薄板(606)成层,该施主和受主有机结薄板:
在与薄板垂直的一个方向上传导电流,并由此充当二极管,
在行线(602)和列线(604)之间的体中物理不稳定,在该行线和该列线之间不传递大于临界电流的电流,和
在与薄板平行的方向上阻挡电流流过,以使二维存储阵列(118)的行线和列线网格结点之间的施主和受主有机结薄板材料(206)的体在电气上与二维存储阵列的其它行线和列线网格点之间的施主和受主有机结薄板的所有其它体相对隔离;
在施主和受主有机结薄板的顶部放置与第一组平行导线列线垂直的第二组平行导线;并且
提供与行线和列线耦合的从外部能够访问的导电连接器(120-123、126-129)。
9.权利要求8的方法,其中施主和受主有机结薄板(606)包括由铜酞菁(610)薄膜组成的第一层和由3,4,9,10-苝四羧酸-二苯并咪唑(“PTCBI”)(608)薄膜组成的第二层,第一层与第二层相结合。
CNB031084168A 2002-05-31 2003-03-31 用于包含各向异性半导体薄板的写一次存储器的二极管-和-熔丝存储元件 Expired - Fee Related CN100375289C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/160802 2002-05-31
US10/160,802 US6813182B2 (en) 2002-05-31 2002-05-31 Diode-and-fuse memory elements for a write-once memory comprising an anisotropic semiconductor sheet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNA2008100012889A Division CN101232039A (zh) 2002-05-31 2003-03-31 用于包含各向异性半导体薄板的写一次存储器的二极管-和-熔丝存储元件

Publications (2)

Publication Number Publication Date
CN1462073A CN1462073A (zh) 2003-12-17
CN100375289C true CN100375289C (zh) 2008-03-12

Family

ID=29419735

Family Applications (2)

Application Number Title Priority Date Filing Date
CNA2008100012889A Pending CN101232039A (zh) 2002-05-31 2003-03-31 用于包含各向异性半导体薄板的写一次存储器的二极管-和-熔丝存储元件
CNB031084168A Expired - Fee Related CN100375289C (zh) 2002-05-31 2003-03-31 用于包含各向异性半导体薄板的写一次存储器的二极管-和-熔丝存储元件

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNA2008100012889A Pending CN101232039A (zh) 2002-05-31 2003-03-31 用于包含各向异性半导体薄板的写一次存储器的二极管-和-熔丝存储元件

Country Status (6)

Country Link
US (1) US6813182B2 (zh)
EP (1) EP1367596A1 (zh)
JP (1) JP2004006877A (zh)
KR (1) KR20030094054A (zh)
CN (2) CN101232039A (zh)
TW (1) TW200307293A (zh)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004084228A1 (en) * 2003-03-18 2004-09-30 Kabushiki Kaisha Toshiba Phase change memory device
US7218482B2 (en) 2004-01-26 2007-05-15 Sae Magnetics (H.K.) Ltd. Micro-actuator, head gimbal assembly and manufacturing method thereof
US20060067117A1 (en) * 2004-09-29 2006-03-30 Matrix Semiconductor, Inc. Fuse memory cell comprising a diode, the diode serving as the fuse element
WO2006043573A1 (en) * 2004-10-18 2006-04-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method of the same
TWI395321B (zh) * 2005-03-31 2013-05-01 Semiconductor Energy Lab 半導體裝置及其驅動方法
US7486534B2 (en) * 2005-12-08 2009-02-03 Macronix International Co., Ltd. Diode-less array for one-time programmable memory
JP5057769B2 (ja) * 2005-12-28 2012-10-24 株式会社半導体エネルギー研究所 ライトワンスメモリ、半導体装置、および電子機器
US7719872B2 (en) * 2005-12-28 2010-05-18 Semiconductor Energy Laboratory Co., Ltd. Write-once nonvolatile memory with redundancy capability
US7763978B2 (en) * 2007-03-28 2010-07-27 Hewlett-Packard Development Company, L.P. Three-dimensional crossbar array systems and methods for writing information to and reading information stored in three-dimensional crossbar array junctions
KR100859488B1 (ko) * 2007-05-17 2008-09-24 주식회사 동부하이텍 비휘발성 반도체 메모리 소자 및 그 제조방법
KR20100041155A (ko) * 2008-10-13 2010-04-22 삼성전자주식회사 저항성 메모리 소자
US8539395B2 (en) 2010-03-05 2013-09-17 Micronic Laser Systems Ab Method and apparatus for merging multiple geometrical pixel images and generating a single modulator pixel image
US9224496B2 (en) 2010-08-11 2015-12-29 Shine C. Chung Circuit and system of aggregated area anti-fuse in CMOS processes
US10916317B2 (en) 2010-08-20 2021-02-09 Attopsemi Technology Co., Ltd Programmable resistance memory on thin film transistor technology
US9818478B2 (en) 2012-12-07 2017-11-14 Attopsemi Technology Co., Ltd Programmable resistive device and memory using diode as selector
US8488359B2 (en) 2010-08-20 2013-07-16 Shine C. Chung Circuit and system of using junction diode as program selector for one-time programmable devices
US9070437B2 (en) 2010-08-20 2015-06-30 Shine C. Chung Circuit and system of using junction diode as program selector for one-time programmable devices with heat sink
US10249379B2 (en) 2010-08-20 2019-04-02 Attopsemi Technology Co., Ltd One-time programmable devices having program selector for electrical fuses with extended area
US9711237B2 (en) 2010-08-20 2017-07-18 Attopsemi Technology Co., Ltd. Method and structure for reliable electrical fuse programming
US10229746B2 (en) 2010-08-20 2019-03-12 Attopsemi Technology Co., Ltd OTP memory with high data security
US9824768B2 (en) 2015-03-22 2017-11-21 Attopsemi Technology Co., Ltd Integrated OTP memory for providing MTP memory
TWI462107B (zh) * 2010-08-20 2014-11-21 Chien Shine Chung 電子系統、記憶體及其提供方法
US8854859B2 (en) 2010-08-20 2014-10-07 Shine C. Chung Programmably reversible resistive device cells using CMOS logic processes
US9236141B2 (en) 2010-08-20 2016-01-12 Shine C. Chung Circuit and system of using junction diode of MOS as program selector for programmable resistive devices
US9042153B2 (en) 2010-08-20 2015-05-26 Shine C. Chung Programmable resistive memory unit with multiple cells to improve yield and reliability
US9019742B2 (en) 2010-08-20 2015-04-28 Shine C. Chung Multiple-state one-time programmable (OTP) memory to function as multi-time programmable (MTP) memory
US10923204B2 (en) 2010-08-20 2021-02-16 Attopsemi Technology Co., Ltd Fully testible OTP memory
US9460807B2 (en) 2010-08-20 2016-10-04 Shine C. Chung One-time programmable memory devices using FinFET technology
US8830720B2 (en) 2010-08-20 2014-09-09 Shine C. Chung Circuit and system of using junction diode as program selector and MOS as read selector for one-time programmable devices
US9251893B2 (en) 2010-08-20 2016-02-02 Shine C. Chung Multiple-bit programmable resistive memory using diode as program selector
US9025357B2 (en) 2010-08-20 2015-05-05 Shine C. Chung Programmable resistive memory unit with data and reference cells
US9431127B2 (en) 2010-08-20 2016-08-30 Shine C. Chung Circuit and system of using junction diode as program selector for metal fuses for one-time programmable devices
US9496033B2 (en) 2010-08-20 2016-11-15 Attopsemi Technology Co., Ltd Method and system of programmable resistive devices with read capability using a low supply voltage
US9076513B2 (en) 2010-11-03 2015-07-07 Shine C. Chung Low-pin-count non-volatile memory interface with soft programming capability
US8913449B2 (en) 2012-03-11 2014-12-16 Shine C. Chung System and method of in-system repairs or configurations for memories
US9019791B2 (en) 2010-11-03 2015-04-28 Shine C. Chung Low-pin-count non-volatile memory interface for 3D IC
US8988965B2 (en) 2010-11-03 2015-03-24 Shine C. Chung Low-pin-count non-volatile memory interface
CN102544011A (zh) 2010-12-08 2012-07-04 庄建祥 反熔丝存储器及电子系统
US8848423B2 (en) 2011-02-14 2014-09-30 Shine C. Chung Circuit and system of using FinFET for building programmable resistive devices
US10192615B2 (en) 2011-02-14 2019-01-29 Attopsemi Technology Co., Ltd One-time programmable devices having a semiconductor fin structure with a divided active region
US10586832B2 (en) 2011-02-14 2020-03-10 Attopsemi Technology Co., Ltd One-time programmable devices using gate-all-around structures
US9324849B2 (en) 2011-11-15 2016-04-26 Shine C. Chung Structures and techniques for using semiconductor body to construct SCR, DIAC, or TRIAC
US8912576B2 (en) 2011-11-15 2014-12-16 Shine C. Chung Structures and techniques for using semiconductor body to construct bipolar junction transistors
US9136261B2 (en) 2011-11-15 2015-09-15 Shine C. Chung Structures and techniques for using mesh-structure diodes for electro-static discharge (ESD) protection
US9007804B2 (en) 2012-02-06 2015-04-14 Shine C. Chung Circuit and system of protective mechanisms for programmable resistive memories
US9076526B2 (en) 2012-09-10 2015-07-07 Shine C. Chung OTP memories functioning as an MTP memory
US9183897B2 (en) 2012-09-30 2015-11-10 Shine C. Chung Circuits and methods of a self-timed high speed SRAM
US9324447B2 (en) 2012-11-20 2016-04-26 Shine C. Chung Circuit and system for concurrently programming multiple bits of OTP memory devices
US9412473B2 (en) 2014-06-16 2016-08-09 Shine C. Chung System and method of a novel redundancy scheme for OTP
US11062786B2 (en) 2017-04-14 2021-07-13 Attopsemi Technology Co., Ltd One-time programmable memories with low power read operation and novel sensing scheme
US11615859B2 (en) 2017-04-14 2023-03-28 Attopsemi Technology Co., Ltd One-time programmable memories with ultra-low power read operation and novel sensing scheme
US10726914B2 (en) 2017-04-14 2020-07-28 Attopsemi Technology Co. Ltd Programmable resistive memories with low power read operation and novel sensing scheme
US10535413B2 (en) 2017-04-14 2020-01-14 Attopsemi Technology Co., Ltd Low power read operation for programmable resistive memories
US10770160B2 (en) 2017-11-30 2020-09-08 Attopsemi Technology Co., Ltd Programmable resistive memory formed by bit slices from a standard cell library
US11133049B2 (en) * 2018-06-21 2021-09-28 Tc Lab, Inc. 3D memory array clusters and resulting memory architecture

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4597162A (en) * 1983-01-18 1986-07-01 Energy Conversion Devices, Inc. Method for making, parallel preprogramming or field programming of electronic matrix arrays

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2228271B1 (zh) * 1973-05-04 1976-11-12 Honeywell Bull Soc Ind
CA1135854A (en) * 1977-09-30 1982-11-16 Michel Moussie Programmable read only memory cell
US4569120A (en) * 1983-03-07 1986-02-11 Signetics Corporation Method of fabricating a programmable read-only memory cell incorporating an antifuse utilizing ion implantation
EP1051762A1 (en) * 1998-02-02 2000-11-15 Uniax Corporation X-y addressable electric microswitch arrays and sensor matrices employing them
TW479373B (en) * 1998-08-19 2002-03-11 Univ Princeton Organic photosensitive optoelectronic device
US6545898B1 (en) * 2001-03-21 2003-04-08 Silicon Valley Bank Method and apparatus for writing memory arrays using external source of high programming voltage
US6646912B2 (en) * 2001-06-05 2003-11-11 Hewlett-Packard Development Company, Lp. Non-volatile memory
US6567295B2 (en) * 2001-06-05 2003-05-20 Hewlett-Packard Development Company, L.P. Addressing and sensing a cross-point diode memory array
US6385075B1 (en) * 2001-06-05 2002-05-07 Hewlett-Packard Company Parallel access of cross-point diode memory arrays

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4597162A (en) * 1983-01-18 1986-07-01 Energy Conversion Devices, Inc. Method for making, parallel preprogramming or field programming of electronic matrix arrays

Also Published As

Publication number Publication date
CN101232039A (zh) 2008-07-30
CN1462073A (zh) 2003-12-17
EP1367596A1 (en) 2003-12-03
TW200307293A (en) 2003-12-01
JP2004006877A (ja) 2004-01-08
US20030223270A1 (en) 2003-12-04
US6813182B2 (en) 2004-11-02
KR20030094054A (ko) 2003-12-11

Similar Documents

Publication Publication Date Title
CN100375289C (zh) 用于包含各向异性半导体薄板的写一次存储器的二极管-和-熔丝存储元件
KR101501105B1 (ko) 3d 메모리 어레이를 제조하기 위한 x 라인용 공유 마스크와 y 라인용 공유 마스크
CN102939632B (zh) 存储器阵列
US6879508B2 (en) Memory device array having a pair of magnetic bits sharing a common conductor line
US6426891B1 (en) Nonvolatile memory with a two-terminal switching element and its driving method
CN100401422C (zh) 寻址交叉点存储器阵列的电路、存储器模块和寻址方法
EP1265286B1 (en) Integrated circuit structure
CN100583287C (zh) 包含交叉点电阻元件的交叉点存储器阵列的寻址电路
JP3895640B2 (ja) クロスポイントダイオードメモリアレイのアドレス指定及びセンシング
JP2010218681A (ja) 集積回路メモリー素子とこれを含むデータ格納装置及び電子システム
KR20190124106A (ko) 저항 스위칭 소자 및 이를 이용한 상변화 메모리 소자
CN101174646A (zh) 半导体存储器件和字线接触部的布局结构
US7863751B2 (en) Multilayer wiring structure for memory circuit
KR20030051866A (ko) 비휘발성 메모리 셀 장치를 구비하는 집적 메모리와 그제조 및 동작 방법
US6594171B1 (en) Memory systems and methods of making the same
US7200032B2 (en) MRAM with vertical storage element and field sensor
US7088612B2 (en) MRAM with vertical storage element in two layer-arrangement and field sensor
CN113257296A (zh) 存储阵列
KR20130097329A (ko) 반도체 메모리 소자의 저항 형성 방법 및 그 구조
Kang et al. Core circuit technologies for PN-diode-cell PRAM

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080312

Termination date: 20100331