CN100336201C - 制造带有纳米点的存储器的方法 - Google Patents

制造带有纳米点的存储器的方法 Download PDF

Info

Publication number
CN100336201C
CN100336201C CNB2003101164388A CN200310116438A CN100336201C CN 100336201 C CN100336201 C CN 100336201C CN B2003101164388 A CNB2003101164388 A CN B2003101164388A CN 200310116438 A CN200310116438 A CN 200310116438A CN 100336201 C CN100336201 C CN 100336201C
Authority
CN
China
Prior art keywords
layer
electric charge
insulating barrier
memory
metal level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2003101164388A
Other languages
English (en)
Other versions
CN1510740A (zh
Inventor
金仁淑
徐顺爱
柳寅儆
郑守桓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN1510740A publication Critical patent/CN1510740A/zh
Application granted granted Critical
Publication of CN100336201C publication Critical patent/CN100336201C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40117Multistep manufacturing processes for data storage electrodes the electrodes comprising a charge-trapping insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42324Gate electrodes for transistors with a floating gate
    • H01L29/42332Gate electrodes for transistors with a floating gate with the floating gate formed by two or more non connected parts, e.g. multi-particles flating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/723On an electrically insulating substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/774Exhibiting three-dimensional carrier confinement, e.g. quantum dots

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明公开了一种制造带有纳米点的存储器的方法。该方法包括步骤:在一其中制有源极和漏极电极的衬底上依次淀积一第一绝缘层、一电荷储积层、一牺牲层以及一金属层;通过对金属层执行阳极氧化,在所制得的结构上形成多个孔洞,并对经这些孔洞而外露的牺牲层执行氧化;通过去除掉已被氧化的金属层,并以氧化物牺牲层作为掩模对牺牲层和电荷储积层执行蚀刻,从而将电荷储积层构图成带有纳米点;以及去除氧化后的牺牲层,在被构图后的电荷储积层上淀积一第二绝缘层和一栅极电极,并将第一绝缘层、电荷储积层、第二绝缘层以及栅极电极构图设计成预定的形状。因而,可以制出具有均匀分布的纳米级存储结的存储器。

Description

制造带有纳米点的存储器的方法
技术领域
本发明涉及一种制造带有纳米点(nano dot)的存储器的方法,更具体来讲,本发明涉及利用自对准方式制造带有纳米点的存储器的方法。
背景技术
目前,很多工作和努力被投入到对纳米尺度器件的研究中,这些器件被包括在诸如存储器、激光二极管(LD)、光电二极管、晶体管、远紫外探测器、太阳能电池、以及光调制器的装置中。纳米器件中所俘获的电子数取决于纳米点的尺寸。相比于常规的器件,仅用很少的电子就能驱动纳米器件,这样就可降低阈值电流。因而,可用低电压来驱动纳米器件,且低电压就能产生很高的输出。
通常,以下列方法制作纳米点:利用诸如低压化学气相沉积(low-pressure chemical vapor deposition,LPCVD)的常规淀积方法,或者在一衬底上喷涂纳米颗粒,形成带有Si或Si3N4的原子核团。但是,该方法的缺点在于:其难于适当地调整纳米颗粒的尺寸,且即使选择了具有相同尺寸的纳米颗粒并将它们喷涂到衬底上,也很难使纳米点均匀地分布。
目前的信息通讯技术需要高速度地储存、处理、和传输万亿级(tera-class)的大量信息的技术。尤其是,需要将纳米点的尺寸缩小到几个纳米,以便于存储大量的信息,而且需要能使纳米点均匀分布的技术,从而获得高性能的存储器。
发明内容
本发明提供了一种制造具有几个纳米的纳米点的存储器的方法,以此来制得大容量的存储器。
根据本发明的一个方面,提供了一种制造带纳米点的存储器的方法,其包括步骤:(a)在一衬底上依次淀积一第一绝缘层、一电荷储积层、一牺牲层以及一金属层,在该衬底中制有源极和漏极电极;(b)通过对金属层执行阳极氧化,在所制得的结构上形成多个孔洞,并对经这些孔洞而外露的牺牲层执行氧化以形成氧化物牺牲层;(c)通过去除掉已被氧化的金属层,并以氧化物牺牲层作为掩模对牺牲层和电荷储积层执行蚀刻,从而将电荷储积层构图成以形成多个纳米点;以及(d)去除氧化后的牺牲层,在构图后的电荷储积层上淀积一第二绝缘层和一栅极电极,并将第一绝缘层、电荷储积层、第二绝缘层以及栅极电极构图设计成预定的形状,其中金属层是用Al或Al合金制成的。
电荷储积层是由从一组材料中选出的材料制成的,这组材料包括:Si、Si3N4、以及Al2O3
优选地是:牺牲层是用钽Ta制成的。
第一和第二绝缘层是用Si3N4和Al2O3制成的。
优选地是,在步骤(a)执行过程中,利用化学气相沉积(CVD)、溅射或蒸发的方法来淀积第一绝缘层、电荷储积层、牺牲层、金属层以及第二绝缘层。
优选地是,在步骤(c)的执行过程中,电荷储积层被构图设计为具有点阵列结构,在该结构中,设置多个圆柱体以形成一蜂窝结构,圆柱体被设计成纳米点的形状。
附图说明
从下文参照附图对本发明优选实施例所作的详细描述,可更清楚地理解本发明上述以及其它方面和优点,在附图中:
图1A到1K是一些剖视图,表示了根据本发明一优选实施例的、制造存储器的方法;以及
图2是由扫描电子显微镜(SEM)所拍得的照片,表示了在用根据本发明方法所制得的存储器中形成的纳米点。
具体实施方式
下面将参照附图对根据本发明一优选实施例的、制造带纳米点的存储器的方法进行介绍。
图1A~1K中是剖视图,表示了根据本发明一优选实施例的、制造带纳米点的存储器的方法。该方法包括形成纳米点的步骤(见图1A~1H)以及制出带有纳米点的存储器从而完成晶体管结构的步骤(见图1I~1K)。
更具体地讲,如图1A所示,在其中制有源极和漏极电极S和D的衬底101上淀积一第一绝缘层102。然后,如图1B所示,利用诸如Si、Si3N4、或者Al2O3的电荷存储材料,在第一绝缘层102上淀积一电荷储积层103。参见图1C,用例如Ta的金属在电荷储积层103上淀积一牺牲层105。然后,参见图1D,用例如Al的金属在牺牲层105上淀积一金属层107。第一绝缘层102、电荷储积层103、牺牲层105、以及金属层107是利用薄膜沉积方法形成的,例如化学气相沉积(CVD)工艺、溅射工艺、或蒸发工艺。
参见图1E,通过对图1D中的金属层107进行阳极氧化,形成一具有多个孔洞108的金属氧化物层107a。在阳极氧化过程中,利用一种氧化剂对经孔洞108露出的牺牲层105部分进行氧化,从而将该些部分转变为一氧化物牺牲层105a并在孔洞108中生长到一定程度。例如,如果金属层107是用Al制成的,则金属氧化物层107a就变成了Al2O3层,且如果牺牲层105是用Ta制成的,则氧化物牺牲层105a则变成了Ta2O5层。孔洞108的形状是圆形的,这些孔洞被制成点阵列结构,例如被制成蜂窝结构,因而它们均匀且密集地排列,从而使它们的表面积最大化。
然后,参见图1F,将金属氧化物层107a去除,但将牺牲层105和氧化物牺牲层105a全部保留在电荷储积层103上。而后,通过离子研磨法或反应离子蚀刻法(RIE),以氧化物牺牲层105a作为掩模,将在经过构图的氧化物牺牲层105a之间露出的牺牲层105部分、以及位于上述牺牲层105部分下方的电荷储积层103部分蚀刻掉。结果就如图1G所示那样,对电荷储积层103执行了构图设计,使其具有类似于蜂窝形状的纳米点阵列结构。
然后,如图1H所示,对电荷储积层103上的氧化物牺牲层105a进行蚀刻,只留下构图后的电荷储积层103。然后,如图1I所示,用CVD或溅射方法在电荷储积层103上淀积一第二绝缘层109。
随后,如图1J所示,在第二绝缘层109上淀积一栅极电极111,并对所制得的结构执行光刻工艺。详细地讲,在栅极电极111上涂覆一种感光材料42,并在感光材料42上放置一个掩模44。然后,当对所形成的结构执行曝光、显影和蚀刻时,就将第一和第二绝缘层102和109、电荷储积层103、以及栅极电极111构图,制成图1K所示的条状。此处,栅极电极111是用例如多晶硅的导电材料制成的。当完成参照图1A~1K所描述的过程时,则可制得一个带有纳米点的存储器。
永久性存储器具有各种应用,其中当掉电时,数据可以被电存储和擦除,并且不会丢失数据。举例来讲,人们利用永久性存储器件研制出了闪存和硅-氧化物-氮化物-氧化物-硅(SONOS)存储器。一般来讲,闪存分为两种类型:一种为NOR型闪存,在这种存储器中,存储单元被并联设置在位线与接地之间;以及一种为NAND型闪存,在这种存储器中,存储单元被串联设置在位线与接地之间。
通过将电荷储积层103用作浮置栅极,就可将根据本发明的、带有纳米点的存储器实施成为闪存。随着存储器的容量越变越大,存储器的电路结构会变得更为复杂,栅极阵列的数目也变得更大,从而就需要开发出更细的构图技术。因而,通常的叠层栅极型永久存储器单元就被研制得越来越小,但在采用光刻和蚀刻方法的情况下,这些存储器单元尺寸的缩小会受到限制。在这个方面,根据本发明的、制造带纳米点的存储器的方法使得大容量永久存储器的制作过程变得容易,且对诸如光刻和蚀刻法的技术并无太高的要求。
图2中的照片是用扫描电子显微镜(SEM)拍得的,其表示了根据本发明一优选实施例的存储器中的纳米点,这些纳米点是通过用纳米级的Ta和Ta2O5圆柱结构作为掩模来对图1B中的电荷储积层103进行蚀刻而形成的。参见图2,在存储器中均匀地分布着直径为20-25nm以及高度为5-15nm的纳米点。但是,图2中所示纳米点对本发明而言仅是示例性的,根据本发明的纳米点尺寸可以确定在几纳米到几十纳米的范围内。
如上所述,根据本发明,通过利用一牺牲层和包括阳极氧化的自对准过程,就能容易地制出带有纳米点的存储器。而且,通过对尺寸从几纳米到几十纳米之间的纳米点进行均匀地分布,就可以制出大容量的存储器。纳米点的尺寸越小,存储器的驱动电压就越低,存储器的存储性能就越好。
尽管在上文参照优选实施例对本发明作了具体地展示和描述,但本领域技术人员可以理解:在不脱离本发明设计思想和保护范围的前提下,可对其中的细节特征和形式作出各种改动,本发明的范围由所附权利要求书限定。例如,本领域技术人员可以用具有类似性质的不同材料来制造电荷储积层。

Claims (6)

1、一种制造带有纳米点的存储器的方法,其包括步骤:
(a)在一其中制有源极和漏极电极的衬底上依次淀积一第一绝缘层、一电荷储积层、一牺牲层以及一金属层;
(b)通过对该金属层执行阳极氧化,在所制得的结构上形成多个孔洞,并对经该些孔洞而外露的该牺牲层执行氧化以形成氧化物牺牲层;
(c)通过去除掉已被氧化的金属层,并以该氧化物牺牲层作为掩模对该牺牲层和该电荷储积层执行蚀刻,从而将该电荷储积层构图以形成多个纳米点;以及
(d)去除氧化后的牺牲层,在构图后的电荷储积层上淀积一第二绝缘层和一栅极电极,并将该第一绝缘层、该电荷储积层、该第二绝缘层以及该栅极电极构图设计成预定的形状,
其中该金属层是用Al或Al合金制成的。
2、根据权利要求1所述的方法,其中:该电荷储积层是从由Si、Si3N4、以及Al2O3构成的组中选出的材料制成的。
3、根据权利要求1所述的方法,其中:该牺牲层是用Ta制成的。
4、根据权利要求1所述的方法,其中:在步骤(a)执行过程中,利用化学气相沉积、溅射或蒸发的方法来淀积该第一绝缘层、该电荷储积层、该牺牲层、该金属层以及该第二绝缘层。
5、根据权利要求1所述的方法,其中:在步骤(c)的过程中,该电荷储积层被构图设计为具有点阵列结构,在该结构中,设置了多个圆柱体,该些圆柱体被设计成纳米点的形状。
6、根据权利要求5所述的方法,其中:被设计成纳米点的形状的该些圆柱体被设置以构成一蜂窝结构。
CNB2003101164388A 2002-12-23 2003-11-21 制造带有纳米点的存储器的方法 Expired - Lifetime CN100336201C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20020082387A KR100763897B1 (ko) 2002-12-23 2002-12-23 나노도트를 가지는 메모리 제조방법
KR82387/2002 2002-12-23
KR82387/02 2002-12-23

Publications (2)

Publication Number Publication Date
CN1510740A CN1510740A (zh) 2004-07-07
CN100336201C true CN100336201C (zh) 2007-09-05

Family

ID=32501447

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003101164388A Expired - Lifetime CN100336201C (zh) 2002-12-23 2003-11-21 制造带有纳米点的存储器的方法

Country Status (6)

Country Link
US (1) US6913984B2 (zh)
EP (1) EP1437775B1 (zh)
JP (1) JP4434721B2 (zh)
KR (1) KR100763897B1 (zh)
CN (1) CN100336201C (zh)
DE (1) DE60333819D1 (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100585462B1 (ko) * 2003-12-26 2006-06-07 한국전자통신연구원 정보 저장 및 독출 장치
KR100601943B1 (ko) * 2004-03-04 2006-07-14 삼성전자주식회사 고르게 분포된 실리콘 나노 도트가 포함된 게이트를구비하는 메모리 소자의 제조 방법
US7208793B2 (en) * 2004-11-23 2007-04-24 Micron Technology, Inc. Scalable integrated logic and non-volatile memory
US7170128B2 (en) * 2004-12-02 2007-01-30 Atmel Corporation Multi-bit nanocrystal memory
JP4442454B2 (ja) * 2005-02-16 2010-03-31 株式会社日立製作所 不揮発性半導体メモリの製造方法
CN100483613C (zh) * 2005-02-24 2009-04-29 鸿富锦精密工业(深圳)有限公司 量子点制作方法
US7612403B2 (en) * 2005-05-17 2009-11-03 Micron Technology, Inc. Low power non-volatile memory and gate stack
US20080197440A1 (en) * 2005-06-02 2008-08-21 Misuzu R & D Ltd. Nonvolatile Memory
US7173304B2 (en) * 2005-06-06 2007-02-06 Micron Technology, Inc. Method of manufacturing devices comprising conductive nano-dots, and devices comprising same
CN100356607C (zh) * 2005-10-19 2007-12-19 中国科学院上海微系统与信息技术研究所 一种纳米硫系化合物相变存储器的制备方法
KR100690925B1 (ko) * 2005-12-01 2007-03-09 삼성전자주식회사 나노 크리스탈 비휘발성 반도체 집적 회로 장치 및 그 제조방법
KR100718142B1 (ko) * 2005-12-02 2007-05-14 삼성전자주식회사 금속층-절연층-금속층 구조의 스토리지 노드를 구비하는불휘발성 메모리 소자 및 그 동작 방법
US20070212832A1 (en) * 2006-03-08 2007-09-13 Freescale Semiconductor Inc. Method for making a multibit transistor
KR100740613B1 (ko) 2006-07-03 2007-07-18 삼성전자주식회사 비휘발성 기억 소자의 형성 방법
US7560769B2 (en) 2006-08-03 2009-07-14 Micron Technology, Inc. Non-volatile memory cell device and methods
US7955935B2 (en) * 2006-08-03 2011-06-07 Micron Technology, Inc. Non-volatile memory cell devices and methods
KR100933831B1 (ko) * 2006-09-06 2009-12-24 주식회사 하이닉스반도체 플래시 메모리 소자의 플로팅 게이트 형성 방법
US20080093744A1 (en) * 2006-10-23 2008-04-24 Wang Lorraine C Anodization
KR100858085B1 (ko) * 2006-12-18 2008-09-10 삼성전자주식회사 나노닷을 전하 트랩 사이트로 이용하는 전하 트랩형 메모리소자
US7790560B2 (en) * 2007-03-12 2010-09-07 Board Of Regents Of The Nevada System Of Higher Education Construction of flash memory chips and circuits from ordered nanoparticles
WO2009029302A2 (en) * 2007-05-08 2009-03-05 University Of Washington Shadow edge lithography for nanoscale patterning and manufacturing
US7723186B2 (en) * 2007-12-18 2010-05-25 Sandisk Corporation Method of forming memory with floating gates including self-aligned metal nanodots using a coupling layer
US8193055B1 (en) 2007-12-18 2012-06-05 Sandisk Technologies Inc. Method of forming memory with floating gates including self-aligned metal nanodots using a polymer solution
US8388854B2 (en) 2007-12-31 2013-03-05 Intel Corporation Methods of forming nanodots using spacer patterning techniques and structures formed thereby
US8383479B2 (en) * 2009-07-21 2013-02-26 Sandisk Technologies Inc. Integrated nanostructure-based non-volatile memory fabrication
US20130294180A1 (en) 2011-01-13 2013-11-07 Ramot at Tel-Avlv University Ltd. Charge storage organic memory system
KR20130070923A (ko) * 2011-12-20 2013-06-28 에스케이하이닉스 주식회사 반도체 장치 제조 방법
US8822288B2 (en) 2012-07-02 2014-09-02 Sandisk Technologies Inc. NAND memory device containing nanodots and method of making thereof
US8823075B2 (en) 2012-11-30 2014-09-02 Sandisk Technologies Inc. Select gate formation for nanodot flat cell
US8987802B2 (en) 2013-02-28 2015-03-24 Sandisk Technologies Inc. Method for using nanoparticles to make uniform discrete floating gate layer
US9331181B2 (en) 2013-03-11 2016-05-03 Sandisk Technologies Inc. Nanodot enhanced hybrid floating gate for non-volatile memory devices
US9177808B2 (en) 2013-05-21 2015-11-03 Sandisk Technologies Inc. Memory device with control gate oxygen diffusion control and method of making thereof
US8969153B2 (en) 2013-07-01 2015-03-03 Sandisk Technologies Inc. NAND string containing self-aligned control gate sidewall cladding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608231A (en) * 1993-10-28 1997-03-04 Sony Corporation Field effect transistor having channel with plural quantum boxes arranged in a common plane
CN1278024A (zh) * 2000-07-04 2000-12-27 南京大学 大尺寸纳米有序孔洞模板的制备方法
CN1323051A (zh) * 2001-05-28 2001-11-21 东南大学 硅基片上有序纳米碳管阵列的制备方法
JP2002175621A (ja) * 2000-09-29 2002-06-21 Canon Inc 磁気記録媒体及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3727449B2 (ja) * 1997-09-30 2005-12-14 シャープ株式会社 半導体ナノ結晶の製造方法
EP1157144A4 (en) * 1999-01-13 2010-04-28 Cornell Res Foundation Inc MANUFACTURE OF MONOLITHIC FLUID STRUCTURES
KR20010009227A (ko) * 1999-07-08 2001-02-05 김영환 반도체장치의 제조방법
KR100597014B1 (ko) * 2001-01-10 2006-07-06 재단법인서울대학교산학협력재단 물질의 결정 구조를 이용한 패턴 형성 방법 및 그 구조를갖는 기능성 소자
JP4708596B2 (ja) * 2001-05-10 2011-06-22 キヤノン株式会社 ナノ構造体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608231A (en) * 1993-10-28 1997-03-04 Sony Corporation Field effect transistor having channel with plural quantum boxes arranged in a common plane
CN1278024A (zh) * 2000-07-04 2000-12-27 南京大学 大尺寸纳米有序孔洞模板的制备方法
JP2002175621A (ja) * 2000-09-29 2002-06-21 Canon Inc 磁気記録媒体及びその製造方法
CN1323051A (zh) * 2001-05-28 2001-11-21 东南大学 硅基片上有序纳米碳管阵列的制备方法

Also Published As

Publication number Publication date
CN1510740A (zh) 2004-07-07
JP2004207739A (ja) 2004-07-22
KR100763897B1 (ko) 2007-10-05
DE60333819D1 (de) 2010-09-30
US6913984B2 (en) 2005-07-05
KR20040056409A (ko) 2004-07-01
EP1437775B1 (en) 2010-08-18
JP4434721B2 (ja) 2010-03-17
US20040137704A1 (en) 2004-07-15
EP1437775A2 (en) 2004-07-14
EP1437775A3 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
CN100336201C (zh) 制造带有纳米点的存储器的方法
US6458621B1 (en) Batch fabricated molecular electronic devices with cost-effective lithographic electrodes
TWI300609B (en) Nonvolatile memory device using semiconductor nanocrystals and method of forming same
DE602004005333T2 (de) Planarer polymer-speicherbaustein
EP1560268A2 (en) Nanometer-scale memory device with self-aligned rectifying elements and manufacture thereof using nano-imprint lithography
US7795607B2 (en) Current focusing memory architecture for use in electrical probe-based memory storage
US6541309B2 (en) Fabricating a molecular electronic device having a protective barrier layer
US7001787B2 (en) Electrode manufacturing method
US7375368B2 (en) Superlattice for fabricating nanowires
DE10250829A1 (de) Nichtflüchtige Speicherzelle, Speicherzellen-Anordnung und Verfahren zum Herstellen einer nichtflüchtigen Speicherzelle
US7902586B2 (en) Nonvolatile memory device with nano gap electrode
US20060234418A1 (en) Method for fabricating a nonvolatile memory element and a nonvolatile memory element
CN101043067A (zh) 用以制造柱状相变化存储元件的方法
CN102067292A (zh) 用于蚀刻在非易失性存储器中使用的碳纳米管膜的方法
CN101080826A (zh) 将分子结构化涂覆到印制导线上的方法以及分子存储矩阵
US20120104341A1 (en) Memory cell device and method of manufacture
US7655939B2 (en) Memory cell, memory device and method for the production thereof
KR20030085015A (ko) 분자 전자 장치 제조 방법, 분자 전자 장치 및 시스템
DE10393702B4 (de) Verfahren zum Herstellen einer Speicherzelle, Speicherzelle und Speicherzellen-Anordnung
KR100652135B1 (ko) 안정된 다층 양자점을 가지는 유기 비휘발성 메모리 소자및 이의 제조 방법
CN1252819C (zh) 利用碳纳米管制作的随机存储器及制备方法
CN109801921A (zh) 一种双栅非易失电荷陷阱存储器及其制备方法
CN101504948B (zh) 中空尖笔状结构与包含其的装置及其制造方法
DE102004041555B4 (de) Verfahren zur Herstellung von molekularen Speicherfeldern mit selbstorganisierten Monolagen und gedruckten Elektroden
DE202022103887U1 (de) Eine Vorrichtung zur Herstellung von Indol-Filmen zur Herstellung eines resistiven Schaltmoduls

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20070905