BRPI9912231B1 - “Sistema para automaticamente controlar deposição em camadas de um material sobre um substrato e método de fabricação de um artigo" - Google Patents

“Sistema para automaticamente controlar deposição em camadas de um material sobre um substrato e método de fabricação de um artigo"

Info

Publication number
BRPI9912231B1
BRPI9912231B1 BRPI9912231A BR9912231A BRPI9912231B1 BR PI9912231 B1 BRPI9912231 B1 BR PI9912231B1 BR PI9912231 A BRPI9912231 A BR PI9912231A BR 9912231 A BR9912231 A BR 9912231A BR PI9912231 B1 BRPI9912231 B1 BR PI9912231B1
Authority
BR
Brazil
Prior art keywords
laser
substrate
article
height
adjust
Prior art date
Application number
BRPI9912231A
Other languages
English (en)
Other versions
BR9912231A (pt
Inventor
Justin Koch
Jyoti Mazumder
Original Assignee
Jyoti Mazumder
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jyoti Mazumder filed Critical Jyoti Mazumder
Publication of BR9912231A publication Critical patent/BR9912231A/pt
Publication of BRPI9912231B1 publication Critical patent/BRPI9912231B1/pt

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • B22F12/33Platforms or substrates translatory in the deposition plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/224Driving means for motion along a direction within the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/46Radiation means with translatory movement
    • B22F12/47Radiation means with translatory movement parallel to the deposition plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Automation & Control Theory (AREA)
  • Analytical Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Laser Beam Processing (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

"aparelho e método para revestimento a laser". o sistema de revestimento a laser (102) é usado para acumular a formação de material sobre um substrato aquecendo um ponto localizado sobre um substrato formando um poço de fusão sobre o qual o material é alimentado para criar um depósito tendo uma dimensão física. um meio de detecção óptico acoplado a um sensor optoelétrico que recebe luz através de uma máscara com aberturas é usado para monitorar uma dimensão física do depósito, e um controlador de sinal de retorno (104) ajusta o laser de acordo com um sinal elétrico, daí controlando a taxa de deposição de material. na configuração preferida, a dimensão física é a altura do depósito, e o sistema adicionalmente inclui uma interface (106) com um sistema de projeto computadorizado incluindo a descrição do componente a ser fabricado, capacitando ao controlador de sinal de retorno (104) comparar a dimensão física do depósito com a descrição e ajustar a energia do sinal de retorno (110). o controlador de sinal de retorno (104) inclui um conjunto de circuitos para ajustar o laser (110).

Description

"SISTEMA PARA AUTOMATICAMENTE CONTROLAR DEPOSIÇÃO EM CAMADAS DE UM MATERIAL SOBRE UM SUBSTRATO E MÉTODO DE FABRICAÇÃO DE UM ARTIGO" Campo da Invenção [001] A presente invenção relaciona-se a métodos e aparelhos para formar depósitos de metal fundido, chamados "poços de fusão", sobre a superfície de uma peça de trabalho usando um feixe de laser e uma fonte de metal de deposição, tipicamente, um arame metálico ou metal em pó injetado. Histórico da Invenção [002] Correntemente, uma das dificuldades enfrentada pelos fabricantes é o intervalo de tempo entre o conceito e desenvolvimento de uma nova tecnologia e a introdução de produtos atuais ao mercado. Na fabricação, uma etapa crítica em relação ao limite de tempo para muitos produtos se refere ao projeto e fabricação de moldes e matrizes. Matrizes complexas podem levar de semanas a um ano para serem aperfeiçoadas, antes de permitir a fabricação do produto. Nos processos de fabricação correntes, etapas adicionais são necessárias para superar as deficiências dos atuais métodos de fabricação. Por exemplo, componentes nos moldes e matrizes devem ser usinados para prover canais de resfriamento e um acabamento superficial aceitável. [003] Processos conhecidos os quais depositam metal resultam em um produto sinterizado, através da fixação de óxidos e material ligado de forma inadequada. Mesmo no caso onde o revestimento de material aceitável ocorreu, o processo frequentemente cria tensões que devem ser aliviadas. Um destes processos conhecidos é o revestimento "cladding" a laser, onde um laser é usado para gerar um poço de fusão sobre um substrato de material, enquanto um segundo material, tipicamente um pó ou fio, é introduzido, fundido, e ligado metalurgicamente. [004] O revestimento geralmente se distingue a partir de uma ligação com base que o revestimento funde uma quantidade relativamente pequena do material do substrato base em relação à quantidade de material depositado, e o sistema de pó fornecer um volume controlado de partículas metálicas ao volume fundente. As partículas se dispersam neste volume fundente e formam uma deposição de uma composição desejada sobre a camada externa do substrato. A remoção do feixe de luz laser do volume fundente, assim como, pelo avanço do substrato na peça de trabalho em relação ao ponto focal do feixe faz com que o volume fundente seja resfriado rapidamente. O resfriamento ocorre tão rapidamente, que o volume frequentemente mantém as características da mistura fundente. [005] As técnicas convencionais de revestimento a laser movem o artigo metálico em relação ao ponto focal, através de dispositivos, peças transportadores, e similares. O ponto focal do feixe, assim, se mantém fixo no espaço, como o ponto de pulverização. O movimento uniforme do artigo metálico requer usualmente um dispositivo complicado, que é difícil de fabricar, muito caro, e usualmente sem muito sucesso, particularmente, com geometrias mais complicadas. Por este motivo, é quase impossível obter um revestimento a laser de partes metálicas tendo outras geometrias do que geometrias planas, em uma condição uniforme consistente. Até agora, não foi possível controlar as dimensões e propriedades do depósito. Um controle mais restrito das dimensões é necessário para aplicar a técnica de revestimento básica à produção de peças tendo tolerâncias mais restritas, com propriedades e microestrutura aceitáveis, e que possam ser produzidas a um custo razoável e dentro de um periodo de tempo razoável. [006] A presente invenção é útil para controlar automaticamente o acumulo de material sobre um substrato, e é particularmente útil na fabricação de peças metálicas através de operações repetitivas de revestimento conforme necessário para a fabricação de pequenos lotes de produção para protótipos e similares. Amplamente, em termos gerais, um laser é usado para aquecer localmente um ponto sobre um substrato, formando um poço de fusão, dentro do qual um pó é alimentado para criar um depósito tendo uma dimensão fisica. Um meio de detecção óptica acoplado a um sensor opto-elétrico é usado para monitorar uma dimensão fisica do depósito, e um controlador de retroalimentação é operativo para ajustar o laser de acordo com o sinal elétrico com isso controlando a taxa de deposição de material. [007] Na configuração preferida, a dimensão fisica é a altura do depósito, e o sistema adicionalmente inclui uma interface para um sistema de Desenho Auxiliado por Computador (CAD de Computer Aided Design), incluindo uma descrição de um artigo a ser fabricado, permitindo que o controlador de retroalimentação compare a dimensão fisica do depósito com a descrição e, ajuste assim a energia do laser. [008] Em termos do aparelho especifico, o meio de detecção óptica, preferivelmente, inclui uma máscara com aberturas, através das quais a luz a partir do depósito passa e alcança o sensor opto-elétrico, e o controlador de retroalimentação inclui uma circuitagem para ajustar o laser de acordo com a presença ou ausência da luz a partir do depósito. [009] Um sistema para fabricar automaticamente um artigo, de acordo com aspectos únicos da invenção, compreende um banco de dados do desenho auxiliado por computador, incluindo uma descrição do artigo a ser fabricado, uma mesa de trabalho para suportar o substrato, e meio de translação para mover o substrato em relação ao laser e meio de alimentação. Em um arranjo, o meio de translação move a mesa de trabalho, enquanto o laser e o meio de alimentação se mantêm estacionários, enquanto, em outra configuração, o meio de translação move o laser e o meio de alimentação enquanto a mesa de trabalho se mantém estacionária. Em uma alternativa adicional, ambos laser/material alimentado e mesa de trabalho/substrato podem ser movidos simultaneamente, preferivelmente controlados por um controle de retroalimentação. [0010] Um processo de fabricação de um artigo de acordo com um aspecto do método da invenção inclui as seguintes etapas: prover uma descrição do artigo a ser fabricado; prover um substrato sobre o qual forma o artigo; aquecer uma região localizada do substrato para formar um poço de fusão sobre o mesmo; alimentar material no poço de fusão, de modo a criar um depósito tendo uma dimensão física; monitorar opticamente a dimensão física do depósito; controlar a dimensão física de acordo com a descrição do artigo a ser fabricado; e avançar para uma região localizada diferente do substrato até a fabricação do artigo ser completada.
Breve Descrição dos Desenhos [0011] A Figura 1 é um diagrama esquemático de um sistema de deposição direta de metal incluindo o novo controlador de retroalimentação da invenção, e um sistema CAD/CAM para produção automatizada das peças; [0012] A Figura 2 é uma vista esquemática de um bocal de pulverização laser formando um poço de fusão sobre um artigo de substrato; [0013] A Figura 3 é uma vista esquemática de um bocal de pulverização laser formando um poço de fusão sobre um artigo de substrato, incluindo uma ilustração de uma porção do dispositivo de retroalimentação da invenção; [0014] A Figura 4 é um diagrama esquemático de um sistema de monitoramento óptico que ilustra características importantes de um controlador de retroalimentação da invenção; [0015] A Figura 5 é uma vista esquemática de um poço de fusão, um eixo geométrico óptico, uma máscara, e a orientação de um foto-transistor da invenção para detectar dimensão; [0016] A Figura 6 é equivalente a Figura 5, exceto pela inversão da mensuração das dimensões do poço em relação à Figura 5, da máscara e de seu posicionamento em relação ao dito material depositado. [0017] A Figura 7 é um diagrama de circuito elétrico de um arranjo de polarização de foto-transistor; [0018] A Figura 8a é um sinal de voltagem analógico para o laser antes do condicionamento e controle através do sistema de sistema de retroalimentação; [0019] A Figura 8b mostra uma queda de voltagem através do circuito de transistor como o resultado da altura da detecção do depósito; [0020] Na Figura 8c a curva mostra o sinal digitalizado a partir do foto-transistor enviado para controlar o laser; [0021] A Figura 8d mostra o sinal analógico modificado enviado ao laser que afeta a duração de pulso e a potência resultante do laser; [0022] A Figura 9 ilustra um exemplo especifico de uma estrutura monolitica formada por revestimento a laser sobre um substrato; [0023] A Figura 10 é um gráfico de um modelo de costura preferido; [0024] A Figura 11 apresenta uma vista em perspectiva de uma amostra padrão que é dotada de uma escala de medição de deformação residual proposta por um grupo independente. [0025] A Figura 12 é uma ilustração de uma matriz de ferramenta tendo as peças do núcleo e da cavidade preparadas de acordo com um método da invenção.
Descrição Detalhada da Invenção [0026] A presente invenção relaciona-se nos métodos e aparelhos para monitorar e controlar a deposição de material sobre um substrato, tipicamente um metal. Em particular, a invenção é aplicável a processos baseados na formação/ sustentação de um poço de fusão por aquecimento a laser localizado, e a injeção de pó simultânea, tipicamente um metal. Os materiais de substrato e fluxo injetado são ligados para formar um depósito. No sistema único da invenção, pelo menos uma dimensão do depósito é monitorada e controlada para prover uma peça de trabalho completa com um contorno e dimensões desejadas, dentro de tolerâncias restritas. Em particular, o tamanho do depósito é proporcional à quantidade do segundo material injetado no poço de fusão. 0 conjunto único de monitoramento e controle da invenção compreende um controlador de retroalimentação que detecta uma dimensão do depósito, e varia a duração do pulso do feixe de laser com base na dimensão detectada. Preferivelmente, a altura do fundido é monitorada e a potência do feixe Laser é controlada inversamente a esta altura. [0027] A presente invenção combina técnicas de deposição direta de metal com um controle automatizado de retroalimentação direta para prover um produto final dentro de tolerâncias restritas e tendo propriedades metalúrgicas aceitáveis. A invenção combina técnicas de deposição metálica direta (DNM) com controle efetivo para a construção de peças, protótipos, moldes, e matrizes para tolerâncias restritas com geometrias complexas e boas características metalúrgicas. A invenção também provê a capacidade de acoplar um banco de dados CAD com uma deposição de metal direta, pela qual, uma peça completa pode ser fabricada com propriedades desejadas em um breve periodo de tempo e, em um sistema automatizado com intervenção humana limitada. [0028] A invenção agora será descrita fazendo referência às figuras. A Figura 1 é um diagrama esquemático de um sistema de deposição direta de metal 102, que inclui um inédito controlador de retroalimentação 104 da invenção e um sistema CAD/CAM 106 para a produção automatizada de peças. Os fatores considerados para afetar as dimensões da deposição de material incluem potência de laser, diâmetro do feixe, distribuição espacial e temporal do feixe, tempo de interação, e taxa de fluxo de pó. Dentre estes fatores, o monitoramento e controle adequados de potência de laser tem um efeito critico na capacidade para fabricar peças completas dentro de tolerâncias de controle. Consequentemente, o controlador de retroalimentação 104 da invenção, preferivelmente, coopera diretamente com o controle numérico (NC) 108, que, por si mesmo, controla todas as funções do sistema, incluindo a potência do laser. [0029] Ainda se referindo à Figura 1, o sistema compreende uma fonte de laser 110 tendo um meio de focalização de feixe adequado 112. A fonte de laser é montada sobre o substrato ou peça de trabalho, para focalizar o laser sobre o mesmo. O substrato da peça de trabalho está disposto sobre uma mesa de trabalho, embora qualquer número de uma variedade de arranjos possa ser usado para prover um movimento relativo entre o substrato da peça de trabalho e o bocal de pulverização laser. O sistema também inclui uma mesa de trabalho 114, uma fonte de energia elétrica 116, e um resfriador 118 para resfriar o laser. É preferido que a fonte de laser seja uma onda continua ou pulsante CO2, YAG, ou qualquer outro comprimento de onda de laser tendo uma densidade de potência suficiente para fundir o material a ser depositado. Tipicamente, é utilizado um laser de excitação por rádio-freqüência ou CO2 de alta potência. Preferivelmente, o feixe de laser é dirigido aproximadamente perpendicularmente à superfície do substrato da peça de trabalho. [0030] Como mostrado nas Figuras 2 e 3, o sistema inclui um conjunto de bocal 2 02 que opera sobre a peça de trabalho para aplicar uma camada de revestimento, injetando metal em pó no feixe. Conjuntos de laser e bocal deste tipo são descritos nas Patentes U.S. Nos 5.243.419 (Pratt et al) , 5.453.329 (Everett et al) e 5.477.026 (Buongiomo) . Um bocal de pulverização laser adequado é provido pela Quantum Laser Corporation de Norcross, Geórgia, e é como descrito na Patente U.S. N° 4.724.299. [0031] O bocal de pulverização laser provê uma saida comum para feixe e o pó, de modo que ambos sejam direcionados consistentemente para o mesmo ponto no substrato da peça de trabalho. Em uma configuração preferida, o conjunto do bocal de pulverização laser inclui um corpo de bocal com primeira e segunda porções extremas separadas, conforme descrito na Patente U.S. N° 4.724.299. Uma passagem de feixe se estende entre as porções extremas e permitindo que um feixe de laser passe através das mesmas. Um alojamento que envolve a segunda porção extrema é separado da segunda porção extrema para formar uma passagem anular. O alojamento tem uma abertura coaxial com a passagem de feixe para permitir que o feixe de laser passe através do mesmo. Um sistema de suprimento de pó de revestimento é operativamente associado com a passagem para suprir pó de revestimento ao mesmo, de modo que o pó saia da abertura coaxial com o feixe. [0032] O bocal de pulverização laser da invenção provê uma composição de revestimento uniforme, uma vez que o feixe sai do bocal substancialmente coaxialmente com o pó de revestimento, ambos tendo o mesmo ponto focal. O bocal tem uma saida comum para o feixe e o pó, de modo que ambos sejam consistentemente direcionados ao mesmo ponto sobre o artigo. Desta forma, é provido um ponto focal comum, que garante uma composição de revestimento uniforme. Resultados similares podem também ser obtidos através de um bocal de injeção lateral, no entanto, um bocal de injeção lateral restringe a direção do movimento de revestimento enquanto um bocal concêntrico permitirá a mudança da direção da deposição a qualquer momento. [0033] Técnicas convencionais de revestimento a laser movem o artigo metálico em relação a um ponto focal do feixe através do uso de dispositivos, transportadores de peças, e similares. O ponto focal do feixe, portanto, se mantém estacionário, assim como a posição do fluxo de pó metálico injetado. O movimento uniforme do artigo metálico usualmente requer um dispositivo complicado, o qual é de dificil fabricação, normalmente caro, e frequentemente sem muito sucesso, particularmente, com geometrias extremamente complexas. Por esta razão, o revestimento a laser das peças metálicas tendo geometrias complexas é dificil de obter de modo consistentemente uniforme. Robôs vêm se tornando uma peça padrão do equipamento operacional em muitas instalações industriais. O robô típico tem uma "munheca" ("wrist") com cinco graus de liberdade, cada um deles podendo se mover a uma velocidade constante. O robô pode ser energizado eletricamente, de forma hidráulica, ou pneumática, ou através de qualquer combinação destes meios. A utilização de um robô, em conjunção com um sistema de revestimento a laser, provê um meio para produzir um revestimento uniforme. O artigo pode se manter fixo no espaço, e o bocal pode, consequentemente, se mover em relação ao artigo em cooperação com o movimento do braço do robô. Alternativamente, o bocal pode se manter fixo e o artigo ser movido pelo robô. [0034] O controlador numérico 108 controla, preferivelmente, os componentes operantes do conjunto da Figura 1, incluindo as condições de operação do laser, aceitando as direções a partir do computador CAD/CAM 106 para a construção do artigo, peça, ou peça de trabalho. O controlador NC também recebe sinais de controle de retroalimentação a partir do controlador de retroalimentação para ajustar a sarda de potência do laser e, adicionalmente, controlar a posição relativa da mesa de trabalho e conjunto do bocal de pulverização laser. Um controlador numérico, tal como aquele da Figura 1, pode ser obtido a partir de vários fornecedores, incluindo FANUC, Allen Bradley, IGM, etc. O sistema CAD/CAM é de um tipo convencional e pode compreender uma estação de trabalho de qualquer fornecedor, tal como, da Sun Microsystem, Silicon Graphics, ou Hewlett-Packard. Dentre os aspectos requeridos do software CAD/CAM, é necessária a capacidade para gerar uma trajetória no substrato para a deposição de material. Isto permite uma rápida prototipação, e formar um objeto tridimensional sólido diretamente a partir das dimensões do CAD, incluindo a produção direta de protótipos metálicos utilizando o bocal de pulverização laser. [0035] Como melhor visto nas Figuras 2 e 3, o bocal de pulverização laser 202 forma um poço de fusão 204 sobre um artigo de substrato 206. Preferivelmente, o pó é injetado através de um bocal 208 ao redor do feixe de laser 204. É preferido que a projeção de feixe de laser sobre a superfície de substrato não seja um perfil Gaussiano. É preferido que a projeção de feixe de laser seja, relativamente, de uma forma geral de rosca, com a intensidade máxima ocorrendo perifericamente. Assim, em contraste com perfil Gaussiano, o ponto médio do perfil de feixe tem uma intensidade mais baixa. Isto provê um poço de fusão com uma distribuição de temperatura relativamente uniforme. No entanto, outras distribuições espaciais de feixe de laser podem ser adaptadas para o processo. [0036] A Figura 3 mostra um diagrama esquemático de um sistema de deposição direta de metal, incluindo um dispositivo de controle de retroalimentação 302. A energia fornecida a partir do laser é mostrada por uma seta maior, e uma seta menor mostra o pó sendo fornecido ao sistema de alimentação de pó. Água resfriada 306 é mostrada sendo fornecida à sarda do bocal de pulverização laser. A unidade de retroalimentação 302 preferivelmente está disposta diretamente adjacente ao ponto onde o laser e o pó incidem sobre a superfície da peça de trabalho 310. [0037] A Figura 4 é um diagrama esquemático de um sistema de monitoramento óptico, que ilustra os fundamentos fisicos do sistema de controle de retroalimentação. De modo geral, uma dimensão, tal como a altura do poço de fusão do revestimento a laser, é monitorada opticamente, e controlada eletronicamente. A superfície fundente em alta temperatura do poço de fusão emite intensamente na região de infravermelho. A figura de bastão da Figura 4 representa esquematicamente o poço de fusão. Um filtro passa banda estreita 410, preferivelmente no infravermelho, é colocado na frente da lente de câmara 412. A câmara exemplar tem um comprimento focal de 135 mm, com o único requisito de prover uma ampliação adequada do poço de fusão. [0038] A imagem é passada através de extensores cilíndricos 416, depois dos quais, uma porção da imagem (aproximadamente 10%) é refletida para um plano focal ativo de uma câmara de TV 42 0. Deve ser notado que a câmara não é estritamente necessária de acordo com a invenção, mas permite o monitoramento por um operador humano. A imagem refletida, preferivelmente, passa por um filtro de densidade neutra 422, colocado entre o refletor e o plano focal ativo da câmara de TV. A porção transmitida da imagem óptica passa pelo refletor, e a imagem ampliada é obstruída no ponto focal, para prover resolução espacial. A imagem que sai da máscara 426 passa por uma lente 428, e, então, para um dispositivo sensível a luz, tal como, foto-transistor 430. [0039] É importante que o ângulo do eixo óptico 440 e a magnificação do conjunto óptico seja tal que pequenas variações na altura do fundido possam ser percebidas pelo foto-transistor 430. Fazendo referência às orientações do sistema, conforme mostrado nas Figuras 5 e 6, a luz a partir de uma altura definida do poço de fusão tanto é obstruída do, ou permitida através do foto-transistor. A sensibilidade entre as duas condições é preferivelmente menor que 0,254 mm (0,010"). Ou seja, a sensibilidade limite entre as duas condições é ~0,254 mm (~0,010"), a janela de uma condição "não obstruída" é 2,54 mm (~0,100") antes de voltar para a condição "obstruída". [0040] A Figura 4 também ilustra a maneira na qual a análise espectroscópica pode ser incorporada à invenção através do uso de um divisor de feixe ou espelho de transmissão parcial 450, que direciona uma porção de luz recebida do objeto para um elemento de dispersão 460, tal como uma grade de difração, a luz a partir da qual é colimada com uma lente 462, e enviada para um detector 464, emitindo informação do conteúdo espectral ao longo da linha 4 66. Tal informação de conteúdo espectral pode ser usada para monitorar e/ou gravar dados passivamente em relação à composição de material do poço de fusão ou camada de revestimento, enquanto este se desenvolve, ou pode ser incorporada ao laço de retroalimentação para alterar a operação do sistema, de acordo com a composição de material. Por exemplo, a constituição do pó alimentado pode variar de acordo com os critérios do projeto e ser verificada por análise espectral, para garantir a provisão da liga apropriada ou mudança de composição de material. [0041] Também deve ser notado que embora a potência de laser seja preferivelmente a variável modificada, de acordo com um programa armazenado, outras variáveis também podem ser usadas separadamente ou em conjunção com a potência de laser. Por exemplo, a progressão ou tamanho do ponto de laser pode variar para atender critérios de projeto, ou, alternativamente, a alimentação de material pode ser ajustada. De fato, com um controle apropriado de um conjunto de parâmetros apropriados, a remoção de material pode também ser possível pela invenção junto com a construção do material, permitindo que erros ou imperfeições sejam corrigidos em operação, ou, alternativamente, permitindo a modificação de partes pré-existentes em relação a novos critérios de projeto. [0042] O sinal foto-transistor é processado por um circuito que controla a potência do laser. A maior parte dos lasers tem a capacidade de ser controlada por um único sinal de voltagem analógico, por exemplo, 0 e 12 Volts correspondem, respectivamente, às potências zero e máxima.
Qualquer voltagem entre estas voltagens gera uma potência correspondente. A maior parte dos lasers pode responder à voltagem analógica dentro de um milissegundo. 0 foto-transistor é capaz de detectar a presença ou ausência de luz, e varia sua condutividade. Sob a exposição à luz, a condutividade elétrica do foto-transistor aumenta e, por consequência, a tensão sobre ele cai. Como mostrado na Figura 7, o valor de "Rl" pode ser escolhido para ajustar a sensitividade adequada de modo que Vpt+V0üt= 5 Vols. Neste exemplo particular, 5 Volts fornece 50% da potência total, se a potência total for obtida com um sinal de 10 Volts. [0043] Referindo-se à Figura 5, um diagrama esquemático de um depósito fundente 502 é mostrado com uma máscara 504, disposta entre o depósito e o foto-transistor 506. Outros elementos do sistema foram eliminados para maior clareza. Como pode ser visto, a máscara tem forma plana e é um sólido com um furo, através do qual pode passar luz. Quando a altura do revestimento alcança um nivel pré-determinado, a luz, no comprimento de onda selecionado a partir do material do depósito, passa através da máscara, incidindo sobre o foto-transistor, como mostrado. Ao contrário, durante o período em que a luz permanecer abaixo do orifício da máscara, ela não incidirá no foto-transistor. Esta condição entre a luz e não-luz, pode ser usada para controlar e ajustar a operação do laser. [0044] A condição inversa é apresentada na Figura 6, onde, durante o período em que a luz transpassa o orifício da máscara, a altura do fundido está dentro das especificações; tão logo o foto-transistor entra na região de sombra da máscara, uma condição limite é detectada, já que não há mais incidência de luz no foto-transistor. Conforme a altura do poço de fusão muda de elevação, a imagem diminui até a luz começar a incidir sobre o foto-transistor. Em uma altura uniforme, a voltagem (V0ut) alcança a magnitude para passar de "feixe ligado" para "feixe desligado". [0045] A Figura 8 é uma série de curvas mostrando a relação dos sinais de controle de operação laser, resposta de foto-transistor à condição de luz/sem luz na forma de queda de voltagem, e como o sinal de foto-transistor controla a potência de laser. Em todos os casos, o eixo geométrico horizontal representa o tempo, e o eixo geométrico vertical representa a voltagem. A primeira curva da Figura 8a mostra um sinal de voltagem analógico para o laser, antes de qualquer condicionamento e controle pelo o sistema de retroalimentação da invenção. A segunda curva da Figura 8b mostra a queda de voltagem através do resistor do foto-transistor. Como pode ser visto na primeira curva, a voltagem analógica para o laser, antes de qualquer controle pelo o sistema de retroalimentação, é consistente e não ajustada com o tempo. Referindo-se à segunda curva da Figura 8, a voltagem cai através do resistor do foto-transistor da Figura 7, como mostrado durante operação de revestimento. [0046] No inicio do ciclo de operação, a impedância do foto-transistor é alta, que significa que não há luz detectável emitida a partir da superfície de fusão e transmitida através do filtro passa banda estreita seletivo. Como um resultado, a queda de voltagem através do resistor de foto-transistor é relativamente baixa. Na condição onde a luz é detectada, é mostrado um pico indicando que a impedância do foto-transistor é relativamente baixa, e a queda de voltagem através do resistor de foto-transistor também é relativamente alta. Na terceira curva (c) da Figura 8, a máxima queda de tensão sobre o foto-transistor provê um sinal que é digitalizado. A quarta curva (d) da Figura 8 demonstra como o sinal digitalizado modula a tensão analógica de alimentação original do Laser, alterando sua duração de pulso e a potência óptica de saída. Assim, a tensão de operação do Laser ao longo do tempo é ajustada de acordo com a queda de tensão sobre o foto-transistor e decorrente do comprimento de luz por ele monitorado. [0047] No aspecto de retroalimentação da invenção, o foto-transistor envia um sinal para o controlador numérico da Figura 1, que, então, ajusta a fonte de voltagem do laser, controlando a potência de laser, e finalmente ajustando a duração do laser incidente sobre o substrato da peça de trabalho. A voltagem do sinal analógico corresponde à potência de laser. Isto permite a deposição direta de metal e controle da altura de cada passe, conforme é construída camada sobre camada de revestimento. O sistema de retroalimentação, desta forma, controla as dimensões acumulativas da peça de trabalho. O controlador de retroalimentação da invenção essencialmente informa ao laser se a dimensão da peça de trabalho está sendo excedida, reduzindo a duração de tempo de "feixe ligado" de cada pulso. Quando o feixe está ligado, ocorre a deposição. Se a posição particular é muito alta, o laço de retroalimentação corta a potência de laser e a deposição se reduz consideravelmente. O controle e ajuste automatizados da invenção são críticos, uma vez que ajustes manuais não são efetivos. [0048] Em uso, o sistema pode ser usado para depositar material, pixel a pixel. Sem o controle de retroalimentação, depois de alguns minutos de acumulo de diversas camadas, a peça de trabalho pode se tornar distorcida, depois que a degradação adicional das condições pode conduzir a distorção e destruição. A vantagem do sistema de controle de retroalimentação da invenção é que, antes de ocorrer a distorção, o foto-transistor detecta a condição de luz/sem luz emitida em um único comprimento de onda do material da peça de trabalho, e um computador é pré-programado para reduzir a deposição até que o controlador de retroalimentação detecte uma condição aceitável, onde permite que os pulsos se estendam até seu valor máximo.
Exemplo 1 [0049] Para esta pesquisa, uma matriz de aço para trabalho a quente cromo-molibdênio, H13, foi depositado diretamente sobre substratos de H13 forjado. Esta liga, comumente usada em matrizes de fundição, foi analisada por seu potencial, utilidade em altos volumes para a fabricação rápida de ferramental de fundição. Comparações de tratamento térmico para ambos DMD e H13 forjado foram realizadas nas seguintes áreas: 1) dureza na "condição revestida", ductilidade, e microestrutura; 2) resposta de recozimento inicial; e 3) resposta de recozimento para material temperado em óleo austenizado (a 1010°C). [0050] Para replicar um sistema comercial, dois modos de deposição de revestimento foram analisados. Uma taxa de deposição metálica baixa, de baixa potência, foi selecionada uma vez que este processamento corresponde aos parâmetros usados nos detalhes e bordas. Um modo de taxa de deposição metálica alta, de alta potência, foi usado uma vez que corresponde ao método usado para adicionar material a granel. Estas duas formas de processamento se referem, respectivamente, ao revestimento fino e grosseiro. 0 sistema de retroalimentação foi usado no revestimento "fino". [0051] As condições de produção usadas para o revestimento grosseiro consistiam de ponto focal de 1,1 mm para uma varredura de 3,5 mm, para a fabricação de uma parede vertical grossa 1-D. A potência de laser foi 4500 W e taxa de alimentação de pó foi 16 g/min. O pó foi suprido perpendicular à direção da varredura. O feixe e o fluxo de pó foram desligados ao fim de cada passe e as camadas subsequentes foram acumuladas em deslocamentos de 750 mm/min na mesma direção. Camadas sucessivas foram depositadas para criar um revestimento com 3,5 mm de largura, 70 mm de altura, 12 0 mm de comprimento em um substrato de aço de baixo-carbono. Durante este processo, a temperatura do revestimento não foi medida, mas a radiação visível foi observada depois de depositadas as primeiras 5-10 camadas. Uma barra de tração, na direção perpendicular ao revestimento, foi usinada a partir da amostra "na condição revestida", como mostrado na Figura 9. Durante o teste de tração, um extensômetro mediu a tração na seção de medição. [0052] Para revestimento fino, o pó metálico e gás de proteção foram alimentados concentricamente. O poço de fusão foi formado em um ponto com diâmetro de 0,6 mm. A velocidade da amostra para ambos tipos de processos de revestimento foi 750 mm/min. A potência de laser e taxa de alimentação de pó foram, 1000 W e 5 g/min para o processamento fino. Um sistema de retroalimentação monitorou a altura de poço de fusão, enquanto a amostra seguia um padrão de costura, conforme a Figura 10. A espessura de cada camada depositada é de 250 micra. Um bloco de 90 mm de altura foi assim construido. H13 foi usado para ambos, o substrato e a deposição para permitir uma comparação direta entre a técnica da deposição Laser e a técnica de forjamento nas etapas posteriores de tratamento térmico. [0053] As análises de dureza e microestrutura do revestimento da peça de trabalho e H13 forjado, na condição de tratamento térmico, são muito similares. Ambas continham martensita temperada, e alguma austenita retida. Depois de austenização a 1010°C por 1 hora, a maior parte das evidências da estrutura de solidificação dentritica foi removida por difusão. No entanto, o enfeixamento causado pela segregação de liga ficou evidente no substrato forjado. Os resultados desta análise demonstraram ser possível que a construção de múltiplas camadas pelo revestimento, para formar uma peça de trabalho tendo características equivalentes àquelas de uma peça convencional forjada.
Exemplo 2 [0054] A administração de tensão residual e a distorção resultante são fatores críticos para o sucesso deste processo para demonstração da capacidade de produzir componentes tridimensionais. O acumulo de tensões residuais é a maior causa de trincas na fabricação de componentes de aço ferramenta. Para entender a geração de tensão, uma amostra foi projetada para estimar o acumulo de tensão por camada. Isto resultou na estratégia de depositar múltiplas camadas, antes que as tensões residuais acumuladas viessem a causar trincas. Depois da deposição de um número de camadas pré-determinado, um alívio de tensão foi executado antes das camadas adicionais serem depositadas. Esta estratégia conduziu a fabricação com sucesso de um componente XMS-Tl em tamanho total, conforme na Figura 11. Acredita-se que esta tenha sido a primeira vez da fabricação deste projeto de teste de ΙΜΞ-Τ1 em aço ferramenta H13 por deposição direta de metal. [0055] Os parâmetros do processo dó Exemplo 2 são dados imediatamente a seguir;
Amostra MSF TI [0056] A amostra fabricada foi enviada a um laboratório independente para a medição de tensão residual. A Figura 11 também mostra os pontos onde a tensão foi medida. As posições 2, 6 e 5 foram depositadas durante o último ciclo, e mostram tensões de compressão residuais, uma vez que não sofreram alivio de tensões. Outras localizações depositadas em ciclos anteriores e subsequentemente submetidas a alivio de tensões, mostraram tensões residuais desprezíveis, enquanto a máxima tensão neste local sem alivio de tensão foi +49,4 KSI. [0057] Foram preparadas matrizes de moldagem de injeção com blocos de resfriamento de cobre e canal de resfriamento de água, e uma matriz de corte também foi fabricada. Estes componentes tinham uma tolerância dimensional muito restrita, todos com uma tolerância dimensional de poucos milésimos de uma polegada. Estes exemplos mostram a viabilidade do processo DMD para a fabricação bem sucedida de componentes tridimensionais com liga H13. O processo é capaz de controlar a microestrutura e, assim, propriedades através de um cuidadoso controle dos parâmetros de processo. A resposta ao tratamento térmico dos componentes depositados por laser e componente de aço H13 forjado é a mesma. Na verdade, um revestimento H13 a laser, tratado termicamente, é mais homogêneo estruturalmente do que um H13 forjado. [0058] Os métodos e aparelhos da invenção fornecem a capacidade de estabelecer e refinar componentes de qualquer geometria que possam ser produzidos a partir de um banco de dados de computador. Há muitas aplicações importantes. Uma é a prototipagem e/ou fabricação rápida, que produz muito mais rapidamente protótipos ou ferramentas de fabricação. Outra aplicação é para a produção de componentes em pequenos lotes para usuário especifico, onde uma pequena quantidade pode ser produzida a custos razoáveis. Isto é particularmente vantajoso na fabricação de dispositivos médicos, tais como partes de próteses artificiais para seres humanos. Outras aplicações potenciais incluem moldes para fabricação/injeção de polímeros, insertos para moldes de fundição de matrizes de aluminio, que reduzem consideravelmente os prazos de entrega e vitrificação de camadas. [0059] A invenção provê a condição para controlar microestrutura, composição, tensões residuais e propriedades mecânicas. O sistema é capaz de fabricação "sem supervisão" utilizando um laço de retroalimentação para controle de processo e integração de hardware e software no sensor de laço do controle de retroalimentação para operação automatizada. A modelação matemática é facilmente desenvolvida para os diferentes materiais usados no processo.
Outros componentes podem ser facilmente integrados no sistema, incluindo sensores elétricos e piezelétricos para a medição do acumulo de tensões e cargas residuais, distorção induzida por tensões, e monitoramento da iniciação de trincas.

Claims (15)

1- Sistema para fabricar automaticamente um artigo, compreendendo um banco de dados (106) de um sistema de projeto computadorizado incluindo uma descrição do artigo a ser fabricado; uma mesa de trabalho (114) para suportar um substrato (206); um laser controlável (110) produzindo um feixe direcionado para uma região localizada do substrato (206) e adaptado para formar um poço de fusão (204) sobre o mesmo; um meio (208) acoplado ao laser (110) para alimentar material para dentro do poço de fusão (204) de modo a criar um depósito de material tendo uma altura; um meio de movimento para deslocar o substrato (206) em relação ao laser (110) e ao meio de alimentação (208), sendo o sistema caracterizado pelo fato de compreender ainda: um meio de detecção óptico (302) operativo para produzir um sinal elétrico indicativo da altura do depósito de material enquanto este estiver sendo criado; e um controlador por realimentação (104) que é operativo para ajustar o laser (110) de acordo com o sinal elétrico, controlando a taxa de deposição de material, sendo que o controlador por alimentação (104) é operativamente interfaceado ao meio de movimento e ao laser (110) e configurado para automaticamente ajustar a altura do depósito de material de acordo com a descrição do artigo a ser fabricado no banco de dados (106) do sistema de projeto computadorizado.
2- Sistema, de acordo com a reivindicação 1, caracterizado pelo fato de o meio de movimento deslocar a mesa de trabalho (114) enquanto o laser (110) e o meio de alimentação (208) permanecem estacionários.
3- Sistema, de acordo com a reivindicação 1, caracterizado pelo fato de o meio de movimento deslocar o laser (110) e o meio de alimentação (208) enquanto a mesa de trabalho (114) permanece estacionária.
4- Sistema, de acordo com a reivindicação 1, caracterizado pelo fato de o substrato (206) ser metálico e de o material alimentado para dentro do poço de fusão (204) ser um pó metálico.
5- Sistema, de acordo com a reivindicação 1, caracterizado pelo fato de o meio controlador por realimentação (104) ajustar a potência do feixe de laser para ajustar a taxa de deposição de material.
6- Sistema, de acordo com a reivindicação 1, caracterizado pelo fato de o meio controlador por realimentação (104) ajustar o tamanho de ponto do feixe de laser (110) para ajustar a taxa de deposição de material.
7- Sistema, de acordo com a reivindicação 1, caracterizado pelo fato de o meio controlador por realimentação (104) ajustar a taxa de alimentação de material para ajustar a taxa de deposição de material.
8- Sistema, de acordo com a reivindicação 1, caracterizado pelo fato de o meio controlador por realimentação (104) ajustar a taxa de movimento entre o feixe de laser (110) e o substrato (206) para ajustar a taxa de deposição de material.
9- Sistema, de acordo com a reivindicação 1, caracterizado pelo fato de o meio de detecção óptico (302) incluir uma máscara (504) com aberturas, através das quais passa luz do depósito, para alcançar o sensor optoelétrico (506).
10- Método de fabricação de um artigo, compreendendo as etapas de a) prover descrição de um artigo a ser fabricado; b) prover um substrato (206) sobre o qual deve ser formado o artigo; c) prover um laser (110) controlável produzindo um feixe para aquecer uma região localizada do substrato (206) para formar um poço de fusão (204) sobre o mesmo; d) alimentar material para dentro do poço de fusão (204) de modo a criar um depósito de material tendo uma altura, sendo o processo caracterizado pelo fato de compreender ainda a etapa de: e) monitorar opticamente e controlar automaticamente a altura do depósito de material, de acordo com a descrição do artigo a ser fabricado, avançando para uma diferente região localizada do substrato (206) e repetindo as etapas (c) a (e) até que a fabricação do artigo seja terminada.
11- Método, de acordo com a reivindicação 10, caracterizado pelo fato de a etapa (e) incluir deslocar o substrato (206), enquanto o laser (110) e o meio de alimentação (208) permanecem estacionários.
12- Método, de acordo com a reivindicação 10, caracterizado pelo fato de a etapa (e) incluir deslocar o laser (110) e o meio de alimentação (208), enquanto o substrato (206) permanece estacionário.
13- Método, de acordo com a reivindicação 10, caracterizado pelo fato de o substrato ser metálico e de o material alimentado para o poço de fusão (204) ser um pó metálico.
14- Método, de acordo com a reivindicação 10, caracterizado pelo fato de incluir inclinar o substrato enquanto o laser (110) e o meio de alimentação (208) permanecem estacionários.
15- Método, de acordo com a reivindicação 10, caracterizado pelo fato de a altura ser normal ao substrato (206).
BRPI9912231A 1998-06-30 1999-06-22 “Sistema para automaticamente controlar deposição em camadas de um material sobre um substrato e método de fabricação de um artigo" BRPI9912231B1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/107,912 US6122564A (en) 1998-06-30 1998-06-30 Apparatus and methods for monitoring and controlling multi-layer laser cladding
PCT/US1999/014031 WO2000000921A1 (en) 1998-06-30 1999-06-22 Apparatus and methods for laser cladding

Publications (2)

Publication Number Publication Date
BR9912231A BR9912231A (pt) 2002-01-29
BRPI9912231B1 true BRPI9912231B1 (pt) 2015-12-08

Family

ID=22319128

Family Applications (1)

Application Number Title Priority Date Filing Date
BRPI9912231A BRPI9912231B1 (pt) 1998-06-30 1999-06-22 “Sistema para automaticamente controlar deposição em camadas de um material sobre um substrato e método de fabricação de um artigo"

Country Status (12)

Country Link
US (1) US6122564A (pt)
EP (1) EP1099184B1 (pt)
JP (2) JP2002519200A (pt)
KR (1) KR100606476B1 (pt)
CN (1) CN1205582C (pt)
AU (1) AU754346B2 (pt)
BR (1) BRPI9912231B1 (pt)
CA (1) CA2336583C (pt)
ES (1) ES2459601T3 (pt)
NO (1) NO20006700L (pt)
RU (1) RU2228243C2 (pt)
WO (1) WO2000000921A1 (pt)

Families Citing this family (222)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2166980T3 (es) * 1996-02-16 2002-05-01 Bernal International Inc Procedimiento para la formacion de una matriz de corte.
US7713297B2 (en) 1998-04-11 2010-05-11 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
US6937921B1 (en) * 1998-06-30 2005-08-30 Precision Optical Manufacturing (Pom) Production of smart dies and molds using direct metal deposition
US20020110649A1 (en) * 2000-05-09 2002-08-15 Skszek Timothy W. Fabrication of alloy variant structures using direct metal deposition
US6122564A (en) * 1998-06-30 2000-09-19 Koch; Justin Apparatus and methods for monitoring and controlling multi-layer laser cladding
US6925346B1 (en) 1998-06-30 2005-08-02 Jyoti Mazumder Closed-loop, rapid manufacturing of three-dimensional components using direct metal deposition
US6472029B1 (en) * 1998-06-30 2002-10-29 The P.O.M. Group Fabrication of laminate structures using direct metal deposition
US6459951B1 (en) 1999-09-10 2002-10-01 Sandia Corporation Direct laser additive fabrication system with image feedback control
US6534745B1 (en) 1999-09-27 2003-03-18 Mathew T. J. Lowney Nozzle particularly suited to direct metal deposition
DE60035706T2 (de) * 1999-11-04 2008-04-30 Aeromet Corp., Eden Prairie Steuersystem zum deponieren von pulver in ein schmelzbad
US6518541B1 (en) * 1999-11-16 2003-02-11 Joseph K. Kelly Duty cycle stabilization in direct metal deposition (DMD) systems
US6676892B2 (en) 2000-06-01 2004-01-13 Board Of Regents, University Texas System Direct selective laser sintering of metals
US20020082741A1 (en) * 2000-07-27 2002-06-27 Jyoti Mazumder Fabrication of biomedical implants using direct metal deposition
US6751516B1 (en) * 2000-08-10 2004-06-15 Richardson Technologies, Inc. Method and system for direct writing, editing and transmitting a three dimensional part and imaging systems therefor
US6423926B1 (en) 2000-11-16 2002-07-23 Joseph K. Kelly Direct-metal-deposition (DMD) nozzle fault detection using temperature measurements
US6793140B2 (en) * 2001-01-10 2004-09-21 The P.O.M. Group Machine-readable code generation using direct metal deposition
EP1234625A1 (de) * 2001-02-21 2002-08-28 Trumpf Werkzeugmaschinen GmbH + Co. KG Verfahren und Vorrichtung zur Herstellung eines Formkörpers durch selektives Laserschmelzen
US6710280B2 (en) * 2001-05-22 2004-03-23 The P.O.M. Group Focusing optics for adaptive deposition in rapid manufacturing
KR100419369B1 (ko) * 2001-11-16 2004-02-19 주식회사 인스텍 레이저 클래딩과 직접 금속 조형기술에서 이미지 촬영과이미지 프로세싱을 이용한 클래딩 층 높이의 실시간모니터링 및 제어 방법 및 그 시스템
WO2003042895A1 (en) * 2001-11-17 2003-05-22 Insstek Inc. Method and system for real-time monitoring and controlling height of deposit by using image photographing and image processing technology in laser cladding and laser-aided direct metal manufacturing process
CN101694582B (zh) * 2001-11-17 2012-04-18 株式会社Insstek 实时监测和控制淀积高度的方法和系统
EP1340583A1 (en) 2002-02-20 2003-09-03 ALSTOM (Switzerland) Ltd Method of controlled remelting of or laser metal forming on the surface of an article
US6894247B2 (en) * 2002-07-26 2005-05-17 Honeywell International, Inc. Powder feed splitter for hand-held laser powder fusion welding torch
US20040020625A1 (en) * 2002-07-29 2004-02-05 Jyoti Mazumder Fabrication of customized die inserts using closed-loop direct metal deposition (DMD)
KR101056487B1 (ko) * 2002-08-28 2011-08-11 더 피.오.엠. 그룹 다층 디엠디 프로세스용 부품 기하학적 독립 실시간 폐쇄루프 용접 풀 온도 제어 시스템
US7139633B2 (en) * 2002-08-29 2006-11-21 Jyoti Mazumder Method of fabricating composite tooling using closed-loop direct-metal deposition
EP1396556A1 (en) * 2002-09-06 2004-03-10 ALSTOM (Switzerland) Ltd Method for controlling the microstructure of a laser metal formed hard layer
US7020539B1 (en) 2002-10-01 2006-03-28 Southern Methodist University System and method for fabricating or repairing a part
US7045738B1 (en) 2002-10-01 2006-05-16 Southern Methodist University Powder delivery system and method
CA2504368C (en) * 2002-10-31 2012-07-10 Ehsan Toyserkani System and method for closed-loop control of laser cladding by powder injection
US6745609B2 (en) 2002-11-06 2004-06-08 Daimlerchrysler Corporation Sheet metal forming die assembly with textured die surfaces
SE524439C2 (sv) * 2002-12-19 2004-08-10 Arcam Ab Anordning samt metod för framställande av en tredimensionell produkt
US7431881B2 (en) * 2003-02-21 2008-10-07 The P.O.M. Group Wear-resistant alloys particularly suited to aluminum-engine head-valve seats
US20050023256A1 (en) * 2003-07-31 2005-02-03 Srikanth Sankaranarayanan 3-D adaptive laser powder fusion welding
US6940037B1 (en) 2003-08-25 2005-09-06 Southern Methodist University System and method for controlling welding parameters in welding-based deposition processes
US6995334B1 (en) * 2003-08-25 2006-02-07 Southern Methodist University System and method for controlling the size of the molten pool in laser-based additive manufacturing
US20050056628A1 (en) * 2003-09-16 2005-03-17 Yiping Hu Coaxial nozzle design for laser cladding/welding process
JP2005118851A (ja) * 2003-10-20 2005-05-12 Toyota Motor Corp 金属部材上の金属製突起およびその形成方法
CN100413615C (zh) * 2003-11-06 2008-08-27 金属达因有限责任公司 用于冷却压射塞料的方法和装置
US7666522B2 (en) * 2003-12-03 2010-02-23 IMDS, Inc. Laser based metal deposition (LBMD) of implant structures
US7001672B2 (en) * 2003-12-03 2006-02-21 Medicine Lodge, Inc. Laser based metal deposition of implant structures
US20050212694A1 (en) * 2004-03-26 2005-09-29 Chun-Ta Chen Data distribution method and system
DE102004018699A1 (de) * 2004-04-17 2005-11-03 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zum Laserschweißen von Bauteilen aus Superlegierungen
DE202004021955U1 (de) 2004-08-27 2013-07-16 Credit Card Supplies Prägeblech mit dreidimensionaler Struktur zur Herstellung von Dokumenten mittels Heiß-Kalt-Laminierpresse
DE102004041434B4 (de) 2004-08-27 2013-10-10 Credit Card Supplies Verfahren zur Herstellung eines Prägeblechs für eine Heiß-Kalt-Laminierpresse mit dreidimensionalen Strukturen
GB2418208B (en) * 2004-09-18 2007-06-06 Rolls Royce Plc Component coating
CA2558898C (en) 2005-09-07 2013-11-05 Purdue Research Foundation Laser assisted machining process with distributed lasers
FR2893360A1 (fr) * 2005-11-15 2007-05-18 Snecma Sa Procede de realisation d'une lechette de labyrinthe d'etancheite, piece thermomecanique et turbomachine comprenant une telle lechette
US8629368B2 (en) * 2006-01-30 2014-01-14 Dm3D Technology, Llc High-speed, ultra precision manufacturing station that combines direct metal deposition and EDM
US20070224235A1 (en) 2006-03-24 2007-09-27 Barron Tenney Medical devices having nanoporous coatings for controlled therapeutic agent delivery
US8187620B2 (en) 2006-03-27 2012-05-29 Boston Scientific Scimed, Inc. Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents
US8183498B2 (en) * 2006-05-01 2012-05-22 Tcz, Llc Systems and method for optimization of laser beam spatial intensity profile
US7951412B2 (en) 2006-06-07 2011-05-31 Medicinelodge Inc. Laser based metal deposition (LBMD) of antimicrobials to implant surfaces
US8815275B2 (en) 2006-06-28 2014-08-26 Boston Scientific Scimed, Inc. Coatings for medical devices comprising a therapeutic agent and a metallic material
US8771343B2 (en) 2006-06-29 2014-07-08 Boston Scientific Scimed, Inc. Medical devices with selective titanium oxide coatings
JP2010503469A (ja) 2006-09-14 2010-02-04 ボストン サイエンティフィック リミテッド 薬物溶出性皮膜を有する医療デバイス
US8604381B1 (en) 2006-10-12 2013-12-10 Purdue Research Foundation Integrated laser material processing cell
GB0620359D0 (en) * 2006-10-13 2006-11-22 Symmetry Medical Inc Medical devices
US7981150B2 (en) 2006-11-09 2011-07-19 Boston Scientific Scimed, Inc. Endoprosthesis with coatings
US20080223832A1 (en) * 2006-11-16 2008-09-18 Lijun Song Real time implementation of generalized predictive control algorithm for the control of direct metal deposition (dmd) process
US7810552B2 (en) * 2006-12-20 2010-10-12 The Boeing Company Method of making a heat exchanger
US7866372B2 (en) * 2006-12-20 2011-01-11 The Boeing Company Method of making a heat exchanger core component
US7866377B2 (en) * 2006-12-20 2011-01-11 The Boeing Company Method of using minimal surfaces and minimal skeletons to make heat exchanger components
US8691329B2 (en) * 2007-01-31 2014-04-08 General Electric Company Laser net shape manufacturing using an adaptive toolpath deposition method
US7760331B2 (en) * 2007-02-20 2010-07-20 Electro Scientific Industries, Inc. Decoupled, multiple stage positioning system
US8431149B2 (en) 2007-03-01 2013-04-30 Boston Scientific Scimed, Inc. Coated medical devices for abluminal drug delivery
US8070797B2 (en) 2007-03-01 2011-12-06 Boston Scientific Scimed, Inc. Medical device with a porous surface for delivery of a therapeutic agent
US8067054B2 (en) 2007-04-05 2011-11-29 Boston Scientific Scimed, Inc. Stents with ceramic drug reservoir layer and methods of making and using the same
US20080288318A1 (en) * 2007-04-17 2008-11-20 Smart Tram Corp. Smart tram system and method for using
US7976915B2 (en) 2007-05-23 2011-07-12 Boston Scientific Scimed, Inc. Endoprosthesis with select ceramic morphology
US9044827B2 (en) * 2007-05-31 2015-06-02 Dm3D Technology, Llc Real-time implementation of generalized predictive algorithm for direct metal deposition (DMD) process control
WO2008154045A1 (en) * 2007-06-12 2008-12-18 Rolls-Royce Corporation System, methods, and apparatus for repair of components
US20080314878A1 (en) * 2007-06-22 2008-12-25 General Electric Company Apparatus and method for controlling a machining system
US8076607B2 (en) * 2007-06-27 2011-12-13 Ross Technology Corporation Method and apparatus for depositing raised features at select locations on a substrate to produce a slip-resistant surface
US8002823B2 (en) 2007-07-11 2011-08-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7942926B2 (en) 2007-07-11 2011-05-17 Boston Scientific Scimed, Inc. Endoprosthesis coating
JP2010533563A (ja) 2007-07-19 2010-10-28 ボストン サイエンティフィック リミテッド 吸着抑制表面を有する内部人工器官
US7931683B2 (en) 2007-07-27 2011-04-26 Boston Scientific Scimed, Inc. Articles having ceramic coated surfaces
US8815273B2 (en) 2007-07-27 2014-08-26 Boston Scientific Scimed, Inc. Drug eluting medical devices having porous layers
WO2009018340A2 (en) 2007-07-31 2009-02-05 Boston Scientific Scimed, Inc. Medical device coating by laser cladding
WO2009020520A1 (en) 2007-08-03 2009-02-12 Boston Scientific Scimed, Inc. Coating for medical device having increased surface area
WO2009077870A2 (en) 2007-10-10 2009-06-25 Ronald Peter Whitfield Laser cladding device with an improved nozzle
US9352420B2 (en) 2007-10-10 2016-05-31 Ronald Peter Whitfield Laser cladding device with an improved zozzle
US8800480B2 (en) 2007-10-10 2014-08-12 Ronald Peter Whitfield Laser cladding device with an improved nozzle
US8029554B2 (en) 2007-11-02 2011-10-04 Boston Scientific Scimed, Inc. Stent with embedded material
US7938855B2 (en) 2007-11-02 2011-05-10 Boston Scientific Scimed, Inc. Deformable underlayer for stent
US8216632B2 (en) 2007-11-02 2012-07-10 Boston Scientific Scimed, Inc. Endoprosthesis coating
WO2009131911A2 (en) 2008-04-22 2009-10-29 Boston Scientific Scimed, Inc. Medical devices having a coating of inorganic material
WO2009132176A2 (en) 2008-04-24 2009-10-29 Boston Scientific Scimed, Inc. Medical devices having inorganic particle layers
US8449603B2 (en) 2008-06-18 2013-05-28 Boston Scientific Scimed, Inc. Endoprosthesis coating
GB0816308D0 (en) 2008-09-05 2008-10-15 Mtt Technologies Ltd Optical module
US8231980B2 (en) 2008-12-03 2012-07-31 Boston Scientific Scimed, Inc. Medical implants including iridium oxide
US8071156B2 (en) 2009-03-04 2011-12-06 Boston Scientific Scimed, Inc. Endoprostheses
US8583271B2 (en) * 2009-03-16 2013-11-12 The Boeing Company Controlling cutting of continuously fabricated composite parts with nondestructive evaluation
US8287937B2 (en) 2009-04-24 2012-10-16 Boston Scientific Scimed, Inc. Endoprosthese
US9330406B2 (en) * 2009-05-19 2016-05-03 Cobra Golf Incorporated Method and system for sales of golf equipment
KR101097173B1 (ko) * 2009-09-04 2011-12-22 신한다이아몬드공업 주식회사 절삭/연마 공구 및 그 제조방법
WO2011034985A1 (en) 2009-09-17 2011-03-24 Sciaky, Inc. Electron beam layer manufacturing
DE102009051551A1 (de) * 2009-10-31 2011-05-05 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zur Herstellung eines Bauteils einer Strömungsmaschine
DE102009051823A1 (de) * 2009-11-04 2011-05-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Einkristallines Schweißen von direktional verfestigten Werkstoffen
EP2322314A1 (de) * 2009-11-16 2011-05-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Einkristallines Schweissen von direktional verfestigten Werkstoffen
US8728388B2 (en) * 2009-12-04 2014-05-20 Honeywell International Inc. Method of fabricating turbine components for engines
US10119195B2 (en) 2009-12-04 2018-11-06 The Regents Of The University Of Michigan Multichannel cold spray apparatus
CA2782698C (en) * 2009-12-04 2018-02-13 The Regents Of The University Of Michigan Coaxial laser assisted cold spray nozzle
CN101893426B (zh) * 2010-07-02 2011-11-16 西安交通大学 一种在线检测及控制激光金属成形高度的方法
DE202010010771U1 (de) 2010-07-28 2011-11-14 Cl Schutzrechtsverwaltungs Gmbh Laserschmelzvorrichtung zum Herstellen eines dreidimensionalen Bauteils
RU2478028C2 (ru) * 2010-11-18 2013-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Иркутский государственный университет путей сообщения (ФГБОУ ВПО ИрГУПС) Способ наплавки коррозионно-эрозионного порошка присадочного материала на стальную поверхность детали
GB201019601D0 (en) * 2010-11-19 2010-12-29 Pilkington Group Ltd Glazing with frequency selective coating
JP2012114157A (ja) * 2010-11-22 2012-06-14 Toshiba Corp ドロップレシピ作成方法およびデータベース作成方法
DE102011009624A1 (de) 2011-01-28 2012-08-02 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zur Prozessüberwachung
CN102133698B (zh) * 2011-02-17 2012-12-12 中国航空工业集团公司西安飞机设计研究所 一种飞机金属整体结构制造方法
WO2013018114A1 (en) * 2011-08-03 2013-02-07 D.G. Weld S.R.L. Regeneration system for a forge die
US9095994B2 (en) 2011-08-09 2015-08-04 GM Global Technology Operations LLC Method for applying variable magnetic properties to a induction heated tool face and manufacturing parts using the tool
KR20210062724A (ko) * 2011-10-21 2021-05-31 아메리칸 레이저 엔터프라이지즈, 엘엘씨 구성요소에서 코팅을 제거하는 방법 및 시스템
US10201877B2 (en) 2011-10-26 2019-02-12 Titanova Inc Puddle forming and shaping with primary and secondary lasers
US9539681B2 (en) 2011-11-30 2017-01-10 Board Of Trustees Of Northern Illinois University Laser assisted machining system for ceramics and hard materials
KR101652782B1 (ko) 2012-02-03 2016-08-31 에이에스엠엘 네델란즈 비.브이. 기판 홀더 및 리소그래피 장치
EP2838691B1 (en) * 2012-04-16 2024-05-22 Magna International Inc. Process for laser-assisted tool build and repair
KR102061776B1 (ko) * 2012-09-05 2020-01-02 후아웨이 테크놀러지 컴퍼니 리미티드 객체 위치를 변경하기 위한 방법 및 그 전자 장치
US9289854B2 (en) * 2012-09-12 2016-03-22 Siemens Energy, Inc. Automated superalloy laser cladding with 3D imaging weld path control
AU2013343276B2 (en) 2012-11-09 2017-11-02 Bae Systems Plc Additive layer manufacturing
EP2730354A1 (en) * 2012-11-09 2014-05-14 BAE Systems PLC Additive layer manufacturing
EP2737965A1 (en) * 2012-12-01 2014-06-04 Alstom Technology Ltd Method for manufacturing a metallic component by additive laser manufacturing
US10315275B2 (en) * 2013-01-24 2019-06-11 Wisconsin Alumni Research Foundation Reducing surface asperities
TW201429591A (zh) * 2013-01-25 2014-08-01 Hon Hai Prec Ind Co Ltd 雷射加工裝置
WO2014143310A1 (en) 2013-03-15 2014-09-18 Rolls-Royce Corporation Repair of gas turbine engine components
US9474327B2 (en) 2013-08-19 2016-10-25 Nike, Inc. Sole structure masters, sole structure molds and sole structures having indicia and/or texture
FR3010334B1 (fr) * 2013-09-09 2015-09-25 Michelin & Cie Dispositif de depot de lit de poudre sur une surface muni d'une sonde a reponse electromagnetique, et procede correspondant
GB201316815D0 (en) * 2013-09-23 2013-11-06 Renishaw Plc Additive manufacturing apparatus and method
EP2868388A1 (en) * 2013-10-29 2015-05-06 Alstom Technology Ltd Device for HVOF spraying process
US10124531B2 (en) 2013-12-30 2018-11-13 Ut-Battelle, Llc Rapid non-contact energy transfer for additive manufacturing driven high intensity electromagnetic fields
JP5931947B2 (ja) 2014-03-18 2016-06-08 株式会社東芝 ノズルおよび積層造形装置
JP6359316B2 (ja) 2014-03-31 2018-07-18 三菱重工業株式会社 三次元積層装置及び三次元積層方法
US9650537B2 (en) 2014-04-14 2017-05-16 Ut-Battelle, Llc Reactive polymer fused deposition manufacturing
US9586289B2 (en) 2014-04-30 2017-03-07 Alabama Specialty Products, Inc. Cladding apparatus and method
US10336007B2 (en) 2014-05-09 2019-07-02 United Technologies Corporation Sensor fusion for powder bed manufacturing process control
DE102014208768B4 (de) * 2014-05-09 2019-07-11 MTU Aero Engines AG Verfahren und Vorrichtung zur Qualitätssicherung
DE102014212246B3 (de) * 2014-06-26 2015-08-06 MTU Aero Engines AG Verfahren und Vorrichtung zur Qualitätssicherung
CN106660174B (zh) * 2014-07-03 2019-06-04 自动工程公司 加强结构部件
US9981341B2 (en) 2014-08-25 2018-05-29 Jyoti Mazumder Smart additive manufacturing system (SAMS)
US9573224B2 (en) 2014-09-02 2017-02-21 Product Innovation & Engineering, LLC System and method for determining beam power level along an additive deposition path
US9757902B2 (en) 2014-09-02 2017-09-12 Product Innovation and Engineering L.L.C. Additive layering method using improved build description
US9873180B2 (en) 2014-10-17 2018-01-23 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US10875153B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Advanced polishing pad materials and formulations
SG11201703114QA (en) 2014-10-17 2017-06-29 Applied Materials Inc Cmp pad construction with composite material properties using additive manufacturing processes
US20160108516A1 (en) * 2014-10-17 2016-04-21 Dm3D Technology, Llc Method of applying metallic layer on substrate and composite article formed thereby
US10875145B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US11745302B2 (en) 2014-10-17 2023-09-05 Applied Materials, Inc. Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process
US10399201B2 (en) 2014-10-17 2019-09-03 Applied Materials, Inc. Advanced polishing pads having compositional gradients by use of an additive manufacturing process
US10821573B2 (en) 2014-10-17 2020-11-03 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
EP3209811B1 (en) * 2014-10-24 2022-08-10 Laserbond Limited Method and apparatus for cladding a surface of an article
CN115351414A (zh) 2014-11-14 2022-11-18 株式会社尼康 造形装置
CN117429052A (zh) 2014-11-14 2024-01-23 株式会社 尼康 造型装置及造型方法
JP6935355B2 (ja) * 2014-11-14 2021-09-15 株式会社ニコン 造形装置及び造形方法
RU2599920C2 (ru) * 2014-11-20 2016-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых" Устройство управления технологическим процессом лазерного термоупрочнения
GB201420717D0 (en) 2014-11-21 2015-01-07 Renishaw Plc Additive manufacturing apparatus and methods
US10632566B2 (en) * 2014-12-02 2020-04-28 Product Innovation and Engineering L.L.C. System and method for controlling the input energy from an energy point source during metal processing
WO2016139775A1 (ja) * 2015-03-04 2016-09-09 技術研究組合次世代3D積層造形技術総合開発機構 加工ノズル、加工ヘッド、加工装置、その制御方法および制御プログラム
EP3095592A4 (en) * 2015-03-20 2017-11-01 Technology Research Association For Future Additive Manufacturing Working nozzle, working head, working device, method for controlling working nozzle, and control program
CN108136541A (zh) * 2015-08-14 2018-06-08 Dm3D技术有限责任公司 具有用于直接金属沉积的激光扫描头的喷嘴
US10443115B2 (en) 2015-08-20 2019-10-15 General Electric Company Apparatus and method for direct writing of single crystal super alloys and metals
EP3135459A1 (en) * 2015-08-31 2017-03-01 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Method and apparatus for layerwise production of a tangible object
RU2627527C2 (ru) * 2015-09-25 2017-08-08 Анатолий Евгеньевич Волков Способ и устройство аддитивного изготовления деталей методом прямого осаждения материала, управляемого в электромагнитном поле
RU2615428C1 (ru) * 2015-10-29 2017-04-04 Федеральное Государственное Унитарное Предприятие "Научно-Производственное Объединение "Техномаш" Установка для лазерно-дуговой сварки деталей
KR102609439B1 (ko) 2015-10-30 2023-12-05 어플라이드 머티어리얼스, 인코포레이티드 원하는 제타 전위를 가진 연마 제품을 형성하는 장치 및 방법
US10593574B2 (en) 2015-11-06 2020-03-17 Applied Materials, Inc. Techniques for combining CMP process tracking data with 3D printed CMP consumables
WO2017081766A1 (ja) * 2015-11-11 2017-05-18 技術研究組合次世代3D積層造形技術総合開発機構 加工用ノズルおよび光加工装置
JP2019504182A (ja) 2015-11-16 2019-02-14 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company アディティブ製造装置のためのモジュールおよび方法
JP6369454B2 (ja) * 2015-12-24 2018-08-08 トヨタ自動車株式会社 レーザー溶接装置
US10035219B2 (en) 2016-01-13 2018-07-31 Product Innovation and Engineering L.L.C. Electrostatic powder feeder
US10391605B2 (en) 2016-01-19 2019-08-27 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
EP3208075B1 (en) * 2016-02-17 2018-06-13 Hochschule für angewandte Wissenschaften Aschaffenburg Optical method and apparatus for fabricating a structured object
SG10201700339YA (en) 2016-02-29 2017-09-28 Rolls Royce Corp Directed energy deposition for processing gas turbine engine components
EP3243636A4 (en) 2016-03-25 2018-05-02 Technology Research Association for Future Additive Manufacturing Three-dimensional laminate moulding device, control method for three-dimensional laminate moulding device, and control program for three-dimensional laminate moulding device
US11440130B2 (en) * 2016-04-15 2022-09-13 United States Of America As Represented By The Administrator Of Nasa Process control of electron beam wire additive manufacturing
US10722946B2 (en) 2016-04-25 2020-07-28 Thomas Strangman Methods of fabricating turbine engine components
JP6390672B2 (ja) * 2016-08-02 2018-09-19 トヨタ自動車株式会社 平角線のレーザ溶接方法
CN106216678B (zh) * 2016-09-29 2018-06-29 苏州大学 激光成形均匀变高零件的方法
KR102476246B1 (ko) * 2017-01-18 2022-12-08 아이피지 포토닉스 코포레이션 재료의 수정을 위한 가간섭적 촬영 및 피드백 제어를 위한 방법 및 시스템
US10226780B2 (en) 2017-02-24 2019-03-12 Powder Motion Labs, LLC Electrostatic powder feeder with vibratory assist
US11465205B2 (en) 2017-04-10 2022-10-11 Hewlett-Packard Development Company, L.P. Reducing stresses in metal layers
US10596763B2 (en) 2017-04-21 2020-03-24 Applied Materials, Inc. Additive manufacturing with array of energy sources
RU2638850C1 (ru) * 2017-05-10 2017-12-18 Андрей Игоревич Горунов Способ выращивания монокристалла и устройство для его осуществления
WO2018217646A1 (en) 2017-05-22 2018-11-29 Howmedica Osteonics Corp. Device for in-situ fabrication process monitoring and feedback control of an electron beam additive manufacturing process
US10234848B2 (en) 2017-05-24 2019-03-19 Relativity Space, Inc. Real-time adaptive control of additive manufacturing processes using machine learning
RU2657971C1 (ru) * 2017-06-05 2018-06-18 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ изготовления металлического изделия из порошкового материала методом послойного лазерного синтеза с применением деформационной обработки
JP7093797B2 (ja) * 2017-06-06 2022-06-30 ディーエムジー モリ アドバンスト ソリューションズ,インコーポレーテッド 付加製造時の凝固速度制御のためのシステム及び方法
US10471542B1 (en) * 2017-06-27 2019-11-12 United States Of America As Represented By The Administrator Of Nasa Cladding and freeform deposition for coolant channel closeout
US11471999B2 (en) 2017-07-26 2022-10-18 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
US11072050B2 (en) 2017-08-04 2021-07-27 Applied Materials, Inc. Polishing pad with window and manufacturing methods thereof
WO2019032286A1 (en) 2017-08-07 2019-02-14 Applied Materials, Inc. ABRASIVE DISTRIBUTION POLISHING PADS AND METHODS OF MAKING SAME
US10343031B1 (en) 2017-10-18 2019-07-09 Cobra Golf Incorporated Golf club head with openwork rib
JP6487009B2 (ja) * 2017-10-19 2019-03-20 技術研究組合次世代3D積層造形技術総合開発機構 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム
US11511166B1 (en) 2017-11-15 2022-11-29 Cobra Golf Incorporated Structured face for golf club head
US10800615B2 (en) 2018-03-16 2020-10-13 Power Motion Labs, LLC Electrostatic conveyor-wheel powder feeder
JP6886422B2 (ja) * 2018-03-30 2021-06-16 株式会社ニコン 造形装置及び造形方法
RU185518U1 (ru) * 2018-05-19 2018-12-07 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Устройство контроля и адаптивного управления при прямом лазерном выращивании
AU2019206103A1 (en) 2018-07-19 2020-02-06 Howmedica Osteonics Corp. System and process for in-process electron beam profile and location analyses
EP3626385B1 (en) * 2018-07-30 2020-11-25 Mitsubishi Electric Corporation Layering condition control device
US11311943B2 (en) 2018-08-27 2022-04-26 The Penn State Research Foundation Multi-spectral method for detection of anomalies during powder bed fusion additive manufacturing
JP7299970B2 (ja) 2018-09-04 2023-06-28 アプライド マテリアルズ インコーポレイテッド 改良型研磨パッドのための配合物
DE102018130798A1 (de) * 2018-12-04 2020-06-04 Trumpf Laser- Und Systemtechnik Gmbh Geregeltes Pulverauftragsschweißverfahren
US10994379B2 (en) * 2019-01-04 2021-05-04 George H. Lambert Laser deposition process for a self sharpening knife cutting edge
JP7061093B2 (ja) * 2019-03-28 2022-04-27 株式会社ニコン 造形装置及び造形方法
US11219951B2 (en) * 2019-07-03 2022-01-11 Directed Metal 3D, S.L. Multi-mode laser device for metal manufacturing applications
US11813712B2 (en) 2019-12-20 2023-11-14 Applied Materials, Inc. Polishing pads having selectively arranged porosity
RU200649U1 (ru) * 2019-12-27 2020-11-03 Общество с ограниченной ответственностью «Термолазер» Устройство для лазерной наплавки
RU200648U1 (ru) * 2019-12-27 2020-11-03 Общество с ограниченной ответственностью «Термолазер» Оптическая головка для лазерной наплавки
RU2736126C1 (ru) * 2020-02-10 2020-11-11 Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН) Способ трехстадийной лазерной наплавки
US11407172B2 (en) 2020-03-18 2022-08-09 Powder Motion Labs, LLC Recoater using alternating current to planarize top surface of powder bed
US11612940B2 (en) 2020-03-18 2023-03-28 Powder Motion Labs, LLC Powder bed recoater
CN111364039B (zh) * 2020-03-26 2022-02-22 陕西天元智能再制造股份有限公司 一种激光熔覆自调节装置和自调节方法
CN111593341B (zh) * 2020-05-22 2022-06-14 江苏大学 一种重型燃气轮机叶片高性能热障涂层及其多工艺组合制备方法
US11806829B2 (en) 2020-06-19 2023-11-07 Applied Materials, Inc. Advanced polishing pads and related polishing pad manufacturing methods
US11980938B2 (en) 2020-11-24 2024-05-14 Rolls-Royce Corporation Bladed disk repair process with shield
US11629412B2 (en) 2020-12-16 2023-04-18 Rolls-Royce Corporation Cold spray deposited masking layer
CN112756632A (zh) * 2020-12-21 2021-05-07 江苏威拉里新材料科技有限公司 一种3d打印金属粉用保存装置
US11839915B2 (en) 2021-01-20 2023-12-12 Product Innovation and Engineering LLC System and method for determining beam power level along an additive deposition path
US11878389B2 (en) 2021-02-10 2024-01-23 Applied Materials, Inc. Structures formed using an additive manufacturing process for regenerating surface texture in situ
CN113151819A (zh) * 2021-02-23 2021-07-23 徐玲萍 一种激光熔覆再制造用高效率冷却装置
CN115121937A (zh) * 2022-08-22 2022-09-30 苏州创鑫激光科技有限公司 激光加工系统
DE102022125429A1 (de) 2022-09-30 2024-04-04 Dmg Mori Ultrasonic Lasertec Gmbh Verfahren zur additiven fertigung eines bauteils mit einem kern aus reinem kupfer oder einer kupferlegierung

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044774A (en) * 1976-02-23 1977-08-30 Medtronic, Inc. Percutaneously inserted spinal cord stimulation lead
US4323756A (en) * 1979-10-29 1982-04-06 United Technologies Corporation Method for fabricating articles by sequential layer deposition
US4411258A (en) * 1980-03-10 1983-10-25 Pujals Jr Charles Method and device for relieving pain
US4626999A (en) * 1984-04-18 1986-12-02 Cincinnati Milacron Inc. Apparatus for controlled manipulation of laser focus point
DE3430114C2 (de) * 1984-08-16 1986-12-18 J.M. Voith Gmbh, 7920 Heidenheim Vorrichtung zum Aufbauen eines Werkstücks durch Auftragschweißen
US4633889A (en) * 1984-12-12 1987-01-06 Andrew Talalla Stimulation of cauda-equina spinal nerves
US4724299A (en) * 1987-04-15 1988-02-09 Quantum Laser Corporation Laser spray nozzle and method
US4803986A (en) * 1987-04-24 1989-02-14 Minnesota Mining And Manufacturing Company Ergonometric transcutaneous electrical nerve stimulator
US4915757A (en) * 1988-05-05 1990-04-10 Spectra-Physics, Inc. Creation of three dimensional objects
US5041974A (en) * 1988-10-26 1991-08-20 Walker Judith B Multichannel stimulator for tuned stimulation
US5031618A (en) * 1990-03-07 1991-07-16 Medtronic, Inc. Position-responsive neuro stimulator
JP2597778B2 (ja) * 1991-01-03 1997-04-09 ストラタシイス,インコーポレイテッド 三次元対象物組み立てシステム及び組み立て方法
ES2120414T3 (es) * 1991-01-21 1998-11-01 Sulzer Hydro Ag Metodo de fabricacion de piezas metalicas por un aparato de soldadura, y aparato para su realizacion.
US5241419A (en) * 1992-01-27 1993-08-31 General Electric Company Co-axial viewing device for lasers
US5474558A (en) * 1992-04-30 1995-12-12 Neubardt; Seth L. Procedure and system for spinal pedicle screw insertion
US5196015A (en) * 1992-04-30 1993-03-23 Neubardt Seth L Procedure for spinal pedicle screw insertion
US5423877A (en) * 1992-05-04 1995-06-13 David C. Mackey Method and device for acute pain management by simultaneous spinal cord electrical stimulation and drug infusion
US5453329A (en) * 1992-06-08 1995-09-26 Quantum Laser Corporation Method for laser cladding thermally insulated abrasive particles to a substrate, and clad substrate formed thereby
US5358513A (en) * 1992-12-09 1994-10-25 Medtronic, Inc. Parameter selection and electrode placement of neuromuscular electrical stimulation apparatus
JPH06226478A (ja) * 1993-02-08 1994-08-16 Fuji Electric Co Ltd レーザ加工装置
JP3175994B2 (ja) * 1993-04-15 2001-06-11 松下電工株式会社 レーザ照射方法及びレーザ照射装置、並びに立体回路の形成方法、表面処理方法、粉末付着方法
JP3052694B2 (ja) * 1993-10-08 2000-06-19 日産自動車株式会社 肉盛り加工方法および肉盛り加工装置
JPH07108390A (ja) * 1993-10-13 1995-04-25 Nissan Motor Co Ltd 肉盛り加工方法および肉盛り加工装置
GB9321866D0 (en) * 1993-10-22 1993-12-15 Kinsman Grant Fuzzy logic control of laser welding
US5501703A (en) * 1994-01-24 1996-03-26 Medtronic, Inc. Multichannel apparatus for epidural spinal cord stimulator
US5477026A (en) * 1994-01-27 1995-12-19 Chromalloy Gas Turbine Corporation Laser/powdered metal cladding nozzle
JP2683874B2 (ja) * 1994-07-29 1997-12-03 長崎県 レーザ溶接の溶接状態検出方法と装置
JPH08162704A (ja) * 1994-12-01 1996-06-21 Amada Co Ltd レーザ加工機用電源の出力の制御方法
US5612887A (en) * 1995-02-09 1997-03-18 The United States Of America As Represented By The Secretary Of The Air Force Automation of pulsed laser deposition
JPH08215869A (ja) * 1995-02-20 1996-08-27 Kawasaki Steel Corp レーザ溶接方法およびその装置
US5642287A (en) * 1995-03-02 1997-06-24 Sotiropoulos; Nicholas Sculpturing device for laser beams
US5847960A (en) * 1995-03-20 1998-12-08 Electro Scientific Industries, Inc. Multi-tool positioning system
JPH09141467A (ja) * 1995-11-16 1997-06-03 Nissan Motor Co Ltd レーザ肉盛り装置
JPH09141470A (ja) * 1995-11-20 1997-06-03 Toshiba Corp 電子管用金属部材のレーザ溶接方法
JPH09243334A (ja) * 1996-03-11 1997-09-19 Nissan Motor Co Ltd 肉盛り加工部の品質検査装置
JP2730546B2 (ja) * 1996-06-11 1998-03-25 日本電気株式会社 外部シャッタユニット
JPH1029081A (ja) * 1996-07-12 1998-02-03 Amada Co Ltd レーザビーム加工機械の自動プログラミング装置
JPH1085967A (ja) * 1996-09-20 1998-04-07 Matsushita Electric Ind Co Ltd レーザ誘起プラズマ検出方法とそれを用いるレーザ制御方法およびレーザ加工機
US6122564A (en) * 1998-06-30 2000-09-19 Koch; Justin Apparatus and methods for monitoring and controlling multi-layer laser cladding

Also Published As

Publication number Publication date
US6122564A (en) 2000-09-19
JP2011167768A (ja) 2011-09-01
WO2000000921A1 (en) 2000-01-06
CN1315022A (zh) 2001-09-26
RU2228243C2 (ru) 2004-05-10
JP2002519200A (ja) 2002-07-02
AU754346B2 (en) 2002-11-14
EP1099184A1 (en) 2001-05-16
KR100606476B1 (ko) 2006-08-01
NO20006700L (no) 2001-02-27
CA2336583A1 (en) 2000-01-06
ES2459601T3 (es) 2014-05-09
EP1099184B1 (en) 2014-01-22
WO2000000921A9 (en) 2000-05-25
KR20010078755A (ko) 2001-08-21
BR9912231A (pt) 2002-01-29
AU4704999A (en) 2000-01-17
NO20006700D0 (no) 2000-12-29
CN1205582C (zh) 2005-06-08
CA2336583C (en) 2008-05-06
EP1099184A4 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
BRPI9912231B1 (pt) “Sistema para automaticamente controlar deposição em camadas de um material sobre um substrato e método de fabricação de um artigo"
US7020539B1 (en) System and method for fabricating or repairing a part
US6995334B1 (en) System and method for controlling the size of the molten pool in laser-based additive manufacturing
US7045738B1 (en) Powder delivery system and method
Hu et al. Sensing, modeling and control for laser-based additive manufacturing
US9044827B2 (en) Real-time implementation of generalized predictive algorithm for direct metal deposition (DMD) process control
US8629368B2 (en) High-speed, ultra precision manufacturing station that combines direct metal deposition and EDM
JP4556160B2 (ja) レーザークラッディングとレーザー金属加工技術において、映像撮影とイメージプロセッシングを用いて、クラッディング層高さをリアルタイムでモニタし、かつ制御する方法及びそのシステム
US6940037B1 (en) System and method for controlling welding parameters in welding-based deposition processes
KR100796465B1 (ko) 3차원 물체를 제조하기 위한 장치 및 방법
CA2504368C (en) System and method for closed-loop control of laser cladding by powder injection
US6410105B1 (en) Production of overhang, undercut, and cavity structures using direct metal depostion
EP3210713A1 (en) Laser power monitoring in additive manufacturing
Hu et al. Improving solid freeform fabrication by laser-based additive manufacturing
CN111168998B (zh) 用于检测多激光增材制造处理中的错误的熔池监测系统和方法
EP3694663A1 (en) Electron beam additive manufacturing system and control components
KR100419369B1 (ko) 레이저 클래딩과 직접 금속 조형기술에서 이미지 촬영과이미지 프로세싱을 이용한 클래딩 층 높이의 실시간모니터링 및 제어 방법 및 그 시스템
Boddu et al. Control of laser cladding for rapid prototyping--A review
US20220274202A1 (en) Additive manufacturing machine
US11571750B2 (en) Lamination molding apparatus and method for producing three-dimensional molded object
WO2021014779A1 (ja) Am装置
Heralic Towards full automation of robotized laser metal-wire deposition
Song et al. Sensing and experimental based modeling of direct metal deposition
Hu et al. Finite element modeling of thermal behavior of molten pool in closed-loop controlled laser-based additive manufacturing

Legal Events

Date Code Title Description
B07A Application suspended after technical examination (opinion) [chapter 7.1 patent gazette]
B09B Patent application refused [chapter 9.2 patent gazette]

Free format text: INDEFIRO O PEDIDO DE ACORDO COM O ARTIGO 8O COMBINADO COM ARTIGO 13 DA LPI

B12B Appeal against refusal [chapter 12.2 patent gazette]
B16A Patent or certificate of addition of invention granted [chapter 16.1 patent gazette]

Free format text: PRAZO DE VALIDADE: 10 (DEZ) ANOS CONTADOS A PARTIR DE 08/12/2015, OBSERVADAS AS CONDICOES LEGAIS.

B21F Lapse acc. art. 78, item iv - on non-payment of the annual fees in time

Free format text: REFERENTE A 20A ANUIDADE.

B24J Lapse because of non-payment of annual fees (definitively: art 78 iv lpi, resolution 113/2013 art. 12)

Free format text: EM VIRTUDE DA EXTINCAO PUBLICADA NA RPI 2519 DE 16-04-2019 E CONSIDERANDO AUSENCIA DE MANIFESTACAO DENTRO DOS PRAZOS LEGAIS, INFORMO QUE CABE SER MANTIDA A EXTINCAO DA PATENTE E SEUS CERTIFICADOS, CONFORME O DISPOSTO NO ARTIGO 12, DA RESOLUCAO 113/2013.