AU2016363676B2 - Method for improving catalytic activity - Google Patents
Method for improving catalytic activity Download PDFInfo
- Publication number
- AU2016363676B2 AU2016363676B2 AU2016363676A AU2016363676A AU2016363676B2 AU 2016363676 B2 AU2016363676 B2 AU 2016363676B2 AU 2016363676 A AU2016363676 A AU 2016363676A AU 2016363676 A AU2016363676 A AU 2016363676A AU 2016363676 B2 AU2016363676 B2 AU 2016363676B2
- Authority
- AU
- Australia
- Prior art keywords
- composite
- nickel
- oer
- reducing agent
- metallic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
- B01J37/18—Reducing with gases containing free hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/745—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J25/00—Catalysts of the Raney type
- B01J25/02—Raney nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/33—Electric or magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/80—Catalysts, in general, characterised by their form or physical properties characterised by their amorphous structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
- B01J37/0225—Coating of metal substrates
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/075—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU2015904951A AU2015904951A0 (en) | 2015-11-30 | Method for improving catalytic activity | |
| AU2015904951 | 2015-11-30 | ||
| PCT/AU2016/051178 WO2017091858A1 (en) | 2015-11-30 | 2016-11-30 | Method for improving catalytic activity |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| AU2016363676A1 AU2016363676A1 (en) | 2018-05-24 |
| AU2016363676B2 true AU2016363676B2 (en) | 2022-08-18 |
Family
ID=58796021
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2016363676A Active AU2016363676B2 (en) | 2015-11-30 | 2016-11-30 | Method for improving catalytic activity |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US11141723B2 (enExample) |
| EP (1) | EP3384070B1 (enExample) |
| JP (1) | JP6893924B2 (enExample) |
| KR (1) | KR102771574B1 (enExample) |
| CN (1) | CN108291320B (enExample) |
| AU (1) | AU2016363676B2 (enExample) |
| WO (1) | WO2017091858A1 (enExample) |
Families Citing this family (42)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102077195B1 (ko) * | 2018-01-19 | 2020-02-13 | 대구대학교 산학협력단 | 망간-철의 나노복합체를 포함하는 산소 환원용 및 산소 발생용의 이중 기능성 전극 촉매 및 그의 제조 방법 |
| WO2019193486A1 (en) * | 2018-04-04 | 2019-10-10 | Zolfaghar Rezvani | Oxidation of water using layered double hydroxide catalysts |
| JP7423632B2 (ja) * | 2018-08-16 | 2024-01-29 | ニューサウス イノベーションズ ピーティーワイ リミテッド | 三金属層状複水酸化物組成物 |
| CN109569626A (zh) * | 2018-10-15 | 2019-04-05 | 华南理工大学 | 一种氧析出催化剂及由其制备的氧析出电极 |
| KR102201079B1 (ko) * | 2018-10-30 | 2021-01-08 | 인하대학교 산학협력단 | 산소발생용 니켈-철 산화물 촉매의 산소결핍의 유도 방법 및 그 방법에 의해 제조된 니켈-철 산화물 촉매 |
| KR102201082B1 (ko) * | 2018-10-30 | 2021-01-08 | 인하대학교 산학협력단 | 산소환원반응용 니켈-코발트 산화물의 산소결핍의 유도 방법 및 그 방법에 의한 니켈-코발트 산화물 |
| CN109847760B (zh) * | 2019-01-09 | 2022-06-03 | 济南大学 | 一种基于不锈钢纳米结构的三维电催化剂及其应用 |
| CN111686812B (zh) * | 2019-03-13 | 2023-04-07 | 北京大学深圳研究生院 | 配体活化的过渡金属层状双羟基化合物、制备方法及用途 |
| KR20200119953A (ko) | 2019-04-10 | 2020-10-21 | 울산과학기술원 | 이중층 페로브스카이트 물질로 구성된 고체 산화물 수전해셀용 촉매체, 이를 포함하는 고체 산화물 수전해셀, 및 그 제조 방법 |
| CN110129815B (zh) * | 2019-04-24 | 2020-10-16 | 北京大学深圳研究生院 | 改性的tm-ldh纳米材料、其制备方法及应用 |
| CN110124673B (zh) * | 2019-05-22 | 2020-05-05 | 复旦大学 | 一种硼诱导非晶层状双氢氧化物电催化剂及其制备与应用 |
| CN110197909B (zh) * | 2019-06-17 | 2021-05-25 | 中国科学院大连化学物理研究所 | 镍铁催化材料、其制备方法及在电解水制氢气、制备液态太阳燃料中的应用 |
| CN110327930B (zh) * | 2019-06-20 | 2022-02-18 | 武汉理工大学 | 低结晶分级羟基氧化镍纳米片阵列及其制备方法和应用 |
| CN110354862B (zh) * | 2019-08-14 | 2021-08-31 | 福州大学 | 泡沫镍基质表面铈离子辅助原位修饰三维镍铁水滑石电催化析氧电极的方法 |
| CN110433810B (zh) * | 2019-08-15 | 2021-09-10 | 青岛科技大学 | 氧化铜掺杂镍铁类水滑石纳米片/石墨烯双功能水分解催化剂的制备方法 |
| CN110538657B (zh) * | 2019-09-16 | 2021-08-31 | 福州大学 | 一种铁镍层状双氢氧化物及其制备方法和应用 |
| CN110947387B (zh) * | 2019-11-25 | 2022-07-01 | 中国工程物理研究院材料研究所 | 一种镍铁双金属氢氧化物纳米薄膜材料的制备方法及用途 |
| CA3177207A1 (en) * | 2020-05-04 | 2021-11-11 | University Of Delaware | An anion exchange membrane electrolyzer having a platinum-group-metal free self-supported oxygen evolution electrode |
| KR20210151282A (ko) | 2020-06-04 | 2021-12-14 | 울산과학기술원 | 이중층 페로브스카이트 물질로 구성된 고체 산화물 수계전해용 촉매체, 이를 포함하는 고체 산화물 수전해셀 |
| CA3181437A1 (en) * | 2020-06-05 | 2021-12-09 | Paul PEPIN | Activated carbon modified by atomic layer deposition and methods thereof |
| CN111628179B (zh) * | 2020-06-09 | 2022-07-05 | 澳门大学 | 一种电极材料、其制备方法和包含该电极材料的钠–空气电池 |
| CN111841567A (zh) * | 2020-08-04 | 2020-10-30 | 南通大学 | 一种具有图灵结构的镍锰羟基氧化物薄膜的制备方法及应用 |
| KR102763361B1 (ko) * | 2020-11-27 | 2025-02-11 | 롯데케미칼 주식회사 | 백금계 전극의 제조방법 |
| CN112593256B (zh) * | 2020-12-10 | 2021-08-20 | 吉林大学 | 一种核壳FeOOH@NiFe LDH电催化材料及制备方法 |
| CN112934221B (zh) * | 2021-02-01 | 2022-12-20 | 黑龙江省科学院石油化学研究院 | 一种镍铁水滑石负载型超细纳米钌催化剂及其制备方法 |
| KR102510307B1 (ko) * | 2021-02-05 | 2023-03-17 | 재단법인대구경북과학기술원 | 다공성 TiO 기반 인 시투 성장한 산소생성반용용 촉매 및 이의 제조방법 |
| KR102529278B1 (ko) * | 2021-02-24 | 2023-05-08 | (주)오운알투텍 | 니켈-철 합금 수소 발생 전극 및 이의 제조방법 |
| CN113136602A (zh) * | 2021-04-19 | 2021-07-20 | 西北师范大学 | 一种钒酸铋/Vo-FeNiOOH复合光阳极的制备及应用 |
| US11549188B2 (en) | 2021-04-28 | 2023-01-10 | Industrial Technology Research Institute | Membrane electrode assembly and method for hydrogen evolution by electrolysis |
| EP4349480A4 (en) * | 2021-05-26 | 2025-04-30 | Tokyo Institute of Technology | Catalyst, method for producing catalyst, and intermediate product |
| CN113502494B (zh) * | 2021-05-26 | 2022-06-21 | 浙江工业大学 | 高价态金属离子掺杂富含氧空位的氧化钴纳米复合材料及其制备与应用 |
| CN113355686B (zh) * | 2021-06-02 | 2022-04-19 | 宁波材料所杭州湾研究院 | 一种具有多层结构的纳米阵列材料、其制备方法与应用 |
| CN113667993B (zh) * | 2021-07-06 | 2022-10-11 | 浙江工业大学 | 一种富含氧空位的一氧化钴/铁酸钴纳米片阵列结构催化剂及其制备与应用 |
| CN113522298B (zh) * | 2021-07-12 | 2023-09-12 | 南京林业大学 | 一种钙钛矿氧化物/Ti3C2 MXene/泡沫镍复合材料及其制备方法和应用 |
| CN113526567A (zh) * | 2021-07-27 | 2021-10-22 | 湖南理工学院 | 一种酸蚀效应可控制备氧空位型金属氧化物的方法 |
| CN114016066A (zh) * | 2021-11-29 | 2022-02-08 | 西藏大学 | 一种Ni-Fe双金属硼化物纳米片阵列催化剂、其制备方法和应用 |
| JP2023152062A (ja) * | 2022-04-01 | 2023-10-16 | 時空化学株式会社 | 酸素発生電極、水の電気分解方法及び酸素発生電極の製造方法 |
| CN114927705B (zh) * | 2022-05-16 | 2023-10-27 | 内蒙古鄂尔多斯电力冶金集团股份有限公司 | 一种氧析出反应的自支撑无泡悬浮电极的制备方法 |
| CN114774968B (zh) * | 2022-05-31 | 2023-04-25 | 北京航空航天大学 | 一种泡沫镍负载NiFe非晶纳米阵列电催化电极及其制备方法 |
| CN114921797B (zh) * | 2022-06-21 | 2023-07-18 | 安阳工学院 | 重构氧空位的氧化物薄膜光电极及其制备方法 |
| CN116083952B (zh) * | 2023-03-28 | 2023-06-13 | 西南石油大学 | 一种Cu3Ti纳米片负载Ti掺杂CuO/Ru析氢反应催化剂及其制备方法 |
| CN118186484B (zh) * | 2024-05-16 | 2024-09-03 | 太原理工大学 | 一种Ir-Ni(OH)2/FeOOH@NF铱基催化剂及其制备方法及应用 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2010146475A1 (en) * | 2009-06-18 | 2010-12-23 | University Of The Western Cape | Supported catalysts |
| US20140294721A1 (en) * | 2013-03-29 | 2014-10-02 | Board Of Trustees Of The Leland Stanford Junior University | Doping and reduction of nanostructures and thin films through flame annealing |
| WO2017127945A1 (en) * | 2016-01-29 | 2017-08-03 | Bo Zhang | Homogeneously dispersed multimetal oxy-hydroxide catalysts |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| IL50217A (en) | 1976-08-06 | 1980-01-31 | Israel State | Electrocatalytically acitve spinel type mixed oxides |
| US4384928A (en) | 1980-11-24 | 1983-05-24 | Mpd Technology Corporation | Anode for oxygen evolution |
| JPS57116785A (en) | 1980-11-24 | 1982-07-20 | Mpd Technology | Electrode for generating gas from alkaline electrolyte and production thereof |
| US20050031921A1 (en) * | 2003-08-07 | 2005-02-10 | Ovshinsky Stanford R. | Hybrid fuel cell |
| ITMI20111132A1 (it) | 2011-06-22 | 2012-12-23 | Industrie De Nora Spa | Anodo per evoluzione di ossigeno |
| CN103974769B (zh) * | 2011-09-01 | 2018-11-09 | 西蒙·特鲁德尔 | 电催化材料及其制造方法 |
| KR101566458B1 (ko) | 2014-02-27 | 2015-11-05 | 한국과학기술연구원 | 산소 발생 반응 활성 향상 방법 및 이에 사용되는 니켈 촉매 |
| US9435043B2 (en) | 2014-04-14 | 2016-09-06 | California Institute Of Technology | Oxygen evolution reaction catalysis |
| JP2017527693A (ja) * | 2014-07-17 | 2017-09-21 | ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー | 超活性水素放出電気触媒作用のためのヘテロ構造 |
| CN104183830A (zh) * | 2014-08-19 | 2014-12-03 | 中南大学 | 一种二维无机层状化合物/石墨烯复合材料的制备方法 |
| CN104659357A (zh) * | 2014-11-19 | 2015-05-27 | 北京化工大学 | 一种用于碱性水电解的负载型镍铁复合氢氧化物析氧电极及其制备方法 |
| CN104795493A (zh) | 2015-04-21 | 2015-07-22 | 东北师范大学 | 一种基于纳米线阵列的忆阻器及其制备方法 |
| CN104874389A (zh) | 2015-05-05 | 2015-09-02 | 上海应用技术学院 | 一种具有氧空位介孔WO3-x可见光催化剂及其制备方法和应用 |
| US20170127945A1 (en) * | 2015-11-11 | 2017-05-11 | George Ashford Reed | Respiratory Medicament and Therapy Data System and Method of Use |
| CN105251489A (zh) | 2015-09-13 | 2016-01-20 | 中南大学 | 一类铁基非贵金属析氧催化剂的制备方法 |
-
2016
- 2016-11-30 EP EP16869410.7A patent/EP3384070B1/en active Active
- 2016-11-30 WO PCT/AU2016/051178 patent/WO2017091858A1/en not_active Ceased
- 2016-11-30 AU AU2016363676A patent/AU2016363676B2/en active Active
- 2016-11-30 CN CN201680069638.8A patent/CN108291320B/zh active Active
- 2016-11-30 US US15/779,007 patent/US11141723B2/en active Active
- 2016-11-30 JP JP2018527210A patent/JP6893924B2/ja active Active
- 2016-11-30 KR KR1020187015184A patent/KR102771574B1/ko active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2010146475A1 (en) * | 2009-06-18 | 2010-12-23 | University Of The Western Cape | Supported catalysts |
| US20140294721A1 (en) * | 2013-03-29 | 2014-10-02 | Board Of Trustees Of The Leland Stanford Junior University | Doping and reduction of nanostructures and thin films through flame annealing |
| WO2017127945A1 (en) * | 2016-01-29 | 2017-08-03 | Bo Zhang | Homogeneously dispersed multimetal oxy-hydroxide catalysts |
Also Published As
| Publication number | Publication date |
|---|---|
| EP3384070A4 (en) | 2019-08-07 |
| JP2019505361A (ja) | 2019-02-28 |
| KR20180088654A (ko) | 2018-08-06 |
| WO2017091858A1 (en) | 2017-06-08 |
| CN108291320A (zh) | 2018-07-17 |
| US20180345266A1 (en) | 2018-12-06 |
| CN108291320B (zh) | 2021-06-22 |
| US11141723B2 (en) | 2021-10-12 |
| EP3384070B1 (en) | 2023-04-19 |
| EP3384070A1 (en) | 2018-10-10 |
| JP6893924B2 (ja) | 2021-06-23 |
| AU2016363676A1 (en) | 2018-05-24 |
| KR102771574B1 (ko) | 2025-02-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU2016363676B2 (en) | Method for improving catalytic activity | |
| Li et al. | In situ unraveling surface reconstruction of Ni5P4@ FeP nanosheet array for superior alkaline oxygen evolution reaction | |
| Liu et al. | N-doped graphitic carbon shell-encapsulated FeCo alloy derived from metal–polyphenol network and melamine sponge for oxygen reduction, oxygen evolution, and hydrogen evolution reactions in alkaline media | |
| Jadhav et al. | An advanced and highly efficient Ce assisted NiFe-LDH electrocatalyst for overall water splitting | |
| Yang et al. | N-enriched porous carbon encapsulated bimetallic phosphides with hierarchical structure derived from controlled electrodepositing multilayer ZIFs for electrochemical overall water splitting | |
| Arshad et al. | Multifunctional porous NiCo bimetallic foams toward water splitting and methanol oxidation-assisted hydrogen production | |
| Nsanzimana et al. | Ultrathin amorphous iron–nickel boride nanosheets for highly efficient electrocatalytic oxygen production | |
| Laghari et al. | MgO as promoter for electrocatalytic activities of Co3O4–MgO composite via abundant oxygen vacancies and Co2+ ions towards oxygen evolution reaction | |
| Li et al. | Halides-assisted electrochemical synthesis of Cu/Cu2O/CuO core-shell electrocatalyst for oxygen evolution reaction | |
| Feng et al. | Reconstruction optimization of distorted FeOOH/Ni hydroxide for enhanced oxygen evolution reaction | |
| Hao et al. | Elucidating the superwetting FeOOH-modified NiMoO4 electrodes for efficient alkaline oxygen evolution reaction: An in-situ spectroscopy study | |
| CA3109562A1 (en) | Trimetallic layered double hydroxide composition | |
| KR20220111791A (ko) | 수전해용 전극 촉매 및 이의 제조 방법 | |
| Yang et al. | Electrochemical fabrication of 3D quasi-amorphous pompon-like Co-O and Co-Se hybrid films from choline chloride/urea deep eutectic solvent for efficient overall water splitting | |
| Liang et al. | A robust Ni@ NCNT-C catalyst for highly efficient electrochemical CO2 reduction to CO over a wide potential range | |
| Wang et al. | Boron modification promoting electrochemical surface reconstruction of NiFe-LDH for efficient and stable freshwater/seawater oxidation catalysis | |
| Wu et al. | In-situ self-reconstruction of Ni–Fe–Al hybrid phosphides nanosheet arrays enables efficient oxygen evolution in alkaline | |
| Cheng et al. | Nitrogen-doped carbon armored Cobalt oxide hollow nanocubes electrochemically anchored on fluorine-doped tin oxide substrate for acidic oxygen evolution reaction | |
| Zheng et al. | Defective layered NiFe double hydroxides anchored on self-supported CoNi-nitrogen doped carbon nanotube composite as advanced electrocatalyst for oxygen evolution reaction | |
| Pei et al. | Plasma-assisted in situ engineering of bimetallic phosphate coated Ni (OH) 2–CuO nanosheets for robust electrocatalytic hydrogen evolution | |
| Vidales et al. | Platinum nanoparticles supported on nickel-molybdenum-oxide for efficient hydrogen production via acidic water electrolysis | |
| Hou et al. | Ternary iron-cobalt-molybdenum hybrid for synergistically enhanced electrochemical water oxidation | |
| Gomaa et al. | Controllable synthesis of a hybrid mesoporous sheets-like Fe0. 5NiS2@ P, N-doped carbon electrocatalyst for alkaline oxygen evolution reaction | |
| Liu et al. | Sheet-like units of ferrocene-based coordination compounds for oxygen evolution | |
| Mousavi et al. | Sugar-cubic Fe2O3/nitrogen-doped graphene nanocomposite as high-performance anode material for oxygen evolution reaction |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FGA | Letters patent sealed or granted (standard patent) |