CN113522298B - 一种钙钛矿氧化物/Ti3C2 MXene/泡沫镍复合材料及其制备方法和应用 - Google Patents

一种钙钛矿氧化物/Ti3C2 MXene/泡沫镍复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN113522298B
CN113522298B CN202110786338.4A CN202110786338A CN113522298B CN 113522298 B CN113522298 B CN 113522298B CN 202110786338 A CN202110786338 A CN 202110786338A CN 113522298 B CN113522298 B CN 113522298B
Authority
CN
China
Prior art keywords
mxene
foam nickel
composite material
perovskite oxide
photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110786338.4A
Other languages
English (en)
Other versions
CN113522298A (zh
Inventor
陆依
张昊
范德琪
丁明烨
杨小飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Forestry University
Original Assignee
Nanjing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University filed Critical Nanjing Forestry University
Priority to CN202110786338.4A priority Critical patent/CN113522298B/zh
Publication of CN113522298A publication Critical patent/CN113522298A/zh
Application granted granted Critical
Publication of CN113522298B publication Critical patent/CN113522298B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种钙钛矿氧化物/Ti3C2MXene/泡沫镍复合材料及其制备方法和应用,属于光热与电化学领域。将零维LaxSr1‑xCoO3纳米颗粒与2D Ti3C2MXene纳米片负载在导电泡沫镍上,制得光热协同电催化析氧的泡沫镍复合材料。该复合材料中Ti3C2MXene光热材料可以将太阳光谱转化为热能,从而高效地进行净水蒸发,同时产生的热能加速电化学反应动力学,有效提高电催化材料的氧析出性能,实现高效产氧。该复合材料提供的制备原料不含贵金属元素,造价成本低,工艺简便,可重复性高,易于大批量生产,在海水淡化协同电解水产氧的多学科交叉领域具有广泛的应用前景。

Description

一种钙钛矿氧化物/Ti3C2 MXene/泡沫镍复合材料及其制备方 法和应用
技术领域
本发明属于光热转化与电化学技术领域,具体涉及一种钙钛矿氧化物/Ti3C2MXene/泡沫镍复合材料及其制备方法和应用。
背景技术
近年来,随着我国经济的迅速发展,对淡水资源的需求也逐年增长。目前,发展较为成熟的空气蒸馏渗透淡化工艺技术和反应式渗透淡化技术在全球较大范围内已经得到了广泛的研究应用,但它们仍然普遍存在大量能源消耗大、维修维护成本高等技术缺陷。因此,探索出高效的太阳能转换技术与材料对太阳能的利用至关重要。太阳能光热转换是通过反射、吸收或其他方式把太阳辐射能集中起来,转换成足够高温度的过程,是直接利用太阳能的有效途径。通过太阳能转化产生的热能可以应用在多个领域,如光热蒸汽转化、光热发电、光热催化以及光热化学转化等。
在过去的几十年里,随着电池技术的快速发展,传统的铅蓄电池日渐不能满足现代产业的用电需求,逐步被需要氧气作为反应物的金属空气电池和燃料电池取代。电化学水分解法是一种通过氧释放反应(OER)产生氧气的便捷方法,它涉及复杂的四电子过程(2H2O→O2+4H++4e),而且不同基本反应之间的相关性通常会限制反应速率。目前,Ru/Ir基氧化物通常被认为是实现OER性能的有效电催化剂,但其实际应用受到储量低和成本高的限制。因此,迫切需要开发在恶劣环境下有效、稳定且不含贵金属的电催化剂。钙钛矿氧化物LaCoO3固有的电导率和活性表面积,被研究者们应用于电化学分解水领域。近年来,研究人员将多种形貌的LaxSr1-xCoO3与各种导电基材(例如碳纳米纤维、多孔碳和还原的氧化石墨烯)结合以提高电导率,进一步促进电催化活性。二维层状过渡金属碳化物(2D Ti3C2MXenes)具有优异的金属导电性,出色的亲水性和多种表面官能团,使其在高效电催化方面具有很大的潜能。此外,其负电荷表面和超低功函的超薄分层为构建强界面相互作用的受限杂化电催化剂提供了平台,有利于优化电催化剂的活性中心。Ti3C2 MXene的独特二维形貌可以大大缩短进行质量扩散和电荷转移的途径,并获得高度暴露的活性位点的异质结电催化剂。因此,如何将LaxSr1-xCoO3纳米材料与2D Ti3C2 MXene纳米片复合,以提高LaxSr1- xCoO3的OER性能成为需要解决的问题。
发明内容
针对现有技术中存在的问题,本发明要解决的技术问题在于提供一种钙钛矿氧化物/Ti3C2MXene/泡沫镍复合材料。本发明解决的另一个技术问题在于提供一种钙钛矿氧化物/Ti3C2MXene/泡沫镍复合材料的制备方法。本发明要解决的技术问题还有一个在于提供一种钙钛矿氧化物/Ti3C2 MXene/泡沫镍复合材料在电催化析氧中的应用和在海水和重金属、强酸碱性废水光热蒸发净化中的应用。该材料具有突出的全太阳光谱利用率、光热蒸汽转化以及光电协同催化效率。
为了解决上述问题,本发明所采用的技术方案如下:
一种钙钛矿氧化物/Ti3C2 MXene/泡沫镍复合材料的制备方法,将零维LaxSr1- xCoO3纳米颗粒与2D Ti3C2 MXene纳米片负载在导电泡沫镍上,制得钙钛矿氧化物/Ti3C2MXene/泡沫镍复合材料。包括以下步骤:
(1)分别称量硝酸镧、硝酸锶、硝酸钴、六亚甲基四胺,并加入超纯水和甲醇溶液,配置前驱体溶液;
(2)向步骤(1)所述前驱体溶液中,加入Ti3C2 MXene光热材料,并缓慢加入氢氧化钾粉末,低速搅拌,使其混合均匀,调整pH=10;
(3)将泡沫镍基底材料用1.0mol L-1的盐酸溶液清洗后浸没在步骤(2)所述溶液中进行水热反应,反应结束后冷冻干燥,然后进行高温煅烧,得到钙钛矿氧化物/Ti3C2 MXene/泡沫镍基复合材料。
所述钙钛矿氧化物/Ti3C2 MXene/泡沫镍复合材料的制备方法,配制前驱体溶液时,硝酸镧、硝酸锶、硝酸钴和六亚甲基四胺的质量比为3.9:0.2:2.9:2.8,去离子水和甲醇的体积比为1:1。
所述钙钛矿氧化物/Ti3C2 MXene/泡沫镍复合材料的制备方法,所述Ti3C2 MXene与硝酸钴的质量比为0.5:2.9。
所述钙钛矿氧化物/Ti3C2 MXene/泡沫镍复合材料的制备方法,所述水热反应温度为200℃,反应时间为48h。
所述钙钛矿氧化物/Ti3C2 MXene/泡沫镍复合材料的制备方法,所述高温煅烧过程使用管式炉,并在氮气氛下,煅烧温度为600℃,煅烧2h。
上述方法制备得到的钙钛矿氧化物/Ti3C2 MXene/泡沫镍复合材料。
上述钙钛矿氧化物/Ti3C2 MXene/泡沫镍复合材料在海水和重金属、强酸碱性废水光热蒸发净化中的应用。
上述钙钛矿氧化物/Ti3C2 MXene/泡沫镍复合材料在高效电催化析氧(OER)中的应用。
有益效果:与现有的技术相比,本发明的优点包括:
(1)将零维(0D)LaxSr1-xCoO3纳米颗粒与2D Ti3C2 MXene纳米片负载在导电泡沫镍上,利用2D MXene的光热性能提高LaxSr1-xCoO3的电催化性能。LaxSr1-xCoO3/Ti3C2 MXene/泡沫镍复合材料是通过金属离子与MXene表面的负电荷之间的静电作用在泡沫镍上原位生长钙钛矿型氧化物。通过强界面和电子耦合相互作用,LaxSr1-xCoO3/Ti3C2 MXene纳米片牢固地生长在泡沫镍表面上。
(2)在标准太阳光照射下,该光热-电化学协同催化的泡沫镍复合材料具有高达81.2%的转换效率和1.58kg m-2h-1的水蒸发速率。
(3)在标准太阳光照射下,该复合材料在三电极系统中的1.0mol L-1KOH溶液中,10mA cm-2的电流密度下的过电势低至290mV,Tafel斜率为83.2mV dec-1
(4)本发明光热协同电催化复合材料能够在盐水、重金属、强酸碱性废水中均具有优异的光热蒸发性能。
(5)本发明泡沫镍基复合材料具有突出的光热蒸发速率和效率以及电催化性能,制备原料不含贵金属元素,制备工艺简单,造价成本低,可重复性高,易于大批量生产,在海水淡化、污水处理、电催化等领域具有广泛的应用前景。
附图说明
图1为光热协同电催化La0.9Sr0.1CoO3/Ti3C2 MXene/NF复合材料合成流程图;
图2为LMN的透射显微镜图像(2a),LMN复合材料的扫描电子显微镜图像(2b),Ti3C2MXene、La0.9Sr0.1CoO3、Ti3C2 MXene/La0.9Sr0.1CoO3功能材料的X射线衍射图(2c);
图3为LMN复合材料表面亲水性测试图(3a),泡沫镍、LSC1、LSC1-NF与LMN复合材料在250-2500nm太阳光波长范围内的吸收光谱(3b),在光功率密度为1kW m-2的光照强度下,使用泡沫镍、LSC1、LSC1-NF与LMN复合材料制备的光热蒸发器,水的蒸发重量损失结果图(3c),在光功率密度为1kW m-2的光照强度下,使用泡沫镍、LSC1、LSC1-NF与LMN复合材料制备的光热蒸发器对应的光热蒸发水速率和蒸发效率结果图(3d);
图4为一个光功率密度为1kW m-2的光照强度下,LMN复合材料光热蒸发器的循环稳定性测试结果图(4a),使用LMN复合材料光热蒸发器进行光热蒸发前后海水和废水中的离子浓度变化结果图(4b);
图5为在1mol L-1KOH溶液中,Ti3C2 MXene、LSC1-NF与LMN催化剂在无光和有光照射下的线性扫描伏安图(5a),在1mol L-1KOH溶液中,Ti3C2 MXene、LSC1-NF、LMN在无光和有光照射下的Tafel拟合曲线图(5b),在1mol L-1KOH溶液中,Ti3C2 MXene、LSC1-N、LMN复合光热电催化剂在光功率密度为1kW/m2的光照强度下的CV循环曲线图(5c),催化剂在OER反应式的长期稳定性测试结果图(5d);
图6为光热协同电催化产氧一体化装置示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合具体实施例对本发明的具体实施方式做详细的说明。
实施例1
如图1所示,光热协同电催化La0.9Sr0.1CoO3/Ti3C2 MXene/NF复合材料的制备方法,包括以下步骤:
(1)称取0.5g Ti3AlC2(MAX),2.96g的NH4F,并量取20mL的HCl,在60℃水浴搅拌持续48h,得到黑色糊状液体。待完全冷却至室温后,将高压反应釜内黑色糊状液体转移至离心管内,用9000rpm转速离心8min,并用去离子水清洗,如此重复三次,直到pH=6,将离心的底物冷冻干燥14h,得到Ti3C2 MXene固体纳米片;
(2)取二甲亚砜(DMSO)50mL,倒入锥形瓶内,并加入Ti3C2 MXene固体,通入氮气(N2)保护并保持在25℃,同时用磁力搅拌子以15rpm转速搅拌48h;然后以9000rpm的转速离心8min,用去离子水清洗,并震荡5min,如此洗涤三次后冷冻干燥12h,得到剥离后的Ti3C2MXene纳米片;
(3)将泡沫镍剪裁至25mm*25mm大小的片状,浸泡在1mol L-1的盐酸溶液中,低速搅拌,去除泡沫镍表面氧化物,然后用去离子水反复浸泡去除表面盐酸,冷冻干燥,得到泡沫镍基底材料;
(4)称取0.39g六水合硝酸镧(La(NO3)3·6H2O),0.291g六水合硝酸钴(Co(NO3)2·6H2O),0.0212g硝酸锶(Sr(NO3)2),0.280g六亚甲基四胺,加入20mL去离子水和20mL甲醇,获得前驱体溶液,然后加入0.05g剥离后的Ti3C2 MXene纳米片充分搅拌,加入KOH粉末,调整pH至10;
(5)将泡沫镍基底材料加入步骤(4)溶液中,水热反应200℃保持48h;然后,以5℃min-1的升温速率升温至600℃,在氮气氛下热处理120min,得到La0.9Sr0.1CoO3/Ti3C2MXene/NF复合材料,该样品记为LMN。
通过透射电子显微镜图像(图2a)与LMN的X射线衍射图(图2c)可以看出,在泡沫镍上形成了La0.9Sr0.1CoO3/Ti3C2 MXene纳米片。通过对冷冻干燥后复合材料的扫描电子显微镜图(图2b),可得钙钛矿纳米片表面具有多孔结构,可以显著提高催化剂的比表面积,提高活性位点。
通过对复合材料进行表面接触角测试(图3a),LMN催化剂表现出较好的亲水性。通过紫外-可见-近红外吸收光谱分析可以发现,LMN催化剂对波长范围为250-2500nm的光谱均具有较好的吸收能力,吸收率高达91.21%(图3b)。在光功率密度为1kW/m2的光照强度下,LMN功能光热蒸发器呈现出较好的光热蒸发性能,蒸发速率能够达到1.58kg m-2h-1(图3d),光热转换效率为81.2%(图3d)。
通过测试LMN功能光热蒸发器的光热循环稳定性(图4a),可得LMN在光功率密度为1kW/m2的光照强度下,10小时内表现出较好的光热蒸发稳定性。
与此同时,测试LMN复合催化剂的电化学分解水性能,可得该催化剂在无光和有光照射下的OER极化曲线(图5a)和Tafel斜率测试(图5b)。实验结果可得,LMN复合光热催化剂在光功率密度为1kW/m2的光照强度下,在1.0mol L-1KOH溶液中,10mAcm-2的电流密度下的过电势仅为290mV,Tafel斜率为83.2mV dec-1。因此,光热效应有效增强LMN催化剂的电催化析氧特性。该性能测试结果证明了La0.9Sr0.1CoO3/Ti3C2 MXene/Ni复合光热催化剂可以应用于光热海水淡化的同时,进行电化学分解水产氧,实现纯水与能源的协同产出,有效缓解淡水资源匮乏和绿色能源紧缺。
图6为光热协同电催化产氧一体化装置示意图。采用高透亚克力材料作为装置外壳,太阳能电池板为LMN复合材料电解水析氧提供清洁电能,同时产生的氧气通过软管用排水集气法收集,太阳光驱动LMN复合材料光热污水净化协同氧气能源收集。
采用复合材料La0.9Sr0.1CoO3/Ti3C2 MXene/NF(LMN)作为测试样品,在1mol L-1KOH溶液中评估OER活性。与单相La0.9Sr0.1CoO3电催化剂相比,LMN在10mA cm-2的电流密度下,它的过电势低至300mV。并且,该复合材料的Tafel斜率低于La0.9Sr0.1CoO3纳米片,意味着复合材料发生的OER动力学要快得多。结果表明,LMN复合材料的优异OER性能归因于导电Ti3C2MXene、La0.9Sr0.1CoO3纳米片以及泡沫镍之间的协同增强作用。
对比例1
钙钛矿La0.9Sr0.1CoO3的制备方法,包括以下步骤:
(1)称取0.39g六水合硝酸镧(La(NO3)3·6H2O),0.291g六水合硝酸钴(Co(NO3)2·6H2O),0.0212g硝酸锶(Sr(NO3)2)和0.05g剥离后的Ti3C2 MXene纳米片,加入20mL去离子水和20mL甲醇,充分搅拌获得前驱体溶液;
(2)称取少量的KOH固体,用研钵研磨成颗粒较小的粉末,然后逐渐加入前驱体溶液内,同时用pH计测量其酸碱浓度,直到获得pH=10的前驱体溶液;
(3)将前驱体液倒入反应釜进行高温水热反应,在200℃的条件下水热48h,然后将液体以用8000rpm转速离心8min,得到离心的底物;
(4)将底物冷冻干燥14h,然后平铺在刚玉磁舟内,放入箱式炉内,以10℃min-1的升温速率在空气氛围中1000℃煅烧120min,得到钙钛矿La0.9Sr0.1CoO3,该粉体记为LSC1。
通过紫外可见近红外吸收光谱分析可以发现,LSC1功能粉体对波长250-2500nm的光谱具有较强的光吸收能力,吸收率为82.32%(图3b)。在光功率密度为1kW/m2的光照强度下,LSC1功能光热蒸发器呈现出较好的光热蒸发性能,蒸发速率能够达到1.24kg m-2h-1(图3d),光热转换效率为67.3%(图3d)。
对比例2
La0.9Sr0.1CoO3/NF复合材料的制备方法,包括以下步骤:
(1)称取0.39g六水合硝酸镧(La(NO3)3·6H2O),0.291g六水合硝酸钴(Co(NO3)2·6H2O),0.0212g硝酸锶(Sr(NO3)2)和0.05g剥离后的Ti3C2 MXene纳米片,加入20mL去离子水和20mL甲醇,充分搅拌获得前驱体溶液;
(2)将泡沫镍片用4.0mol L-1的盐酸溶液超声清洗,后用去离子水冲洗;
(3)将泡沫镍片加入前驱体溶液,加入KOH粉末,调节pH至10,水热反应200℃保持48h。然后将含有前驱体物质的泡沫镍取出,冷冻干燥12h;
(4)将干燥的复合泡沫镍放入气氛炉中,在氮气氛围内,以5℃min-1的升温速率升温至600℃煅烧保温120min,得到La0.9Sr0.1CoO3/NF复合材料,该样品记为LSC1-NF。
通过紫外可见近红外吸收光谱分析可以发现,LSC1-NF对波长250-2500nm的光谱具有较好的吸收能力,吸收率为90.32%(图3b)。在光功率密度为1kW/m2的光照强度下,LSC1-NF功能光热蒸发器呈现出较好的光热蒸发性能,蒸发速率能够达到1.42kg m-2h-1(图3d),光热转换效率为73.2%(图3d)。同时,通过测试复合催化剂的极化曲线(图5a)和Tafel斜率(图5b),LSC1-NF在1.0mol L-1KOH溶液中,10mA cm-2的电流密度下的过电势为390mV,Tafel斜率为117.8mV dec-1

Claims (7)

1.一种钙钛矿氧化物/Ti3C2 MXene/泡沫镍复合材料的制备方法,其特征在于,将零维La x Sr1-x CoO3纳米颗粒与2D Ti3C2 MXene纳米片负载在导电泡沫镍上,制得钙钛矿氧化物/Ti3C2 MXene/泡沫镍复合材料;包括以下步骤:
(1)分别称量硝酸镧、硝酸锶、硝酸钴、六亚甲基四胺,并加入超纯水和甲醇溶液,配置前驱体溶液;
(2)向步骤(1)所述前驱体溶液中,加入Ti3C2 MXene光热材料,并缓慢加入氢氧化钾粉末,低速搅拌,使其混合均匀,调整pH=10;
(3)将泡沫镍基底材料用1.0 mol L-1的盐酸溶液清洗后浸没在步骤(2)所述溶液中进行水热反应,反应结束后冷冻干燥,然后进行高温煅烧,得到钙钛矿氧化物/Ti3C2 MXene/泡沫镍基复合材料;水热反应温度为200℃,反应时间为48 h。
2.根据权利要求1所述钙钛矿氧化物/Ti3C2 MXene/泡沫镍复合材料的制备方法,其特征在于,配制前驱体溶液时,硝酸镧、硝酸锶、硝酸钴和六亚甲基四胺的质量比为3.9:0.2:2.9:2.8,去离子水和甲醇的体积比为1:1。
3.根据权利要求1所述钙钛矿氧化物/Ti3C2 MXene/泡沫镍复合材料的制备方法,其特征在于,所述Ti3C2 MXene与硝酸钴的质量比为0.5:2.9。
4.根据权利要求1所述钙钛矿氧化物/Ti3C2 MXene/泡沫镍复合材料的制备方法,其特征在于,所述高温煅烧过程使用管式炉,并在氮气氛下,煅烧温度为600 ℃,煅烧2 h。
5.权利要求1~4任一所述方法制备得到的钙钛矿氧化物/Ti3C2 MXene/泡沫镍复合材料。
6.权利要求5所述钙钛矿氧化物/Ti3C2 MXene/泡沫镍复合材料在海水和重金属、强酸碱性废水光热蒸发净化中的应用。
7.权利要求5所述钙钛矿氧化物/Ti3C2MXene/泡沫镍复合材料在高效电催化析氧中的应用。
CN202110786338.4A 2021-07-12 2021-07-12 一种钙钛矿氧化物/Ti3C2 MXene/泡沫镍复合材料及其制备方法和应用 Active CN113522298B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110786338.4A CN113522298B (zh) 2021-07-12 2021-07-12 一种钙钛矿氧化物/Ti3C2 MXene/泡沫镍复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110786338.4A CN113522298B (zh) 2021-07-12 2021-07-12 一种钙钛矿氧化物/Ti3C2 MXene/泡沫镍复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113522298A CN113522298A (zh) 2021-10-22
CN113522298B true CN113522298B (zh) 2023-09-12

Family

ID=78098656

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110786338.4A Active CN113522298B (zh) 2021-07-12 2021-07-12 一种钙钛矿氧化物/Ti3C2 MXene/泡沫镍复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113522298B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115582111B (zh) * 2022-10-27 2024-04-09 安徽大学 一种由MXene衍生的SrTiO3基光催化剂及其应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105873854A (zh) * 2013-11-06 2016-08-17 瓦特燃料电池公司 使用钙钛矿作为其结构组分的重整器
WO2017091858A1 (en) * 2015-11-30 2017-06-08 Newsouth Innovations Pty Limited Method for improving catalytic activity
CN107376926A (zh) * 2017-08-18 2017-11-24 中国科学院过程工程研究所 一种钙钛矿型臭氧分解催化剂及其制备方法和应用
CN108249439A (zh) * 2018-01-02 2018-07-06 大连理工大学 一种过渡金属碳化物/氮化物纳米粒子的制备方法及其在锂空气电池中的应用
CN108786828A (zh) * 2017-05-02 2018-11-13 中国科学院物理研究所 具有钙钛矿结构的氧化还原反应催化剂及其制备方法和应用
CN109201103A (zh) * 2018-10-17 2019-01-15 大连理工大学 一种整体式多孔双效非贵金属全电解水催化剂及合成方法
CN109806879A (zh) * 2019-02-28 2019-05-28 北京化工大学 一种CeO2-NiCo2O4/NF复合电催化材料及其制备方法和应用
CN110416562A (zh) * 2019-07-19 2019-11-05 深圳先进技术研究院 一种网状掺杂型钙钛矿催化剂及其制备方法和应用
CN111111722A (zh) * 2020-01-21 2020-05-08 南京航空航天大学 一种电解水用金属硫化物/MXene复合物催化剂及其制备方法
CN113042077A (zh) * 2021-03-12 2021-06-29 南京林业大学 一种光热-光化学协同转换的水凝胶材料及其制备方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105873854A (zh) * 2013-11-06 2016-08-17 瓦特燃料电池公司 使用钙钛矿作为其结构组分的重整器
WO2017091858A1 (en) * 2015-11-30 2017-06-08 Newsouth Innovations Pty Limited Method for improving catalytic activity
CN108786828A (zh) * 2017-05-02 2018-11-13 中国科学院物理研究所 具有钙钛矿结构的氧化还原反应催化剂及其制备方法和应用
CN107376926A (zh) * 2017-08-18 2017-11-24 中国科学院过程工程研究所 一种钙钛矿型臭氧分解催化剂及其制备方法和应用
CN108249439A (zh) * 2018-01-02 2018-07-06 大连理工大学 一种过渡金属碳化物/氮化物纳米粒子的制备方法及其在锂空气电池中的应用
CN109201103A (zh) * 2018-10-17 2019-01-15 大连理工大学 一种整体式多孔双效非贵金属全电解水催化剂及合成方法
CN109806879A (zh) * 2019-02-28 2019-05-28 北京化工大学 一种CeO2-NiCo2O4/NF复合电催化材料及其制备方法和应用
CN110416562A (zh) * 2019-07-19 2019-11-05 深圳先进技术研究院 一种网状掺杂型钙钛矿催化剂及其制备方法和应用
CN111111722A (zh) * 2020-01-21 2020-05-08 南京航空航天大学 一种电解水用金属硫化物/MXene复合物催化剂及其制备方法
CN113042077A (zh) * 2021-03-12 2021-06-29 南京林业大学 一种光热-光化学协同转换的水凝胶材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Solar-Driven Interfacial Evaporation Accelerated Electrocatalytic Water Splitting on 2D Perovskite Oxide/MXene Heterostructure;Yi Lu et al.;《Adv. Funct. Mater.》;第33卷(第21期);第1-10页 *

Also Published As

Publication number Publication date
CN113522298A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
CN105107536A (zh) 一种多面体形磷化钴电解水制氢催化剂的制备方法
CN110124704B (zh) 一种负载在碳布基底上的钴镍双金属偏磷酸盐纳米阵列的制备方法
CN108716007A (zh) 通过氧空位工程提高氢氧化物电催化析氢反应性能的方法
CN113042087B (zh) 一种电催化双功能氮掺杂碳负载碳包覆磷化钴核壳纳米材料的制备方法
CN104860348B (zh) 一种纳米片构筑的核壳结构二氧化钛及其制备方法与应用
CN108557893B (zh) 一种超薄二氧化锰纳米片及其制备方法和应用
CN108448117A (zh) 富含氧缺陷的超薄镍钴氧化物纳米片电极阵列及制备方法
CN110624550A (zh) 一种原位碳包覆的铜镍合金纳米颗粒光催化剂及其制备方法和应用
CN114284515B (zh) 一种三元异质结构FePc/Ti3C2/g-C3N4复合材料的制备方法与应用
CN104860349A (zh) 一种纳米棒构筑的二氧化钛空心球及其制备方法与应用
Wang et al. A synergetic effect between photogenerated carriers and photothermally enhanced electrochemical urea-assisted hydrogen generation on the Ni-NiO/nickel foam catalyst
CN113522298B (zh) 一种钙钛矿氧化物/Ti3C2 MXene/泡沫镍复合材料及其制备方法和应用
CN108565469A (zh) 一种钴-氮掺杂碳复合材料及其制备方法
Zhang et al. Multifunctional Ti 3 C 2 decorated perovskite La 1− x Sr x CoO 3 nanorods for efficient energy conversion
CN110592616A (zh) 一种电镀法制备铂/二氧化钛纳米管复合电极的方法
CN108408783B (zh) 一种薄片状四氧化三锰纳米材料、其制备方法及应用
CN109957814A (zh) 一种Bi-BiOI/TNA复合材料及其应用
CN106374118A (zh) 一种具备高效电催化氧还原性能的ZnO/rGO复合材料
CN109081377B (zh) 一种三维二硫化钼花球阵列及其制备方法和应用
CN109037423B (zh) 一种兼具吸光和催化性能的多功能温差发电器件及其制备方法与应用
CN110444406A (zh) 一种快速活化三维Ni-C纳米材料作为储能电极材料的制备方法
CN113428847B (zh) 镍钼铜三元金属磷化物、其制备方法及其应用
CN105186024A (zh) 以共晶熔融氢氧化物混合物为电解质的直接碳燃料电池
CN111807336B (zh) 一种兼具光催化和光热转换性能的非晶氧化钼纳米点/二维氮化碳纳米片及其制备方法
CN108306023A (zh) 一种BN/CuAg/CNT复合材料及其制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant