AU2013281266B2 - Quantification of the relative amount of water in the tissue microcapillary network - Google Patents
Quantification of the relative amount of water in the tissue microcapillary network Download PDFInfo
- Publication number
- AU2013281266B2 AU2013281266B2 AU2013281266A AU2013281266A AU2013281266B2 AU 2013281266 B2 AU2013281266 B2 AU 2013281266B2 AU 2013281266 A AU2013281266 A AU 2013281266A AU 2013281266 A AU2013281266 A AU 2013281266A AU 2013281266 B2 AU2013281266 B2 AU 2013281266B2
- Authority
- AU
- Australia
- Prior art keywords
- flow
- diffusion
- compensated
- data
- weighting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/563—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
- G01R33/56341—Diffusion imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/026—Measuring blood flow
- A61B5/0263—Measuring blood flow using NMR
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
- A61B5/7207—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/563—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
- G01R33/5635—Angiography, e.g. contrast-enhanced angiography [CE-MRA] or time-of-flight angiography [TOF-MRA]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/563—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
- G01R33/56366—Perfusion imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/565—Correction of image distortions, e.g. due to magnetic field inhomogeneities
- G01R33/56509—Correction of image distortions, e.g. due to magnetic field inhomogeneities due to motion, displacement or flow, e.g. gradient moment nulling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2270/00—Control; Monitoring or safety arrangements
- F04C2270/04—Force
- F04C2270/041—Controlled or regulated
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/543—Control of the operation of the MR system, e.g. setting of acquisition parameters prior to or during MR data acquisition, dynamic shimming, use of one or more scout images for scan plane prescription
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/5608—Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Signal Processing (AREA)
- Radiology & Medical Imaging (AREA)
- High Energy & Nuclear Physics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Surgery (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Vascular Medicine (AREA)
- Physiology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Psychiatry (AREA)
- Hematology (AREA)
- Cardiology (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201261665998P | 2012-06-29 | 2012-06-29 | |
| US61/665,998 | 2012-06-29 | ||
| SE1250736-4 | 2012-06-29 | ||
| SE1250736 | 2012-06-29 | ||
| PCT/SE2013/050755 WO2014003643A1 (en) | 2012-06-29 | 2013-06-24 | Quantification of the relative amount of water in the tissue microcapillary network |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| AU2013281266A1 AU2013281266A1 (en) | 2015-01-22 |
| AU2013281266B2 true AU2013281266B2 (en) | 2017-04-13 |
Family
ID=49783621
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2013281266A Active AU2013281266B2 (en) | 2012-06-29 | 2013-06-24 | Quantification of the relative amount of water in the tissue microcapillary network |
Country Status (10)
| Country | Link |
|---|---|
| US (2) | US10031204B2 (enExample) |
| EP (1) | EP2867690B1 (enExample) |
| JP (1) | JP6328624B2 (enExample) |
| KR (1) | KR102059408B1 (enExample) |
| CN (1) | CN104471423B (enExample) |
| AU (1) | AU2013281266B2 (enExample) |
| BR (1) | BR112014032534B8 (enExample) |
| CA (1) | CA2876852C (enExample) |
| IN (1) | IN2014MN02502A (enExample) |
| WO (1) | WO2014003643A1 (enExample) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106344015A (zh) * | 2015-07-15 | 2017-01-25 | 四川大学华西医院 | 一种异常扩散程度加权的弥散磁共振成像方法 |
| US11241163B2 (en) * | 2017-06-08 | 2022-02-08 | The Board Of Trustees Of The University Of Illinois | Measuring blood vessel characteristics with MRI |
| US10684340B1 (en) * | 2019-01-08 | 2020-06-16 | Siemens Healthcare Gmbh | Systems and methods for predicting errors and optimizing protocols in quantitative magnetic resonance imaging |
| CN109820506B (zh) * | 2019-02-20 | 2023-07-07 | 王毅翔 | 基于磁共振弥散成像的组织血管密度指标检测方法及装置 |
| WO2021201753A1 (en) * | 2020-03-28 | 2021-10-07 | Oezarslan Evren | A magnetic resonance method, software product, and system for determining a diffusion propagator or related diffusion parameters for spin-labelled particles |
| CN111407278B (zh) * | 2020-03-31 | 2020-12-29 | 浙江大学 | 利用流速补偿和非补偿的弥散磁共振测量胎盘血流的方法及装置 |
| CN115421086B (zh) * | 2022-09-02 | 2023-04-14 | 哈尔滨医科大学 | 活体心脏复杂组织学特征精准解析的超融合体素内不相干运动张量磁共振成像方法 |
| CN117310581B (zh) * | 2023-10-11 | 2024-05-10 | 安徽峻德医疗科技有限公司 | 一种核磁共振信号衰减拟合方法、系统、设备及存储介质 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6380739B1 (en) * | 1999-01-11 | 2002-04-30 | Kabushiki Kaisha Toshiba | Multi-echo sequence based MR imaging for fluid in motion |
| US20040189297A1 (en) * | 2002-12-13 | 2004-09-30 | Michael Bock | Imaging arrangement and process for locally-resolved imaging |
| US7336072B2 (en) * | 2005-02-25 | 2008-02-26 | Siemens Aktiengesellschaft | Method for representation of flow in a magnetic resonance image |
Family Cites Families (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5123312B1 (enExample) | 1971-05-06 | 1976-07-15 | ||
| JPH04357934A (ja) * | 1991-06-05 | 1992-12-10 | Toshiba Corp | Mriによるivimイメージング |
| JP3144840B2 (ja) | 1991-07-31 | 2001-03-12 | 株式会社東芝 | 磁気共鳴イメージング装置 |
| JP3146033B2 (ja) * | 1991-11-05 | 2001-03-12 | 株式会社東芝 | 磁気共鳴イメージング装置 |
| US8005530B2 (en) * | 1995-04-12 | 2011-08-23 | Prince Martin R | Method and apparatus for imaging abdominal aorta and aortic aneurysms |
| JP3516373B2 (ja) * | 1996-09-04 | 2004-04-05 | 株式会社日立メディコ | 磁気共鳴測定装置 |
| WO2001038895A1 (en) | 1999-11-24 | 2001-05-31 | Board Of Regents, The University Of Texas System | Methods and systems for generating tractograms |
| JP4039980B2 (ja) * | 2003-06-04 | 2008-01-30 | マルホン工業株式会社 | 遊技機 |
| JP3774713B2 (ja) * | 2003-10-15 | 2006-05-17 | 株式会社東芝 | コンタクトホールの形成方法 |
| JP4357934B2 (ja) | 2003-11-14 | 2009-11-04 | アルパイン株式会社 | ナビゲーション装置及び代替経路提示方法 |
| BRPI0513896A (pt) | 2004-07-30 | 2008-05-20 | Ge Healthcare As | método para a discriminação entre tecido saudável e de tumor |
| JP2005031099A (ja) * | 2004-10-29 | 2005-02-03 | Yokogawa Electric Corp | 分光装置 |
| DE102005021067B4 (de) * | 2005-05-06 | 2008-08-28 | Siemens Ag | Bildgebende Vorrichtung |
| US7411394B2 (en) | 2005-05-17 | 2008-08-12 | Board Of Trustees Of Michigan State University | Method for imaging diffusion anisotropy and diffusion gradient simultaneously |
| JP4961566B2 (ja) * | 2005-10-20 | 2012-06-27 | 国立大学法人 新潟大学 | 磁気共鳴画像処理方法および磁気共鳴画像処理装置 |
| US8155729B1 (en) * | 2006-02-17 | 2012-04-10 | General Electric Company | Method and apparatus to compensate imaging data with simultaneously acquired motion data |
| US8053260B2 (en) | 2006-11-17 | 2011-11-08 | General Electric Company | Large-area lighting systems and methods of making the same |
| JP4777372B2 (ja) * | 2008-02-08 | 2011-09-21 | 株式会社東芝 | 磁気共鳴イメージング装置 |
| CN105182263A (zh) | 2008-04-28 | 2015-12-23 | 康奈尔大学 | 分子mri中的磁敏度精确量化 |
| US8497680B2 (en) * | 2011-03-24 | 2013-07-30 | University Hospital Of Basel | Magnetic resonance method for quantification of molecular diffusion using double echo steady state sequences |
| US9075121B2 (en) * | 2011-07-15 | 2015-07-07 | Wisconsin Alumni Research Foundation | System and method for rotating angle velocity encoding, phase contrast magnetic resonance imaging |
| WO2013025487A1 (en) * | 2011-08-12 | 2013-02-21 | The United States Of America, As Represented By The Secretary, Dpt Of Health And Human Services | Spin echo sequences for diffusion weighted imaging of moving media |
-
2013
- 2013-06-24 US US14/410,549 patent/US10031204B2/en active Active
- 2013-06-24 WO PCT/SE2013/050755 patent/WO2014003643A1/en not_active Ceased
- 2013-06-24 CA CA2876852A patent/CA2876852C/en not_active Expired - Fee Related
- 2013-06-24 EP EP13810505.1A patent/EP2867690B1/en active Active
- 2013-06-24 CN CN201380033778.6A patent/CN104471423B/zh active Active
- 2013-06-24 KR KR1020157002610A patent/KR102059408B1/ko active Active
- 2013-06-24 JP JP2015520119A patent/JP6328624B2/ja active Active
- 2013-06-24 AU AU2013281266A patent/AU2013281266B2/en active Active
- 2013-06-24 BR BR112014032534A patent/BR112014032534B8/pt not_active IP Right Cessation
- 2013-06-24 IN IN2502MUN2014 patent/IN2014MN02502A/en unknown
-
2018
- 2018-03-29 US US15/939,991 patent/US10788558B2/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6380739B1 (en) * | 1999-01-11 | 2002-04-30 | Kabushiki Kaisha Toshiba | Multi-echo sequence based MR imaging for fluid in motion |
| US20040189297A1 (en) * | 2002-12-13 | 2004-09-30 | Michael Bock | Imaging arrangement and process for locally-resolved imaging |
| US7336072B2 (en) * | 2005-02-25 | 2008-02-26 | Siemens Aktiengesellschaft | Method for representation of flow in a magnetic resonance image |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2014003643A1 (en) | 2014-01-03 |
| KR102059408B1 (ko) | 2020-02-11 |
| BR112014032534A2 (pt) | 2017-06-27 |
| AU2013281266A1 (en) | 2015-01-22 |
| BR112014032534B8 (pt) | 2023-02-14 |
| CN104471423B (zh) | 2017-03-29 |
| CN104471423A (zh) | 2015-03-25 |
| JP2015521891A (ja) | 2015-08-03 |
| US20180224514A1 (en) | 2018-08-09 |
| EP2867690A1 (en) | 2015-05-06 |
| KR20150036296A (ko) | 2015-04-07 |
| EP2867690B1 (en) | 2021-11-24 |
| IN2014MN02502A (enExample) | 2015-07-17 |
| EP2867690A4 (en) | 2017-01-25 |
| US20150168527A1 (en) | 2015-06-18 |
| CA2876852A1 (en) | 2014-01-03 |
| US10031204B2 (en) | 2018-07-24 |
| US10788558B2 (en) | 2020-09-29 |
| JP6328624B2 (ja) | 2018-05-23 |
| BR112014032534B1 (pt) | 2021-10-13 |
| CA2876852C (en) | 2020-12-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU2013281266B2 (en) | Quantification of the relative amount of water in the tissue microcapillary network | |
| De Santis et al. | Including diffusion time dependence in the extra-axonal space improves in vivo estimates of axonal diameter and density in human white matter | |
| Kundu et al. | Multi-echo fMRI: A review of applications in fMRI denoising and analysis of BOLD signals | |
| Huang et al. | The impact of gradient strength on in vivo diffusion MRI estimates of axon diameter | |
| Kecskemeti et al. | MPnRAGE: A technique to simultaneously acquire hundreds of differently contrasted MPRAGE images with applications to quantitative T1 mapping | |
| Bosma et al. | Assessment of data acquisition parameters, and analysis techniques for noise reduction in spinal cord fMRI data | |
| Moulin et al. | Effect of flow‐encoding strength on intravoxel incoherent motion in the liver | |
| Horie et al. | Magnetic resonance imaging technique for visualization of irregular cerebrospinal fluid motion in the ventricular system and subarachnoid space | |
| Jeong et al. | High‐resolution DTI of a localized volume using 3D s ingle‐s hot diffusion‐weighted ST imulated e cho‐p lanar i maging (3D ss‐DWSTEPI) | |
| Latt et al. | Accuracy of $ q $-Space Related Parameters in MRI: Simulations and Phantom Measurements | |
| Freidlin et al. | A spin echo sequence with a single-sided bipolar diffusion gradient pulse to obtain snapshot diffusion weighted images in moving media | |
| Shen et al. | Ultra‐high temporal resolution 4D angiography using arterial spin labeling with subspace reconstruction | |
| Young et al. | Feasibility of single breath-hold left ventricular function with 3 Tesla TSENSE acquisition and 3D modeling analysis | |
| JP7150056B2 (ja) | 磁化の反転状態の評価を伴う動脈スピンラベリング法 | |
| Ghosh et al. | Advanced Diffusion Models¹ | |
| Sid et al. | Analytical performance bounds for multi-tensor diffusion-MRI | |
| Skare | Optimisation in strategies in diffusion tensor MR imaging | |
| Bougias et al. | Theory of diffusion tensor imaging and fiber tractography analysis | |
| Özarslan et al. | Rotating field gradient (RFG) MR offers improved orientational sensitivity | |
| Gui et al. | Contribution of cardiac‐induced brain pulsation to the noise of the diffusion tensor in Turboprop diffusion tensor imaging (DTI) | |
| Ellingson et al. | High order diffusion tensor imaging in human glioblastoma | |
| Goryawala et al. | A Path to Establishing MRSI as a Clinical Standard Imaging | |
| Moser et al. | Extraction and validation of correlation lengths from interstitial velocity fields using diffusion-weighted MRI | |
| Daniel et al. | Assessing the Impact of Imaging Parameters on MRI Measurement of Kidney T2 | |
| Hsiao et al. | Study of onset time‐shift and injection duration in DCE‐MRI: a comparison of a reference region model with the general kinetic model |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FGA | Letters patent sealed or granted (standard patent) | ||
| PC | Assignment registered |
Owner name: RANDOM WALK IMAGING AB Free format text: FORMER OWNER(S): CR DEVELOPMENT AB |