AT216303B - Verfahren zum Biegen und Deformieren von kristallinen, spröden Stoffen - Google Patents
Verfahren zum Biegen und Deformieren von kristallinen, spröden StoffenInfo
- Publication number
- AT216303B AT216303B AT848659A AT848659A AT216303B AT 216303 B AT216303 B AT 216303B AT 848659 A AT848659 A AT 848659A AT 848659 A AT848659 A AT 848659A AT 216303 B AT216303 B AT 216303B
- Authority
- AT
- Austria
- Prior art keywords
- crystalline
- bending
- substances
- deforming
- deformation
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 19
- 238000005452 bending Methods 0.000 title claims description 15
- 239000000463 material Substances 0.000 title description 14
- 239000000126 substance Substances 0.000 claims description 28
- 238000010438 heat treatment Methods 0.000 claims description 16
- 239000007787 solid Chemical class 0.000 description 13
- 239000007789 gas Substances 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 238000002844 melting Methods 0.000 description 8
- 238000007792 addition Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 229910052732 germanium Inorganic materials 0.000 description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 229910052787 antimony Inorganic materials 0.000 description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052770 Uranium Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052756 noble gas Inorganic materials 0.000 description 2
- 150000002835 noble gases Chemical class 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- -1 silicides Chemical class 0.000 description 2
- DNYWZCXLKNTFFI-UHFFFAOYSA-N uranium Chemical compound [U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U] DNYWZCXLKNTFFI-UHFFFAOYSA-N 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-UHFFFAOYSA-N Hydrogen atom Chemical compound [H] YZCKVEUIGOORGS-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical class [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- AUCDRFABNLOFRE-UHFFFAOYSA-N alumane;indium Chemical compound [AlH3].[In] AUCDRFABNLOFRE-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- RTCGUJFWSLMVSH-UHFFFAOYSA-N chloroform;silicon Chemical compound [Si].ClC(Cl)Cl RTCGUJFWSLMVSH-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910001502 inorganic halide Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical class ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Silicon Compounds (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
<Desc/Clms Page number 1>
Verfahren zum Biegen und Deformieren von kristallinen, spröden Stoffen
Es wird ein Verfahren beschrieben, das gestattet, in sehr kurzer Zeit Rohre, Leisten, Bänder oder ähnlich geformte Körper aus kristallinen, spröden Stoffen in einfacher Weise gezielt zu deformieren.
Im Gegensatz zu bekannten Verfahren wurde gefunden. dass sich Körper aus kristallinen, spröden Stoffen in sehr kurzer Zeit, z. B. in wenigen Sekunden, biegen, stauchen, dehnen, verdrillen und anderweitig bleibend verformen lassen, wenn das Material an einer begrenzten Strecke verflüssigt, jedoch nicht im ganzen Querschnitt aufgeschmolzen, deformiert und in der gewünschten Verformung erstarren gelassen wird. Nach der Deformation wird die erhitzte Stelle langsam abkühlen gelassen, um mechanische Spannungen an der Deformationsstelle zu vermeiden.
Für viele Zwecke ist es möglich, einfach durch Abschalten der Erhitzungsquelle erstarren und abküh- len zu lassen. Bei besonders spannungsfreiem Material ist es jedoch vorteilhaft, in einem programmgesteuerten Kühlofen die Abkühlung durchzuführen.
Das Verfahren ist anwendbar bei kristallinen, spröden Elementen wie Germanium, Silizium, Bor, Antimon, Arsen, Wismut, Uran ; bei allen kristallinen, spröden Verbindungen wie Siliziden, Nitriden, Boriden, Germaniden, Karbiden, Oxyden, keramischen Stoffen, organischen und anorganischen Haloge- niden, Nitraten, festen Salzen allgemein, bei allen krsitallinen, spröden Legierungen, vornehmlich bei Legierungen, die die Elemente Silizium, Kohlenstoff, Germanium, Indium Aluminium, Arsen, Antimon, Wismut, Gallium, Thallium, Cer, Stickstoff, Phosphor und Uran enthalten.
Als Erhitzungsquelle eignet sich für metallartige Stoffe und Metalle vorteilhaft die induktive Erwärmung mittels elektrischer Hoch- oder Mitteltrequenz, vornehmlich das Gebiet von 1 KHz aufwärts. Für Silizium, Germanium und Bor ist das Frequenzgebiet von 10 KHz bis zirka 100 KHz vorteilhaft anzuwenden. Es wurde gefunden, dass bei höherer Frequenz die Schmelzzone genauer in ihren Ausmassen, insbesondere in ihrer Tiefe, eingestellt werden kann als bei tieferer.
Bei nichtmetallischen Stoffen kann ebenfalls mit elektrischer Hochfrequenz erhitzt werden, wenn die Energie dem Werkstück kapazitiv zugeführt wird. In diesem Falle arbeitet man vorteilhafterweise im Gebiet von ein bis mehreren tausend KHz. Welche Art der Erwärmung benützt wird, hängt vornehmlich von der Art des Stoffes ab, insbesondere davon, welchen Temperaturgang seine elektrischen Eigenschaften besitzen. So gibt es Stoffe, die bei Zimmsrtemperatur sich nicht induktiv erwärmen lassen, jedoch bei erhöhter Temperatur dies tun. In diesen Fällen wird der zu deformierende Körper an der vorgesehenen Stelle mit andern bekannten Mitteln bis zur Aufnahme der induktiven Leistung erhitzt.
Es eignen sich ferner heisse, scharf gebündelte Gasstrahlen, so z. B. hocherhitzte Edelgase, Wasserstoff, Stickstoff, sowie Gasstrahlen aus atomaren Gasen, wie z. B. atomarer Wasserstoff. Aber auch gewöhnliche, ausreichend heisse Flammen sind geeignet, wenn das Material durch die Gase der Flamme nicht verunreinigt oder verändert wird. Während der Erhitzung ist es günstig, das Werkstück zu bewegen, um die Oberfläche gleichmässig zu erwärmen.
Bei Stäben, Rohren, Bändern und ähnlichen Körpern lässt man das Werkstück beispielsweise um die Längsachse rotieren und benützt eine ringbrennerförmige Erhitzungsvorrichtung.
Das gilt auch für den Fall der Erhitzung mittels einer elektrischen Entladung, z. B. mittels eines Lichtbogens oder Glimmlichtbogens.
<Desc/Clms Page number 2>
Für eine Reihe von Stoffen eignet sich ferner die Erhitzung mittels Elektronenbombardement, Lichtenergie in scharf gebündelter Form oder gewöhnlicher Strahlungswärme.
Die Erhitzung mittels Strahlungswärme ist einfach durchzutühren und eignet sich für alle genannten Stoffe. In allen Fällen kann die Erwärmung von einer oder mehreren Richtungen aus auf das bewegte oder ruhende Werkstück einwirken.
Ein Weg, die Deformationsstelle ausreichend hoch zu erhitzen, ist die Erwärmung mittels direktem Stromdurchgang mittels Gleich-oderWechselstrom. Wird die Deformationsstelle ausreichend isoliert oder zu- satzl1ch mit den bekannten Erlutzungsquellen erhitzt oder warmeisoliert bzw. ihr Querschnitt kleiner als die anliegenden Querschnitte gewählt, so erhitzt sich die Deformationsstelle ausreichend hoch.
Das Deformieren kann je nach Stoff in Luft, Schutzgas, Vakuum oder in einer, die Deformation fördernden Flüssigkeit eriolgen. Bei Stoffen, die leicht verdampfen, ist es meist nötig, bei erhöhtem Druck zu arbeiten.
Als umhüllende Gase, die als Schutzgase dienen können, eignen sich Wasserstoff, Stickstoff, Kohlensäure, Kohlenoxyd, Wasserdampf, Sauerstoff, Edelgase sowie geeignet zusammengesetzte Gemische der genannten Gase sowie bei der Erwärmung entstehende Dämpfe. Dieser Fall trifft bei Stoffen zu, die bei der Erwärmung eine oder mehrere Komponenten abgeben können, z. B. Antimon, Schwefel, Phosphor.
Als Flüssigkeiten eignen sich Öle, Salzschmelzen und oxydische Schmelzen wie niedrig schmelzende Gläser.
Der Gasdruck in der Biegevorrichtung muss je nach Stoff oft eine bis mehrere Atmosphären betragen.
Arbeitet man bei Unterdruck, so ist je nach Flüchtigkeit des zu biegenden Stoffes meist der Bereich von 10 -1 bis 10 -3 Torr ausreichend.
Der im Innern der Schmelzzone verbleibende feste Kern richtet sich nach dem Querschnitt der zu deformierenden Stelle des Körpers sowie dessen Sprödigkeit. Bei grossen Querschnitten und mittlerer Sprödigkeit lässt man einen festen Kern bzw. eine äussere feste Zone von zirka 10 bis 90 % des ursprünglichen Querschnittes stehen. Dabei ist zu berücksichtigen, dass nicht immer der feste Anteil von der Schmelzzone vollständig umhüllt sein muss. Beispielsweise bei Bändern erzeugt man nur auf einer Breitseite eine Schmelzzone und lässt auf der andern Seite einen dünnen Steg festen Materials stehen.
Der Erstarrungsvorgang kann so durchgeführt werden, dass an der Deformationsstelle'das Material nach dem Deformieren in einkristalliner oder polykristalliner Form vorliegt. Einkristallines Wachstum wird in bekannter Weise dadurch erreicht, dass man langsam erstarren lässt. Es wird weiterhin durch einen festen Kern oder einen aussenliegenden festen Anteil begünstigt. Arbeitet man mit einem flüssigen Anteil, so kann der Deformationsvorgang gekoppelt werden mit einem Ansetzen eines neuen Werkstückes, z. B. Einführen eines Stabes in die erhitzte Zone und nachfolgendes ErstarreI1lassen.
So lassen sich aus einfachen Stäben z. B. stimmgabelähnliche Körper herstellen. Aber auch komplizierter aufgebaute Körper können so geformt werden.
Mit dem Biegevorgang kann gleichzeitig das Eindiffundieren oder Zusetzen anderer Stoffe erfolgen und so eine Deformation erzeugt werden, die andere Eigenschaften als das Ausgangsmaterial besitzt. Das Zusetzen fremder Stoffe bzw. das Vergüten der Deformationsstelle kann mittels Gasen, Dämpfen oder festen Stoffen erfolgen. Oxydische Schutzschichten werden vorteilhafterweise mit Sauerstoff, der Zusatz von Phosphor mit Phosphorwasserstoff oder Phosphorchloriden, der Zusatz von Stickstoff mit Ammoniak oder Stickstoffgas, der Zusatz von Bor mit Bortrichlorid oder Borwasserstoff, der Zusatz von Schwefel durch Schwefelwasserstoff, Schwefeldampf oder schwefelhaltige Gase erreicht. Silizierungen führt man vorteilhafterweise mit Siliziumwasserstoffen, Siliziumhalogeniden wie z. B. Siliziumchloroform, Siliziumtetrachlorid und Homologen durch.
Bei Halbleitern können allgemein Hydride oder Halogenide der genannten Stoffe bzw. dotierend wirkende Stoffe zum Verändern der Deformationsstelle in p- oder n-Leitern benützt werden.
Die Erhitzungszone kann auch durch Zugabe fester Stoffe in ihren chemischen, elektrischen und mechanischen Eigenschaften verändert werden. Das Aufkohlen der Deformationsstelle oder Verwandeln in Karbide geschieht vorteilhafterweise mit Kohlenwasserstoffen, Öldämpfen oder elementarem Kohlenstoff.
Die Änderungen der Eigenschaften der Deformationsstelle können auch durch flüssige, die Erhitzungsstelle berührende Stoffe geschehen. Arbeitet man bei vermindertem Druck, so können flüchtige Stoffe die Deformationsstelle verlassen. Dadurch erreicht man eine Reinigung und/oder eine Veränderung der chemischen und physikalischen Eigenschaften der Deformationsstelle.
<Desc/Clms Page number 3>
Dr Zusatz von Schutzgas hat nicht nur die Aufgabe, das Material vor Oxydation oder Zerstörung zu schützen. Es kann bei geeigneter Zusammensetzung reinigend wirken und aus der Deformationsstelle ausgedampfte Stoffe abführen.
Beispiel : Ein runder, 1 m langer und 10 mm dicker Siliziumstab hoher Reinheit (100 Ohmcm) wird U-förmig in einer Biegevorrichtung gebogen (Fig. l). Der Siliziumstab 1 liegt in einem Quarzrohr 2 und ruht mit seinem rechten Ende im Halter 3 aus Molybdän, der sich gegebenenfalls auf dem Stab 1 verschieben lässt. Durch das Quarzrohr 2 kann Schutzgas, z. B. Argon, in Pfeilrichtung B nachströmen und die Deformationsstelle vor Oxydation schützen. Das Quarzrohr 2 besitzt auf der rechten Seite einen nach unten gekehrten Schlitz 4, den Fig. 2 aus der Blickrichtung A gemäss Fig. 1 zeigt und der etwa 11-11, 5 mm breit ist.
Mittels eines nicht gekennzeichneten energiereichen Lichtbündels wird der Siliziumstab an der zu biegenden Stelle vorgewärmt und sobald er elektrische Hochfrequenzenergie aus der wassergekühlten HF-Spule 5 aufnimmt, allein weiter auf Schmelztemperatur erhitzt, jedoch in seinem Querschnitt nicht ganz durchgeschmolzen. Die Schmelzzone ist zirka 10 mm breit und der nicht geschmolzene Kern liegt in den meisten Fällen bei 1 - 4 mm. Ist die Schmelzzone in ihrer Länge und Breite eingestellt, so lässt man den Halter 3 in der kreisförmigen Nut mit dem Radius rl mit zirka 1 - 300 pro Sekunde um 900 wan-
EMI3.1
EMI3.2
wieder um 900. abgewinkelt und erstarren gelassen.
Der so hergestellte U-förmig gebogene Siliziumstab besitzt im Bogen noch ein gerades Stück, das gegebenenfalls vermieden werden kann, wenn das Abwinkeln des einen Schenkels im Nachführen des andern Schenkels in die HF-Spule kontinuierlich erfolgt. Diese Arbeitsweise benützt man auch bei der Herstellung von Spiralen und Ringen.
Die hier geschilderte Manipulation kann in Fällen, wo keine besonders genauen Endmasse erwünscht sind, auch mit freier Hand ausgeführt werden.
Es ist ferner gelungen, kegelförmige und zylindrische Spiralen aus Silizium, Germanium und Bor sowie Rohrbögen herzustellen. Zum Biegen von Rohren eignet sich vorteilhaft eine Spulenanordnung, die Fig. 4 zeigt.
PATENTANSPRÜCHE :
1. Verfahren zum Biegen und Deformieren von Körpern aus kristallinen, spröden Stoffen, dadurch gekennzeichnet, dass das Material an einer begrenzten Strecke verflüssigt, jedoch nicht im ganzen Querschnitt aufgeschmolzen, deformiert und in der gewünschten Verformung erstarren gelassen wird.
2. Verfahren zum Biegen und Deformieren von Körpern aus kristallinen, spröden Stoffen nach Anspruch 1, dadurch gekennzeichnet, dass ein fester Kern oder eine äussere feste Zone mit & t\ ; a 10-90 % des ursprünglichen Querschnittes bei der Erwärmung aufrechterhalten wird.
3. Verfahren zum Biegen und Deformieren von Körpern aus kristallinen, spröden Stoffen nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass die Temperatur des festen Kerns oder der äusseren festen Zone etwa 1 - 20 0J0 unterhalb des Schmelzpunktes des zu deformierenden Materials liegt.
4. Verfahren zum Biegen und Deformieren von Körpern aus kristallinen, spröden Stoffen nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Biegevorgang in Flüssigkeiten erfolgt.
5. Verfahren zum Biegen und Deformieren von Körpern aus kristallinen, spröden Stoffen nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Erstarrungsvorgang langsam durchgeführt wird.
6. Verfahren zum Biegen und Deformieren von Körpern aus kristallinen, spröden Stoffen nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass bei dem Biegevorgang Stoffe zugesetzt oder abgeführt werden.
**WARNUNG** Ende DESC Feld kannt Anfang CLMS uberlappen**.
Claims (1)
- 7. Verfahren zum Biegen und Deformieren von Körpern aus kristallinen, spröden Stoffen nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Erhitzungszone durch Zugabe oder Abführen von Stoffen in ihren chemischen, elektrischen und mechanischen Eigenschaften verändert wird. **WARNUNG** Ende CLMS Feld Kannt Anfang DESC uberlappen**.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE216303X | 1958-11-26 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| AT216303B true AT216303B (de) | 1961-07-25 |
Family
ID=5828480
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AT848659A AT216303B (de) | 1958-11-26 | 1959-11-23 | Verfahren zum Biegen und Deformieren von kristallinen, spröden Stoffen |
Country Status (1)
| Country | Link |
|---|---|
| AT (1) | AT216303B (de) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5186036A (en) * | 1990-11-13 | 1993-02-16 | Sumitomo Wiring Systems, Ltd. | Cable wire bending method and cable wire bending device |
-
1959
- 1959-11-23 AT AT848659A patent/AT216303B/de active
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5186036A (en) * | 1990-11-13 | 1993-02-16 | Sumitomo Wiring Systems, Ltd. | Cable wire bending method and cable wire bending device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE69802307T2 (de) | Verfahren und vorrichtung zur raffination von silicium | |
| DE3016807A1 (de) | Verfahren zur herstellung von silizium | |
| DE1017795B (de) | Verfahren zur Herstellung reinster kristalliner Substanzen, vorzugsweise Halbleitersubstanzen | |
| DE1187098B (de) | Verfahren zum Herstellen von Koerpern aus hochgereinigtem Halbleitermaterial | |
| DE1885923U (de) | Vorrichtung zur herstellung reinsten siliziums mittels thermischer zersetzung oder thermischer reduktion eines gasfoermigen, siliziumverbindungen enthaltenden frischgasgemisches. | |
| CH497200A (de) | Verfahren zum Eindiffundieren von Fremdstoffen in Halbleiterkörper | |
| DE102006038044A1 (de) | Verfahren und Vorrichtung zur Reinigung von Silicium unter Verwendung eines Elektronenstrahls | |
| DE1292640B (de) | Vorrichtung zum Abscheiden von hochreinem Silicium aus einem hochreinen, eine Siliciumverbindung enthaltenden Reaktionsgas | |
| AT216303B (de) | Verfahren zum Biegen und Deformieren von kristallinen, spröden Stoffen | |
| DE1154701B (de) | Verfahren zum Verformen von Koerpern aus kristallinen, sproeden Werkstoffen | |
| DE2160670C3 (de) | Verfahren zur Herstellung von zylindrischen Körpern aus Halbleitermaterial | |
| DE3504723A1 (de) | Verfahren zum reinigen von silicium | |
| US3551105A (en) | Purification of elemental boron | |
| DE976672C (de) | Verfahren und Einrichtung zum tiegellosen Schmelzen von stabfoermigen Koerpern | |
| DE2454592A1 (de) | Vorrichtung zum abscheiden von silicium an der oberflaeche eines u-foermigen traegerkoerpers aus silicium | |
| DE2455012C3 (de) | Verfahren zur Herstellung von Silicium | |
| DE1145284B (de) | Verfahren zur Herstellung von Rohren aus hochreinen Stoffen | |
| AT220591B (de) | ||
| DE812841C (de) | Verfahren zur Herstellung zusammenhaengender dichter Metallkoerper aus Metallpulver, insbesondere Molybdaen oder Wolfram | |
| DE962393C (de) | Verfahren zum Schutz gegen den oxydativen Zerfall von molybdaendisilizidhaltigen Werkstuecken | |
| DE1267198C2 (de) | Verfahren zum Herstellen einer halbleitenden Verbindung | |
| AT213846B (de) | Verfahren zur Herstellung von kristallinem, sehr reinem Siliziumkarbid, insbesondere für Halbleiter | |
| DE235299C (de) | ||
| DE1521494C (de) | Vorrichtung zum Eindiffundieren von Fremdstoffen in Halbleiterkörper | |
| DE4134984C1 (en) | Prodn. of yttrium-contg. high temp. superconductors - by introducing yttrium by evapn. from yttrium oxide vessel in oxygen@-contg. atmos. and depositing on substrate |