WO2024128214A1 - 作業機械、作業機械の制動システムおよび作業機械の制御方法 - Google Patents

作業機械、作業機械の制動システムおよび作業機械の制御方法 Download PDF

Info

Publication number
WO2024128214A1
WO2024128214A1 PCT/JP2023/044378 JP2023044378W WO2024128214A1 WO 2024128214 A1 WO2024128214 A1 WO 2024128214A1 JP 2023044378 W JP2023044378 W JP 2023044378W WO 2024128214 A1 WO2024128214 A1 WO 2024128214A1
Authority
WO
WIPO (PCT)
Prior art keywords
automatic braking
work machine
braking control
brake
state
Prior art date
Application number
PCT/JP2023/044378
Other languages
English (en)
French (fr)
Inventor
陽 竹野
将広 内海
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Publication of WO2024128214A1 publication Critical patent/WO2024128214A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload

Definitions

  • This disclosure relates to a work machine, a braking system for the work machine, and a method for controlling the work machine.
  • Patent Document 1 discloses a collision prevention control for a wheel loader, an example of a work machine, that detects an obstacle behind the wheel and automatically stops the machine.
  • the area from the wheel loader to the object is divided into three areas, a first area, a second area, and a third area, in order of distance from the object.
  • collision prevention control if an obstacle is present in the first area, which is closest to the wheel loader, the brakes are automatically activated to stop the vehicle from traveling.
  • Patent Document 1 the collision prevention control is released by the operator operating the temporary control release means.
  • the operator needs to keep operating the temporary control release means. In this case, the operator needs to operate the travel of the work machine and the operation of the work equipment while operating the temporary control release means, which may cause problems with driving operations.
  • the objective of this disclosure is to provide a work machine, a braking system for the work machine, and a control method for the work machine that are less likely to interfere with driving operations.
  • the work machine and braking system of the work machine disclosed herein each perform automatic braking control that automatically brakes travel based on the results of obstacle detection.
  • Each of the work machine and braking system of the work machine disclosed herein includes a release device, a travel direction switching device, and a controller.
  • the release device releases the automatic braking control through operation by the operator.
  • the travel direction switching device switches the travel direction through operation by the operator.
  • the controller restores the automatic braking control that was released through operation of the release device based on a travel direction switching signal in the travel direction switching device.
  • the disclosed method for controlling a work machine is a method for controlling a work machine that performs automatic braking control to automatically brake travel based on the results of obstacle detection, and includes a step of canceling the automatic braking control, and a step of restoring the canceled automatic braking control based on a travel direction switching signal.
  • This disclosure makes it possible to realize a work machine, a braking system for the work machine, and a control method for the work machine that are less likely to cause disruption to driving operations.
  • FIG. 1 is a side view showing a configuration of a wheel loader in one embodiment of the present disclosure.
  • FIG. FIG. 2 is a block diagram showing a braking system of the wheel loader of FIG. 1 .
  • FIG. 3 is a hydraulic circuit diagram showing the configuration of the braking device of FIG. 2 .
  • FIG. 1 is a first flow chart showing a control method for a wheel loader in one embodiment of the present disclosure.
  • FIG. 2 is a second flow chart showing a control method for a wheel loader in one embodiment of the present disclosure.
  • FIG. 11 is a diagram showing automatic braking control and ON/OFF transitions of braking operation.
  • FIG. 1 is a side view showing the configuration of a wheel loader 100 (an example of a work machine) in one embodiment of the present disclosure.
  • the wheel loader 100 in this embodiment has a vehicle body 1 and an object sensor 25.
  • the vehicle body 1 has a running body 2 and a working machine 3.
  • the working machine 3 is disposed on the running body 2.
  • the running body 2 has a vehicle frame 10, a pair of front tires 4, a cab 5, an engine room 6, a pair of rear tires 7, and a steering cylinder 9.
  • the wheel loader 100 uses the working machine 3 to perform work such as loading soil and sand.
  • front refers to directions based on the state seen from the operator seated in the driver's seat 5s in the cab 5 as looking forward.
  • the fore-and-aft direction is indicated by Z, with Zf indicating the forward direction and Zb indicating the rearward direction.
  • the body frame 10 is of the so-called articulated type, and has a front frame 11, a rear frame 12, and a connecting shaft portion 13.
  • the front frame 11 is disposed in the forward direction Zf of the rear frame 12.
  • the connecting shaft portion 13 is provided in the center of the body frame 10 in the left-right direction (vehicle width direction), and connects the front frame 11 and the rear frame 12 so that they can rotate with each other.
  • a pair of front tires 4 are attached to the left and right of the front frame 11.
  • a pair of rear tires 7 are attached to the left and right of the rear frame 12.
  • the work machine 3 is driven by hydraulic oil from a work machine pump (not shown).
  • the work machine 3 has a boom 14, a bucket 15, a lift cylinder 16, a bucket cylinder 17, and a bell crank 18.
  • the boom 14 is attached to the front frame 11.
  • the bucket 15 is attached to the tip of the boom 14.
  • the lift cylinder 16 and the bucket cylinder 17 are hydraulic cylinders. One end of the lift cylinder 16 is attached to the front frame 11, and the other end of the lift cylinder 16 is attached to the boom 14. The boom 14 rotates up and down as the lift cylinder 16 expands and contracts. One end of the bucket cylinder 17 is attached to the front frame 11, and the other end of the bucket cylinder 17 is attached to the bucket 15 via a bell crank 18. The bucket 15 rotates up and down as the bucket cylinder 17 expands and contracts.
  • the cab 5 is mounted on the rear frame 12. Inside the cab 5, there are arranged a driver's seat 5s for an operator to sit in, a handle for steering, levers for operating the work equipment 3, various switches, display devices, etc.
  • the engine room 6 is located rearward Zb of the cab 5 and on the rear frame 12, and houses the engine 31.
  • FIG. 2 is a block diagram showing the braking system of the wheel loader in FIG. 1.
  • FIG. 3 is a hydraulic circuit diagram showing the configuration of the braking device in FIG. 2.
  • FIG. 4 is a diagram showing the positions of the travel direction switching device and the release device.
  • FIG. 5 is a block diagram showing the configuration of the operating device, object sensor, and controller in FIG. 2.
  • the braking system of the wheel loader 100 has a drive device 21, a braking device 22, an operating device 23, an object sensor 25, and a controller 26.
  • the drive device 21 drives the wheel loader 100.
  • the brake device 22 brakes the wheel loader 100.
  • the operation device 23 is operated by an operator.
  • the object sensor 25 detects objects (obstacles) around the vehicle body 1.
  • the controller 26 operates the drive device 21 and the brake device 22 based on the operator's operation of the operation device 23 and detection by the object sensor 25.
  • the drive unit 21 has an engine 31 , an HST 32 , a transfer 33 , an axle 34 , the front tires 4 , and the rear tires 7 .
  • the engine 31 is, for example, a diesel engine, and the driving force generated by the engine 31 drives the pump 32a of the HST (HydroStatic Transmission) 32.
  • HST HydroStatic Transmission
  • HST 32 has pump 32a, motor 32b, and hydraulic circuit 32c.
  • Pump 32a is, for example, a swash plate type variable displacement pump, and the angle of the swash plate can be changed by solenoid 32d.
  • Pump 32a is driven by engine 31 to discharge hydraulic oil. The discharged hydraulic oil is sent to motor 32b through hydraulic circuit 32c.
  • Motor 32b is, for example, a swash plate type pump, and the angle of the swash plate can be changed by solenoid 32e.
  • Hydraulic circuit 32c connects pump 32a and motor 32b. Hydraulic circuit 32c has a first drive circuit 32c1 and a second drive circuit 32c2. Hydraulic oil is supplied from pump 32a to motor 32b through first drive circuit 32c1, thereby driving motor 32b in one direction (for example, forward direction). Hydraulic oil is supplied from pump 32a to motor 32b through second drive circuit 32c2, thereby driving motor 32b in the other direction (for example, reverse direction). The direction of hydraulic oil discharged to first drive circuit 32c1 or second drive circuit 32c2 can be changed by solenoid 32d.
  • the transfer 33 distributes the output from the engine 31 to the front and rear axles 34 .
  • a pair of front tires 4 are connected to the front axle 34, and rotate with the distributed output from the engine 31.
  • a pair of rear tires 7 are connected to the rear axle 34, and rotate with the distributed output from the engine 31.
  • the braking device 22 performs braking of the vehicle body 1 based on the operation of a brake pedal 54 and performs automatic braking control of the vehicle body 1 based on a command from a controller 26 .
  • the braking device 22 has a brake valve unit 41, brake circuits 42a, 42b (an example of a service brake), a parking brake 43, hydraulic oil supply passages 44a, 44b, an EPC (Electric Proportional Valve) valve 46, a shuttle valve unit 47, and a tank 48.
  • brake valve unit 41 brake circuits 42a, 42b (an example of a service brake), a parking brake 43, hydraulic oil supply passages 44a, 44b, an EPC (Electric Proportional Valve) valve 46, a shuttle valve unit 47, and a tank 48.
  • An accumulator, pump, etc. are connected to the hydraulic oil supply passages 44a and 44b, and hydraulic oil is supplied.
  • the brake valve unit 41 is operated by a brake pedal 54, which will be described later.
  • the brake valve unit 41 has a rear brake valve 41a and a front brake valve 41b.
  • Each of the rear brake valve 41a and the front brake valve 41b is a three-position change-over valve having three ports.
  • the first port of the rear brake valve 41a is connected to the hydraulic oil supply passage 44a via the accumulator 49a.
  • the second port of the rear brake valve 41a is connected to the tank 48.
  • the third port of the rear brake valve 41a is connected to the rear shuttle valve 47a of the shuttle valve unit 47.
  • the rear brake valve 41a connects the first port to the third port, connects the hydraulic oil supply passage 44a to the rear shuttle valve 47a, and supplies hydraulic oil to the rear shuttle valve 47a.
  • the rear brake valve 41a closes all ports.
  • the rear brake valve 41a connects the second port to the third port, and discharges hydraulic oil between the rear shuttle valve 47a and the rear brake valve 41a to the tank 48.
  • the rear brake valve 41a stops the supply of hydraulic oil to the rear shuttle valve 47a.
  • the first port of the front brake valve 41b is connected to the hydraulic oil supply passage 44b via the accumulator 49b.
  • the second port of the front brake valve 41b is connected to the tank 48.
  • the third port of the front brake valve 41b is connected to the front shuttle valve 47b of the shuttle valve unit 47.
  • the front brake valve 41b connects the first port to the third port, connects the hydraulic oil supply path 44b to the front shuttle valve 47b, and supplies hydraulic oil to the front shuttle valve 47b.
  • the front brake valve 41b closes all ports.
  • the front brake valve 41b connects the second port to the third port, and discharges hydraulic oil between the front shuttle valve 47b and the front brake valve 41b to the tank 48.
  • the front brake valve 41b stops the supply of hydraulic oil to the front shuttle valve 47b.
  • the opening degree of the rear brake valve 41a and the front brake valve 41b is adjusted according to the amount of operation of the brake pedal 54, and the amount of hydraulic oil supplied to the shuttle valve unit 47 is changed. For example, when the amount of operation of the brake pedal 54 is large, the amount of hydraulic oil supplied from the rear brake valve 41a and the front brake valve 41b to the shuttle valve unit 47 increases.
  • the brake circuit 42a is provided on the rear axle 34 ( Figure 2).
  • the brake circuit 42a is connected to the rear shuttle valve 47a.
  • the brake circuit 42b is provided on the front axle 34 ( Figure 2).
  • the brake circuit 42b is connected to the front shuttle valve 47b.
  • Brake circuits 42a and 42b are hydraulic brakes.
  • the braking force of brake circuit 42a increases as the amount or pressure of hydraulic oil supplied from rear shuttle valve 47a increases.
  • the braking force of brake circuit 42b increases as the amount or pressure of hydraulic oil supplied from front shuttle valve 47b increases.
  • the EPC valve 46 is connected to the hydraulic oil supply line 44b.
  • the EPC valve 46 is a solenoid valve having three ports. The first port of the EPC valve 46 is connected to the hydraulic oil supply line 44b. The second port of the EPC valve 46 is connected to the tank 48. The third port of the EPC valve 46 is connected to the shuttle valve unit 47.
  • the EPC valve 46 When in the open state, the EPC valve 46 connects the first port and the third port, and supplies hydraulic oil from the hydraulic oil supply passage 44b to the shuttle valve unit 47.
  • the opening of the EPC valve 46 is adjusted based on instructions from the controller 26, and the amount of hydraulic oil supplied to the shuttle valve unit 47 is changed.
  • the EPC valve 46 When the EPC valve 46 is in the closed state, the first port is closed, the second port is connected to the third port, and the hydraulic oil in the flow path from the EPC valve 46 to the shuttle valve unit 47 is discharged to the tank 48. As a result, when the EPC valve 46 is in the closed state, the supply of hydraulic oil from the hydraulic oil supply path 44b to the shuttle valve unit 47 is stopped.
  • the controller 26 controls the EPC valve 46 to the open state when the wheel loader 100 is traveling in a specified direction (for example, the backward direction Zb) and it is determined that there is a high risk of collision with an object in the traveling direction.
  • a specified direction for example, the backward direction Zb
  • the shuttle valve unit 47 has a rear shuttle valve 47a and a front shuttle valve 47b.
  • the rear shuttle valve 47a supplies the hydraulic oil supplied via the rear brake valve 41a or the hydraulic oil supplied via the EPC valve 46, whichever is under higher pressure, to the brake circuit 42a.
  • the front shuttle valve 47b supplies the hydraulic oil supplied via the front brake valve 41b or the hydraulic oil supplied via the EPC valve 46, whichever is under higher pressure, to the brake circuit 42b.
  • the brake that can be switched between a braking state and a non-braking state by the brake circuits 42a and 42b is, for example, a wet multi-disc brake.
  • the wet multi-disc brake mainly has multiple discs, plates, pistons, and springs. Each of the multiple discs is integrated with an output shaft to the front tire 4 or rear tire 7.
  • the plates are arranged alternately with the discs, attached to a fixed member, and do not rotate.
  • the pistons are operated by the hydraulic pressure of the hydraulic oil supplied to the brake circuits 42a and 42b. When the pistons are operated, the plates are sandwiched and pressed between the multiple discs. This activates the wet multi-disc brake and puts it into a braking state.
  • the parking brake 43 is provided on the transfer 33.
  • the parking brake 43 for example, a wet multi-stage brake that can be switched between a braking state and a non-braking state, a disc brake, etc. can be used.
  • the operation device 23 is operated by an operator who sits inside the cab 5 (FIG. 1).
  • the operation device 23 includes a start device 51, a release device 52, a travel direction switching device 53, a brake pedal 54, an accelerator 55, and a parking switch 56.
  • the starting device 51 is provided inside the cab 5.
  • the starting device 51 is, for example, a key switch.
  • the operator can switch the key switch 51 from the OFF state to the ON state by inserting a key into the key switch 51 or other operations. This causes the key switch 51 to send an operation signal indicating the ON state or OFF state to the controller 26.
  • the controller 26 receives an operation signal indicating the ON state, it controls the engine 31 to start and initiates automatic braking control.
  • the controller 26 receives an operation signal indicating the OFF state, it stops the engine 31.
  • the release device 52 is provided in the cab 5.
  • the release device 52 may be arranged in a console 61 arranged to the side of the driver's seat 5s as shown in FIG. 4.
  • one of a number of switches 63 arranged in the console 61 may be set to the release device 52.
  • An armrest 62 may be arranged between the driver's seat 5s and the console 61.
  • the operator releases the automatic braking control by operating the release device 52.
  • the operator's operation causes the release device 52 to send a release signal to the controller 26.
  • the controller 26 receives the release signal, it closes the EPC valve 46 and releases the automatic braking control.
  • the travel direction switching device 53 is provided inside the cab 5. As shown in FIG. 4, the travel direction switching device 53 may be a lever 64 that protrudes from the steering column, or may be a lever that protrudes from the floor of the cab 5.
  • the travel direction switching device 53 is, for example, an FNR lever.
  • the FNR lever 53 can be in the forward (F), neutral (N), or reverse (R) lever positions.
  • An operation signal indicating the lever position of the FNR lever 53 is sent to the controller 26, and the controller 26 switches the travel direction to forward, neutral, or reverse by controlling the solenoid 32d.
  • a potentiometer may be used as a position detection sensor that detects the lever position of the FNR lever 53, or a switch may be provided for each of the forward position, reverse position, and neutral position. In addition, both the potentiometer and the switch may be provided so that erroneous operation of either one can be detected.
  • the brake pedal 54 is provided inside the cab 5.
  • the brake pedal 54 adjusts the opening of the rear brake valve 41a and the front brake valve 41b of the brake valve unit 41.
  • the accelerator 55 is provided inside the cab 5. The operator operates the accelerator 55 to set the throttle opening. The accelerator 55 generates an opening signal indicating the amount of accelerator operation and transmits it to the controller 26. The controller 26 controls the rotation speed of the engine 31 based on the transmitted signal.
  • the parking switch 56 is provided inside the cab 5 and is a switch that can be switched between on and off, and transmits a signal indicating the state to the controller 26.
  • the controller 26 sets the parking brake 43 to an applied or unapplied state based on the transmitted signal.
  • the object sensor 25 detects objects around the vehicle body 1.
  • the object sensor 25 detects objects located in the traveling direction of the wheel loader 100.
  • the object sensor 25 is a rear detection unit that detects objects in the rear direction Zb of the vehicle body 1 when the wheel loader 100 travels in the rear direction Zb.
  • the object sensor 25 is a front detection unit that detects objects in the forward direction Zf of the vehicle body 1 when the wheel loader 100 travels in the forward direction Zf.
  • the object sensor 25 is a rear detection unit
  • the rear detection unit 25 is attached, for example, to the rear end of the vehicle body 1 as shown in FIG. 1, but may be attached elsewhere.
  • the front detection unit 25 may be attached, for example, to the cab 5, to the front frame 11, or elsewhere.
  • the object sensor 25 may be, for example, a LiDAR (Light Detection and Ranging) that emits laser light to acquire information about an object.
  • the object sensor 25 may also be a Radar (Radio Detection and Ranging) that acquires information about an object by emitting radio waves.
  • the radar may be, for example, a millimeter wave radar that uses a receiving antenna to detect how millimeter wave band radio waves emitted from a transmitting antenna are reflected off the surface of an object and returned.
  • the object sensor 25 may be a visual sensor including a camera.
  • the object sensor 25 may be an infrared sensor.
  • Information detected by the object sensor 25 is transmitted to the controller 26, which determines whether or not an object is present in the direction of travel of the vehicle body 1.
  • the controller 26 also calculates the distance to the detected object.
  • the controller 26 may determine whether or not there is a high risk that the vehicle body 1 will collide with the object based on the distance to the detected object, etc.
  • the controller 26 includes a processor, a main memory, and a storage.
  • the processor is, for example, a central processing unit (CPU).
  • the main memory includes, for example, a non-volatile memory such as a read only memory (ROM) and a volatile memory such as a random access memory (RAM).
  • ROM read only memory
  • RAM random access memory
  • the controller 26 may be mounted on the wheel loader 100, or may be disposed remotely outside the wheel loader 100. When the controller 26 is disposed remotely outside the wheel loader 100, the controller 26 may be wirelessly connected to the drive device 21, the braking device 22, the operation device 23, the object sensor 25, etc.
  • the controller 26 reads the program stored in the storage, expands it into the main memory, and executes a predetermined process according to the program.
  • the controller 26 may be divided into a collision detection controller and an HST controller.
  • the collision detection controller and the HST controller may have separate CPUs.
  • the program may also be distributed to the controller 26 via a network.
  • the controller 26 has a start information acquisition unit 26A, a release information acquisition unit 26B, and an automatic braking control unit 27.
  • the automatic braking control unit 27 has a driving direction information acquisition unit 27A, a driving direction determination unit 27B, an object information acquisition unit 27C, an object determination unit 27D, and an EPC valve control unit 27E.
  • the start information acquisition unit 26A acquires an operation signal indicating an ON state or an OFF state from the initiating device 51.
  • the start information acquisition unit 26A acquires an operation signal indicating an ON state from the initiating device 51, it outputs the acquired signal to the automatic braking control unit 27.
  • the automatic braking control unit 27 starts automatic braking control when it acquires an operation signal indicating the ON state from the start information acquisition unit 26A.
  • the state in which automatic braking control has been started means a state in which the controller 26 can automatically control the opening and closing operation of the EPC valve 46 based on the detection results of the travel direction switching device 53 and the detection results of the object sensor 25.
  • the EPC valve 46 can be controlled to open and close between a closed state and an open state.
  • the driving direction information acquisition unit 27A acquires a switching signal of the driving direction switching device 53.
  • the driving direction information acquisition unit 27A outputs the acquired switching signal of the driving direction switching device 53 to the driving direction determination unit 27B.
  • the travel direction determination unit 27B acquires the switching signal of the travel direction switching device 53, it determines whether the travel direction of the wheel loader 100 is a specified direction (for example, the backward direction Zb) based on the switching signal of the travel direction switching device 53.
  • the travel direction determination unit 27B outputs the determination result to the EPC valve control unit 27E.
  • the driving direction determination unit 27B may determine that the vehicle body 1 is traveling in a predetermined direction (reverse state) when the lever position of the driving direction switching device 53 is in a predetermined direction (for example, the backward direction Zb) even if the wheels 4, 7 are not rotating and are stationary.
  • the object information acquisition unit 27C acquires the detection result of the object sensor 25.
  • the object information acquisition unit 27C outputs the acquired detection result of the object sensor 25 to the object determination unit 27D.
  • the object determination unit 27D determines whether there is a high risk of the vehicle body 1 colliding with an object based on the detection result of the object sensor 25, etc., and outputs the determination result to the EPC valve control unit 27E.
  • the EPC valve control unit 27E controls the opening and closing operation of the EPC valve 46 based on the judgment results of the driving direction judgment unit 27B and the object judgment unit 27D. Specifically, during execution of automatic braking control, if the EPC valve control unit 27E obtains, for example, a judgment result by the driving direction judgment unit 27B that the driving direction is the rear direction Zb and a judgment result by the object judgment unit 27D that there is a high risk of the vehicle body 1 colliding with an object, it outputs an open command (command current) to the EPC valve 46 so that the EPC valve 46 is in an open state. Based on this command current, the solenoid of the EPC valve 46 is operated, and the EPC valve 46 is in an open state. When the EPC valve 46 is in an open state, hydraulic oil is supplied from the rear shuttle valve 47a and the front shuttle valve 47b to the brake circuits 42a and 42b, and a braking operation is performed.
  • command current command current
  • the state in which braking is being performed means that braking force is being applied by the brake circuits 42a, 42b.
  • An example of a state in which braking is being performed means that, when the brake is a wet multi-disc brake, the plate is sandwiched and pressed between multiple discs.
  • the state in which braking is not being performed means that braking force is not being applied by the brake circuits 42a, 42b.
  • An example of a state in which braking is not being performed means that, when the brake is a wet multi-disc brake, the plate is not sandwiched and pressed between multiple discs.
  • the opening of the EPC valve 46 is adjusted by a command current output from the EPC valve control unit 27E to the EPC valve 46.
  • the command current is set in advance to a predetermined value.
  • the command current may be adjusted based on the distance to the detected object.
  • the EPC valve control unit 27E may calculate the deceleration required to stop in front of the detected object from the distance to the object, and send an open command (command current) to the EPC valve 46 so that the opening is such that this deceleration is achieved.
  • the controller 26 executes automatic braking control that automatically brakes the vehicle's travel based on the results of object detection in the travel direction.
  • the controller 26 automatically controls the vehicle's travel using the braking device 22 based on the results of object detection by the object sensor 25.
  • the automatic braking control is implemented and a braking force is exerted, making it possible to stop the vehicle body 1 before the object.
  • the release information acquisition unit 26B acquires a release signal for the automatic braking control from the release device 52.
  • the release information acquisition unit 26B outputs the acquired release signal to the EPC valve control unit 27E.
  • the EPC valve control unit 27E acquires a release signal during automatic braking control, it controls the EPC valve 47a to be closed based on the release signal.
  • the EPC valve control unit 27E controls the EPC valve 47a to be closed based on the release signal.
  • the controller 26 detects that the release device 52 has been operated during automatic braking control, and releases the automatic braking control based on the release signal from the release device 52.
  • the state in which the automatic braking control is released means a state in which the controller 26 cannot automatically control the opening and closing operation of the EPC valve 46 based on the detection results of the travel direction switching device 53 and the object sensor 25.
  • the EPC valve 47a is in a closed state.
  • a determination result signal indicating that the driving direction has been switched is output from the driving direction determination unit 27B to the EPC valve control unit 27E.
  • the EPC valve control unit 27E acquires a determination result signal indicating that the driving direction has been switched while the automatic braking control is released, it restores (resumes) the automatic braking control.
  • the controller 26 restores the automatic braking control that was released by operating the release device 52 based on a driving direction switching signal in the driving direction switching device 53.
  • the controller 26 restores the automatic braking control when the driving direction switching device is switched, for example, from reverse to forward or neutral.
  • the controller 26 maintains the released state of the automatic braking control until the automatic braking control is restored based on a driving direction switching signal.
  • the above describes the braking operation of the automatic braking control when an object is present behind the vehicle body 1 as the wheel loader 100 moves in reverse, but the braking operation of the automatic braking control in this disclosure can also be applied to a case where an object is present in front of the vehicle body 1 as the wheel loader 100 moves forward.
  • braking operation by automatic braking control is executed when the wheel loader 100 is moving forward and there is a high risk of collision with an object in the forward direction.
  • the automatic braking control is restored when the travel direction switching device 53 is switched to reverse or neutral, other than forward.
  • FIGS. 6 and 7 are first and second flow diagrams, respectively, showing a control method for a wheel loader in one embodiment of the present disclosure.
  • FIG. 8 is a diagram showing automatic braking control and the ON/OFF state transition of braking operation.
  • the operator operates the starting device 51 to start.
  • the operator inserts a key into a key switch corresponding to the starting device 51 to change the wheel loader 100 from the OFF state to the ON state.
  • This causes the starting device 51 to output an operation signal (start information) indicating the ON state to the start information acquisition unit 26A of the controller 26, and the start information acquisition unit 26A acquires the start information (step S1: Figure 6).
  • step S2 When the start information acquisition unit 26A acquires the start information, it outputs the acquired signal to the automatic braking control unit 27.
  • the automatic braking control unit 27 acquires the start information from the start information acquisition unit 26A, it starts automatic braking control (step S2: FIG. 6).
  • state SA automatic braking control is being executed (ON).
  • state SA the conditions for executing braking operation in automatic braking control are not met (for example, the driving direction is reverse and there is a high possibility of a collision with an object in the driving direction), so braking operation is not being executed. For this reason, the EPC valve 46 is in a closed state.
  • the operator operates the release device 52 to release the automatic braking control.
  • the operator operates the switch 63 set as the release device 52 to release the control.
  • a release signal (release information) is output from the release device 52 to the release information acquisition unit 26B of the controller 26.
  • the release information acquisition unit 26B acquires the release information (step S3: Figure 6).
  • the release information acquisition unit 26B acquires the release information
  • the automatic braking control unit 27 acquires the release signal from the release information acquisition unit 26B, it releases (stops) the automatic braking control and maintains the released state (step S4: FIG. 6).
  • release information acquisition unit 26B outputs a release signal to EPC valve control unit 27E, and EPC valve control unit 27E controls EPC valve 47a to maintain the closed state based on the release signal. Since EPC valve 46 is controlled to maintain the closed state, even if the conditions for executing a braking operation in automatic braking control in this state are met (for example, the driving direction is reverse and there is a high possibility of a collision with an object in the driving direction), braking operation is not executed.
  • state SB corresponds to state SB shown in Figure 8.
  • the automatic braking control is released (OFF). Therefore, even if the conditions for executing a braking operation in the automatic braking control are met in state SB (for example, the driving direction is reverse and there is a high possibility of a collision with an object in the driving direction), the braking operation is not executed.
  • the operator operates the travel direction switching device 53 to switch the travel direction.
  • the operator operates the lever 64 set as the travel direction switching device 53 to switch the travel direction.
  • a driving direction switching signal is output from the driving direction switching device 53 to the driving direction information acquisition unit 27A of the controller 26.
  • the driving direction information acquisition unit 27A acquires the driving direction switching signal (step S5: Figure 6).
  • the driving direction information acquisition unit 27A outputs the acquired driving direction switching signal to the driving direction determination unit 27B.
  • the driving direction determination unit 27B determines whether the driving direction has switched based on the driving direction switching signal (step S6: FIG. 6).
  • the driving direction information acquisition unit 27A repeats the acquisition of driving direction information (step S5) and the determination of the driving direction (step S6).
  • step S7 the automatic braking control is restored (restarted) (step S7: FIG. 6). In this way, the release state of the automatic braking control is maintained until the driving direction determination unit 27B determines that the driving direction has changed.
  • This state corresponds to state SA shown in FIG.
  • the present disclosure can also be applied to the case where the states transition in the order of state SA ⁇ state SC ⁇ state SB ⁇ state SA.
  • a control method for the case where the states transition in the order of state SA ⁇ state SC ⁇ state SB ⁇ state SA will be described.
  • step S2 the operator drives the vehicle body 1.
  • the operator sets the driving direction of the driving direction switching device 53 to the direction in which the operator wants to drive, and operates the accelerator 55. This causes the vehicle body 1 to drive in the set driving direction.
  • This driving direction is, for example, the backward direction Zb, and the vehicle body 1 moves backward.
  • the driving direction information acquisition unit 27A of the controller 26 acquires a driving direction switching signal from the driving direction switching device 53 (step S11: Fig. 7).
  • the driving direction information acquisition unit 27A outputs the acquired driving direction switching signal to the driving direction determination unit 27B.
  • the driving direction determination unit 27B acquires the switching signal of the driving direction switching device 53, it determines whether the driving direction is a predetermined direction (for example, the backward direction Zb) based on the switching signal of the driving direction switching device 53 (step S12: Figure 7).
  • step S11 the acquisition of driving direction information
  • step S12 the determination of whether the driving direction is the specified direction or not
  • the object information acquisition unit 27C of the controller 26 acquires the detection result (object information) of the object sensor 25 (step S13: FIG. 7).
  • the object information acquisition unit 27C outputs the acquired detection result of the object sensor 25 to the object determination unit 27D.
  • the object determination unit 27D determines whether there is a high risk of the vehicle body 1 colliding with an object based on the detection result of the object sensor 25, etc. (step S14: FIG. 7).
  • the object determination unit 27D determines that there is not a high risk of the vehicle body 1 colliding with an object, the acquisition of object information (step S13) and the determination of whether or not there is a high risk of collision with an object (step S14) are repeated. On the other hand, if the object determination unit 27D determines that there is a high risk of the vehicle body 1 colliding with an object, the object determination unit 27D outputs the determination result to the EPC valve control unit 27E.
  • the EPC valve control unit 27E executes a braking operation based on the judgment results of the driving direction judgment unit 27B and the object judgment unit 27D (step S15: FIG. 7). For example, when the EPC valve control unit 27E acquires a judgment result that the driving direction is a predetermined direction (for example, the rear direction Zb) and a judgment result that there is a high risk of the vehicle body 1 colliding with an object, it outputs an open command (command current) to the EPC valve 46 so that the EPC valve 46 is in an open state. The solenoid of the EPC valve 46 is operated based on this command current, and the EPC valve 46 is in an open state. When the EPC valve 46 is in an open state, hydraulic oil is supplied from the rear shuttle valve 47a and the front shuttle valve 47b to the brake circuits 42a, 42b, and the braking operation is automatically executed.
  • a predetermined direction for example, the rear direction Zb
  • the solenoid of the EPC valve 46 is operated based on this command current, and the
  • state SC corresponds to state SC shown in FIG. 8.
  • state SC automatic braking control is being executed (ON), braking operation is also being executed (ON), and braking force is acting on the vehicle body 1.
  • the operator operates the release device 52 from state SC to release the automatic braking control.
  • the operator operates the switch 63 set as the release device 52 to release the automatic braking control.
  • control method thereafter is similar to steps S3 to S7 shown in FIG. 6, so the description will not be repeated.
  • steps S11 and S12 in FIG. 7 may be performed after steps S13 and S14, or may be performed simultaneously with steps S13 and S14.
  • the controller 26 may release the automatic braking control by operating the release device 52 before an object is detected in the traveling direction. Also, as shown in the transition from state SA to state SC to state SB to state SA in FIG. 8, the controller 26 may release the automatic braking control by operating the release device 52 when the traveling is braked based on the result of the object detection.
  • the automatic braking control released by operating the release device 52 is restored based on a travel direction switching signal in the travel direction switching device 53.
  • the released state of the automatic braking control is maintained until the automatic braking control is restored based on a travel direction switching signal. Therefore, it is not necessary for the operator to continue operating the release device 52 to keep the automatic braking control released. As a result, it is no longer necessary for the operator to operate the release device 52 when operating the travel of the work machine and the operation of the work equipment, which makes it less likely that interference with driving operations will occur.
  • the braking device 22 automatically brakes the vehicle based on the object detection result by the object sensor 25. This reduces the risk of the vehicle body 1 colliding with an object.
  • controller 26 may control the transition to state SB by operating release device 52 to release the automatic braking control. This makes it possible to release the automatic braking control and continue parking, even if, for example, when parking in a narrow space between two vehicles, the other vehicle itself is mistakenly detected as an obstacle and erroneous braking occurs.
  • the controller 26 may control the state SA before an object is detected to transition to state SB by operating the release device 52 to release the automatic braking control. This improves the operator's freedom of operation.
  • the controller 26 may restore automatic braking control when the driving direction switching device 53 is switched from reverse to forward or neutral. This can reduce the risk of colliding with an object when reversing.
  • the release device 52 is disposed on a console 61 located to the side of the driver's seat 5s where the operator sits. This makes it easy for the operator to operate the release device 52.
  • Appendix 1 A work machine that performs automatic braking control to automatically brake travel based on an obstacle detection result, a release device that releases the automatic braking control by an operator's operation; A travel direction switching device that switches the travel direction by an operator's operation; a controller that restores the automatic brake control released by operation of the release device based on a travel direction switching signal from the travel direction switching device.
  • Appendix 2 A braking device that brakes the vehicle's running; an object sensor that detects an obstacle located in the travel direction of the work machine, 2. The working machine according to claim 1, wherein in the automatic braking control, the controller automatically brakes the traveling of the working machine using the braking device based on a detection result of an obstacle by the object sensor.
  • a braking system for a work machine that performs automatic braking control to automatically brake travel based on an obstacle detection result, a release device that releases the automatic braking control by an operator's operation; A travel direction switching device that switches the travel direction by an operator's operation; a controller that restores the automatic brake control released by operation of the release device based on a travel direction switching signal from the travel direction switching device.
  • a control method for a work machine that performs automatic braking control to automatically brake traveling based on an obstacle detection result comprising: canceling the automatic braking control; A step of restoring the released automatic brake control based on a driving direction switching signal; A method for controlling a work machine comprising the steps of:

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

障害物の検出結果に基づいて走行を自動で制動する自動制動制御が実行される。解除装置(52)は、オペレータの操作により自動制動制御を解除する。走行方向切替装置(53)は、オペレータの操作により走行方向を切り替える。コントローラ(26)は、解除装置(52)の操作により解除された自動制動制御を走行方向切替装置(53)における走行方向の切替信号に基づいて復帰させる。

Description

作業機械、作業機械の制動システムおよび作業機械の制御方法
 本開示は、作業機械、作業機械の制動システムおよび作業機械の制御方法に関する。
 実用新案登録第3219005号(特許文献1)には、作業機械の一例であるホイールローダにおいて、後方の障害物を検出し自動で走行を停止する衝突防止制御が開示されている。
 特許文献1に示すホイールローダでは、ホイールローダから物体までのエリアは、物体からの距離が近い順に第一エリア、第二エリア、および第三エリアの3つのエリアに分けられている。衝突防止制御においては、ホイールローダからの距離が最も近い第一エリアに障害物が存在する場合にブレーキが自動で作動することにより車両の走行が停止する。
実用新案登録第3219005号
 特許文献1において衝突防止制御はオペレータが制御一時解除手段を操作することにより解除される。しかしながら衝突防止制御を解除し続けるためには、オペレータは制御一時解除手段を操作し続ける必要がある。この場合、オペレータは制御一時解除手段を操作しながら作業機械の走行および作業機の動作を操作しなければならず、運転操作に支障が生じる可能性がある。
 本開示の目的は、運転操作に支障が生じにくい作業機械、作業機械の制動システムおよび作業機械の制御方法を提供することである。
 本開示の作業機械および作業機械の制動システムの各々は、障害物の検出結果に基づいて走行を自動で制動する自動制動制御を行う。本開示の作業機械および作業機械の制動システムの各々は、解除装置と、走行方向切替装置と、コントローラとを備える。解除装置は、オペレータの操作により自動制動制御を解除する。走行方向切替装置は、オペレータの操作により走行方向を切り替える。コントローラは、解除装置の操作により解除された自動制動制御を走行方向切替装置における走行方向の切替信号に基づいて復帰させる。
 本開示の作業機械の制御方法は、障害物の検出結果に基づいて走行を自動で制動する自動制動制御を行う作業機械の制御方法であって、自動制動制御を解除するステップと、解除された自動制動制御を走行方向の切替信号に基づいて復帰させるステップとを備える。
 本開示によれば、運転操作に支障が生じにくい作業機械、作業機械の制動システムおよび作業機械の制御方法を実現することができる。
本開示の一実施形態におけるホイールローダの構成を示す側面図である。 図1のホイールローダの制動システムを示すブロック図である。 図2の制動装置の構成を示す油圧回路図である。 走行方向切替装置と解除装置との配置位置を示す図である。 図2の操作装置、物体センサおよびコントローラの構成を示すブロック図である。 本開示の一実施形態におけるホイールローダの制御方法を示す第1フロー図である。 本開示の一実施形態におけるホイールローダの制御方法を示す第2フロー図である。 自動制動制御と制動動作のON・OFFの遷移を示す図である。
 以下、本開示の実施の形態について、図面に基づいて説明する。
 明細書および図面において、同一の構成要素または対応する構成要素には、同一の符号を付し、重複する説明を繰り返さない。また、図面では、説明の便宜上、構成を省略または簡略化している場合もある。また、実施の形態と変形例との少なくとも一部は、互いに任意に組み合わされてもよい。
 <ホイールローダ100の構成>
 本実施形態におけるホイールローダ100の構成について図1を用いて説明する。
 図1は、本開示の一実施形態におけるホイールローダ100(作業機械の一例)の構成を示す側面図である。図1に示されるように、本実施形態におけるホイールローダ100は、車両本体1と、物体センサ25とを有している。車両本体1は、走行体2と、作業機3とを有している。作業機3は、走行体2に配置されている。走行体2は、車体フレーム10と、一対のフロントタイヤ4と、キャブ5と、エンジンルーム6と、一対のリアタイヤ7と、ステアリングシリンダ9とを有している。ホイールローダ100は、作業機3を用いて土砂積み込み作業などを行う。
 なお、以下の説明において、「前」、「後」、「右」、「左」、「上」、および「下」とはキャブ5内の運転席5sに着座したオペレータから前方を見た状態を基準とする方向を示す。図1では、前後方向をZで示し、前方向を示すときはZf、後方向を示すときはZbで示す。
 車体フレーム10は、いわゆるアーティキュレート式であり、フロントフレーム11と、リアフレーム12と、連結軸部13とを有している。フロントフレーム11は、リアフレーム12の前方向Zfに配置されている。連結軸部13は、車体フレーム10における左右方向(車幅方向)の中央に設けられており、フロントフレーム11と、リアフレーム12とを互いに回動可能に連結している。一対のフロントタイヤ4は、フロントフレーム11の左右に取り付けられている。また、一対のリアタイヤ7は、リアフレーム12の左右に取り付けられている。
 作業機3は、図示しない作業機ポンプからの作動油によって駆動される。作業機3は、ブーム14と、バケット15と、リフトシリンダ16と、バケットシリンダ17と、ベルクランク18とを有している。ブーム14は、フロントフレーム11に装着されている。バケット15は、ブーム14の先端に取り付けられている。
 リフトシリンダ16およびバケットシリンダ17は、油圧シリンダである。リフトシリンダ16の一端はフロントフレーム11に取り付けられており、リフトシリンダ16の他端はブーム14に取り付けられている。リフトシリンダ16の伸縮により、ブーム14が上下に回動する。バケットシリンダ17の一端はフロントフレーム11に取り付けられており、バケットシリンダ17の他端はベルクランク18を介してバケット15に取り付けられている。バケットシリンダ17が伸縮することによって、バケット15が上下に回動する。
 キャブ5は、リアフレーム12上に載置されている。キャブ5の内部には、オペレータが着座するための運転席5s、ステアリング操作のためのハンドル、作業機3を操作するためのレバー、各種のスイッチ、表示装置などが配置されている。エンジンルーム6は、キャブ5の後方向Zbであってリアフレーム12上に配置されており、エンジン31を収納している。
 <ホイールローダ100の制動システム>
 次に、本実施形態におけるホイールローダ100の制動システムについて図2~図5を用いて説明する。
 図2は、図1のホイールローダの制動システムを示すブロック図である。図3は、図2の制動装置の構成を示す油圧回路図である。図4は、走行方向切替装置と解除装置との配置位置を示す図である。図5は、図2の操作装置、物体センサおよびコントローラの構成を示すブロック図である。
 図2に示されるように、ホイールローダ100の制動システムは、駆動装置21と、制動装置22と、操作装置23と、物体センサ25と、コントローラ26とを有している。
 駆動装置21は、ホイールローダ100の駆動を行う。制動装置22は、ホイールローダ100の制動を行う。操作装置23は、オペレータによって操作される。物体センサ25は、車両本体1の周囲の物体(障害物)を検出する。コントローラ26は、操作装置23に対するオペレータの操作および物体センサ25による検出に基づいて、駆動装置21および制動装置22の操作を行う。
 (駆動装置21)
 図2に示されるように、駆動装置21は、エンジン31と、HST32と、トランスファ33と、アクスル34と、フロントタイヤ4と、リアタイヤ7とを有している。
 エンジン31は、たとえばディーゼル式のエンジンであり、エンジン31で発生した駆動力がHST(Hydro Static Transmission)32のポンプ32aを駆動する。
 HST32は、ポンプ32aと、モータ32bと、油圧回路32cとを有している。ポンプ32aは、たとえば斜板式可変容量型のポンプであって斜板の角度をソレノイド32dによって変更することができる。ポンプ32aがエンジン31によって駆動されることにより作動油を吐出する。吐出された作動油は、油圧回路32cを通ってモータ32bに送られる。モータ32bは、たとえば斜板式ポンプであって、斜板の角度をソレノイド32eによって変更することができる。
 油圧回路32cは、ポンプ32aとモータ32bとを接続している。油圧回路32cは、第1駆動回路32c1と、第2駆動回路32c2とを有している。作動油が、ポンプ32aから第1駆動回路32c1を通じてモータ32bに供給されることにより、モータ32bが一方向(たとえば、前進方向)に駆動される。作動油が、ポンプ32aから第2駆動回路32c2を通じてモータ32bに供給されることにより、モータ32bが他方向(たとえば、後進方向)に駆動される。なお、作動油の第1駆動回路32c1または第2駆動回路32c2への吐出方向はソレノイド32dによって変更することができる。
 トランスファ33は、エンジン31からの出力を前後のアクスル34に分配する。
 前側のアクスル34には一対のフロントタイヤ4が接続されており、分配されたエンジン31からの出力で回転する。また、後側のアクスル34には一対のリアタイヤ7が接続されており、分配されたエンジン31からの出力で回転する。
 (制動装置22)
 図2に示されるように、制動装置22は、ブレーキペダル54の操作に基づく車両本体1の制動の実施およびコントローラ26からの指令に基づく車両本体1の自動制動制御の実施を行う。
 制動装置22は、ブレーキ弁ユニット41と、ブレーキ回路42a、42b(サービスブレーキの一例)と、パーキングブレーキ43と、作動油供給路44a、44bと、EPC(Electric Proportional Valve)弁46と、シャトル弁ユニット47と、タンク48とを有している。
 作動油供給路44a、44bには、アキュームレータ、ポンプなどが接続されており、作動油が供給される。
 図3に示されるように、ブレーキ弁ユニット41は、後述するブレーキペダル54によって操作される。ブレーキ弁ユニット41は、リア用ブレーキ弁41aと、フロント用ブレーキ弁41bとを有している。リア用ブレーキ弁41aおよびフロント用ブレーキ弁41bの各々は、3つのポートを有する3位置切替弁である。
 リア用ブレーキ弁41aの第1ポートは、アキュームレータ49aを介して作動油供給路44aに接続されている。また、リア用ブレーキ弁41aの第2ポートは、タンク48に接続されている。リア用ブレーキ弁41aの第3ポートは、シャトル弁ユニット47のリア用シャトル弁47aに接続されている。
 リア用ブレーキ弁41aは、第1状態において第1ポートと第3ポートを繋ぎ、作動油供給路44aとリア用シャトル弁47aとを接続し、リア用シャトル弁47aに作動油を供給する。リア用ブレーキ弁41aは、第2状態において、全てのポートを閉じる。リア用ブレーキ弁41aは、第3状態において第2ポートと第3ポートとを接続し、リア用シャトル弁47aとリア用ブレーキ弁41aとの間の作動油をタンク48に排出する。リア用ブレーキ弁41aは、第2状態および第3状態において、リア用シャトル弁47aへの作動油の供給を停止する。
 フロント用ブレーキ弁41bの第1ポートは、アキュームレータ49bを介して作動油供給路44bに接続されている。また、フロント用ブレーキ弁41bの第2ポートは、タンク48に接続されている。フロント用ブレーキ弁41bの第3ポートは、シャトル弁ユニット47のフロント用シャトル弁47bに接続されている。
 フロント用ブレーキ弁41bは、第1状態において第1ポートと第3ポートとを繋ぎ、作動油供給路44bとフロント用シャトル弁47bとを接続し、フロント用シャトル弁47bに作動油を供給する。フロント用ブレーキ弁41bは、第2状態において、全てのポートを閉じる。フロント用ブレーキ弁41bは、第3状態において第2ポートと第3ポートとを接続し、フロント用シャトル弁47bとフロント用ブレーキ弁41bとの間の作動油をタンク48に排出する。フロント用ブレーキ弁41bは、第2状態および第3状態において、フロント用シャトル弁47bへの作動油の供給を停止する。
 ブレーキペダル54の操作量に応じてリア用ブレーキ弁41aおよびフロント用ブレーキ弁41bの開度が調整され、シャトル弁ユニット47に供給される作動油の量が変更される。たとえばブレーキペダル54の操作量が大きい場合には、リア用ブレーキ弁41aおよびフロント用ブレーキ弁41bからシャトル弁ユニット47に供給される作動油の量が多くなる。
 ブレーキ回路42aは、リアのアクスル34(図2)に設けられている。ブレーキ回路42aは、リア用シャトル弁47aに接続されている。ブレーキ回路42bは、フロントのアクスル34(図2)に設けられている。ブレーキ回路42bは、フロント用シャトル弁47bに接続されている。
 ブレーキ回路42a、42bは、油圧式のブレーキである。ブレーキ回路42aは、リア用シャトル弁47aから供給される作動油の量が多いまたは圧が大きいほど制動力が強くなる。ブレーキ回路42bは、フロント用シャトル弁47bから供給される作動油の量が多いまたは圧が大きいほど制動力が強くなる。
 EPC弁46は、作動油供給路44bに接続されている。EPC弁46は、3つのポートを有するソレノイド弁である。EPC弁46の第1ポートは、作動油供給路44bに接続されている。EPC弁46の第2ポートは、タンク48に接続されている。EPC弁46の第3ポートは、シャトル弁ユニット47に接続されている。
 EPC弁46は、開状態において、第1ポートと第3ポートとを接続し、作動油供給路44bから供給される作動油をシャトル弁ユニット47に供給する。EPC弁46は、コントローラ26からの指示に基づいて開度が調整され、シャトル弁ユニット47に供給される作動油の量が変更される。
 EPC弁46は、閉状態において、第1ポートが閉じられ、第2ポートと第3ポートとを接続し、EPC弁46からシャトル弁ユニット47までの流路の作動油をタンク48に排出する。これにより、EPC弁46は、閉状態において、作動油供給路44bからシャトル弁ユニット47への作動油の供給を停止する。
 本実施形態では、コントローラ26は、ホイールローダ100が所定方向(たとえば後方向Zb)に走行し、かつ走行方向の物体と衝突のリスクが高いと判定したときにEPC弁46を開状態に制御する。
 シャトル弁ユニット47は、リア用シャトル弁47aと、フロント用シャトル弁47bとを有している。リア用シャトル弁47aは、リア用ブレーキ弁41aを介して供給される作動油と、EPC弁46を介して供給される作動油のうち圧力が大きい方の作動油をブレーキ回路42aに供給する。フロント用シャトル弁47bは、フロント用ブレーキ弁41bを介して供給される作動油と、EPC弁46を介して供給される作動油とのうち圧力が大きい方の作動油をブレーキ回路42bに供給する。
 このような構成により、ブレーキペダル54が操作されずブレーキ弁ユニット41から作動油が供給されない場合でも、コントローラ26からの指示によってEPC弁46が開状態にされると、リア用シャトル弁47aおよびフロント用シャトル弁47bからブレーキ回路42a、42bに作動油が供給され、自動制動制御が実施される。
 ブレーキ回路42a、42bにより制動状態と非制動状態とを切り替えられるブレーキは、たとえば湿式多板ディスクブレーキである。湿式多板ディスクブレーキは、複数のディスクと、プレートと、ピストンと、スプリングとを主に有している。複数のディスクの各々は、フロントタイヤ4またはリアタイヤ7への出力軸と一体となっている。プレートは、ディスクと交互に配置され、固定部材に取り付けられ、回転しない。ピストンは、ブレーキ回路42a、42bに供給される作動油の油圧により作動する。ピストンが作動することにより、プレートが複数のディスクの間で挟み込まれて押圧される。これにより湿式多板ディスクブレーキは作動し、制動状態となる。またブレーキ回路42a、42bへの作動油の供給が停止されると、スプリングの反発力(復元力)でピストンは元の位置に復帰し、プレートとディスクとの押圧状態が解除される。これにより湿式多板ディスクブレーキは非制動状態となる。
 図2に示されるように、パーキングブレーキ43は、トランスファ33に設けられている。パーキングブレーキ43としては、たとえば、制動状態と非制動状態とを切り替え可能な湿式多段式のブレーキ、ディスクブレーキなどを用いることができる。
 (操作装置23)
 図2に示されるように、操作装置23は、キャブ5(図1)内に搭乗したオペレータにより操作される。操作装置23は、開始装置51と、解除装置52と、走行方向切替装置53と、ブレーキペダル54と、アクセル55と、パーキングスイッチ56とを有している。
 開始装置51は、キャブ5内に設けられている。開始装置51は、たとえばキースイッチである。オペレータは、キースイッチ51にキーを挿し込むなどの操作によりOFF状態からON状態への切り替えが可能となる。これによりキースイッチ51からON状態またはOFF状態を示す操作信号がコントローラ26に送信される。コントローラ26は、ON状態の操作信号を取得すると、エンジン31が始動するよう制御するとともに、自動制動制御を開始する。またコントローラ26は、OFF状態の操作信号を取得すると、エンジン31を停止する。
 解除装置52は、キャブ5内に設けられている。解除装置52は、図4に示されるように運転席5sの側方に配置されたコンソール61に配置されていてもよい。たとえばコンソール61に配置された複数のスイッチ63のいずれか1つが解除装置52に設定されてもよい。運転席5sとコンソール61との間にはアームレスト62が配置されていてもよい。
 図2に示されるように、オペレータは、解除装置52を操作して自動制動制御を解除する。オペレータの操作により解除装置52から解除信号がコントローラ26に送信される。コントローラ26は、解除信号を取得すると、EPC弁46を閉状態として自動制動制御を解除する。
 走行方向切替装置53は、キャブ5内に設けられている。走行方向切替装置53は、図4に示されるように、ステアリングコラムから突き出すタイプのレバー64であってもよく、またキャブ5の床から突き出すタイプのレバーであってもよい。
 図2に示されるように、オペレータは、走行方向切替装置53を操作してホイールローダ100の走行方向を設定する。走行方向切替装置53はたとえばFNRレバーである。FNRレバー53は、前進(F)、中立(N)、または後進(R)のレバー位置をとることができる。FNRレバー53のレバー位置を示す操作信号がコントローラ26に送信され、コントローラ26は、ソレノイド32dを制御することにより走行方向を前進、中立、または後進に切り替える。
 FNRレバー53のレバー位置を検出する位置検出センサとして、ポテンショメータが用いられてもよいし、前進位置、後進位置および中立位置ごとにスイッチが設けられていてもよい。また、ポテンショメータとスイッチのうち一方が誤操作しても検出可能なように双方が設けられていてもよい。
 ブレーキペダル54は、キャブ5内に設けられている。ブレーキペダル54は、ブレーキ弁ユニット41のリア用ブレーキ弁41aおよびフロント用ブレーキ弁41bの開度を調整する。
 アクセル55は、キャブ5内に設けられている。オペレータは、アクセル55を操作してスロットル開度を設定する。アクセル55は、アクセル操作量を示す開度信号を生成してコントローラ26へ送信する。コントローラ26は、送信される信号に基づいてエンジン31の回転速度を制御する。
 パーキングスイッチ56は、キャブ5内に設けられており、オン・オフに状態を切り替え可能なスイッチであり、その状態を示す信号をコントローラ26に送信する。コントローラ26は、送信される信号に基づいてパーキングブレーキ43を制動状態または非制動状態にする。
 (物体センサ25)
 図2に示されるように、物体センサ25は、車両本体1の周囲の物体を検出する。物体センサ25は、ホイールローダ100の走行方向に位置する物体を検出する。具体的には物体センサ25は、ホイールローダ100が後方向Zbに走行する場合には車両本体1の後方向Zbの物体を検出する後方検出部である。また物体センサ25は、ホイールローダ100が前方向Zfに走行する場合には車両本体1の前方向Zfの物体を検出する前方検出部である。
 物体センサ25が後方検出部である場合、後方検出部25は、たとえば、図1に示すように車両本体1の後端に取り付けられるが、後端以外に取り付けられてもよい。物体センサ25が前方検出部である場合、前方検出部25は、たとえばキャブ5に取り付けられてもよく、フロントフレーム11に取り付けられてもよく、またこれら以外に取り付けられてもよい。
 物体センサ25は、たとえばレーザ光を射出して対象物の情報を取得するLiDAR(Light Detection and Ranging)である。物体センサ25は、電波を射出することにより対象物の情報を取得するRadar(Radio Detection and Ranging)であってもよい。Radarは、たとえば送信アンテナから発したミリ波帯の電波が物体の表面で反射して戻ってくる様子を受信アンテナで検出するミリ波レーダであってもよい。物体センサ25は、カメラを含む視覚センサであってもよい。物体センサ25は、赤外線センサであってもよい。
 物体センサ25によって検出された情報がコントローラ26に送信され、コントローラ26は、車両本体1の走行方向に物体が存在するか否かを判定する。またコントローラ26は、検出した物体までの距離を算出する。コントローラ26は、検出した物体までの距離などに基づいて、車両本体1がその物体に衝突するリスクが高いか否かを判定してもよい。
 (コントローラ26)
 コントローラ26は、プロセッサと、メインメモリと、ストレージとを含む。プロセッサはたとえばCPU(Central Processing Unit)などである。メインメモリは、たとえばROM(Read Only Memory)のような不揮発性メモリおよびRAM(Random Access Memory)のような揮発性メモリを含む。
 コントローラ26は、ホイールローダ100に搭載されていてもよく、ホイールローダ100の外部に離れて配置されていてもよい。コントローラ26がホイールローダ100の外部に離れて配置されている場合、コントローラ26は、駆動装置21、制動装置22、操作装置23、物体センサ25などと無線により接続されていてもよい。
 コントローラ26は、ストレージに記憶されているプログラムを読み出してメインメモリに展開し、プログラムに従って所定の処理を実行する。コントローラ26は、衝突検出用コントローラとHST用コントローラとに分かれていてもよい。衝突検出用コントローラとHST用コントローラとは別々のCPUを有していてもよい。またプログラムは、ネットワークを介してコントローラ26に配信されてもよい。
 図5に示されるように、コントローラ26は、開始情報取得部26Aと、解除情報取得部26Bと、自動制動制御部27とを有している。自動制動制御部27は、走行方向情報取得部27Aと、走行方向判定部27Bと、物体情報取得部27Cと、物体判定部27Dと、EPC弁制御部27Eとを有している。
 開始情報取得部26Aは、開始装置51からON状態またはOFF状態を示す操作信号を取得する。開始情報取得部26Aは、開始装置51からON状態を示す操作信号を取得すると、取得した信号を自動制動制御部27へ出力する。
 自動制動制御部27は、開始情報取得部26AからON状態を示す操作信号を取得すると自動制動制御を開始する。自動制動制御が開始された状態(ON状態)とは、コントローラ26が走行方向切替装置53の検出結果および物体センサ25の検出結果に基づいてEPC弁46の開閉動作を自動で制御できる状態を意味する。自動制動制御が開始された状態においては、EPC弁46は閉状態と開状態との間で開閉状態を制御可能である。
 自動制動制御部27が自動制動制御を開始すると、走行方向情報取得部27Aは走行方向切替装置53の切替信号を取得する。走行方向情報取得部27Aは、取得した走行方向切替装置53の切替信号を走行方向判定部27Bへ出力する。
 走行方向判定部27Bは走行方向切替装置53の切替信号を取得すると、ホイールローダ100の走行方向が所定方向(たとえば後方向Zb)か否かを走行方向切替装置53の切替信号に基づいて判定する。走行方向判定部27Bは、判定結果をEPC弁制御部27Eへ出力する。
 なお走行方向判定部27Bは、車輪4、7が回転していない停止状態であっても、走行方向切替装置53のレバー位置が所定方向(たとえば後方向Zb)となっている場合、車両本体1が所定方向に走行している状態(後進状態)であると判定してもよい。
 また自動制動制御部27が自動制動制御を開始すると、物体情報取得部27Cは物体センサ25の検出結果を取得する。物体情報取得部27Cは、取得した物体センサ25の検出結果を物体判定部27Dへ出力する。物体判定部27Dは、車両本体1が物体に衝突するリスクが高いか否かを物体センサ25の検出結果などに基づいて判定し、判定結果をEPC弁制御部27Eへ出力する。
 EPC弁制御部27Eは、自動制動制御の実行中には走行方向判定部27Bの判定結果と物体判定部27Dの判定結果とに基づいてEPC弁46の開閉動作を制御する。具体的には、自動制動制御の実行中においてEPC弁制御部27Eが、たとえば走行方向が後方向Zbであるとの走行方向判定部27Bによる判定結果と、車両本体1が物体に衝突するリスクが高いとの物体判定部27Dの判定結果とを取得した場合には、EPC弁46が開状態となるようにEPC弁46に開指令(指令電流)を出力する。この指令電流に基づいてEPC弁46のソレノイドが操作され、EPC弁46は開状態となる。EPC弁46が開状態にされると、リア用シャトル弁47aおよびフロント用シャトル弁47bからブレーキ回路42a、42bに作動油が供給され、制動動作が実行される。
 制動動作が実行されている状態(ON状態)とは、ブレーキ回路42a、42bによる制動力が働いている状態を意味する。制動動作が実行されている場合の一例は、ブレーキが湿式多板ディスクブレーキである場合、プレートが複数のディスクの間で挟み込まれて押圧されることを意味する。一方、制動動作が実行されていない状態(OFF状態)とは、ブレーキ回路42a、42bによる制動力が働いていない状態を意味する。制動動作が実行されていない場合の一例は、ブレーキが湿式多板ディスクブレーキである場合、プレートが複数のディスクの間で挟み込まれて押圧されていないことを意味する。
 EPC弁46の開度は、EPC弁制御部27EからEPC弁46へ出力される指令電流により調整される。本例において指令電流は、予め所定の値となるように設定されている。なお指令電流は、検出された物体までの距離に基づいて調整されてもよい。たとえばEPC弁制御部27Eが、検出された物体までの距離から物体の手前で停止するための減速度を算出し、その減速度を発揮する開度になるようにEPC弁46に開指令(指令電流)を送信してもよい。
 このようにコントローラ26は、走行方向における物体の検出結果に基づいて走行を自動で制動する自動制動制御を実行する。コントローラ26は、自動制動制御において、物体センサ25による物体の検出結果に基づいて制動装置22により走行を自動で制御する。これによりオペレータによってブレーキペダル54の操作が行われない場合であっても自動制動制御が実施されて制動力が発揮され、物体の手前で車両本体1を停止することができる。
 解除情報取得部26Bは、解除装置52から自動制動制御の解除信号を取得する。解除情報取得部26Bは、取得した解除信号をEPC弁制御部27Eへ出力する。EPC弁制御部27Eは、自動制動制御中に解除信号を取得すると、解除信号に基づいてEPC弁47aが閉状態となるように制御する。EPC弁制御部27Eは、解除信号に基づいてEPC弁47aを閉状態となるように制御する。EPC弁46が閉状態とされると、リア用シャトル弁47aおよびフロント用シャトル弁47bからブレーキ回路42a、42bへの作動油の供給が停止され、自動制動制御が解除される。
 このようにコントローラ26は、自動制動制御中において解除装置52の操作がなされたことを検出して、解除装置52からの解除信号に基づいて自動制動制御を解除する。自動制動制御が解除された状態(OFF状態)とは、コントローラ26が走行方向切替装置53の検出結果および物体センサ25の検出結果に基づいてEPC弁46の開閉動作を自動で制御できない状態を意味する。自動制動制御が解除された状態(OFF状態)においてはEPC弁47aを閉状態となっている。
 なお自動制動制御が解除された場合においても、EPC弁制御部27Eには、少なくとも走行方向判定部27Bによる判定結果が入力され続ける。ただし自動制動制御が解除された場合、EPC弁47aを閉状態となっているため、EPC弁制御部27Eに走行方向判定部27Bによる判定結果が入力されても、EPC弁46が開状態となることはない。このため自動制動制御が解除された場合に自動制動制御による制動力は発揮されない。
 このように自動制動制御による制動力が発揮されない場合でも、図2に示されるようにオペレータがブレーキペダル54を操作した場合には、ブレーキ弁ユニット41から作動油がシャトル弁ユニット47に供給されてブレーキ回路42a、42bが作動する。
 図5に示されるように、自動制動制御の解除状態において走行方向切替装置53により走行方向が切り替えられた場合、走行方向が切り替えられたことを示す判定結果の信号が走行方向判定部27BからEPC弁制御部27Eへ出力される。EPC弁制御部27Eは、自動制動制御の解除状態において走行方向が切り替えられたことを示す判定結果の信号を取得した場合、自動制動制御を復帰(再開)させる。
 このようにコントローラ26は、解除装置52の操作により解除された自動制動制御を走行方向切替装置53における走行方向の切替信号に基づいて復帰させる。コントローラ26は、走行方向切替装置がたとえば後進から前進または中立に切り替えられた場合に自動制動制御を復帰させる。コントローラ26は、解除装置52により自動制動制御が解除された後は、走行方向の切替信号に基づいて自動制動制御を復帰させるまでは自動制動制御の解除状態を維持する。
 なお上記においてはホイールローダ100が後進する際に車両本体1の後方向に物体が存在する場合の自動制動制御の制動動作について説明したが、本開示における自動制動制御の制動動作はホイールローダ100が前進する際に車両本体1の前方向に物体が存在する場合にも同様に適用可能である。この場合には、ホイールローダ100が前進中でかつ前方向の物体との衝突リスクが大きい場合に自動制動制御による制動動作が実行される。また自動制動制御が解除装置52の操作により解除された後には、走行方向切替装置53を前進以外の後進または中立に切り替えた際に自動制動制御が復帰する。
 <ホイールローダ100の制御方法>
 次に、本実施形態におけるホイールローダ100の制御方法について図6~図8を用いて説明する。
 図6および図7は、それぞれ本開示の一実施形態におけるホイールローダの制御方法を示す第1フロー図および第2フロー図である。図8は、自動制動制御と制動動作のON状態・OFF状態の遷移を示す図である。
 図5および図6に示されるように、オペレータが開始装置51を開始操作する。たとえばオペレータは、開始装置51に対応するキースイッチにキーを挿し込んでホイールローダ100がOFF状態からON状態となるように操作する。これにより開始装置51からON状態を示す操作信号(開始情報)がコントローラ26の開始情報取得部26Aへ出力され、開始情報取得部26Aが開始情報を取得する(ステップS1:図6)。
 開始情報取得部26Aが開始情報を取得すると、取得した信号を自動制動制御部27へ出力する。自動制動制御部27は、開始情報取得部26Aから開始情報を取得すると自動制動制御を開始する(ステップS2:図6)。
 この状態は、図8に示す状態SAに対応する。状態SAにおいては、自動制動制御は実行(ON)されている。しかしながら状態SAにおいては、自動制動制御における制動動作を実行するための条件(たとえば走行方向が後進であり、走行方向の物体と衝突の可能性が高い)を満たしていないため、制動動作は実行されていない。このためEPC弁46は閉じた状態にある。
 この状態SAからオペレータが解除装置52を操作して自動制動制御の解除操作をする。たとえばオペレータは、図4に示されるように、解除装置52として設定されたスイッチ63を操作して解除操作をする。
 図5および図6に示されるように、解除装置52の解除操作により、解除装置52から解除信号(解除情報)がコントローラ26の解除情報取得部26Bへ出力される。これにより解除情報取得部26Bが解除情報を取得する(ステップS3:図6)。
 解除情報取得部26Bは解除情報を取得すると、取得した信号を自動制動制御部27へ出力する。自動制動制御部27は、解除情報取得部26Bから解除信号を取得すると自動制動制御を解除(停止)し、その解除状態を維持する(ステップS4:図6)。
 具体的には解除情報取得部26Bが解除信号をEPC弁制御部27Eへ出力し、EPC弁制御部27Eは解除信号に基づいてEPC弁47aが閉状態を維持するように制御する。EPC弁46が閉状態を維持するように制御されるため、この状態で自動制動制御における制動動作を実行するための条件(たとえば走行方向が後進であり、走行方向の物体と衝突の可能性が高い)が満たされても、制動動作は実行されない。
 この状態は、図8に示す状態SBに対応する。状態SBにおいては、自動制動制御が解除(OFF)されている。このため状態SBにおいて自動制動制御における制動動作を実行するための条件(たとえば走行方向が後進であり、走行方向の物体と衝突の可能性が高い)が満たされても、制動動作は実行されない。
 この状態SBからオペレータが走行方向切替装置53を操作して走行方向切替の操作をする。たとえばオペレータは、図4に示されるように、走行方向切替装置53として設定されたレバー64を操作して走行方向切替の操作をする。
 図5および図6に示されるように、走行方向切替装置53の走行方向切替操作により、走行方向切替装置53から走行方向切替信号がコントローラ26の走行方向情報取得部27Aへ出力される。これにより走行方向情報取得部27Aが走行方向切替信号を取得する(ステップS5:図6)。
 走行方向情報取得部27Aは取得した走行方向切替信号を走行方向判定部27Bへ出力する。走行方向判定部27Bは、走行方向切替信号に基づいて走行方向が切り替わったか否かを判定する(ステップS6:図6)。
 走行方向が切り替わっていないと走行方向判定部27Bが判定する場合には、走行方向情報取得部27Aにより走行方向情報の取得(ステップS5)と走行方向の判定(ステップS6)とが繰り返される。
 走行方向が切り替わったと走行方向判定部27Bが判定する場合には、自動制動制御が復帰(再開)される(ステップS7:図6)。このように自動制動制御の解除状態は、走行方向が切り替わったと走行方向判定部27Bが判定するまで維持される。
 この状態は、図8に示す状態SAに対応する。
 なお上記においては図8において状態SA→状態SB→状態SAの順で状態が遷移する場合について説明したが、状態SA→状態SC→状態SB→状態SAの順で状態が遷移する場合にも本開示は適用できる。以下、状態SA→状態SC→状態SB→状態SAの順で状態が遷移する場合の制御方法について説明する。
 状態SA→状態SC→状態SB→状態SAの順で状態が遷移する場合、図6に示す点P1と点P2との間に図7に示すステップが追加される。
 図6に示されるように、自動制動制御の開始(ステップS2)の後、オペレータが車両本体1を走行させる。この場合、図2に示されるように、オペレータは、走行したい方向へ走行方向切替装置53の走行方向を設定し、アクセル55を操作する。これにより車両本体1は設定された走行方向へ走行する。この走行方向はたとえば後方向Zbであり、車両本体1は後進する。
 図5および図7に示されるように、この際、コントローラ26の走行方向情報取得部27Aは走行方向切替装置53における走行方向の切替信号を取得する(ステップS11:図7)。走行方向情報取得部27Aは、取得した走行方向の切替信号を走行方向判定部27Bへ出力する。
 走行方向判定部27Bは走行方向切替装置53の切替信号を取得すると、走行方向が所定方向(たとえば後方向Zb)であるか否かを走行方向切替装置53の切替信号に基づいて判定する(ステップS12:図7)。
 車両本体1の走行方向が所定方向でないと走行方向判定部27Bが判定した場合には、走行方向情報の取得(ステップS11)と走行方向が所定方向か否かの判定(ステップS12)とが繰り返される。一方、車両本体1の走行方向が所定方向であると走行方向判定部27Bが判定した場合には、走行方向判定部27Bは判定結果をEPC弁制御部27Eへ出力する。
 また自動制動制御が開始(ステップS2)の後、コントローラ26の物体情報取得部27Cは物体センサ25の検出結果(物体情報)を取得する(ステップS13:図7)。物体情報取得部27Cは、取得した物体センサ25の検出結果を物体判定部27Dへ出力する。物体判定部27Dは、車両本体1が物体に衝突するリスクが高いか否かを物体センサ25の検出結果などに基づいて判定する(ステップS14:図7)。
 車両本体1が物体に衝突するリスクが高くないと物体判定部27Dが判定した場合、物体情報の取得(ステップS13)と物体衝突のリスクが高いか否かの判定(ステップS14)とが繰り返される。一方、車両本体1が物体に衝突するリスクが高いと物体判定部27Dが判定した場合、物体判定部27Dは判定結果をEPC弁制御部27Eへ出力する。
 EPC弁制御部27Eは、走行方向判定部27Bの判定結果と物体判定部27Dの判定結果とに基づいて制動動作を実行する(ステップS15:図7)。EPC弁制御部27Eは、たとえば走行方向が所定方向(たとえば後方向Zb)であるとの判定結果と、車両本体1が物体に衝突するリスクが高いとの判定結果とを取得した場合には、EPC弁46が開状態となるようにEPC弁46に開指令(指令電流)を出力する。この指令電流に基づいてEPC弁46のソレノイドが操作され、EPC弁46は開状態となる。EPC弁46が開状態にされると、リア用シャトル弁47aおよびフロント用シャトル弁47bからブレーキ回路42a、42bに作動油が供給され、自動で制動動作が実行される。
 この状態は、図8に示す状態SCに対応する。状態SCにおいては、自動制動制御は実行(ON)されており、制動動作も実行(ON)され車両本体1には制動力が働いている。
 しかしながら、たとえば2台の他の車両の間に駐車するような狭所での駐車の場合には、他の車両自体を障害物と誤検出してしまい、制動しないでよい状況であるにも関わらず意図せずに誤制動を起こす場合がある。このような場合には、自動制動制御を解除して駐車を続行する必要がある。
 そこで、このような場合には状態SCからオペレータが解除装置52を操作して自動制動制御の解除操作をする。たとえばオペレータは、図4に示されるように、解除装置52として設定されたスイッチ63を操作して解除操作をする。
 この後の制御方法は、図6に示されるステップS3~S7と同様であるため、その説明を繰り返さない。
 なお図7におけるステップS11およびS12は、ステップS13およびS14の後であってもよく、またステップS13およびS14と同時であってもよい。
 図8における状態SA→状態SB→状態SAの遷移のように、コントローラ26は、走行方向における物体の検出前に、解除装置52の操作により自動制動制御を解除してもよい。また図8における状態SA→状態SC→状態SB→状態SAの遷移のように、コントローラ26は、物体の検出結果に基づいて走行を制動した状態で、解除装置52の操作により自動制動制御を解除してもよい。
 <効果>
 次に、本実施形態の効果について説明する。
 本開示においては図5に示されるように、解除装置52の操作により解除された自動制動制御が走行方向切替装置53における走行方向の切替信号に基づいて復帰される。これにより自動制動制御が解除された後は、走行方向の切替信号に基づいて自動制動制御が復帰するまでは自動制動制御の解除状態が維持される。このため自動制動制御を解除し続けるためにオペレータが解除装置52を操作し続ける必要がない。これによりオペレータが作業機械の走行および作業機の動作を操作する際に解除装置52を操作する必要がなくなるため運転操作に支障が生じにくくなる。
 また図2に示されるように、上記自動制動制御において、物体センサ25による物体の検出結果に基づいて制動装置22により走行が自動で制動される。これにより車両本体1が物体と衝突するリスクを軽減することができる。
 また図5および図8に示されるように、コントローラ26は、物体の検出結果に基づいて走行を制動した状態SCで、解除装置52の操作により自動制動制御を解除して状態SBに遷移するよう制御してもよい。これによりたとえば2台の車両の間に駐車するような狭所での駐車において他の車両自体を障害物と誤検出して誤制動が生じた場合でも、自動制動制御を解除して駐車を続行することが可能となる。
 また図5および図8に示されるように、コントローラ26は、物体の検出前の状態SAにおいて、解除装置52の操作により自動制動制御を解除して状態SBに遷移するよう制御してもよい。これによりオペレータの操作の自由度が向上する。
 また図5および図8に示されるように、コントローラ26は、走行方向切替装置53が後進から前進または中立に切替えられた場合に自動制動制御を復帰させてもよい。これにより後進時に物体と衝突するリスクを軽減することができる。
 また図4に示されるように、解除装置52は、オペレータが着座するための運転席5sの側方に配置されたコンソール61に配置されている。これによりオペレータにとって解除装置52の操作が容易となる。
 <付記>
 以上の説明は、以下に付記する特徴を含む。
 (付記1)
 障害物の検出結果に基づいて走行を自動で制動する自動制動制御を行う作業機械であって、
 オペレータの操作により前記自動制動制御を解除する解除装置と、
 オペレータの操作により走行方向を切り替える走行方向切替装置と、
 前記解除装置の操作により解除された前記自動制動制御を前記走行方向切替装置における走行方向の切替信号に基づいて復帰させるコントローラと、を備えた、作業機械。
 (付記2)
 走行を制動する制動装置と、
 前記作業機械の走行方向に位置する障害物を検出する物体センサと、をさらに備え、
 前記コントローラは、前記自動制動制御において、前記物体センサによる障害物の検出結果に基づいて前記制動装置により走行を自動で制動する、付記1に記載の作業機械。
 (付記3)
 前記コントローラは、障害物の検出結果に基づいて走行を制動した状態で、前記解除装置の操作により前記自動制動制御を解除する、付記1または付記2に記載の作業機械。
 (付記4)
 前記コントローラは、障害物の検出前に、前記解除装置の操作により前記自動制動制御を解除する、付記1または付記2に記載の作業機械。
 (付記5)
 前記コントローラは、前記走行方向切替装置が後進から前進または中立に切替えられた場合に前記自動制動制御を復帰させる、付記1から付記4のいずれか1つに記載の作業機械。
 (付記6)
 オペレータが着座するための運転席と、
 前記運転席の側方に配置されたコンソールと、をさらに備え、
 前記解除装置は、前記コンソールに配置されている、付記1から付記5のいずれか1つに記載の作業機械。
 (付記7)
 障害物の検出結果に基づいて走行を自動で制動する自動制動制御を行う作業機械の制動システムであって、
 オペレータの操作により前記自動制動制御を解除する解除装置と、
 オペレータの操作により走行方向を切り替える走行方向切替装置と、
 前記解除装置の操作により解除された前記自動制動制御を前記走行方向切替装置における走行方向の切替信号に基づいて復帰させるコントローラと、を備えた、作業機械の制動システム。
 (付記8)
 障害物の検出結果に基づいて走行を自動で制動する自動制動制御を行う作業機械の制御方法であって、
 前記自動制動制御を解除するステップと、
 解除された前記自動制動制御を走行方向の切替信号に基づいて復帰させるステップと、
を備えた、作業機械の制御方法。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 車両本体、2 走行体、3 作業機、4 フロントタイヤ、5 キャブ、5s 運転席、6 エンジンルーム、7 リアタイヤ、9 ステアリングシリンダ、10 車体フレーム、11 フロントフレーム、12 リアフレーム、13 連結軸部、14 ブーム、15 バケット、16 リフトシリンダ、17 バケットシリンダ、18 ベルクランク、21 駆動装置、22 制動装置、23 操作装置、25 物体センサ、26 コントローラ、26A 開始情報取得部、26B 解除情報取得部、27 自動制動制御部、27A 走行方向情報取得部、27B 走行方向判定部、27C 物体情報取得部、27D 物体判定部、27E 弁制御部、31 エンジン、32a ポンプ、32b モータ、32c 油圧回路、32c1 第1駆動回路、32c2 第2駆動回路、32d,32e ソレノイド、33 トランスファ、34 アクスル、41 ブレーキ弁ユニット、41a リア用ブレーキ弁、41b フロント用ブレーキ弁、42a,42b ブレーキ回路、43 パーキングブレーキ、44a,44b 作動油供給路、46 EPC弁、47 シャトル弁ユニット、47a リア用シャトル弁、47b フロント用シャトル弁、48 タンク、49a,49b アキュームレータ、51 開始装置、52 解除装置、53 走行方向切替装置、54 ブレーキペダル、55 アクセル、56 パーキングスイッチ、61 コンソール、62 アームレスト、63 スイッチ、64 レバー、100 ホイールローダ。

Claims (8)

  1.  障害物の検出結果に基づいて走行を自動で制動する自動制動制御を行う作業機械であって、
     オペレータの操作により前記自動制動制御を解除する解除装置と、
     オペレータの操作により走行方向を切り替える走行方向切替装置と、
     前記解除装置の操作により解除された前記自動制動制御を前記走行方向切替装置における走行方向の切替信号に基づいて復帰させるコントローラと、を備えた、作業機械。
  2.  走行を制動する制動装置と、
     前記作業機械の走行方向に位置する障害物を検出する物体センサと、をさらに備え、
     前記コントローラは、前記自動制動制御において、前記物体センサによる障害物の検出結果に基づいて前記制動装置により走行を自動で制動する、請求項1に記載の作業機械。
  3.  前記コントローラは、障害物の検出結果に基づいて走行を制動した状態で、前記解除装置の操作により前記自動制動制御を解除する、請求項1に記載の作業機械。
  4.  前記コントローラは、障害物の検出前に、前記解除装置の操作により前記自動制動制御を解除する、請求項1に記載の作業機械。
  5.  前記コントローラは、前記走行方向切替装置が後進から前進または中立に切替えられた場合に前記自動制動制御を復帰させる、請求項1に記載の作業機械。
  6.  オペレータが着座するための運転席と、
     前記運転席の側方に配置されたコンソールと、をさらに備え、
     前記解除装置は、前記コンソールに配置されている、請求項1から請求項5のいずれか1項に記載の作業機械。
  7.  障害物の検出結果に基づいて走行を自動で制動する自動制動制御を行う作業機械の制動システムであって、
     オペレータの操作により前記自動制動制御を解除する解除装置と、
     オペレータの操作により走行方向を切り替える走行方向切替装置と、
     前記解除装置の操作により解除された前記自動制動制御を前記走行方向切替装置における走行方向の切替信号に基づいて復帰させるコントローラと、を備えた、作業機械の制動システム。
  8.  障害物の検出結果に基づいて走行を自動で制動する自動制動制御を行う作業機械の制御方法であって、
     前記自動制動制御を解除するステップと、
     解除された前記自動制動制御を走行方向の切替信号に基づいて復帰させるステップと、を備えた、作業機械の制御方法。
PCT/JP2023/044378 2022-12-16 2023-12-12 作業機械、作業機械の制動システムおよび作業機械の制御方法 WO2024128214A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-201324 2022-12-16
JP2022201324A JP2024086279A (ja) 2022-12-16 2022-12-16 作業機械、作業機械の制動システムおよび作業機械の制御方法

Publications (1)

Publication Number Publication Date
WO2024128214A1 true WO2024128214A1 (ja) 2024-06-20

Family

ID=91485835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/044378 WO2024128214A1 (ja) 2022-12-16 2023-12-12 作業機械、作業機械の制動システムおよび作業機械の制御方法

Country Status (2)

Country Link
JP (1) JP2024086279A (ja)
WO (1) WO2024128214A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3219005U (ja) * 2018-09-10 2018-11-22 大成ロテック株式会社 建設車両
JP2019043364A (ja) * 2017-09-01 2019-03-22 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
JP2020032953A (ja) * 2018-08-31 2020-03-05 日本道路株式会社 産業用車両の衝突防止システム
JP2021054307A (ja) * 2019-09-30 2021-04-08 株式会社小松製作所 作業機械および作業機械の制御方法
JP2021093124A (ja) * 2019-12-03 2021-06-17 株式会社豊田自動織機 産業車両
JP2022150637A (ja) * 2021-03-26 2022-10-07 株式会社小松製作所 作業機械および作業機械の制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019043364A (ja) * 2017-09-01 2019-03-22 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
JP2020032953A (ja) * 2018-08-31 2020-03-05 日本道路株式会社 産業用車両の衝突防止システム
JP3219005U (ja) * 2018-09-10 2018-11-22 大成ロテック株式会社 建設車両
JP2021054307A (ja) * 2019-09-30 2021-04-08 株式会社小松製作所 作業機械および作業機械の制御方法
JP2021093124A (ja) * 2019-12-03 2021-06-17 株式会社豊田自動織機 産業車両
JP2022150637A (ja) * 2021-03-26 2022-10-07 株式会社小松製作所 作業機械および作業機械の制御方法

Also Published As

Publication number Publication date
JP2024086279A (ja) 2024-06-27

Similar Documents

Publication Publication Date Title
WO2022201805A1 (ja) 作業機械および作業機械の制御方法
CN111788360A (zh) 作业车辆
US20220259831A1 (en) Work machine, and method for controlling work machine
JP2001130282A (ja) 自動差動係止装置
JP7481983B2 (ja) 作業機械および作業機械の制御方法
GB2463648A (en) Braking system having a dual slave cylinder arrangement
JP4439183B2 (ja) ブレーキ制御機構
EP3868620B1 (en) Vehicle propelled with a hydrostatic drive unit and braking method
WO2013145337A1 (ja) 作業車両及び作業車両の制御方法
JP4758075B2 (ja) 作業車両の制御装置
WO2024128214A1 (ja) 作業機械、作業機械の制動システムおよび作業機械の制御方法
JP7527168B2 (ja) 作業機械
JP2012086619A (ja) アーティキュレート車両における小旋回制御装置
WO2024142905A1 (ja) 作業機械および作業機械の制御方法
CA2358193C (en) Force feedback and pressure equalization brake system
WO2024142906A1 (ja) 作業機械、作業機械の制動システムおよび作業機械の制御方法
WO2024166849A1 (ja) 作業機械、作業機械のシステムおよび作業機械の制御方法
JP2021107689A (ja) 作業車両
JP6852257B2 (ja) 作業車両
JP4796432B2 (ja) 作業車両の走行停止制御装置
JP2003185006A (ja) 作業車両の変速制御装置
JPH09207806A (ja) クローラ走行式作業車の操向操作装置
JPH065934Y2 (ja) 作業車の駐車ブレ−キ操作部
JP5156811B2 (ja) 作業車両の制御装置
JP3982036B2 (ja) 動力農機の前輪駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23903498

Country of ref document: EP

Kind code of ref document: A1