WO2024099361A1 - 一种烷基羧酸类化合物的晶型及其应用 - Google Patents

一种烷基羧酸类化合物的晶型及其应用 Download PDF

Info

Publication number
WO2024099361A1
WO2024099361A1 PCT/CN2023/130485 CN2023130485W WO2024099361A1 WO 2024099361 A1 WO2024099361 A1 WO 2024099361A1 CN 2023130485 W CN2023130485 W CN 2023130485W WO 2024099361 A1 WO2024099361 A1 WO 2024099361A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
crystal form
present
crystal
Prior art date
Application number
PCT/CN2023/130485
Other languages
English (en)
French (fr)
Inventor
罗云富
戈伟智
苏胜
张国利
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Publication of WO2024099361A1 publication Critical patent/WO2024099361A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • A61K31/167Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/30Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms containing six-membered aromatic rings

Definitions

  • the present invention relates to a crystal form of an alkyl carboxylic acid compound and an application thereof, and in particular to a crystal form of a compound represented by formula (I) and an application thereof.
  • Soluble guanylate cyclase is a receptor enzyme for the second messenger nitric oxide (NO) and is widely present in several cell types including muscle, epithelium, neurons, and endothelial cells.
  • sGC is a heterodimer composed of an ⁇ 1 or ⁇ 2 subunit bound to a ⁇ 1 subunit.
  • the ⁇ 1 subunit contains a heme prosthetic group and is a key signal transduction enzyme in the NO-sGC-cGMP signaling pathway.
  • NO binds to the heme prosthetic group of sGC and, after activation, catalyzes the conversion of guanosine-5'-triphosphate (GTP) to cyclic guanosine monophosphate (cGMP).
  • GTP guanosine-5'-triphosphate
  • cGMP cyclic guanosine monophosphate
  • cGMP is an important secondary messenger molecule. It activates multiple effector molecules downstream, such as phosphodiesterase (PDE), cyclic nucleotide-gated ion channels (CNG) and protein kinase (PKG), and then triggers a series of downstream cascade reactions. It plays important physiological functions in the gastrointestinal system, blood circulation system and nervous system, such as promoting vascular and smooth muscle relaxation, inhibiting platelet aggregation, vascular remodeling, cell apoptosis and inflammation, and participating in neurotransmission.
  • PDE phosphodiesterase
  • CNG cyclic nucleotide-gated ion channels
  • PKG protein kinase
  • sGC stimulators can be used as a potential therapeutic method for the treatment of cardiovascular diseases (heart failure, pulmonary hypertension, angina pectoris, myocardial infarction) and fibrotic diseases (renal fibrosis, systemic sclerosis).
  • cardiovascular diseases heart failure, pulmonary hypertension, angina pectoris, myocardial infarction
  • fibrotic diseases renal fibrosis, systemic sclerosis.
  • long-term oxidative stress can lead to the oxidation of the heme prosthetic group of sGC (from ferrous state to ferric state), which makes the sGC enzyme unable to be activated by NO, which may promote the deterioration of the disease process.
  • endothelial dysfunction atherosclerosis, hypertension, stable or unstable angina pectoris, thrombosis, myocardial infarction, stroke or erectile dysfunction. Therefore, activation of oxidized sGC to produce cGMP makes it possible to treat and/or prevent such diseases.
  • sGC activators are NO-independent and heme-independent and can directly activate the sGC-cGMP signaling pathway. This has the potential to provide benefits in many diseases caused by defective NO pathway signaling, especially after oxidative stress.
  • the present invention provides a new class of compound crystal forms and a preparation method thereof.
  • Such compounds can be used as activators of soluble guanylate cyclase, have excellent in vitro stimulating activity on soluble guanylate cyclase, and have good pharmacokinetic properties.
  • the present invention provides a crystalline form A of a compound of formula (I), whose X-ray powder diffraction spectrum has characteristic diffraction peaks at the following 2 ⁇ angles: 15.540 ⁇ 0.200°, 16.100 ⁇ 0.200° and 17.601 ⁇ 0.200°,
  • the X-ray powder diffraction pattern of the above-mentioned crystal form A of the compound of formula (I) has characteristic diffraction peaks at the following 2 ⁇ angles: 11.041 ⁇ 0.200°, 14.381 ⁇ 0.200°, 15.540 ⁇ 0.200°, 16.100 ⁇ 0.200°, 17.601 ⁇ 0.200°, 18.281 ⁇ 0.200°, 18.799 ⁇ 0.200° and 22.903 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form A of the compound of formula (I) has characteristic diffraction peaks at the following 2 ⁇ angles: 3.441 ⁇ 0.200°, 8.113 ⁇ 0.200°, 8.799 ⁇ 0.200°, 11.041 ⁇ 0.200°, 14.381 ⁇ 0.200°, 15.540 ⁇ 0.200°, 16.100 ⁇ 0.200°, 17.601 ⁇ 0.200°, 18.281 ⁇ 0.200°, 18.799 ⁇ 0.200°, 22.903 ⁇ 0.200° and 23.682 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the crystal form A of the compound of formula (I) has characteristic diffraction peaks at the following 2 ⁇ angles: 3.441 ⁇ 0.200°, 7.198 ⁇ 0.200°, 8.113 ⁇ 0.200°, 8.799 ⁇ 0.200°, 11.041 ⁇ 0.200°, 13.863 ⁇ 0.200°, 14.38 1 ⁇ 0.200°, 15.540 ⁇ 0.200°, 16.100 ⁇ 0.200°, 17.601 ⁇ 0.200°, 18.281 ⁇ 0.200°, 18.799 ⁇ 0.200°, 19.523 ⁇ 0.200°, 22.903 ⁇ 0.200°, 23.682 ⁇ 0.200° and 24.940 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the crystal form A of the compound of formula (I) has characteristic diffraction peaks at the following 2 ⁇ angles: 3.441 ⁇ 0.200°, and/or 7.198 ⁇ 0.200°, and/or 8.113 ⁇ 0.200°, and/or 8.799 ⁇ 0.200°, and/or 9.914 ⁇ 0.200°, and/or 11.041 ⁇ 0.200°, and/or 11.8 80 ⁇ 0.200°, and/or 13.863 ⁇ 0.200°, and/or 14.381 ⁇ 0.200°, and/or 15.540 ⁇ 0.200°, and/or 16.100 ⁇ 0.200°, and/or 17.063 ⁇ 0.200°, and/or 17.601 ⁇ 0.200°, and/or 18.281 ⁇ 0.200°, and/or 18.799 ⁇ 0.200°, and/or 19 .523 ⁇ 0.200°, and/or 20.333 ⁇ 0.200°, and/or 21.164 ⁇ 0.200°, and/or 21.7
  • the XRPD pattern of Form A of the compound of formula (I) is shown in FIG1 .
  • the XRPD spectrum analysis data of the A crystal form of the compound of formula (I) above is shown in Table 1.
  • the differential scanning calorimetry curve of the above-mentioned crystal form A of the compound of formula (I) has an onset value of the endothermic peak at 164.69°C ⁇ 5.00°C.
  • the DSC spectrum of the crystal form A of the compound of formula (I) is shown in Figure 2.
  • thermogravimetric analysis curve of the Form A of the compound of formula (I) above shows no weight loss before the melting point.
  • the TGA spectrum of the crystal form A of the compound of formula (I) is shown in FIG3 .
  • the present invention also provides the use of the crystal form A of the compound of formula (I) in the preparation of a drug for treating chronic kidney disease.
  • the compound of the present invention has significant in vitro stimulating activity on guanylate cyclase and has excellent pharmacokinetic properties.
  • the compound of the present invention has stable crystal form, no or almost no hygroscopicity, and is less affected by light and heat.
  • the intermediate compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, embodiments formed by combining them with other chemical synthesis methods, and equivalent substitutions well known to those skilled in the art. Preferred embodiments include but are not limited to the embodiments of the present invention.
  • the relative intensity of the diffraction peaks can change due to the preferred orientation caused by factors such as crystal morphology, which is well known in the field of crystallography. Where there is a preferred orientation effect, the peak intensity changes, but the diffraction peak position of the crystal form cannot be changed. In addition, for any given crystal form, there may be a slight error in the position of the peak, which is also well known in the field of crystallography. For example, due to changes in temperature when analyzing a sample, movement of the sample, or calibration of the instrument, the position of the peak can move, and the measurement error of the 2 ⁇ value is sometimes about ⁇ 0.2 degrees. Therefore, it is well known to those skilled in the art that this error should be taken into account when determining each crystalline structure.
  • DSC measures the transition temperature when a crystal absorbs or releases heat due to changes in its crystalline structure or melting of the crystal.
  • the error of thermal transition temperature and melting point is typically within about 5°C or 3°C.
  • DSC peak or melting point this refers to the DSC peak or melting point ⁇ 5°C or ⁇ 3°C.
  • DSC provides an auxiliary method for distinguishing different crystal forms. Different crystalline forms can be identified based on their different transition temperature characteristics. It should be pointed out that for mixtures, their DSC peaks or melting points may vary over a larger range.
  • the melting temperature is related to the heating rate.
  • the TGA weight loss temperature may vary due to factors such as the measuring instrument, measuring method/conditions, etc.
  • the weight loss temperature may have an error of about ⁇ 5°C or about ⁇ 3°C.
  • solvates are all included in the scope of the present invention.
  • the structure of the compound of the present invention can be confirmed by conventional methods known to those skilled in the art. If the present invention relates to the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the art.
  • single crystal X-ray diffraction (SXRD) is used to collect diffraction intensity data of the cultured single crystal using a Bruker D8 venture diffractometer, the light source is CuK ⁇ radiation, and the scanning mode is: After scanning and collecting relevant data, the crystal structure is further analyzed using the direct method (Shelxs97) to confirm the absolute configuration.
  • SXRD single crystal X-ray diffraction
  • the compounds are named according to the conventional nomenclature in the art or The software names were used, and commercially available compounds were named using the supplier's catalog names.
  • XRPD X-ray powder diffractometer
  • Test method About 3-10 mg of sample was used for XRPD detection.
  • DSC Differential Scanning Calorimeter
  • a sample (1-5 mg) was placed in a covered aluminum crucible under the protection of 50 mL/min dry nitrogen for testing.
  • the method was: heating from 25°C to the set test temperature at a heating rate of 10°C/min.
  • TGA Thermogravimetric analysis
  • Test method Take a sample (2-5 mg) and place it in an uncovered aluminum crucible under the protection of 60 mL/min dry nitrogen for testing. The method is: room temperature to 300°C, and the heating rate is 10°C/min.
  • Test conditions Take a sample (30-50 mg) and place it in the DVS sample tray for testing.
  • FIG1 is a Cu-K ⁇ radiation XRPD spectrum of Form A of the compound of formula (I);
  • FIG2 is a DSC spectrum of Form A of the compound of formula (I);
  • FIG3 is a TGA spectrum of Form A of the compound of formula (I);
  • FIG4 is a DVS spectrum of Form A of the compound of formula (I);
  • Figure 5 is a molecular structure diagram of the compound of formula (I);
  • FIG6 is an ellipsoid diagram of the molecular structure of the compound of formula (I).
  • reaction solution was poured into water (200 mL), extracted with ethyl acetate (100 mL ⁇ 2), the organic phases were combined and dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure at 45°C.
  • the compound was separated by SFC (column type: DAICEL CHIRALCEL OJ (250 mm ⁇ 50 mm, 10 ⁇ m); mobile phase: [0.1% ammonia water, isopropanol]%: 15%-15%) to obtain compound 1.
  • the sample of Form A of the compound of formula (I) has a moisture absorption weight gain of 0.13% at 80% RH compared to the initial 0% RH, and the sample has no or almost no hygroscopicity.
  • Crystal form A of the compound of formula (I) has good stability under high temperature, high humidity and strong light conditions.
  • Tube current 1mA.
  • the diffraction collection range 2 7.056 to 133.196, the diffraction index range is -29 ⁇ h ⁇ 29, -13 ⁇ k ⁇ 13, -12 ⁇ l ⁇ 12.
  • the structure was analyzed using SHELXT (Sheldrick, GM2015. ActaCryst. A71, 3-8), and the structure was refined using SHELXL (against F2) (Sheldrick, GM2015. ActaCryst. C71, 3-8).
  • SHELXT heldrick, GM2015. ActaCryst. A71, 3-8
  • SHELXL gainst F2
  • the residual electron density values are 0.36 and
  • the detected crystals are colorless flakes (0.30 ⁇ 0.20 ⁇ 0.05mm3) and belong to the orthorhombic system P21212 space group.
  • Calculated density Dc 1.278 g/cm3
  • number of electrons in unit cell F(000) 1168.0
  • linear absorption coefficient of unit cell ⁇ (Cu K ⁇ ) 2.466 mm–1
  • diffraction experimental temperature T 150.01(10) K.
  • Data refinement was performed with solvent subtraction.
  • one unit cell contains one molecule of the compound of formula (I) and one molecule of solvent (water).
  • the molecular structure diagram of the compound of formula (I) is shown in FIG5 and the molecular structure ellipsoid diagram is shown in FIG6.
  • the crystal structure data and parameters of the compound of formula (I) are shown in Tables 4, 5, 6, 7 and 8.
  • LNCap culture medium RPMI1640 + 10% fetal bovine serum + 1% double antibody
  • cGMP standard curve Use Graphpad prism to make a standard curve based on the cGMP concentration and the ratio of 665/615.
  • MEC Minimum effective concentration that stimulates cGMP production (three times greater than basal value) in lnCap cells.
  • the compounds of the present invention can effectively stimulate sGC and increase cGMP levels.
  • T0, T15, T30, T60, T90, T0-MC, T90-MC and blank matrix Take out the recovery medium and incubation medium in advance and place them in a 37°C water bath to preheat. Take out the frozen hepatocytes of different species from the liquid nitrogen tank and immediately immerse them in a 37°C water bath (about 90 seconds). After the frozen part is melted and loosened, pour them into centrifuge tubes containing 40mL of recovery medium, and gently invert to resuspend the cells in the recovery medium.
  • test sample and control compound working solution were added, mixed well, and the incubation plate was immediately placed in the shaker in the incubator, and the timer was started to start the reaction.
  • the incubation conditions were 37°C, saturated humidity, and 5% CO 2 .
  • the final concentration of the test sample was 1 ⁇ M
  • the final concentration of the control sample was 3 ⁇ M
  • the final concentration of the hepatocytes was 0.5 ⁇ 106 cells/mL
  • the final concentration of the total organic solvent was 0.96%
  • final concentration of DMSO was 0.1%.
  • the compounds of the present invention have good stability in human hepatocytes, and have moderate clearance rate and half-life.
  • the pharmacokinetic characteristics of rodents after oral administration of the compound were tested according to the standard scheme.
  • the candidate compound was prepared into a uniform suspension solution (the solvent for oral administration was 0.5% MC + 0.2% Tween80/H 2 O), and the A crystal form of the compound of formula (I) was administered by oral administration at a concentration of 1 mg/mL.
  • the animal was weighed before administration.
  • the body weight was 230-240g at the beginning of the experiment.
  • the dosage volume was calculated based on the body weight, and oral administration (10 mg/kg) was performed.
  • About 0.2 mL of whole blood sample was collected at the specified time by jugular vein puncture (or other suitable blood collection sites), and the actual blood collection time was recorded in the experimental record.
  • the acceptable error of the collection time point was ⁇ 1 minute within 1 hour of administration, and the theoretical time was ⁇ 5% at other time points.
  • Centrifuge at 3200g for 10 minutes at 4°C separate the supernatant to obtain a plasma sample, transfer the plasma to a pre-cooled labeled commercial centrifuge tube containing K 2 -EDTA, freeze it in dry ice, and then store it in an ultra-low temperature refrigerator at -70 ⁇ 10°C/-60°C or lower.
  • the blood drug concentration was quantitatively analyzed by LC-MS/MS analysis method, and the plasma drug concentration data of the metabolites of the compound of the present invention were processed by non-compartmental model using WinNonlin Version 6.3 or above (Pharsight) pharmacokinetic software.
  • the linear logarithmic trapezoidal method was used to calculate relevant pharmacokinetic parameters, such as peak concentration (C max ), half-life (T 1/2 ), area under the drug-time curve (AUC), peak time (T max ), etc.
  • relevant pharmacokinetic parameters such as peak concentration (C max ), half-life (T 1/2 ), area under the drug-time curve (AUC), peak time (T max ), etc.
  • the experimental results are shown in Table 11.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Urology & Nephrology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种烷基羧酸类化合物的晶型及其应用,具体公开了式(I)所示化合物的晶型及其应用。

Description

一种烷基羧酸类化合物的晶型及其应用
本发明主张如下优先权
申请号:CN202211394422.2,申请日:2022年11月8日。
技术领域
本发明涉及一种烷基羧酸类化合物的晶型及其应用,具体涉及式(I)所示化合物的晶型及其应用。
背景技术
可溶性鸟苷酸环化酶(sGC)是第二信使一氧化氮(NO)的受体酶,广泛存在于包括肌肉、上皮、神经元和内皮细胞在内的几种细胞类型中。sGC是一种异二聚体,由α1或α2亚基与β1亚基结合组成,β1亚基含有血红素辅基,是NO-sGC-cGMP信号通路中关键的信号转导酶。在生理条件下,NO与sGC的血红素辅基结合,激活后会催化鸟苷-5'-三磷酸(guanosine-5'-triphosphate,GTP)转化为环鸟苷单磷酸(guanosine single-phosphate,cGMP)。
cGMP是一种重要的二级信使分子,通过激活其下游的多种效应分子,如磷酸二酯酶(PDE)、环核苷酸门控离子通道(CNG)和蛋白激酶(PKG)等,进而引发下游一系列级联反应,在胃肠系统、血液循环系统和神经系统中发挥重要的生理功能,如促进血管和平滑肌舒张,抑制血小板凝聚、血管重塑、细胞凋亡和炎症发生以及参与神经传递等。因此sGC刺激剂可以作为治疗心血管疾病(心力衰竭,肺动脉高压,心绞痛,心肌梗死)和纤维化疾病(肾纤维化,系统性硬化病)的潜在治疗手段。在上述病理条件下,长时间的氧化应激可导致sGC的血红素辅基氧化(从亚铁状态变为铁状态),这导致sGC酶不能被NO激活,可能会促进疾病进程的恶化。进一步导致内皮功能障碍,动脉粥样硬化,高血压,稳定或不稳定心绞痛,血栓形成,心肌梗死,中风或勃起功能障碍恶化等疾病。因此,激活被氧化的sGC产生cGMP,从而使此类疾病的治疗和/或预防成为可能。
sGC激活剂是不依赖于NO,且不依赖于血红素辅基的,可以直接激活sGC-cGMP信号通路。这有可能在许多由NO通路缺陷信号通路引起的疾病中提供益处,特别是在氧化应激之后。
针对目前市场和临床未满足的对此类可溶性鸟苷酸环化酶刺激剂的需求,本发明提供了一类新化合物的晶型及其制备方法。此类化合物可作为可溶性鸟苷酸环化酶的激活剂,对可溶性鸟苷酸环化酶具有优良的体外刺激活性,并具有较好的药代动力学性质。
发明内容
本发明提供式(I)化合物的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:15.540±0.200°,16.100±0.200°和17.601±0.200°,
在本发明的一些方案中,上述式(I)化合物的A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:11.041±0.200°,14.381±0.200°,15.540±0.200°,16.100±0.200°,17.601±0.200°,18.281±0.200°,18.799±0.200°和22.903±0.200°。
在本发明的一些方案中,上述式(I)化合物的A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:3.441±0.200°,8.113±0.200°,8.799±0.200°,11.041±0.200°,14.381±0.200°,15.540±0.200°,16.100±0.200°,17.601±0.200°,18.281±0.200°,18.799±0.200°,22.903±0.200°和23.682±0.200°。
在本发明的一些方案中,上述式(I)化合物的A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:3.441±0.200°,7.198±0.200°,8.113±0.200°,8.799±0.200°,11.041±0.200°,13.863±0.200°,14.381±0.200°,15.540±0.200°,16.100±0.200°,17.601±0.200°,18.281±0.200°,18.799±0.200°,19.523±0.200°,22.903±0.200°,23.682±0.200°和24.940±0.200°。
在本发明的一些方案中,上述式(I)化合物的A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:3.441±0.200°,和/或7.198±0.200°,和/或8.113±0.200°,和/或8.799±0.200°,和/或9.914±0.200°,和/或11.041±0.200°,和/或11.880±0.200°,和/或13.863±0.200°,和/或14.381±0.200°,和/或15.540±0.200°,和/或16.100±0.200°,和/或17.063±0.200°,和/或17.601±0.200°,和/或18.281±0.200°,和/或18.799±0.200°,和/或19.523±0.200°,和/或20.333±0.200°,和/或21.164±0.200°,和/或21.761±0.200°,和/或22.176±0.200°,和/或22.903±0.200°,和/或23.682±0.200°,和/或24.940±0.200°,和/或25.823±0.200°,和/或26.539±0.200°,和/或28.124±0.200°,和/或28.756±0.200°,和/或30.261±0.200°,和/或31.477±0.200°,和/或32.582±0.200°,和/或36.303±0.200°,和/或38.141±0.200°,和/或38.742±0.200°。
在本发明的一些方案中,上述式(I)化合物的A晶型,其XRPD图谱如图1所示。
在本发明的一些方案中,上述式(I)化合物的A晶型的XRPD图谱解析数据如表1所示。
表1.式(I)化合物的A晶型的XRPD图谱解析数据
在本发明的一些方案中,上述式(I)化合物的A晶型的差示扫描量热曲线在164.69℃±5.00℃处具有吸热峰的起始值。
在本发明的一些方案中,上述式(I)化合物的A晶型的DSC图谱如图2所示。
在本发明的一些方案中,上述式(I)化合物的A晶型的热重分析曲线在熔点前无失重。
在本发明的一些方案中,上述式(I)化合物的A晶型的TGA图谱如图3所示。
本发明还提供上述式(I)化合物的A晶型在制备治疗慢性肾病药物中的应用。
技术效果
本发明化合物对鸟苷酸环化酶具有显著的体外刺激活性,且其具有优良的药代动力学性质。本发明化合物的晶型稳定、无或几乎无引湿性、受光热影响小。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
对于任何给定的结晶形式而言,由于例如结晶形态等因素引起的优选取向,衍射峰的相对强度可以改变,这在结晶学领域中是公知的。存在优选取向影响的地方,峰强度是改变的,但是晶型的衍射峰位置是无法改变的。此外,对任何给定的晶型而言,峰的位置可能存在轻微误差,这在结晶学领域中也是公知的。例如,由于分析样品时温度的变化、样品的移动、或仪器的标定等,峰的位置可以移动,2θ值的测量误差有时约为±0.2度,因此,本领域技术人员公知在确定每种结晶结构时,应该将此误差考虑在内。
DSC测定当结晶由于其结晶结构发生变化或结晶熔融而吸收或释放热时的转变温度。对于同种化合物的同种晶型,在连续的分析中,热转变温度和熔点误差典型的在约5℃或3℃之内,当我们说一个化合物具有一给定的DSC峰或熔点时,这是指该DSC峰或熔点±5℃或±3℃。DSC提供了一种辨别不同晶型的辅助方法。不同的结晶形态可根据其不同的转变温度特征而加以识别。需要指出的是对于混合物而言,其DSC峰或熔点可能会在更大的范围内变动。此外,由于在物质熔化的过程中伴有分解,因此熔化温度与升温速率相关。
对于同种晶型,TGA失重温度出现可能会因为测定仪器、测定方法/条件等因素而产生差异。对任何特定的晶型,失重温度可能存在误差,误差可以为约±5℃,可以为约±3℃。
需要说明的是,在制备药物晶型时,药物分子与溶剂分子在接触的过程中,外部条件与内部因素造成溶剂分子与化合物分子形成共晶而残留在固体物质中的情况很难避免,从而形成溶剂合物,具体包括化学计量类溶剂合物和非化学计量类溶剂合物。所述的溶剂合物均包括在本发明的范围内。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8 venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:扫描,收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
除非另有规定,DSC谱图放热朝上。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。
化合物据本领域常规命名原则或者软件命名,市售化合物采用供应商目录名称。
本发明X射线粉末衍射(X-ray powder diffractometer,XRPD)方法
仪器型号:D2 Phaser X-射线衍射仪
测试方法:大约3~10mg样品用于XRPD检测。
详细的XRPD参数如下:
光管:Cu,kα,
光管电压:30kV,光管电流:10mA
发散狭缝:0.6mm
探测器狭缝:0.075mm
防散射狭缝:1mm
扫描范围:3-40deg
步长:0.02deg
扫描时间:0.2s
本发明差热分析(Differential Scanning Calorimeter,DSC)方法
仪器型号:TA DSC 250差示扫描量热仪
取样品(1~5mg)置于加盖的铝坩埚内在50mL/min干燥氮气的保护下进行测试,方法为:25℃升温至设置的测试温度,升温速率为10℃/min。
本发明热重分析(Thermal Gravimetric Analyzer,TGA)方法
仪器型号:TA TGA 550型热重分析仪
测试方法:取样品(2~5mg)置于不加盖的铝坩埚内在60mL/min干燥氮气的保护下进行测试,方法为:室温~300℃,升温速率为10℃/min。
本发明动态蒸汽吸附分析(Dynamic Vapor Sorption,DVS)方法
仪器型号:SMS(Intrinsic Plus)动态蒸汽吸附仪
测试条件:取样品(30~50mg)置于DVS样品盘内进行测试。
详细的DVS参数如下:
温度:25℃
平衡:dm/dt<0.002%/min(平衡时间1h)
干燥:0%RH下干燥120min
湿度循环:0%-95%-0%RH
梯度:0-90%RH,10%RH;90%-95%RH,5%RH
RH(%)测试梯级范围:0%-95%
引湿性评价分类如表2所示:
表2.引湿性评价分类

注:ΔW%表示受试品在25±1℃和80±2%RH下的吸湿增重。
附图说明
图1为式(I)化合物的A晶型的Cu-Kα辐射的XRPD谱图;
图2为式(I)化合物的A晶型的DSC谱图;
图3为式(I)化合物的A晶型的TGA谱图;
图4为式(I)化合物的A晶型的DVS谱图;
图5为式(I)化合物的分子结构图;
图6为式(I)化合物的分子结构椭球图。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
实施例1:式(I)化合物的制备
步骤1:化合物SM1-7的合成
将化合物SM1-6溶于二氯甲烷(120mL),氮气保护下降温至0℃,滴加草酰氯(21.32g),滴加N,N-二甲基甲酰胺(0.2mL),20℃搅拌1小时。取一滴反应液,加甲醇淬灭,经TLC(石油醚/乙酸乙酯=1:1)显示原料点剩余,有新点出现。降温至0℃后补加草酰氯(21.32g),20℃搅拌1小时。反应液40℃减压浓缩,加二氯甲烷(100mL)溶解,继续减压浓缩。
将甲氧基甲基胺盐酸盐(9.83g)加入二氯甲烷(100mL)中,加入二异丙基乙基胺(43.42g),氮气保护下降温至0℃,滴加上述化合物的二氯甲烷(130mL)溶液,在20℃下搅拌12小时。将反应液倒入水(100mL)中,分液收集有机相,水相用二氯甲烷(100mL x 3)萃取。合并有机相,用饱和食盐水(100mL x 2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去溶剂。粗品经柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0~6/1,体积比)纯化,得到化合物SM1-7。
1H NMR(400MHz,CDCl3)δppm 2.22(s,6H)3.19(s,3H)3.31(s,3H)3.66(s,3H)。
步骤2:化合物SM1-8的合成
将化合物SM1-7(11.5g)加入四氢呋喃(120mL)中,氮气置换三次,氮气保护下降温至-70℃,滴加二异丁基氢化铝(1M甲苯溶液,74.51mL)。滴加完毕,-70℃搅拌0.5小时。反应完毕,将反应液倒入稀盐酸(3mol/L,100mL)中搅拌0.5小时,加乙酸乙酯(50mL×3)萃取,有机相合并,用饱和食盐水(200mL)洗,无水硫酸钠干燥。过滤,滤液45℃减压浓缩,得到化合物SM1-8。
步骤3:化合物SM1的合成
将二乙基膦酰基乙酸叔丁酯(15.60g)加入四氢呋喃(100mL)中,氮气置换三次,氮气氛围下降温至0℃,滴加叔丁醇钾(1M四氢呋喃溶液,68.01mL),搅拌0.5小时。0℃滴加化合物SM1-8(7.8g)的四氢呋喃(150mL)溶液,20℃搅拌12小时。反应完毕,向反应液中加入饱和氯化铵水溶液(200mL),加乙酸乙酯(100mL×2)萃取。有机相合并,用饱和食盐水(200mL)洗,无水硫酸钠干燥,过滤,滤液45℃减压浓缩。粗品经柱层析(洗脱剂:石油醚:乙酸乙酯=1/0~97/3,体积比)分离纯化,得到化合物SM1。
1H NMR(400MHz,CDCl3)δ:6.95(d,J=15.6Hz,1H),5.75(d,J=15.2Hz,1H),3.31(s,3H),1.99(s,6H),1.49(s,9H)。
步骤4:化合物1的合成
将化合物SM1(6g)和SM2(6.78g)加入四氢呋喃(100mL)和异丙醇(50mL)中,加入氢氧化钾(1.80g),1,5-环辛二烯(289.39mg),氮气置换三次,氮气保护下升温至60℃,加入预先制备好的催化剂(将1,5-环辛二烯氯铑二聚体(329.75mg)和2,2-双(二苯膦基)-1,1-联萘(95.78mg)加入四氢呋喃(10mL)中,搅拌10分钟),60℃搅拌12小时。反应完毕,将反应液倒入水中(200mL),加乙酸乙酯(100mL×2)萃取,有机相合并用无水硫酸钠干燥,过滤,滤液45℃减压浓缩。粗品经柱层析(洗脱剂:石油醚/乙酸乙酯=19/1~9/1,体积比)分离纯化,得到消旋体化合物。经SFC(柱型:DAICEL CHIRALCEL OJ(250mm×50mm,10μm);流动相:[0.1%氨水,异丙醇]%:15%-15%)拆分,得到化合物1。
1H NMR(400MHz,CDCl3)δ:7.14(d,J=8.0Hz,1H),6.53(d,J=1.6Hz,1H),6.45(dd,J=2.0,8.2Hz,1H),3.32-3.11(m,4H),2.62-2.43(m,2H),1.65(s,6H),1.33(s,9H)。
SFC分析方法【柱型:Chiralcel OJ-3(150mm×4.6mm.,3μm);流动相:A相为CO2,B相为[异丙醇(含0.1%异丙胺)];梯度(B%):10%-50%,5min】。化合物1的出峰时间为1.834min,其异构体的保留时间为1.960min。
步骤5:化合物2的合成
将SM3(2.5g)加入二氯甲烷(25mL)中,氮气保护下降温至0℃,向其中滴加草酰氯(2.38g),然后滴加N,N-二甲基甲酰胺(0.6mL)。滴加完毕,20℃搅拌1小时。反应液40℃减压浓缩至干,加二氯甲烷(10 mL)溶解后,再次减压浓缩至干。所得油状物溶解于二氯甲烷(30mL),于0℃滴加到化合物1(3g)和N,N-二异丙基乙基胺(2.75g,21.31mmol)的二氯甲烷(30mL)溶液中,滴加完毕,20℃搅拌2小时。反应完毕,反应液减压浓缩,粗品经柱层析(洗脱剂:石油醚/乙酸乙酯=19/1~9/1,体积比)分离纯化,得到化合物2。
1H NMR(400MHz,DMSO-d6)δ:12.44-11.49(m,1H),9.82(s,1H),7.52-7.40(m,4H),7.37-7.26(m,2H),6.95(dd,J=2.0,8.4Hz,1H),4.13(d,J=10.6Hz,1H),3.47-3.38(m,1H),3.28-3.23(m,1H),3.09(s,3H),2.56(d,J=6.4Hz,1H),2.48-2.40(m,1H),1.54(q,J=9.4Hz,6H),0.80(d,J=7.0Hz,3H)。
步骤6:式(I)化合物的合成
将盐酸乙酸乙酯(4M,100mL)加入化合物2(4.7g)中,20℃搅拌2小时。反应完毕,反应液减压浓缩,粗品经柱层析(洗脱剂:石油醚/乙酸乙酯=19/1-17/3,体积比)分离纯化,得到目标化合物(I)。
实施例2:式(I)化合物的A晶型的制备
在干燥的三口瓶中加入正己烷(20mL),分批加入化合物(I)(1.84g)。加料完毕,升温至50-55℃搅拌12小时。将反应液过滤,收集固体,45℃真空干燥得到式(I)化合物的A晶型。
1H NMR(400MHz,DMSO-d6)δppm 12.11(s,1H)9.82(s,1H)7.42-7.51(m,4H)7.30-7.38(m,2H)6.95(dd,J=8.4,2.06Hz,1H)4.13(d,J=10.8Hz,1H)3.37-3.43(m,1H)3.27(dd,J=8.8,6.44Hz,1H)3.10(s,3H)2.54-2.62(m,1H)2.43-2.48(m,1H)1.54(q,J=9.2Hz,6H)0.80(d,J=6.8Hz,3H)。
实施例3:式(I)化合物的A晶型的引湿性研究
实验材料:
SMS(Intrinsic Plus)动态蒸汽吸附仪
实验方法:
取式(I)化合物的A晶型10~15mg置于DVS样品盘内进行测试。
实验结果:
式(I)化合物的A晶型的DVS谱图如图4所示,△W=0.13%。
实验结论:
式(I)化合物的A晶型在25℃条件下,与起始0%RH相比,样品在80%RH吸湿增重为0.13%,样品无或几乎无引湿性。
实施例4:式(I)化合物的A晶型的固体稳定性试验
依据《原料药与制剂稳定性试验指导原则》(中国药典2015版四部通则9001),考察式(I)化合物的A晶型在高温(60℃,敞口),高湿(室温/相对湿度92.5%,敞口)及强光照(5000lx,密闭)条件下的稳定性。
称取式(I)化合物的A晶型15mg,置于玻璃样品瓶的底部,摊成薄薄一层。高温及高湿条件下放置的样品用铝箔纸封瓶口,并在铝箔纸上扎些小孔,保证样品能与环境空气充分接触;强光照条件下放置的样品用螺纹瓶盖密封。不同条件下放置的样品于第5天,10天,1个月取样检测(XRPD),检测结果与0天的初始检测结果进行比较,试验结果见下表3所示:
表3.式(I)化合物的A晶型的固体稳定性试验结果
结论:式(I)化合物的A晶型在高温、高湿、强光照条件下具有良好的稳定性。
实施例5:式(I)化合物的单晶X射线衍射检测分析
本发明X-射线单晶衍射方法
仪器型号:单晶X射线衍射仪(SC-XRD)(Rigaku Oxford Diffraction XtaLAB Synergy-S)
仪器:Rigaku Oxford Diffraction XtaLAB Synergy-S四圆衍射仪
面探测器:HyPix-6000HE
低温系统:Oxford Cryostream 800
光源:Cu,50W,
晶体到CCD探测器的距离:d=35mm
管压:50kV
管流:1mA。
衍射实验收集了95826个衍射点,其中独立衍射点5150个(Rint=0.1139)。衍射收集范围2=7.056 to 133.196衍射指标范围-29≤h≤29,-13≤k≤13,-12≤l≤12。结构解析使用SHELXT(Sheldrick,G.M.2015.ActaCryst.A71,3-8),结构精修使用SHELXL(against F2)(Sheldrick,G.M.2015.ActaCryst.C71,3-8)。5150个独立衍射点中,参加结构精修的参数为340。精修后R1=0.0566,wR2=0.1252。残余电子密度值为0.36和
单晶培养过程:样品在超声加热50℃条件下加入5mL甲醇/水=7/5的溶剂,过滤除去不溶固体。将澄清的样品溶液置于8mL半密封样品瓶中,静置放到避光避震动处。在室温下缓慢挥发。第十四天得到无色片状晶体。
结论:检测晶体为无色片状(0.30×0.20×0.05mm3),属于正交晶系P21212空间群。晶胞参数 α=90°,β=90°,γ=90°,Z=4。计算密度Dc=1.278g/cm3,单胞中电子数F(000)=1168.0,单胞的线性吸收系数μ(Cu Kα)=2.466mm–1,衍射实验温度T=150.01(10)K。数据精修做了溶剂扣除处理。
经单晶X射线衍射检测分析,得到的一个晶胞里含有1个式(I)化合物分子和1个溶剂(水)分子。式(I)化合物分子结构图见附图5和分子结构椭球图见附图6。式(I)化合物晶体结构数据和参数见表4、5、6、7和8。
表4.式(I)化合物的晶体数据

表5.式(I)化合物晶体的原子坐标(×104)和等价各向同性移位参数

表6.式(I)化合物的键长
表7.式(I)化合物的键角(°)

表8.式(I)化合物的扭转角度(°)

生物测试
测试例1.体外活性测试
一、基于lnCap细胞的cGMP表达测试
1.实验步骤
1)溶液配制
10%BSA(牛血清蛋白)
将10g BSA溶解于100mL双蒸水(ddH2O)得到10%BSA。
10mM ODQ母液
称取1mg ODQ粉末溶解于534微升DMSO得到10mM ODQ溶液,分装并冻存于-20℃冰箱。
洗涤缓冲液(Washing Buffer,50mL)
分析缓冲液(Assay Buffer,50mL)
检测缓冲液(Detection Buffer)
a)将50μL cGMP-D2(D2标记的环单磷鸟苷)加入到1mL裂解液(lysis buffer)混合均匀。
b)将50μL anti-cGMP cryptate(Eu3+穴状化合物标记的抗环单磷鸟苷抗体)加入到1mL裂解液(lysis buffer)混合均匀。
2)化合物稀释
(1)用DMSO将化合物稀释至10mM。
(2)对化合物进行梯度稀释,将每个化合物稀释10个浓度梯度并分别加100nL到96微孔板中。
3)准备LNCap细胞
(1)LNCap培养基:RPMI1640+10%胎牛血清+1%双抗
(2)将细胞传代过程中用到的磷酸盐缓冲液、胰酶、培养基放到37℃水浴锅中预热。
(3)从37℃5%CO2培养箱中取出细胞,用移液器吸去培养瓶中的旧培养液。
(4)吸取5mL磷酸盐缓冲液加入到培养瓶中漂洗细胞,然后弃去液体。
(5)吸取3mL胰酶加入培养瓶,摇晃后弃去液体,将培养瓶放入培养箱中。
(6)约2分钟后取出培养瓶,观察细胞都已分离后,吸取9mL培养基加入培养瓶并反复吹打几次,将细胞悬液转移至50mL离心管中。
(7)吸取0.7mL细胞悬液加入计数杯,在ViCell XR上计数。剩余细胞,1000rpm离心5min,并去上清。
(8)加入10mL洗涤缓冲液(washing buffer)清洗细胞,1000rpm离心5min,并去上清。
(9)加入分析缓冲液(assay buffer)并调整细胞浓度至3×106/mL。
4)OQD溶液配制和添加
(1)取10mM的ODQ母液1:1000加入细胞溶液中
(2)充分混匀后10μL/孔加入微孔板中。
5)准备cGMP标准曲线
(1)将1mM的cGMP存储液用试验缓冲液(assay buffer)稀释至10μM。然后4倍梯度稀释11个浓度梯度。
(2)将稀释好的cGMP加10μL/孔至微孔板中。
6)加检测试剂并读板
(1)转移5μL/孔的cGMP-D2到384微孔板中。转移5μL/孔的anti-cGMP cryptate到96微孔板中。1500rpm离心1min。
(2)常温孵育1h。
(3)用envision读取665/615。
7)数据分析
(1)cGMP标准曲线:根据cGMP的浓度与665/615的比值用Graphpad prism做标准曲线。
(2)HTRF(均相时间分辨荧光技术)比值(665/615)转换成cGMP浓度:在Graphpad prism中,将HTRF比值(665/615)复制到cGMP标准曲线的比值列中,运行分析“Log inhibitor vs response-variable slope”,选择“interpolate”,将HTRF比值(665/615)转换成cGMP浓度。
(3)化合物激活曲线:根据转换的cGMP浓度与化合物的浓度用Graphpad prism中“Log agonist vs response-variable slope”分析方法做曲线。
表9本发明化合物对sGC刺激活性的MEC值
MEC:在lnCap细胞中刺激cGMP产生(大于基础数值三倍)的最小有效浓度。
实验结论:本发明化合物能够有效刺激sGC,提高cGMP水平。
测试例2.体外肝细胞代谢稳定性研究
1.实验目的:该研究的目的是为了评估化合物在不同种属肝细胞中的稳定性情况。
2.实验步骤:
准备若干96孔样品沉淀板,分别命名为T0、T15、T30、T60、T90、T0-MC、T90-MC和空白基质。提前取出复苏培养液和孵育培养液,放置在37℃水浴锅中预热。从液氮罐中取出冻存的不同种属肝细胞,立即浸没到37℃水浴中(约90秒)。待冻存部分溶化松动后,分别倒入含有40mL复苏培养液的离心管中,轻柔地颠倒让细胞在复苏培养液中重悬。室温条件下,100×g离心5分钟,移除上清液,用适当体积的孵育培养液重悬肝细胞,用台盼蓝染色法计算细胞活率。将198μL的肝细胞混悬液(0.51×106cells/mL)加入到已预热的孵育板中,培养液对照组加入198μL不含肝细胞的孵育培养液至T0-MC和T120-MC孵育板中,所有孵育板在37℃培养箱中预孵育10分钟。然后加入2μL供试品和对照化合物工作液,混匀,立即将孵育板放入培养箱内的摇板机中,启动计时器开始反应。每个化合物的每个时间点准备2个重复样本。孵育条件为37℃、饱和湿度、含5%CO2。测试体系中,供试品的终浓度为1μM,对照品的终浓度为3μM,肝细胞的终浓度为0.5×106cells/mL,总有机溶剂的终浓度为0.96%,其中DMSO的终浓度为0.1%。相应时间点孵育结束时,取出孵育板,取出25μL化合物和对照化合物与细胞的混合液加入到含有125μL终止液(含有200ng/mL甲苯磺丁脲和拉贝诺尔的乙腈溶液)的样品板中。对于Blank样品板,直接加入25μL不含肝细胞的孵育培养液。所有样品板封膜后在摇板机上以600rpm摇10分钟后,3220×g离心20分钟。供试品和对照品上清液用超纯水以1:3的比例稀释。所有样品混匀后用LC/MS/MS的方法进行分析。
实验结果见表10
表10本发明化合物在不同种属肝细胞中的稳定性
T1/2:半衰期,CLint(liver):肝清除率;
实验结论:本发明化合物在人源肝细胞中稳定性良好,清除率及半衰期适中。
实验例3:式(I)化合物的A晶型在SD雄性大鼠的体内PK研究
实验目的:测试化合物在SD雄性大鼠的体内PK研究
实验材料:2只7-8周龄雄性Sprague Dawley大鼠(北京维通利华实验动物技术有限公司)
实验操作:以标准方案测试化合物灌胃给药后的啮齿类动物的药代特征,实验中候选化合物配成均一混悬溶液(灌胃给药制剂溶媒为0.5%MC+0.2%Tween80/H2O),单次灌胃给予1mg/mL浓度的式(I)化合物的A晶型,在给药前称量动物体重,试验起始时体重230~240g,根据体重计算给药体积,口服灌胃(10mg/kg)。通过颈静脉穿刺方式在规定的时间采集(或其他合适的采血位点)全血样品约0.2mL,并在试验记录中记录实际采血时间,采集时间点可接受的误差为给药1小时内时间点±1分钟,其他时间点的为理论时间±5%。4℃下,3200g离心10分钟,分离上清得血浆样品,将血浆转移至预冷的贴有标签的含K2-EDTA的商品化离心管中,在干冰中速冻,随后储存在-70±10℃/-60℃或更低的超低温冰箱中。以LC-MS/MS分析方法定量分析血药浓度,使用WinNonlin Version 6.3或以上(Pharsight)药动学软件,以非房室模型对本发明化合物代谢产物的血浆药物浓度数据进行处理。使用线性对数梯形法计算相关药代动力学参数,如达峰浓度(Cmax),半衰期(T1/2),药时曲线下面积(AUC),达峰时间(Tmax)等,实验结果见表11。
表11.式(I)化合物的A晶型的体内药代动力学实验结果
实验结论:式(I)化合物的A晶型具有优异的药代动力学性质。

Claims (10)

  1. 式(I)所示化合物的A晶型,
    其特征在于,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:15.540±0.200°,16.100±0.200°和17.601±0.200°。
  2. 根据权利要求1所述式(I)化合物的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:11.041±0.200°,14.381±0.200°,15.540±0.200°,16.100±0.200°,17.601±0.200°,18.281±0.200°,18.799±0.200°和22.903±0.200°。
  3. 根据权利要求2所述式(I)化合物的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:3.441±0.200°,8.113±0.200°,8.799±0.200°,11.041±0.200°,14.381±0.200°,15.540±0.200°,16.100±0.200°,17.601±0.200°,18.281±0.200°,18.799±0.200°,22.903±0.200°和23.682±0.200°。
  4. 根据权利要求3所述式(I)化合物的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:3.441±0.200°,7.198±0.200°,8.113±0.200°,8.799±0.200°,11.041±0.200°,13.863±0.200°,14.381±0.200°,15.540±0.200°,16.100±0.200°,17.601±0.200°,18.281±0.200°,18.799±0.200°,19.523±0.200°,22.903±0.200°,23.682±0.200°和24.940±0.200°。
  5. 根据权利要求4所述式(I)化合物的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:3.441±0.200°,和/或7.198±0.200°,和/或8.113±0.200°,和/或8.799±0.200°,和/或9.914±0.200°,和/或11.041±0.200°,和/或11.880±0.200°,和/或13.863±0.200°,和/或14.381±0.200°,和/或15.540±0.200°,和/或16.100±0.200°,和/或17.063±0.200°,和/或17.601±0.200°,和/或18.281±0.200°,和/或18.799±0.200°,和/或19.523±0.200°,和/或20.333±0.200°,和/或21.164±0.200°,和/或21.761±0.200°,和/或22.176±0.200°,和/或22.903±0.200°,和/或23.682±0.200°,和/或24.940±0.200°,和/或25.823±0.200°,和/或26.539±0.200°,和/或28.124±0.200°,和/或28.756±0.200°,和/或30.261±0.200°,和/或31.477±0.200°,和/或32.582±0.200°,和/或36.303±0.200°,和/或38.141±0.200°,和/或38.742±0.200°。
  6. 式(I)化合物的A晶型,
    其XRPD图谱如图1所示。
  7. 根据权利要求1~6任意一项所述式(I)化合物的A晶型,其差示扫描量热曲线在164.69℃±5℃处具有吸热峰的起始值。
  8. 根据权利要求7所述式(I)化合物的A晶型,其DSC图谱如图2所示。
  9. 根据权利要求1~6任意一项所述式(I)化合物的A晶型,其TGA图谱如图3所示。
  10. 根据权利要求1~9任意一项所述式(I)化合物的A晶型在制备治疗慢性肾病药物中的应用。
PCT/CN2023/130485 2022-11-08 2023-11-08 一种烷基羧酸类化合物的晶型及其应用 WO2024099361A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211394422 2022-11-08
CN202211394422.2 2022-11-08

Publications (1)

Publication Number Publication Date
WO2024099361A1 true WO2024099361A1 (zh) 2024-05-16

Family

ID=91031939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/130485 WO2024099361A1 (zh) 2022-11-08 2023-11-08 一种烷基羧酸类化合物的晶型及其应用

Country Status (1)

Country Link
WO (1) WO2024099361A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102712577A (zh) * 2009-10-28 2012-10-03 拜耳制药股份公司 取代的3-苯基丙酸和其应用
CN103796989A (zh) * 2011-04-13 2014-05-14 拜耳知识产权有限责任公司 支化的3-苯基丙酸衍生物和其应用
CN111433204A (zh) * 2017-12-01 2020-07-17 拜耳制药股份公司 制备用作药物活性物质的(3s)-3-(4-氯-3-{[(2s,3r)-2-(4-氯苯基)-4,4,4-三氟-3-甲基丁酰基]氨基}苯基)-3-环丙基丙酸及其结晶形式的方法
WO2022237797A1 (zh) * 2021-05-14 2022-11-17 南京明德新药研发有限公司 烷基羧酸化合物及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102712577A (zh) * 2009-10-28 2012-10-03 拜耳制药股份公司 取代的3-苯基丙酸和其应用
CN103796989A (zh) * 2011-04-13 2014-05-14 拜耳知识产权有限责任公司 支化的3-苯基丙酸衍生物和其应用
CN111433204A (zh) * 2017-12-01 2020-07-17 拜耳制药股份公司 制备用作药物活性物质的(3s)-3-(4-氯-3-{[(2s,3r)-2-(4-氯苯基)-4,4,4-三氟-3-甲基丁酰基]氨基}苯基)-3-环丙基丙酸及其结晶形式的方法
WO2022237797A1 (zh) * 2021-05-14 2022-11-17 南京明德新药研发有限公司 烷基羧酸化合物及其应用

Similar Documents

Publication Publication Date Title
JP5368438B2 (ja) 新規化合物951:crth2モジュレーターとしてのビフェニルオキシプロパン酸および中間体
JP2022050538A (ja) プロスタサイクリン(pgi2)受容体に関連する障害の処置に有用なpgi2受容体の調節因子
TWI625328B (zh) 製備atr抑制劑之方法
TWI297684B (en) Substituted pyrimidines
CN110407856B (zh) 一种大环化合物及包含该化合物的组合物
TWI714566B (zh) 軸手性異構體及其製備方法和製藥用途
KR20160118204A (ko) 2-하이드록시-6-((2-(1-이소프로필-1h-피라졸-5-일)피리딘-3-일)메톡시)벤즈알데하이드의 유리 염기의 결정성 다형체
WO2018024208A1 (zh) Ido1抑制剂及其制备方法和应用
JP2016500107A (ja) グルタマーゼ阻害剤およびその使用方法
JP6928986B2 (ja) キナーゼ活性を阻害するためのインダゾール系化合物、その組成物および使用
JP2007528872A (ja) S1p受容体アゴニストとしての3,5−アリール置換、ヘテロアリール置換またはシクロアルキル置換された1,2,4−オキサジアゾール化合物
JP2022070895A (ja) ニューロキニン-1受容体アンタゴニストとしての化合物およびその使用
BRPI0712332A2 (pt) composto e derivados farmaceuticamente aceitáveis dos mesmos, composição farmacêutica, método de antagonização de um receptor dp-2, e, uso de um composto
JP2021504464A (ja) 新規ブラジキニンb2受容体アンタゴニスト
JP2021535103A (ja) グリコシダーゼ阻害剤として有用なピペラジン誘導体のコハク酸付加塩及びフマル酸付加塩
BR112015017963B1 (pt) Composto de fenil amino pirimidina deuterado, método para preparar a composição farmacêutica, composição farmacêutica e uso do composto
TW201343629A (zh) 可作為mogat-2抑制劑之新穎芐磺醯胺衍生物
CN106536524B (zh) 用于在增殖性疾病的治疗中使用的[1,2,4]三唑并[4,3-b]哒嗪
JP2017530146A (ja) Jak阻害剤の硫酸水素塩の結晶形およびその製造方法
BR112020018562A2 (pt) Processo preparativo
JP2004508359A (ja) アリール置換テトラヒドロインダゾール、及び、gaba−a受容体に対するリガンドとしてのそれらの使用
TW202014412A (zh) 賽度替尼(cerdulatinib)之固體型式
JP3231775B2 (ja) 心循環器系に作用する2−アミノ−1,2,3,4−テトラヒドロナフタレン誘導体、それらを製造する方法、及びそれらを含む医薬組成物
JP2023502675A (ja) 核タンパク質阻害剤の結晶形及びその使用
WO2024099361A1 (zh) 一种烷基羧酸类化合物的晶型及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888050

Country of ref document: EP

Kind code of ref document: A1