WO2024098840A1 - 异丁烯基阳离子盐聚合物及其制备方法与应用、抗菌高分子材料 - Google Patents

异丁烯基阳离子盐聚合物及其制备方法与应用、抗菌高分子材料 Download PDF

Info

Publication number
WO2024098840A1
WO2024098840A1 PCT/CN2023/109511 CN2023109511W WO2024098840A1 WO 2024098840 A1 WO2024098840 A1 WO 2024098840A1 CN 2023109511 W CN2023109511 W CN 2023109511W WO 2024098840 A1 WO2024098840 A1 WO 2024098840A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
isobutylene
mol
group
content
Prior art date
Application number
PCT/CN2023/109511
Other languages
English (en)
French (fr)
Inventor
梁爱民
邱迎昕
孟伟娟
马文超
魏孜博
张月红
周新钦
Original Assignee
中国石油化工股份有限公司
中石化(北京)化工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211415126.6A external-priority patent/CN118027253A/zh
Priority claimed from CN202211412278.0A external-priority patent/CN118027254A/zh
Priority claimed from CN202211411836.1A external-priority patent/CN118027252A/zh
Priority claimed from CN202211411837.6A external-priority patent/CN118027265A/zh
Application filed by 中国石油化工股份有限公司, 中石化(北京)化工研究院有限公司 filed Critical 中国石油化工股份有限公司
Publication of WO2024098840A1 publication Critical patent/WO2024098840A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/08Butenes
    • C08F210/10Isobutene

Definitions

  • the invention relates to the field of antibacterial functional polymer materials, and in particular to an isobutylene-based cationic salt ion polymer, a preparation method and application thereof, and an antibacterial polymer material.
  • isobutylene-based random copolymers There are two types of commercially produced isobutylene-based random copolymers, one is a copolymer of isobutylene and isoprene, which is an unsaturated type; the other is a copolymer of isobutylene and p-methylstyrene, which is a saturated type. Both copolymers can be subjected to bromination reaction to obtain brominated modified products, namely brominated isobutylene-isoprene rubber (BIIR) and brominated isobutylene-p-methylstyrene rubber (BIMS). The main application areas of these two products are tire airtight layers and medical plugs.
  • BIIR brominated isobutylene-isoprene rubber
  • BIMS brominated isobutylene-p-methylstyrene rubber
  • BIIR and BIMS are rubber elastomer products characterized by high molecular weight (weight average molecular weight Mw is above 500,000) and low content of copolymer functional monomers. Generally, the mole fraction of isoprene in the copolymer is less than 3%, the mole fraction of p-methylstyrene is less than 5%, and the mole fraction of functional bromine is less than 1.5%.
  • Isobutylene-based ionomers in the prior art are generally prepared using commercially available BIIR or BIMS as base rubbers.
  • BIIR or BIMS as base rubbers.
  • Synthesis and characterization of isobutylene-based ammonium and phosphonium bromide ionomers (Macromolecules, 2004, 37, 7477-7483) and Quaternary ammonium BIMS ionomers (Presented at the 163rd Technical Meeting of the Rubber Division, American Chemical Society, San Francisco, California, APril 28-30, 2003) disclose that BIIR or BIMS rubber is melt blended with alkylamine, alkylphosphine, imidazole, etc.
  • the allyl bromide functional group in BIIR or the benzyl bromide functional group in BIMS is subjected to a nucleophilic substitution reaction to obtain ammonium salt, phosphonium salt, imidazole salt and other ionomers.
  • a nucleophilic substitution reaction to obtain ammonium salt, phosphonium salt, imidazole salt and other ionomers.
  • An imidazolium-functionalized isobutylene polymer having improved mechanical and barrier properties: synthesis and characterization (J.APPL.POLYM.SCI.2012, DOl: 10.1002/APP.38458) the BIIR or BIMS product is dissolved again in an organic solvent for a long time of ionization reaction.
  • Bacteria, fungi, and viruses have always been pathogenic microorganisms that threaten human life and health. With the increase of pathogen resistance and the continuous emergence of new pathogens, new antibacterial therapies are urgently needed.
  • one of the important ways to cut off the spread of pathogens in the environment is to prevent the growth of pathogenic microorganisms by using antibacterial/antiviral coatings on the surface of objects. Therefore, antibacterial polymer materials such as antibacterial fibers, antibacterial plastics, antibacterial rubbers, and antibacterial coatings have emerged and are increasingly widely used in daily life.
  • cationic salt compounds are widely used as antibacterial and bactericides, surfactants and antistatic agents because of their strong positive charge, which makes it difficult for pathogenic microorganisms to develop drug resistance.
  • quaternary ammonium salts, quaternary phosphonium salts, guanidine salts, imidazole salts, pyridinium salts, pyrimidine salts, etc. especially quaternary ammonium salts as bactericidal and antibacterial agents are widely used in daily washing, medical disinfection, aquaculture, industrial circulating water algaecides and other fields, such as common benzalkonium chloride and benzalkonium bromide, which have good bactericidal and antibacterial effects on bacteria including Gram-negative bacteria and Gram-positive bacteria.
  • small molecule antimicrobial agents are environmentally released substances, they are not only easy to lose, have a short duration of action, and cause pollution to the environment, but also the stronger the antibacterial property, the greater the toxicity, which affects the health of humans or animals.
  • small molecule organic antimicrobial agents are generally not resistant to high temperatures and have difficulty withstanding the high-temperature processing of polymer materials. They are also prone to migration and release in the materials. Therefore, in the field of polymer materials, metal-type inorganic nano antimicrobial agents are still the main type. Their disadvantage is that they release metal poisons into the environment to kill bacteria. They are not only not resistant to washing but also have a short effect. That is, the antimicrobial properties of the material decay over time.
  • the polymer material or product is immersed in a strong oxidizing solution, or the surface of the polymer material is subjected to high-energy irradiation, ozone treatment, plasma treatment, etc. to generate active centers on the surface, which triggers the graft copolymerization of quaternary ammonium salt monomers.
  • This surface treatment method easily leads to degradation and cross-linking of the polymer surface, thereby affecting or even destroying the mechanical properties of the material, and the grafting amount is also unstable and has poor repeatability.
  • small molecule quaternary ammonium salt organic matter is grafted and fixed onto a certain filler through chemical reaction, and then the antibacterial filler is added to the polymer material.
  • the solid loading amount is unstable, and on the other hand, it is affected by the dispersibility of the filler in the polymer material, and it is often difficult to exert a satisfactory antibacterial effect.
  • quaternary ammonium salt is grafted onto a certain comonomer that can participate in polymer synthesis, and antibacterial polymer materials are directly prepared by copolymerization, but on the one hand, the preparation process of the polymer is complicated, the production cost rises, and on the other hand, it affects the polymer polymerization reaction, and it is difficult to realize practical application.
  • the purpose of the present invention is to overcome the problem that the isobutylene-based cationic salt polymer has a limited application field due to the low functional group content and very limited ionization degree of the isobutylene-based copolymer in the prior art, and to provide an isobutylene-based cationic salt ion polymer and a preparation method and application thereof.
  • the isobutylene-based cationic salt ion polymer comprises a macromolecular skeleton consisting of a main structural unit provided by isobutylene and a functional structural unit provided by an alkyl styrene, and contains cationic salt functional groups in both the side groups and the main chain of the polymer, so that the polymer has a satisfactory higher ionization degree, can be used as an antibacterial agent for preparing antibacterial polymer materials with stable, durable, safe and low toxicity antibacterial properties, such as antibacterial plastics, antibacterial rubbers, antibacterial fibers and antibacterial coatings, and can effectively inhibit and kill bacteria, fungi and pathogens.
  • the first aspect of the present invention provides an isobutylene-based cationic salt ionic polymer, characterized in that the polymer comprises a structural unit A, a structural unit B and a structural unit C;
  • the structural unit A has the structure shown in formula (2) and/or formula (3) and optionally the structure shown in formula (1); the structural unit B has the structure shown in formula (4); the structural unit C has the structure shown in formula (5);
  • R 1 is a C 1 -C 4 alkylene group
  • R 2 is a C 1 -C 4 alkyl group
  • R 3 , R 4 , and R 5 are each independently a C 1 -C 20 straight-chain alkyl group, a C 1 -C 20 branched-chain alkyl group, or a C 6 -C 20 aryl group;
  • R 6 , R 7 , and R 8 are each independently a C 1 -C 10 straight-chain alkyl group, a C 1 -C 10 branched-chain alkyl group, a C 3 -C 10 cycloalkyl group, or a C 6 -C 10 aryl group;
  • R9 is hydrogen, a C1 - C20 straight-chain alkyl group
  • R10 , R11 , and R12 are each independently hydrogen, a halogen atom, a C1 - C10 straight-chain alkyl group, a C1 - C10 branched-chain alkyl group, a hydroxyl group, a nitro group, -( CH2 ) n -NH, a cyano group, or a C6 - C10 aryl group, and n is an integer of 0-5;
  • R 13 , R 14 , R 15 , R 16 , and R 17 are each independently hydrogen, a halogen atom, a C 1 -C 20 straight-chain alkyl group, a C 1 -C 20 branched-chain alkyl group, a nitro group, an amino group, or a cyano group;
  • X is Cl or Br.
  • the second aspect of the present invention provides a method for preparing an isobutylene-based cationic salt ionomer, characterized in that the preparation method comprises:
  • the polymer is a random copolymer of isobutylene and alkylstyrene
  • the halogenation reaction is carried out under the irradiation of visible light, and the luminescence mode of the visible light is pulsed luminescence.
  • the third aspect of the present invention provides an isobutylene-based cationic salt ionomer prepared by the above preparation method.
  • the fourth aspect of the present invention provides a use of the above-mentioned isobutylene-based cationic salt ion polymer as an antibacterial agent.
  • the fifth aspect of the present invention provides an isobutylene-based cationic salt ion polymer for inhibiting and killing at least one of bacteria, fungi and viruses.
  • the sixth aspect of the present invention provides an antibacterial polymer material, characterized in that the antibacterial polymer material comprises the above-mentioned isobutylene-based cationic salt ion polymer.
  • the isobutylene-based cationic salt ion polymer and its preparation method and application, and antibacterial agent polymer material provided by the present invention achieve the following beneficial effects:
  • the isobutylene-based cationic salt ion polymer provided by the present invention comprises a main structural unit provided by isobutylene and a functional structural unit provided by alkylstyrene, and the isobutylene-based cationic salt ion polymer contains a high content of cationic salt functional groups, has a satisfactory higher degree of ionization, can be used as an antibacterial agent for preparing stable, durable, safe, low-toxic antibacterial polymer materials, such as antibacterial plastics, antibacterial rubbers, antibacterial fibers and antibacterial coatings, and can effectively inhibit and kill bacteria, fungi and pathogens.
  • Figure 1a is a H-NMR spectrum of the brominated isobutylene-p-methylstyrene copolymer XP-I-1 in Example I-1;
  • Fig. 1b is a H-NMR spectrum of the isobutylene quaternary ammonium salt ionomer A-I-1 in Example I-1;
  • Figure 1c is a thermogravimetric diagram of isobutylene-p-methylstyrene copolymer P-I-1;
  • FIG1d is a thermogravimetric diagram of brominated isobutylene-p-methylstyrene copolymer XP-I-1;
  • Figure 1e is a thermogravimetric graph of the isobutylene quaternary ammonium salt ionomer A-I-1 in Example I-1;
  • FIG2a is a H-NMR spectrum of the brominated isobutylene-p-methylstyrene copolymer XP-II-1 in Example II-1;
  • FIG2b is a hydrogen NMR spectrum of the isobutylene quaternary phosphonium salt ionic polymer A-II-1 in Example II-1.
  • FIG2c is a thermogravimetric diagram of isobutylene-p-methylstyrene copolymer P-II-1;
  • FIG2d is a thermogravimetric diagram of brominated isobutylene-p-methylstyrene copolymer XP-II-1;
  • FIG2e is a thermogravimetric graph of the isobutylene quaternary phosphonium salt ionomer in Example II-1;
  • FIG3a is a H-NMR spectrum of the brominated isobutylene-p-methylstyrene copolymer XP-III-1 in Example III-1;
  • FIG3b is a hydrogen NMR spectrum of the isobutylene imidazolium salt ionomer A-III-1 in Example III-1;
  • FIG3c is a thermogravimetric diagram of an isobutylene-p-methylstyrene copolymer P-III-1;
  • FIG3d is a thermogravimetric diagram of the brominated isobutylene-p-methylstyrene copolymer XP-III-1 in Example III-1;
  • FIG3e is a thermogravimetric graph of the isobutylene imidazolium salt ionomer A-III-1 in Example III-1;
  • FIG4a is a H-NMR spectrum of the brominated isobutylene-p-methylstyrene copolymer XP-IV-1 in Example IV-1;
  • FIG4b is a H-NMR spectrum of the isobutylene pyridinium salt ionomer A-IV-1 in Example IV-1;
  • FIG4c is a thermogravimetric diagram of an isobutylene-p-methylstyrene copolymer P-IV-1;
  • FIG4d is a thermogravimetric graph of the brominated isobutylene-p-methylstyrene copolymer XP-IV-1 in Example IV-1;
  • FIG. 4e is a thermogravimetric graph of the isobutylene pyridinium salt ionomer A-IV-1 in Example IV-1.
  • the first aspect of the present invention provides an isobutylene-based cationic salt ion polymer, characterized in that the polymer comprises a structural unit A, a structural unit B and a structural unit C;
  • the structural unit A has the structure shown in formula (2) and/or formula (3) and optionally the structure shown in formula (1);
  • the structural unit B has the structure shown in formula (4)
  • the structural unit C has the structure shown in formula (5);
  • R 1 is a C 1 -C 4 alkylene group
  • R 2 is a C 1 -C 4 alkyl group
  • R 3 , R 4 , and R 5 are each independently a C 1 -C 20 straight-chain alkyl group, a C 1 -C 20 branched-chain alkyl group, or a C 6 -C 20 aryl group;
  • R 6 , R 7 , and R 8 are each independently a C 1 -C 10 straight-chain alkyl group, a C 1 -C 10 branched-chain alkyl group, a C 3 -C 10 cycloalkyl group, or a C 6 -C 10 aryl group;
  • R9 is hydrogen, a C1 - C20 straight-chain alkyl group
  • R10 , R11 , and R12 are each independently hydrogen, a halogen atom, a C1 - C10 straight-chain alkyl group, a C1 - C10 branched-chain alkyl group, a hydroxyl group, a nitro group, -( CH2 ) n -NH, a cyano group, or a C6 - C10 aryl group, and n is an integer of 0-5;
  • R 13 , R 14 , R 15 , R 16 , and R 17 are each independently hydrogen, a halogen atom, a C 1 -C 20 straight-chain alkyl group, a C 1 -C 20 branched-chain alkyl group, a nitro group, an amino group, or a cyano group;
  • X is Cl or Br.
  • the isobutylene-based cationic salt ion polymer comprises a macromolecular skeleton composed of a main structural unit provided by isobutylene and a functional structural unit provided by alkylstyrene, and cationic salt functional groups are simultaneously introduced on the side groups and the main chain of the alkylstyrene unit in the polymer, so that the polymer has a satisfactory higher degree of ionization and contains a high content of cationic salt functional groups.
  • the polymer can be used as an antibacterial agent for preparing highly efficient, stable, durable, safe, and low-toxic antibacterial polymer materials, such as antibacterial plastics, antibacterial rubbers, antibacterial fibers, and antibacterial coatings, and can effectively inhibit and kill bacteria, fungi, and pathogens.
  • R1 is methylene or ethylene, preferably methylene;
  • R2 is methyl or ethyl, preferably methyl;
  • R3 , R4 , R5 are each independently a C1 - C18 straight-chain alkyl or a C6 - C9 aryl, preferably a methyl, a C8 - C16 straight-chain alkyl or a phenyl; and
  • X is Br.
  • R1 is methylene or ethylene, preferably methylene;
  • R2 is methyl or ethyl, preferably methyl;
  • R6 , R7 , and R8 are each independently a C1 - C8 straight-chain alkyl, a C5 - C8 cycloalkyl, a C6 - C8 aryl, preferably a C1 - C8 straight-chain alkyl, a cyclopentyl, a cyclohexyl or a phenyl; and
  • X is Br.
  • R1 is methylene or ethylene, preferably methylene;
  • R2 is methyl or ethyl, preferably methyl;
  • R9 is hydrogen, C1 - C18 straight-chain alkyl, preferably hydrogen, C1 - C16 straight-chain alkyl;
  • R10 , R11 , R12 are each independently hydrogen, a halogen atom, C1 - C5 straight-chain alkyl, C1 - C5 branched alkyl, hydroxyl, nitro, -( CH2 ) n -NH, cyano or C6 - C8 aryl,
  • n is an integer of 0-3, preferably hydrogen, C1 - C16 straight-chain alkyl,
  • R3 , R4 , R5 are each independently hydrogen, a halogen atom, C1 - C4 straight-chain alkyl, hydroxyl, nitro, cyano, amino or phenyl;
  • X is Br.
  • R1 is methylene or ethylene, preferably methylene;
  • R2 is methyl or ethyl, preferably methyl;
  • R13 , R14 , R15 , R16 , R17 are each independently hydrogen, halogen, C1 - C15 straight-chain alkyl, C1 - C15 branched-chain alkyl, nitro, amino or cyano, preferably hydrogen, halogen, C1 - C10 straight-chain alkyl, amino or cyano; and
  • X is Br.
  • the content of the cationic salt groups is 1.5-35 mol%.
  • the antibacterial property of the polymer material containing the polymer can be further improved.
  • the content of the group is 2.5-25 mol%.
  • the content of the side benzyl cationic salt groups is 1-20 mol%, and the content of the main chain tertiary carbon cationic salt groups is 0.5-15 mol%.
  • the polymer when the content of the side group cationic salt groups and the main chain tertiary carbon cationic salt groups in the polymer meets the above range, the polymer has more efficient bactericidal and antibacterial properties.
  • the main chain tertiary carbon cation salt group refers to the cation salt group on the main chain of the alkyl styrene, including the cation salt group located on the main chain of the alkyl styrene in the structural unit shown in formula (2) and the cation salt group in the structural unit shown in formula (3).
  • the content of the main chain cation salt group is the sum of the content of the cation salt group in the structural unit shown in formula (2) and the content of the cation salt group located on the main chain in the structure shown in formula (3).
  • the side group cationic salt group refers to the cationic salt group on the side group of alkylstyrene, including the cationic salt group located on the side group of alkylstyrene in the structural unit shown in formula (1) and the structural unit shown in formula (3).
  • the content of the side group benzyl cationic salt group is the sum of the content of the cationic salt group in the structural unit shown in formula (1) and the content of the cationic salt group in the side group of the structural unit shown in formula (3).
  • the content of the side benzyl cationic salt groups is 1.5-15 mol%, and the content of the main chain tertiary carbon cationic salt groups is 1-10 mol%.
  • the content of the structural unit A is 1-20 mol%
  • the content of the structural unit B is 0.5-10 mol%
  • the content of the structural unit C is 75-97 mol%.
  • the isobutylene cationic salt ionomer contains the structural unit A shown in formula (3), and the structural unit contains both the side cationic salt group and the main chain cationic salt group, so that the total content of the cationic salt group in the isobutylene cationic salt ionomer is higher than the content of the structural unit A.
  • the isobutylene-based cationic salt ion polymer has a high content of structural unit A, so that more cationic salt functional groups can be introduced into the polymer, and the finally obtained polymer has a higher content of cationic salt functional groups, which can enable the polymer to be used as an antibacterial agent for preparing antibacterial polymer materials with stable, durable, safe and low-toxic antibacterial properties, such as antibacterial plastics, antibacterial rubbers, antibacterial fibers and antibacterial coatings, and can effectively inhibit and kill bacteria, fungi and pathogens.
  • the content of the structural unit A is 2-15 mol%
  • the content of the structural unit B is 1-5 mol%
  • the content of the structural unit C is 80-95 mol%.
  • the thermal decomposition temperature of the isobutylene-based cationic salt ionomer is 150-550°C.
  • the 5wt% thermal weight loss temperature of the isobutylene-based cationic salt ionomer is ⁇ 170°C.
  • the isobutylene-based cationic salt ion polymer has a high thermal decomposition temperature and a high 5wt% thermal weight loss temperature, so that the polymer meets the conditions required for the thermal processing of polymer materials, can be directly used as an antibacterial agent in combination with polymer materials, and is used to prepare antibacterial polymer materials such as antibacterial plastics, antibacterial rubbers, antibacterial fibers, and antibacterial coatings.
  • the thermal decomposition temperature of the isobutylene-based cationic salt ionomer is 180-500°C.
  • the thermal weight loss temperature of 5 wt% of the isobutylene-based cationic salt ionomer is ⁇ 180°C.
  • the isobutylene cationic salt ion polymer is an isobutylene quaternary ammonium salt ion polymer, wherein the polymer comprises structural unit A, structural unit B and structural unit C;
  • the structural unit A has the structure shown in formula (2-1) and/or formula (3-1) and optionally the structure shown in formula (1-1);
  • the structural unit B has the structure shown in formula (4-1);
  • the structural unit C has the structure shown in formula (5-1);
  • R 1 is a C 1 -C 4 alkylene group
  • R 2 is a C 1 -C 4 alkyl group
  • R 3 , R 4 , and R 5 are each independently a C 1 -C 20 straight-chain alkyl group, a C 1 -C 20 branched-chain alkyl group, or a C 6 -C 20 aryl group
  • X is Cl or Br.
  • R 1 is methylene or ethylene
  • R 2 is methyl or ethyl
  • R 3 , R 4 , and R 5 are each independently a C 1 -C 18 straight-chain alkyl or a C 6 -C 9 aryl
  • X is Br.
  • R 1 is methylene;
  • R 2 is methyl;
  • R 3 , R 4 , and R 5 are each independently methyl, C 8 -C 16 straight-chain alkyl or phenyl; and
  • X is Br.
  • the content of the quaternary ammonium salt group is 1.5-35 mol%.
  • the content of the quaternary ammonium salt group is 2.5-25 mol%.
  • the content of the pendant benzyl quaternary ammonium salt group is 1-20 mol%, and the content of the main chain tertiary carbon quaternary ammonium salt group is 0.5-15 mol%.
  • the content of the pendant benzyl quaternary ammonium salt group is 1.5-15 mol%, and the content of the main chain tertiary carbon quaternary ammonium salt group is 1-10 mol%.
  • the content of the structural unit A is 1-20 mol%
  • the content of the structural unit B is 0.5-10 mol%
  • the content of the structural unit C is 75-97 mol%.
  • the content of the structural unit A is 2-15 mol%
  • the content of the structural unit B is 1-5 mol%
  • the content of the structural unit C is 80-95 mol%.
  • the thermal decomposition temperature of the isobutylene quaternary ammonium salt ion polymer is 150-500°C.
  • the thermal weight loss temperature of the isobutylene quaternary ammonium salt ion polymer at 5 wt% is ⁇ 170°C.
  • the isobutylene quaternary ammonium salt ion polymer has a high thermal decomposition temperature and a high 5wt% thermal weight loss temperature, so that the polymer meets the conditions required for the thermal processing of polymer materials, can be directly used as an antibacterial agent in combination with polymer materials, and is used to prepare antibacterial polymer materials such as antibacterial plastics, antibacterial rubbers, antibacterial fibers, and antibacterial coatings.
  • the thermal decomposition temperature of the isobutylene quaternary ammonium salt ion polymer is 180-450°C.
  • the thermal weight loss temperature of 5 wt% of the isobutylene quaternary ammonium salt ion polymer is ⁇ 180°C.
  • the isobutylene cationic salt ionomer is an isobutylene quaternary phosphonium salt ionomer, wherein the polymer comprises structural unit A, structural unit B and structural unit C;
  • the structural unit A has a structure shown in at least one of formula (2-2) and/or formula (3-2) and optionally a structure shown in formula (1-2);
  • the structural unit B has a structure shown in formula (4-2);
  • the structural unit C has a structure shown in formula (5-2);
  • R1 is a C1 - C4 alkylene group
  • R2 is a C1 - C4 alkyl group
  • R6 , R7 , and R8 are each independently a C1 - C10 straight-chain alkyl group, a C1 - C10 branched-chain alkyl group, a C3 - C10 cycloalkyl group, or a C6 - C10 aryl group
  • X is Cl or Br.
  • R 1 is methylene or ethylene
  • R 2 is methyl or ethyl
  • R 3 , R 4 , and R 5 are each independently a C 1 -C 18 straight-chain alkyl or a C 6 -C 9 aryl
  • X is Br.
  • R 1 is methylene;
  • R 2 is methyl;
  • R 6 , R 7 , and R 8 are each independently a C 1 -C 8 straight-chain alkyl, cyclopentyl, cyclohexyl, or phenyl; and
  • X is Br.
  • the content of the quaternary phosphonium salt functional group is 1.5-23 mol%.
  • the content of the quaternary phosphonium salt functional group is 3-18 mol%.
  • the content of the pendant benzyl quaternary phosphonium salt functional group is 1-15 mol%, and the content of the main chain tertiary carbon quaternary phosphonium salt functional group is 0.5-8 mol%.
  • the content of the pendant benzyl quaternary phosphonium salt functional group is 2-13 mol %, and the content of the main chain tertiary carbon quaternary phosphonium salt functional group is 1-5 mol %.
  • the content of the structural unit A is 1-20 mol%
  • the content of the structural unit B is 0.5-10 mol%
  • the content of the structural unit C is 75-97 mol%.
  • the content of the structural unit A is 2-15 mol%
  • the content of the structural unit B is 1-5 mol%
  • the content of the structural unit C is 80-95 mol%.
  • the thermal decomposition temperature of the isobutylene quaternary phosphonium salt ion polymer is 150-500°C.
  • the thermal weight loss temperature of the isobutylene quaternary phosphonium salt ion polymer at 5 wt% is ⁇ 200°C.
  • the thermal decomposition temperature of the isobutylene quaternary phosphonium salt ion polymer is 200-450°C.
  • the thermal weight loss temperature of 5 wt% of the isobutylene quaternary phosphonium salt ion polymer is ⁇ 220°C.
  • the isobutylene-based cationic salt ionomer is an isobutylene-based imidazolium salt ionomer, wherein the polymer comprises structural unit A, structural unit B and structural unit C;
  • the structural unit A has a structure shown in at least one of formula (2-3) and/or formula (3-3) and optionally a structure shown in formula (1-3);
  • the structural unit B has a structure shown in formula (4-3);
  • the structural unit C has a structure shown in formula (5-3);
  • R1 is a C1 - C4 alkylene group
  • R2 is a C1 - C4 alkyl group
  • R13 , R14 , R15 , R16 , and R17 are each independently hydrogen, a halogen atom, a C1 - C20 straight-chain alkyl group, a C1 - C20 branched-chain alkyl group, a nitro group, an amino group, or a cyano group
  • X is Cl or Br.
  • R1 is methylene or ethylene
  • R2 is methyl or ethyl
  • R9 is hydrogen or a C1 - C18 straight-chain alkyl group
  • R10 , R11 , and R12 are each independently hydrogen, a halogen atom, a C1 - C5 straight-chain alkyl group, a C1 - C5 branched alkyl group, a hydroxyl group, a nitro group, -( CH2 ) n -NH, a cyano group, or a C6 - C8 aryl group, and n is an integer of 0-3; and X is Br.
  • R1 is methylene; R2 is methyl; R9 is hydrogen or C1 - C16 straight chain alkyl; R10 , R11 , and R12 are each independently hydrogen, a halogen atom, C1 - C4 straight chain alkyl, hydroxyl, nitro, amino, cyano or phenyl; and X is Br.
  • the content of the imidazolate salt group is 1.5-23 mol%.
  • the content of the imidazole salt group is 3-18 mol%.
  • the content of the side benzyl imidazole salt groups is 1-15 mol%, and the content of the main chain tertiary carbon imidazole salt functional groups is 0.5-8 mol%.
  • the content of the pendant benzyl imidazole salt group is 2-13 mol %, and the content of the main chain tertiary carbon imidazole salt group is 1-5 mol %.
  • the content of the structural unit A is 1-20 mol%
  • the content of the structural unit B is 0.5-10 mol%
  • the content of the structural unit C is 75-97 mol%.
  • the content of the structural unit A is 2-15 mol%
  • the content of the structural unit B is 1-5 mol%
  • the content of the structural unit C is 80-95 mol%.
  • the thermal decomposition temperature of the isobutylene imidazolium salt ion polymer is 150-550°C.
  • the thermal weight loss temperature of the isobutylene imidazolium salt ion polymer at 5 wt% is ⁇ 200°C.
  • the thermal decomposition temperature of the isobutylene imidazolium salt ion polymer is 200-500°C.
  • the thermal weight loss temperature of the isobutylene imidazolium salt ion polymer at 5 wt% is ⁇ 220°C.
  • the isobutylene cationic salt ionomer is an isobutylene pyridinium salt ionomer, wherein the polymer comprises structural unit A, structural unit B and structural unit C;
  • the structural unit A has the structure shown in formula (2-4) and/or formula (3-4) and optionally the structure shown in formula (1-4); the structural unit B has the structure shown in formula (4-4); the structural unit C has the structure shown in formula (5-4);
  • R1 is a C1 - C4 alkylene group
  • R2 is a C1 - C4 alkyl group
  • R13 , R14 , R15 , R16 , and R17 are each independently hydrogen, a halogen atom, a C1 - C20 straight-chain alkyl group, a C1 - C20 branched-chain alkyl group, a nitro group, an amino group, or a cyano group
  • X is Cl or Br.
  • R1 is methylene or ethylene
  • R2 is methyl or ethyl
  • R13 , R14 , R15 , R16 , R17 are each independently hydrogen, halogen, C1 - C15 straight-chain alkyl, C1 - C15 branched-chain alkyl, nitro, amino or cyano
  • X is Br.
  • R 1 is a methylene group
  • R 2 is a methyl group
  • R 13 , R 14 , R 15 , R 16 , and R 17 are each independently hydrogen, a halogen atom, a C 1 -C 10 straight-chain alkyl group, an amino group, or a cyano group
  • X is Br.
  • the content of the structural unit A is 1-20 mol%
  • the content of the structural unit B is 0.5-10 mol%
  • the content of the structural unit C is 75-97 mol%.
  • the content of the structural unit A is 2-15 mol%
  • the content of the structural unit B is 1-5 mol%
  • the content of the structural unit C is 80-95 mol%.
  • the content of the pyridinium salt functional group is 1.5-35 mol%.
  • the content of the pyridinium salt functional group is 3-25 mol%.
  • the content of the pendant benzyl pyridinium salt group is 1-20 mol %, and the content of the main chain tertiary carbon pyridinium salt group is 0.5-15 mol %.
  • the content of the pendant benzyl pyridinium salt group is 1.5-15 mol%, and the content of the main chain tertiary carbon pyridinium salt group is 1-10 mol%.
  • the thermal decomposition temperature of the isobutylene pyridinium salt ion polymer is 100-500°C.
  • the thermal weight loss temperature of the isobutylene quaternary ammonium salt ion polymer at 5 wt% is ⁇ 180°C.
  • the thermal decomposition temperature of the isobutylene pyridinium salt ion polymer is 150-450°C.
  • the thermal weight loss temperature of the isobutylene pyridinium salt ion polymer at 5 wt% is ⁇ 200°C.
  • the second aspect of the present invention provides a method for preparing an isobutylene-based cationic salt ionomer, characterized in that the preparation method comprises:
  • the polymer is a random copolymer of isobutylene and alkylstyrene
  • the halogenation reaction is carried out under the irradiation of visible light, and the luminescence mode of the visible light is pulsed luminescence.
  • the random copolymer of isobutylene and alkylstyrene is subjected to a halogenation reaction under the irradiation of visible light, especially under the irradiation of pulsed visible light, which not only enables the polymerization system to have a high purity, controls the halogenation reaction rate, and reduces the probability of halogenation side reactions, but more importantly, enables the selective regulation of the halogenation reaction to obtain a high efficiency and a high degree of halogenation reaction, thereby obtaining the isobutylene-based cationic salt ion polymer described in the first aspect of the present invention.
  • the polymer contains cationic salt functional groups in both the side groups and the main chain, so that the polymer has a high degree of polyionization and contains a high content of cationic salt functional groups, and can be used as an antibacterial agent for preparing antibacterial polymer materials, such as antibacterial plastics, antibacterial rubbers, antibacterial fibers and antibacterial coatings, and can effectively inhibit and kill bacteria, fungi and pathogens.
  • the polymer solution is subjected to a halogenation reaction by the method of step (1), and the structural units derived from the alkyl styrene in the polymer macromolecular chain undergo a halogen substitution reaction, and the alkyl hydrogen on the benzene ring of the alkyl styrene and the main chain tertiary carbon hydrogen connected to the benzene ring undergo a halogenation reaction, thereby forming a side alkyl halide structure and a main chain tertiary carbon halide structure in the polymer macromolecular chain.
  • the structural units derived from the alkyl styrene form the following three structures:
  • the present invention uses visible light of a specific wavelength range to initiate the halogenation reaction, which can achieve the characteristics of highly controllable halogenation reaction, less side reactions, and high selectivity.
  • the visible light of the specific wavelength refers to the yellow to red band, that is, the light wave between 560-630nm, preferably an LED light source.
  • the output power of the light source is 10-200W.
  • the pulsed light emission means that the light source emits light waves and stops emitting light waves with equal time difference and alternately.
  • the pulse time of the pulsed light emission is 5-40s, preferably 10-30s.
  • the light halogenation method of the present invention can achieve a halogenation reaction efficiency of more than 80%, preferably more than 90%.
  • the halogenation reaction efficiency means: for the halogenation substitution reaction carried out by the free radical mechanism, when theoretically 100% of the halogen undergoes hydrogen substitution reaction, 50% of the halogen is substituted onto the polymer, and the ratio of the actually measured polymer halogen content to the theoretical halogen content is the halogenation reaction efficiency.
  • the content of the structural unit provided by the alkylstyrene is 3-25 mol%, and the content of the structural unit provided by the isobutylene is 75-97 mol%.
  • the content of the structural unit derived from alkylstyrene is 5-20 mol%
  • the content of the structural unit derived from isobutylene is 80-95 mol%.
  • the weight average molecular weight Mw of the polymer is 1 ⁇ 10 4 -1 ⁇ 10 5 ; and the molecular weight distribution coefficient is 2-3.5.
  • the weight average molecular weight Mw of the polymer is 2 ⁇ 10 4 -8 ⁇ 10 4 ; and the molecular weight distribution coefficient is 2.2-3.
  • the content of aluminum ions in the polymer is lower than 10 ppm, preferably lower than 5 ppm.
  • the organic solvent which may be an organic solvent commonly used in the art, preferably at least one of C6-C10 straight-chain alkanes, C6 - C10 cycloalkanes, C1 - C4 halogenated alkanes, etc.;
  • the straight-chain alkanes include at least one of n-hexane, n-heptane, n-octane, n-nonane and n-decane;
  • the cycloalkanes include cyclohexane;
  • the halogenated alkanes include at least one of dichloromethane, chloroform and carbon tetrachloride.
  • the molar ratio of the polymer to the halogen is 1:0.5-2, preferably 1:0.8-1.5.
  • the halogen is diluted with an organic solvent halogenated alkane before use, and there is no particular restriction on the dilution concentration, so as to facilitate the control of the halogenation reaction.
  • the halogenation reaction is carried out in a light-proof environment, and there is no special requirement for the temperature of the halogenation reaction, for example, it can be carried out at room temperature.
  • a halogen is mixed with an organic solvent to obtain a halogen solution, and the halogen solution is added dropwise to the polymer solution to carry out a halogenation reaction, so as to achieve regulation of the selectivity of the halogenation reaction.
  • the dropping speed of the halogen solution is controlled so that the halogenation reaction time is 30-180 min.
  • a halogen solution is slowly added dropwise to a polymer solution, and a photohalogenation reaction is carried out under the irradiation of visible light emitted by a pulsed LED light source of 560nm-630nm to obtain a halogenated polymer solution.
  • a certain amount of alkaline compounds such as sodium carbonate, sodium bicarbonate, calcium carbonate, magnesium carbonate, calcium oxide, magnesium oxide, etc. can be added to the polymer solution.
  • the halogenated polymer solution is centrifuged or filtered to remove solid halide compounds and then used for ionization reaction.
  • the halogen is liquid bromine.
  • the tertiary amine compound has a structure shown in formula (6);
  • R 3 , R 4 and R 5 are each independently a C 1 -C 20 straight-chain alkyl group, a C 1 -C 20 branched-chain alkyl group or a C 6 -C 20 aryl group.
  • the tertiary phosphine compound has a structure shown in formula (7);
  • R 6 , R 7 , and R 8 are each independently a C 1 -C 10 straight-chain alkyl group, a C 1 -C 10 branched-chain alkyl group, a C 3 -C 10 cycloalkyl group, or a C 6 -C 10 aryl group.
  • the imidazole compound has a structure shown in formula (8);
  • R9 is hydrogen or C1 - C20 straight-chain alkyl
  • R10 , R11 and R12 are each independently hydrogen, halogen, C1 - C10 straight-chain alkyl, C1 - C10 branched alkyl, hydroxyl, nitro, -( CH2 ) n -NH, cyano or C6 - C10 aryl, and n is an integer of 0-5.
  • the pyridine compound has a structure shown in formula (9);
  • R 13 , R 14 , R 15 , R 16 and R 17 are each independently hydrogen, a halogen atom, a C 1 -C 20 straight-chain alkyl group, a C 1 -C 20 branched-chain alkyl group, a nitro group, an amino group or a cyano group.
  • R 3 , R 4 and R 5 are each independently a C 1 -C 18 straight-chain alkyl group or a C 6 -C 9 aryl group.
  • R 3 , R 4 and R 5 are each independently a methyl group, a C 8 -C 16 straight-chain alkyl group or a phenyl group. More preferably, R 3 and R 4 are methyl groups, and R 5 is a C 8 -C 16 straight-chain alkyl group or a phenyl group.
  • R 6 , R 7 and R 8 are each independently a C 1 -C 8 straight chain alkyl, C 5 -C 8 cycloalkyl or C 6 -C 8 aryl.
  • R 6 , R 7 and R 8 are each independently a C 1 -C 8 straight chain alkyl, cyclopentyl, cyclohexyl or phenyl.
  • R9 is hydrogen or a C1 - C18 straight-chain alkyl group
  • R10 , R11 and R12 are each independently hydrogen, a halogen atom, a C1 - C5 straight-chain alkyl group, a C1 - C5 branched-chain alkyl group, a hydroxyl group, a nitro group, -( CH2 ) n -NH, a cyano group or a C6 - C8 aryl group, and n is an integer of 0-3.
  • R9 is hydrogen or a C1 - C16 straight-chain alkyl group
  • R10 , R11 and R12 are each independently hydrogen, a halogen atom, a C1 - C4 straight-chain alkyl group, a hydroxyl group, a nitro group, a cyano group, an amino group or a phenyl group.
  • R 13 , R 14 , R 15 , R 16 , and R 17 are each independently hydrogen, halogen, C 1 -C 15 straight-chain alkyl, C 1 -C 15 branched-chain alkyl, nitro, amino, or cyano.
  • R 13 , R 14 , R 15 , R 16 , and R 17 are each independently hydrogen, halogen, C 1 -C 10 straight-chain alkyl, amino, or cyano.
  • the tertiary amine compound represented by formula (6) includes, but is not limited to, trimethylamine, triethylamine, tripropylamine, tributylamine, tripentylamine, trihexylamine, triheptylamine, trioctylamine, trinonylamine, tridecylamine, triundecylamine, tridodecylamine, tritridecylamine, tritetradecylamine, tripentadecylamine, trihexadecylamine, triheptadecylamine, trioctadecylamine, trinonadecylamine, trieicosylamine, triphenylamine, N,N-dimethylethylamine, N,N-dimethylpropylamine, N,N-dimethylbutylamine, N,N-dimethylpentylamine, N,N-dimethylhexylamine, N,N-N-
  • N,N-dimethylalkylamine especially at least one of N,N-dimethyl C 8 -C 16 alkylamine, such as N,N-dimethyldecylamine, N,N-dimethyldodecylamine and N,N-dimethyltetradecylamine or a combination thereof.
  • the tertiary phosphine compound represented by formula (7) includes, but is not limited to, trimethyl phosphine, triethyl phosphine, tripropyl phosphine, tributyl phosphine, tripentyl phosphine, tricyclopentyl phosphine, trihexyl phosphine, tricyclohexyl phosphine, triheptyl phosphine, trioctyl phosphine, trinonyl phosphine, tridecyl phosphine, triphenyl phosphine, dimethyl phenyl phosphine, dimethyl ethyl phosphine, dimethyl propyl phosphine, dimethyl butyl phosphine, dimethyl pentyl phosphine, dimethyl hexyl phosphine, dimethyl heptyl phosphine,
  • the imidazole compound represented by formula (8) includes but is not limited to imidazole, 1-methylimidazole, 1-ethylimidazole, 1-propylimidazole, 1-butylimidazole, 1-pentylimidazole, 1-hexylimidazole, 1-heptylimidazole, 1-octylimidazole, 1-nonylimidazole, 1-decylimidazole, 1-undecylimidazole, 1-dodecylimidazole, 1-tridecylimidazole, 1-tetradecylimidazole, 1-pentadecylimidazole, 1-hexadec ...
  • -heptadecylimidazole 1-octadecylimidazole, 1,2-dimethylimidazole, 1,2-diethylimidazole, 1,2-dipropylimidazole, 1,2-dibutylimidazole, 1-methyl-2-ethylimidazole, 1-methyl-2-propylimidazole, 1-methyl-2-butylimidazole, 2-methylimidazole, 2-ethylimidazole, 2-propylimidazole, 2-butylimidazole, 2-pentylimidazole, 2-hexylimidazole, 2-heptylimidazole, 2-octylimidazole, 2- Nonylimidazole, 2-decylimidazole, 2-nitroimidazole, 4-nitroimidazole, 5-nitroimidazole, 1-methyl-4-nitroimidazole, 1-methyl-5-nitroimidazole, 1-ethyl-4-nitroimi
  • the pyridine compound represented by formula (9) includes but is not limited to pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 5-methylpyridine, 6-methylpyridine, 2,6-dimethylpyridine, 2,4,6-trimethylpyridine, 2-ethylpyridine, 3-ethylpyridine, 4-ethylpyridine, 5-ethylpyridine, 6-ethylpyridine, 2,6-diethylpyridine, 2,4,6-triethylpyridine, 2-propylpyridine, 3-propylpyridine, 4-propylpyridine, 5-propylpyridine, 6-propylpyridine, 2,6-dipropylpyridine, 2,4,6-tripropylpyridine, 2-butylpyridine, Pyridine, 3-butylpyridine, 4-butylpyridine, 5-butylpyridine, 6-butylpyridine, 2,6-dibutylpyridine, 2,4,6-tributylpyridine, 2-pentylpyridine
  • a tertiary amine compound, a tertiary phosphine compound, an imidazole compound, and a pyridine compound is dissolved in an organic solvent halogenated alkane and added to a halogenated polymer solution.
  • An ionization reaction is carried out in the presence of a protective gas.
  • the reaction temperature is 20-150°C, preferably 40-120°C; the reaction time is 1-24h, preferably 2-20h.
  • the molar ratio of at least one of the tertiary amine compound, the tertiary phosphine compound, the imidazole compound, and the pyridine compound to the halogen is 0.8-1.5:1, preferably 0.9-1.2:1.
  • the solid insoluble matter is precipitated from the organic solvent.
  • the solvent is filtered out and separated, and the insoluble ionic polymer is washed with hexane 1-2 times and then vacuum dried to obtain the isobutylene cationic salt ionic polymer described in the first aspect of the present invention.
  • the isobutylene cationic salt ionomer is an isobutylene quaternary ammonium salt ionomer, wherein the preparation method of the isobutylene quaternary ammonium salt ionomer comprises:
  • the polymer is a random copolymer of isobutylene and alkylstyrene
  • the halogenation reaction is carried out under the irradiation of visible light, and the luminescence mode of the visible light is pulsed luminescence.
  • the present invention uses visible light of a specific wavelength range to initiate the halogenation reaction, which can achieve the characteristics of highly controllable halogenation reaction, less side reactions, and high selectivity.
  • the visible light of the specific wavelength refers to the yellow to red band, that is, the light wave between 560-630nm, preferably an LED light source.
  • the output power of the light source is 10-200W.
  • the pulsed light emission means that the light source emits light waves and stops emitting light waves with equal time difference and alternately.
  • the pulse time of the pulsed light emission is 5-40s, preferably 10-30s.
  • the light halogenation method of the present invention can achieve a halogenation reaction efficiency of more than 80%, preferably more than 90%.
  • the halogenation reaction efficiency means: for the halogenation substitution reaction carried out by the free radical mechanism, when theoretically 100% of the halogen undergoes hydrogen substitution reaction, 50% of the halogen is substituted onto the polymer, and the ratio of the actually measured polymer halogen content to the theoretical halogen content is the halogenation reaction efficiency.
  • the content of the structural unit provided by the alkylstyrene is 3-25 mol%, and the content of the structural unit provided by the isobutylene is 75-97 mol%.
  • the content of the structural unit derived from alkylstyrene is 5-20 mol%
  • the content of the structural unit derived from isobutylene is 80-95 mol%.
  • the weight average molecular weight Mw of the polymer is 1 ⁇ 10 4 -1 ⁇ 10 5 ; and the molecular weight distribution coefficient is 2-3.5.
  • the weight average molecular weight Mw of the polymer is 2 ⁇ 10 4 -8 ⁇ 10 4 ; and the molecular weight distribution coefficient is 2.2-3.
  • the content of aluminum ions in the polymer is lower than 10 ppm, preferably lower than 5 ppm.
  • the organic solvent which may be an organic solvent commonly used in the art, preferably at least one of C6 - C10 straight-chain alkanes, C6 - C10 cycloalkanes, C1 - C4 halogenated alkanes, etc.;
  • the straight-chain alkanes include at least one of n-hexane, n-heptane, n-octane, n-nonane and n-decane;
  • the cycloalkanes include cyclohexane;
  • the halogenated alkanes include at least one of dichloromethane, chloroform and carbon tetrachloride.
  • the molar ratio of the polymer to the halogen is 1:0.5-2, preferably 1:0.8-1.5.
  • the halogen is diluted with an organic solvent halogenated alkane before use, and there is no particular restriction on the dilution concentration, so as to facilitate the control of the halogenation reaction.
  • the halogenation reaction is carried out in a light-proof environment, and there is no special requirement for the temperature of the halogenation reaction, for example, it can be carried out at room temperature.
  • a halogen is mixed with an organic solvent to obtain a halogen solution, and the halogen solution is added dropwise to the polymer solution to carry out a halogenation reaction, so as to achieve regulation of the selectivity of the halogenation reaction.
  • the dropping speed of the halogen solution is controlled so that the halogenation reaction time is 30-180 min.
  • a halogen solution is slowly added dropwise to a polymer solution, and a photohalogenation reaction is carried out under the irradiation of visible light emitted by a pulsed LED light source of 560nm-630nm to obtain a halogenated polymer solution.
  • a certain amount of alkaline compounds such as sodium carbonate, sodium bicarbonate, calcium carbonate, magnesium carbonate, calcium oxide, magnesium oxide, etc. can be added to the polymer solution.
  • the halogenated polymer solution is centrifuged or filtered to remove solid halide compounds and then used for ionization reaction.
  • the halogen is liquid bromine.
  • the tertiary amine has a structure shown in formula (6);
  • R 3 , R 4 and R 5 are each independently a C 1 -C 20 straight-chain alkyl group, a C 1 -C 20 branched-chain alkyl group or a C 6 -C 20 aryl group.
  • R 3 , R 4 , and R 5 are each independently a C 1 -C 18 straight-chain alkyl group or a C 6 -C 9 aryl group.
  • R 3 and R 4 are methyl groups
  • R 5 is a C 8 -C 16 straight-chain alkyl group or a phenyl group.
  • the tertiary amine includes but is not limited to trimethylamine, triethylamine, tripropylamine, tributylamine, tripentylamine, trihexylamine, triheptylamine, trioctylamine, trinonylamine, tridecylamine, triundecylamine, tridodecylamine, tritridecylamine, tritetradecylamine, tripentadecylamine, trihexadecylamine, triheptadecylamine, trioctadecylamine, trinonadecylamine, trieicosylamine, triphenylamine, N,N-dimethylethylamine, N,N-dimethylpropylamine, N,N-dimethylbutylamine, N,N-dimethylpentylamine, N, N-dimethylhexylamine, N,N-dimethylheptylamine
  • the tertiary amine is N,N-dimethylalkylamine, especially at least one of N,N-dimethyl C8 - C16 alkylamines, such as N,N-dimethyldecylamine, N,N-dimethyldodecylamine and N,N-dimethyltetradecylamine or a combination thereof.
  • a tertiary amine is dissolved in an organic solvent halogenated alkane, added to a halogenated polymer solution, and an ionization reaction is carried out in the presence of a protective gas.
  • the reaction temperature is 20-100°C, preferably 40-80°C; the reaction time is 1-10h, preferably 2-8h.
  • the molar ratio of the tertiary amine to the halogen is 0.8-1.5:1, preferably 0.9-1.2:1.
  • the solid insoluble matter is precipitated from the organic solvent.
  • the solvent is filtered out and the insoluble ion polymer is washed with hexane 1-2 times and then vacuum dried to obtain the isobutylene quaternary ammonium salt ion polymer.
  • the isobutylene cationic salt ionomer is an isobutylene quaternary phosphonium salt ionomer, wherein the preparation method of the isobutylene quaternary phosphonium salt ionomer comprises:
  • the polymer is a random copolymer of isobutylene and alkylstyrene; the halogenation reaction is carried out under the irradiation of visible light, and the luminescence mode of the visible light is pulsed luminescence.
  • the present invention uses visible light of a specific wavelength range to initiate the halogenation reaction, which can achieve the characteristics of highly controllable halogenation reaction, less side reactions, and high selectivity.
  • the visible light of the specific wavelength refers to the yellow to red band, that is, the light wave between 560-630nm, preferably an LED light source.
  • the output power of the light source is 10-200W.
  • the pulsed light emission means that the light source emits light waves and stops emitting light waves with equal time difference and alternately.
  • the pulse time of the pulsed light emission is 5-40s, preferably 10-30s.
  • the light halogenation method of the present invention can achieve a halogenation reaction efficiency of more than 80%, preferably more than 90%.
  • the halogenation reaction efficiency means: for the halogenation substitution reaction carried out by the free radical mechanism, when theoretically 100% of the halogen undergoes hydrogen substitution reaction, 50% of the halogen is substituted onto the polymer, and the ratio of the actually measured polymer halogen content to the theoretical halogen content is the halogenation reaction efficiency.
  • the molar ratio of the polymer to the halogen is 1:0.5-2, preferably 1:0.8-1.5.
  • the halogen is liquid bromine.
  • the halogenation reaction is carried out in a light-proof environment, and there is no special requirement for the temperature of the halogenation reaction, for example, it can be carried out at room temperature.
  • a halogen is mixed with an organic solvent to obtain a halogen solution, and the halogen solution is added dropwise to the polymer solution to carry out a halogenation reaction, so as to achieve regulation of the selectivity of the halogenation reaction.
  • the dripping speed of the halogen solution is controlled so that the halogenation reaction time is 30-180 min.
  • a halogen solution is slowly added dropwise to a polymer solution, and a photohalogenation reaction is carried out under the irradiation of pulsed visible light to obtain a halogenated polymer solution.
  • a certain amount of Amounts of alkaline compounds such as sodium carbonate, sodium bicarbonate, calcium carbonate, magnesium carbonate, calcium oxide, magnesium oxide, etc.
  • the halogenated polymer solution is centrifuged or filtered to remove solid halide compounds and then used for ionization reaction.
  • the content of the structural unit provided by the alkylstyrene is 3-25 mol%, and the content of the structural unit provided by the isobutylene is 75-97 mol%.
  • the content of the structural unit derived from alkylstyrene is 5-20 mol%
  • the content of the structural unit derived from isobutylene is 80-95 wt%.
  • the weight average molecular weight Mw of the polymer is 1 ⁇ 10 4 -1 ⁇ 10 5 ; and the molecular weight distribution coefficient is 2-3.5.
  • the weight average molecular weight Mw of the polymer is 2 ⁇ 10 4 -8 ⁇ 10 4 ; and the molecular weight distribution coefficient is 2.2-3.
  • the content of aluminum ions in the polymer is lower than 10 ppm, preferably lower than 5 ppm.
  • the organic solvent which may be an organic solvent commonly used in the art, preferably at least one of C6 - C10 straight-chain alkanes, C6 - C10 cycloalkanes, C1 - C4 halogenated alkanes, etc.;
  • the straight-chain alkanes include at least one of n-hexane, n-heptane, n-octane, n-nonane and n-decane;
  • the cycloalkanes include cyclohexane;
  • the halogenated alkanes include at least one of dichloromethane, chloroform and carbon tetrachloride.
  • the tertiary phosphine has a structure shown in formula (7);
  • R 6 , R 7 , and R 8 are each independently a C 1 -C 10 straight-chain alkyl group, a C 1 -C 10 branched-chain alkyl group, a C 3 -C 10 cycloalkyl group, or a C 6 -C 10 aryl group.
  • R 6 , R 7 , and R 8 are each independently a C 1 -C 8 straight-chain alkyl group, a C 5 -C 8 cycloalkyl group, or a C 6 -C 8 aryl group.
  • R 6 , R 7 , and R 8 are each independently a C 1 -C 8 straight-chain alkyl group, a cyclopentyl group, a cyclohexyl group, or a phenyl group.
  • the tertiary phosphine includes but is not limited to trimethyl phosphine, triethyl phosphine, tripropyl phosphine, tributyl phosphine, tripentyl phosphine, tricyclopentyl phosphine, trihexyl phosphine, tricyclohexyl phosphine, triheptyl phosphine, trioctyl phosphine, trinonyl phosphine, tridecyl phosphine, triphenyl phosphine, dimethyl phenyl phosphine, dimethyl ethyl phosphine, dimethyl propyl phosphine, dimethyl butyl phosphine, dimethyl pentyl phosphine, dimethyl hexyl phosphine, dimethyl heptyl phosphine, dimethyl octyl
  • a tertiary phosphine is dissolved in an organic solvent halogenated alkane, added to a halogenated polymer solution, and an ionization reaction is carried out in the presence of a protective gas.
  • the reaction temperature is 60-150°C, preferably 80-120°C; the reaction time is 4-24h, preferably 6-20h.
  • the molar ratio of the tertiary phosphine to the halogen is 0.8-1.5:1, preferably 0.9-1.2:1.
  • the solid insoluble matter is precipitated from the organic solvent.
  • the solvent is filtered out and the insoluble ion salt polymer is washed with hexane 1-2 times and then vacuum dried to obtain the isobutylene quaternary phosphonium salt ion polymer.
  • the isobutylene cationic salt ionomer is an isobutylene imidazolium salt ionomer, wherein the preparation method of the isobutylene imidazolium salt ionomer comprises:
  • the polymer is a random copolymer of isobutylene and alkylstyrene; the halogenation reaction is carried out under the irradiation of visible light, and the luminescence mode of the visible light is pulsed luminescence.
  • the present invention uses visible light of a specific wavelength range to initiate the halogenation reaction, which can achieve the characteristics of highly controllable halogenation reaction, less side reactions, and high selectivity.
  • the visible light of the specific wavelength refers to the yellow to red band, that is, the light wave between 560-630nm, preferably an LED light source.
  • the output power of the light source is 10-200W.
  • the pulsed light emission means that the light source emits light waves and stops emitting light waves with equal time difference and alternately.
  • the pulse time of the pulsed light emission is 5-40s, preferably 10-30s.
  • the molar ratio of the polymer to the halogen is 1:0.5-2, preferably 1:0.8-1.5.
  • the halogenation reaction efficiency can reach 80% or more, preferably 90% or more.
  • the halogenation reaction efficiency means: for the halogenation substitution reaction carried out by the free radical mechanism, when theoretically 100% of the halogen undergoes hydrogen substitution reaction, 50% of the halogen is substituted onto the polymer, and the ratio of the actually measured polymer halogen content to the theoretical halogen content is the halogenation reaction efficiency.
  • the halogen is used after being diluted with an organic solvent, and there is no particular restriction on the dilution concentration, so as to facilitate the control of the halogenation reaction.
  • organic solvent there is no particular restriction on the type of organic solvent, and it can be a conventional organic solvent in the art, such as a halogenated alkane and/or an alkane.
  • the halogenation reaction is carried out in a light-proof environment, and there is no special requirement for the temperature of the halogenation reaction, for example, it can be carried out at room temperature.
  • a halogen solution is obtained by mixing a halogen and an organic solvent, and the halogen solution is added dropwise to the polymer solution to carry out a halogenation reaction, so as to achieve regulation of the selectivity of the halogenation reaction.
  • the dropping speed of the halogen solution is controlled so that the halogenation reaction time is 30-180 min.
  • the halogen solution is slowly added dropwise to the polymer solution, and a photohalogenation reaction is carried out under the irradiation of pulsed visible light to obtain a halogenated polymer solution.
  • a certain amount of alkaline compounds such as sodium carbonate, sodium bicarbonate, calcium carbonate, magnesium carbonate, calcium oxide, magnesium oxide, etc. can be added to the glue.
  • the halogenated polymer solution is used for ionization reaction after being centrifuged or filtered to remove solid halide compounds.
  • the halogen is liquid bromine.
  • the content of the structural unit provided by the alkylstyrene is 3-25 mol%, and the content of the structural unit provided by the isobutylene is 75-97 mol%.
  • the content of the structural unit derived from alkylstyrene is 5-20 mol%
  • the content of the structural unit derived from isobutylene is 80-95 wt%.
  • the weight average molecular weight Mw of the polymer is 1 ⁇ 10 4 -1 ⁇ 10 5 ; and the molecular weight distribution coefficient is 2-3.5.
  • the weight average molecular weight Mw of the polymer is 2 ⁇ 10 4 -8 ⁇ 10 4 ; and the molecular weight distribution coefficient is 2.2-3.
  • the content of aluminum ions in the polymer is lower than 10 ppm, preferably lower than 5 ppm.
  • the organic solvent which may be an organic solvent commonly used in the art, preferably at least one of C6 - C10 straight-chain alkanes, C6 - C10 cycloalkanes, C1 - C4 halogenated alkanes, etc.;
  • the straight-chain alkanes include at least one of n-hexane, n-heptane, n-octane, n-nonane and n-decane;
  • the cycloalkanes include cyclohexane;
  • the halogenated alkanes include at least one of dichloromethane, chloroform and carbon tetrachloride.
  • the imidazole has a structure shown in formula (8);
  • R9 is hydrogen or C1 - C20 straight-chain alkyl
  • R10 , R11 and R12 are each independently hydrogen, halogen, C1 - C10 straight-chain alkyl, C1 - C10 branched alkyl, hydroxyl, nitro, -( CH2 ) n -NH, cyano or C6 - C10 aryl, and n is an integer of 0-5.
  • R9 is hydrogen or C1 - C18 straight-chain alkyl
  • R10 , R11 and R12 are each independently hydrogen, halogen, C1 - C5 straight-chain alkyl, C1 - C5 branched alkyl, hydroxyl, nitro, -( CH2 ) n -NH, cyano or C6 - C8 aryl
  • n is an integer of 0-3.
  • R 9 is hydrogen or C 1 -C 16 straight-chain alkyl
  • R 10 , R 11 , and R 12 are each independently hydrogen, a halogen atom, a C 1 -C 4 straight-chain alkyl, a hydroxyl group, a nitro group, a cyano group, an amino group, or a phenyl group.
  • the imidazole compound includes but is not limited to imidazole, 1-methylimidazole, 1-ethylimidazole, 1-propylimidazole, 1-butylimidazole, 1-pentylimidazole, 1-hexylimidazole, 1-heptylimidazole, 1-octylimidazole, 1-nonylimidazole, 1-decylimidazole, 1-undecylimidazole, 1-dodecylimidazole, 1-tridecylimidazole, 1-tetradecylimidazole, 1-pentadecylimidazole, 1-hexadecylimidazole, 1-heptadecylimidazole, 1-hexadecylimidazole, 1-hepta ...
  • imidazole 1-octadecyl imidazole, 1,2-dimethyl imidazole, 1,2-diethyl imidazole, 1,2-dipropyl imidazole, 1,2-dibutyl imidazole, 1-methyl-2-ethyl imidazole, 1-methyl-2-propyl imidazole, 1-methyl-2-butyl imidazole, 2-methyl imidazole, 2-ethyl imidazole, 2-propyl imidazole, 2-butyl imidazole, 2-pentyl imidazole, 2-hexyl imidazole, 2-heptyl imidazole, 2-octyl imidazole, 2-nonyl imidazole azole, 2-decyl imidazole, 2-nitro imidazole, 4-nitro imidazole, 5-nitro imidazole, 1-methyl-4-nitro imidazole, 1-methyl-5-nitro imidazole, 1-ethyl-4-nitro imidazole, 1-
  • the imidazole compound is dissolved in an organic solvent halogenated alkane, added to a halogenated polymer solution, and an ionization reaction is carried out in the presence of a protective gas.
  • the reaction temperature is 60-120°C, preferably 70-100°C; the reaction time is 6-20h, preferably 8-16h.
  • the molar ratio of the imidazole to the halogen is 0.8-1.5:1, preferably 0.9-1.2:1.
  • the solid insoluble matter is precipitated from the organic solvent.
  • the solvent is separated, and the insoluble ion polymer is washed with hexane 1-2 times and then vacuum dried to obtain the isobutylene imidazole salt ion polymer.
  • the isobutylene cationic salt ionomer is an isobutylene pyridinium salt ionomer, wherein the preparation method of the isobutylene pyridinium salt ionomer comprises:
  • the polymer is a random copolymer of isobutylene and alkylstyrene
  • the halogenation reaction is carried out under the irradiation of visible light, and the luminescence mode of the visible light is pulsed luminescence.
  • the present invention uses visible light of a specific wavelength range to initiate the halogenation reaction, which can achieve the characteristics of highly controllable halogenation reaction, less side reactions, and high selectivity.
  • the visible light of the specific wavelength refers to the yellow to red band, that is, the light wave between 560-630nm, preferably an LED light source.
  • the output power of the light source is 10-200W.
  • the pulsed light emission means that the light source emits light waves and stops emitting light waves with equal time difference and alternately.
  • the pulse time of the pulsed light emission is 5-40s, preferably 10-30s.
  • the light halogenation method of the present invention can achieve a halogenation reaction efficiency of more than 80%, preferably more than 90%.
  • the halogenation reaction efficiency means: for the halogenation substitution reaction carried out by the free radical mechanism, when theoretically 100% of the halogen undergoes hydrogen substitution reaction, 50% of the halogen is substituted onto the polymer, and the ratio of the actually measured polymer halogen content to the theoretical halogen content is the halogenation reaction efficiency.
  • the molar ratio of the polymer to the halogen is 1:0.5-2, preferably 1:0.8-1.5.
  • the halogen is liquid bromine.
  • the halogenation reaction is carried out in a light-proof environment, and there is no special requirement for the temperature of the halogenation reaction, for example, it can be carried out at room temperature.
  • the halogen is diluted with an organic solvent before use, and there is no particular restriction on the dilution concentration, so as to facilitate the control of the halogenation reaction.
  • a halogen is mixed with an organic solvent to obtain a halogen solution, and the halogen solution is added dropwise to the polymer solution to carry out a halogenation reaction, so as to achieve regulation of the selectivity of the halogenation reaction.
  • the dripping speed of the halogen solution is controlled so that the halogenation reaction time is 30-180 min.
  • a halogen solution is slowly added dropwise to a polymer solution, and a photohalogenation reaction is carried out under the irradiation of pulsed visible light to obtain a halogenated polymer solution.
  • a certain amount of alkaline compounds such as sodium carbonate, sodium bicarbonate, calcium carbonate, magnesium carbonate, calcium oxide, magnesium oxide, etc. can be added to the polymer solution.
  • the halogenated polymer solution is centrifuged or filtered to remove solid halide compounds and then used for ionization reaction.
  • the content of the structural unit provided by the alkylstyrene is 3-25 mol%, and the content of the structural unit provided by the isobutylene is 75-97 mol%.
  • the content of the structural unit derived from alkylstyrene is 5-20 mol%
  • the content of the structural unit derived from isobutylene is 80-95 mol%.
  • the weight average molecular weight Mw of the polymer is 1 ⁇ 10 4 -1 ⁇ 10 5 ; and the molecular weight distribution coefficient is 2-3.5.
  • the weight average molecular weight Mw of the polymer is 2 ⁇ 10 4 -8 ⁇ 10 4 ; and the molecular weight distribution coefficient is 2.2-3.
  • the content of aluminum ions in the polymer is lower than 10 ppm, preferably lower than 5 ppm.
  • the organic solvent which may be an organic solvent commonly used in the art, preferably at least one of C6 - C10 straight-chain alkanes, C6 - C10 cycloalkanes, C1 - C4 halogenated alkanes, etc.;
  • the straight-chain alkanes include at least one of n-hexane, n-heptane, n-octane, n-nonane and n-decane;
  • the cycloalkanes include cyclohexane;
  • the halogenated alkanes include at least one of dichloromethane, chloroform and carbon tetrachloride.
  • the pyridine has a structure shown in formula (9);
  • R 13 , R 14 , R 15 , R 16 and R 17 are each independently hydrogen, a halogen atom, a C 1 -C 20 straight-chain alkyl group, a C 1 -C 20 branched-chain alkyl group, a nitro group, an amino group or a cyano group.
  • R 13 , R 14 , R 15 , R 16 and R 17 are each independently hydrogen, halogen, C 1 -C 15 straight-chain alkyl, C 1 -C 15 branched-chain alkyl, nitro, amino or cyano.
  • R 13 , R 14 , R 15 , R 16 and R 17 are each independently hydrogen, halogen, C 1 -C 10 straight-chain alkyl, amino or cyano.
  • the pyridine includes but is not limited to pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 5-methylpyridine, 6-methylpyridine, 2,6-dimethylpyridine, 2,4,6-trimethylpyridine, 2-ethylpyridine, 3-ethylpyridine, 4-ethylpyridine, 5-ethylpyridine, 6-ethylpyridine, 2,6-diethylpyridine, 2,4,6-triethylpyridine, 2-propylpyridine, 3-propylpyridine, 4-propylpyridine, 5-propylpyridine, 6-propylpyridine, 2,6-dipropylpyridine, 2,4,6-tripropylpyridine, 2-butylpyridine, 3-butylpyridine, 2,6-dibutylpyridine, 2,4,6-tributylpyridine, 2-pentylpyridine, 3-pentylpyridine, 4-pentylpyridine, 5-pentylpyridine, 6-pentylpyridine, 6-p
  • pyridine is dissolved in an organic solvent halogenated alkane (such as carbon tetrachloride) and added dropwise to the halogenated polymer.
  • an ionization reaction is carried out in a material solution at a temperature of 60-150° C., preferably 80-120° C.; and a reaction time of 4-20 h, preferably 6-16 h.
  • the molar ratio of the pyridine to the halogen is 0.8-1.5:1, preferably 0.9-1.2:1.
  • the solid insoluble matter is precipitated from the organic solvent.
  • the solvent is separated, and the insoluble ion polymer is washed with hexane 1-2 times and then vacuum dried to obtain the isobutylene pyridinium salt ion polymer of the present invention.
  • the third aspect of the present invention provides an isobutylene-based cationic salt ionomer prepared by the above preparation method.
  • the isobutylene cationic salt ionomer is an isobutylene quaternary ammonium salt ionomer, an isobutylene quaternary phosphonium salt ionomer, an isobutylene imidazolium salt ionomer or an isobutylene pyridinium salt ionomer.
  • the fourth aspect of the present invention provides the use of the isobutylene-based cationic salt ion polymer as an antibacterial agent.
  • the fifth aspect of the present invention provides the above-mentioned isobutylene-based cationic salt ion polymer for inhibiting and killing at least one of bacteria, fungi and viruses.
  • the types of bacteria, fungi or viruses that the isobutylene-based cationic salt ionomer can effectively inhibit and kill are different.
  • the isobutylene cationic salt ionomer is an isobutylene quaternary ammonium salt ionomer, and the isobutylene quaternary ammonium salt ionomer can be used to inhibit and kill bacteria.
  • the bacteria are selected from Gram-negative bacteria and/or Gram-positive bacteria.
  • the isobutylene cationic salt ionomer is an isobutylene quaternary phosphonium salt ionomer, and the isobutylene quaternary phosphonium salt ionomer can be used to inhibit and kill at least one of bacteria, fungi and viruses.
  • the isobutylene-based cationic salt ionomer is an isobutylene-based imidazolium salt ionomer, and the isobutylene-based imidazolium salt ionomer can be used to inhibit and kill bacteria and/or fungi.
  • the bacteria are anaerobic bacteria; and the fungi are molds.
  • the isobutylene cationic salt ionomer is an isobutylene pyridinium salt ionomer, and the isobutylene pyridinium salt ionomer can be used to inhibit and kill at least one of bacteria, fungi and viruses.
  • the sixth aspect of the present invention provides a polymer material, characterized in that the antibacterial polymer material comprises the above-mentioned isobutylene-based cationic salt ion polymer.
  • the T 5wt% thermal weight loss temperature of the isobutylene-based cationic salt ion polymer reaches above 170° C., which meets the thermal processing requirements of general polymer materials and can be used as an antibacterial agent for preparing antibacterial polymer materials.
  • the amount of the isobutylene-based cationic salt ionomer is 1-10 parts, preferably 2-7 parts, relative to 100 parts of the polymer material.
  • the isobutylene-based cationic salt ion polymer is used to prepare an antibacterial polymer material, and the antibacterial agent will not migrate and release, thereby being able to maintain a highly effective, stable, low-toxic, safe, and long-lasting antibacterial and antimicrobial effect.
  • the polymer material is selected from at least one of plastics, rubber, fiber and coating.
  • the amount of the isobutylene quaternary ammonium salt ionomer is 1-10 parts, preferably 5-7 parts, relative to 100 parts of the polymer material.
  • the amount of the isobutylene quaternary phosphonium salt ionomer is 1-8 parts, preferably 2-6 parts, relative to 100 parts of the polymer material.
  • the amount of the isobutylene imidazolium salt ionomer is 1-10 parts, preferably 3-7 parts, relative to 100 parts of the polymer material.
  • the amount of the isobutylene pyridinium salt ionomer is 1-10 parts, preferably 3-7 parts, relative to 100 parts of the polymer material.
  • each structural unit, benzyl bromide and cationic salt (quaternary ammonium salt, quaternary phosphonium salt, imidazole salt, pyridinium salt) in the polymer was tested using an AVANCE400 nuclear magnetic resonance spectrometer produced by Bruker, Switzerland, with a magnetic field intensity of 9.40 Tesla, deuterated chloroform (CDCL 3 ) or deuterated dimethyl sulfoxide (DMSO) as solvent, tetramethylsilane (TMS) as internal standard, and tested at room temperature.
  • AVANCE400 nuclear magnetic resonance spectrometer produced by Bruker, Switzerland, with a magnetic field intensity of 9.40 Tesla
  • deuterated chloroform (CDCL 3 ) or deuterated dimethyl sulfoxide (DMSO) as solvent
  • TMS tetramethylsilane
  • the molecular weight and distribution of polymers were determined using LC-20 A gel permeation chromatography (GPC) produced by Shimadzu Corporation of Japan, using two TSKgel GMH HR-H (30) chromatographic columns produced by TOSOH in series, and the calibration curve used polystyrene as the standard.
  • GPC gel permeation chromatography
  • the metal element content in the polymer is determined by inductively coupled plasma atomic emission spectrometry (ICP-OES) in accordance with the implementation standard JYT015-1996.
  • ICP-OES inductively coupled plasma atomic emission spectrometry
  • the thermal decomposition temperature and thermal weight loss of the polymer were measured using a METTLER TGA/DSC1 instrument with a test temperature range of 25-600°C and a heating rate of 10°C/min, nitrogen atmosphere 50mL/min.
  • the brominated polymer gradually precipitates from the solvent to form blocky micelles.
  • the blocky micelles are separated from the solvent, and the micelles are taken out after being pressed and washed twice in hexane, and vacuum dried at 40°C to constant weight to obtain the isobutylene quaternary ammonium salt ion polymer A-I-1.
  • Adopt nuclear magnetic hydrogen spectrum to measure quaternary ammonium salt content see Fig. 1b.
  • the result shows, the signal peak (4.4654ppm) of side group benzyl bromide disappears, and all is changed into benzyl quaternary ammonium salt, and main chain tertiary carbon quaternary ammonium salt content can be calculated by methyl peak area integration in N, N-dimethyltetradecylamine.It is 15.3mol% to measure total quaternary ammonium salt group content, and the side group benzyl quaternary ammonium salt group content is 11.4mol%, and therefore calculating main chain tertiary carbon quaternary ammonium salt group content is 3.9mol%.
  • Nuclear magnetic hydrogen spectrum spectrogram is shown in Fig.
  • characteristic peak of chemical shift at 3-4ppm is the methyl signal characteristic peak in quaternary ammonium salt group
  • the characteristic peak of chemical shift at 4.5-5.5ppm is the methylene signal characteristic peak in benzyl quaternary ammonium salt group.
  • the isobutylene quaternary ammonium salt ion polymer A-I-1 contains 12.6 mol% of structural unit A, 3.3 mol% of structural unit B, and 84.1 mol% of structural unit C.
  • thermogravimetric analysis data of isobutylene-p-methylstyrene copolymer P-I-1, brominated isobutylene-p-methylstyrene copolymer XP-I-1, and isobutylene quaternary ammonium salt ion polymer A-I-1 are shown in Table 2, and the thermogravimetric curves are shown in Figures 1c, 1d, and 1e, respectively.
  • the isobutylene-p-methylstyrene copolymer P-I-1 has only one stage of thermal weight loss (one step), the thermal weight loss temperature is about 402.3°C, and the weight loss rate is 100wt%.
  • the brominated isobutylene-p-methylstyrene copolymer XP-I-1 has two stages of thermal weight loss (2 steps).
  • the first stage is concentrated at around 342.2°C, with a weight loss rate of 40.2wt%, which is due to thermal decomposition of carbon-bromine groups;
  • the second stage is concentrated at around 420.2°C, with a weight loss rate of 53.1wt%, which is due to thermal decomposition of the polymer main chain structure, which is consistent with P-I-1.
  • the isobutylene quaternary ammonium salt ionomer AI-1 has two stages of thermal weight loss (two steps), the first stage is concentrated at 219.8 °C The weight loss rate is about 34.4wt%, which is due to the thermal decomposition of the quaternary ammonium salt group; the second section is concentrated at about 408.6°C, with a weight loss rate of 64.6wt%, which is due to the thermal decomposition of the polymer main chain structure, which is consistent with PI-1.
  • the isobutylene quaternary ammonium salt ionomer was prepared according to the method of Example I-1, except that:
  • step (2) 2 mL of N, N-dimethyltetradecylamine (R 3 and R 4 in Formula 6 are methyl groups, and R 5 is a C 14 straight-chain alkyl group) and 2 mL of N, N-dimethyldodecylamine (R 3 and R 4 in Formula 6 are methyl groups, and R 5 is a C 8 straight-chain alkyl group) (dissolved in 5 mL of dichloromethane) are added, and the molar ratio of tertiary amine to liquid bromine is 1.1:1, and the reaction is carried out at 60°C for 4 hours under nitrogen protection.
  • the composite isobutylene quaternary ammonium salt ion polymer AI-2 is obtained.
  • the total quaternary ammonium salt group content in the isobutylene quaternary ammonium salt ion polymer A-I-2 is 15.3 mol%, and the content of the side benzyl quaternary ammonium salt group is 11.4 mol%, which is calculated to be 3.9 mol% of the main chain quaternary ammonium salt group content.
  • the isobutylene quaternary ammonium salt ion polymer A-I-2 contains 12.6 mol% of structural unit A, 3.3 mol% of structural unit B and 84.1 mol% of structural unit C.
  • the photobromination reaction is carried out using a 630nm LED light source, the light source power is 60W, and the pulse time is 15s. Turn on the light source to carry out the bromination reaction, control the slow liquid bromine drop speed, and carry out the bromination reaction under the irradiation of the pulse light source until the liquid bromine is added. Continue to react for 3-5 minutes, and the color of the glue solution turns light yellow. Turn off the light source to stop the reaction. The bromination reaction time is about 180 minutes to obtain the brominated polymer solution XP-I-2.
  • the blocky micelles are separated from the solvent, and the micelles are taken out after being pressed and washed twice in hexane, and vacuum dried at 40°C to constant weight to obtain isobutylene quaternary ammonium salt ion polymer AI-3.
  • the total quaternary ammonium salt content in the isobutylene quaternary ammonium salt ion polymer A-I-3 is 22.4 mol%, and the content of the side benzyl quaternary ammonium salt is 13.6 mol%, from which the main chain quaternary ammonium salt content is calculated to be 8.8 mol%.
  • the isobutylene quaternary ammonium salt ion polymer A-I-3 contains 14.7 mol% of structural unit A, 1.2 mol% of structural unit B, and 84.1 mol% of structural unit C.
  • Example 1 4mL of liquid bromine is taken with a pipette and added to a constant pressure dropping funnel (light-proof) containing 30mL of dichloromethane solvent.
  • the bromination method of Example 1 is adopted, except that the light source power is 60W, the pulse time is 15s, and the bromination reaction time is about 140min, to obtain a brominated polymer solution XP-I-3.
  • the brominated polymer gradually precipitates from the solvent to form blocky micelles.
  • the blocky micelles are separated from the solvent, and the micelles are taken out after being pressed and washed twice in hexane, and vacuum dried at 40°C to constant weight to obtain isobutylene quaternary ammonium salt ion polymer AI-4.
  • the total content of quaternary ammonium salt in the isobutylene quaternary ammonium salt ion polymer A-I-4 is 13.5 mol%, and the content of side benzyl quaternary ammonium salt is 10.1 mol%, from which the main chain quaternary ammonium salt content is calculated to be 3.4 mol%.
  • the isobutylene quaternary ammonium salt ion polymer A-I-4 contains 11.8 mol% of structural unit A, 0.4 mol% of structural unit B, and 87.8 mol% of structural unit C.
  • Example 1 3.5mL of liquid bromine is taken with a pipette and added to a constant pressure dropping funnel (light-proof) containing 20mL of dichlorohexane solvent.
  • the bromination method of Example 1 is adopted, and the bromination reaction time is about 100min to obtain a brominated polymer solution XP-I-4.
  • the blocky micelles are separated from the solvent, and the micelles are taken out after being pressed and washed twice in hexane, and vacuum dried at 40°C to constant weight to obtain isobutylene quaternary ammonium salt ion polymer AI-5.
  • the total quaternary ammonium salt content in the isobutylene quaternary ammonium salt ion polymer A-I-5 is 11.1 mol%
  • the content of the side group benzyl quaternary ammonium salt is 8.3 mol%
  • the calculated main chain quaternary ammonium salt content is 2.8 mol%.
  • the isobutylene quaternary ammonium salt ion polymer A-I-5 contains 8.7 mol% of structural unit A, 0.5 mol% of structural unit B, and 90.8 mol% of structural unit C.
  • the brominated polymer gradually precipitates from the solvent to form insoluble colloid particles.
  • the colloid particles are separated from the solvent, and the micelles are taken out after being pressed and washed twice in hexane. The mixture was dried under vacuum at 40°C to a constant weight to obtain isobutylene quaternary ammonium salt ion polymer AI-6.
  • the total quaternary ammonium salt group content in the isobutylene quaternary ammonium salt ion polymer A-I-6 is 6.5 mol%, and the content of the side benzyl quaternary ammonium salt group is 5.1 mol%, and the main chain quaternary ammonium salt group is calculated to be 1.4 mol%.
  • the isobutylene quaternary ammonium salt ion polymer A-I-6 contains 5.7 mol% of structural unit A, 3.5 mol% of structural unit B and 90.8 mol% of structural unit C.
  • a 630nm LED light source is used for photobromination reaction, the light source power is 40W, and the pulse time is 20s. Turn on the light source for bromination reaction, drip liquid bromine at a slow speed, and carry out bromination reaction under the irradiation of the pulse light source until the liquid bromine is dripped, turn off the light source, stop the reaction, and the bromination reaction time is about 140min to obtain a brominated polymer solution XP-I-6.
  • the quaternary ammonium salt content was determined by H NMR.
  • the benzyl bromide was partially converted into quaternary ammonium salt.
  • the total quaternary ammonium salt content was 8.7 mol %
  • the side group benzyl quaternary ammonium salt content was 5.2 mol %
  • the main chain tertiary carbon quaternary ammonium salt content was 3.5 mol %.
  • the isobutylene quaternary ammonium salt ion polymer A-I-7 contains 6.5 mol% of structural unit A, 0.5 mol% of structural unit B, and 93 mol% of structural unit C.
  • polymer P-I-1 (wherein the content of p-methylstyrene structural unit is 0.077mol) is dissolved in a mixed solvent of n-hexane (80mL) and carbon tetrachloride (80mL), and then 4.1g of sodium carbonate powder is added.
  • the molar ratio of polymer to liquid bromine is 1:1 based on the molar content of the structural unit provided by p-methylstyrene.
  • the insoluble micelles are separated from the solvent by filtration, and the solids are taken out after washing and filtering in acetone twice, and vacuum dried at 40°C to constant weight to obtain isobutylene quaternary ammonium salt ion polymer DI-1.
  • the quaternary ammonium salt content was determined by hydrogen nuclear magnetic spectrum.
  • the benzyl bromide was completely converted into quaternary ammonium salt.
  • the total quaternary ammonium salt content was 1.1 mol%, the content of the side benzyl quaternary ammonium salt group was 1.1 mol%, and the main chain did not contain tertiary carbon quaternary ammonium groups.
  • the isobutylene quaternary ammonium salt ion polymer DI-1 contains 1.1 mol% of structural unit A, 14.8 mol% of structural unit B, and 84.1 mol% of structural unit C.
  • the isobutylene quaternary ammonium salt polymer prepared in Example I-1 was blended with LDPE to prepare an antibacterial plastic, and the antibacterial properties of the antibacterial plastic were tested using Escherichia coli and Staphylococcus aureus as Gram-negative bacteria and Gram-positive bacteria, respectively.
  • the isobutylene quaternary ammonium salt polymer and LDPE resin were mixed in a mass ratio of 2:8, and melt-extruded and granulated at 135°C to produce a 20% antibacterial masterbatch.
  • the antibacterial masterbatch was then mixed with LDPE resin in different proportions and melt-extruded and granulated using a twin-screw extruder to produce antibacterial plastics with isobutylene quaternary ammonium salt polymer contents of 1%, 3%, 5%, 7% and 10%, respectively.
  • Each antibacterial plastic pellet was molded by a tablet press at 130°C and a pressure of 20 MPa for 3 minutes; then it was cold pressed at 15 MPa for 10 minutes to obtain an experimental sheet with a thickness of 1 mm, which was then cut into 20 mm ⁇ 20 mm test specimens after being left for 24 hours.
  • R [(A-B)/A] ⁇ 100%, A is the number of live bacteria on the surface of the plastic sample without adding antibacterial agent, and B is the number of live bacteria on the surface of the antibacterial plastic sample.
  • the antibacterial plastic prepared by blending the isobutylene quaternary ammonium salt ion polymer prepared in Example I-1 as an antibacterial agent with LDPE shows good antibacterial effect when the dosage reaches 5 parts or more, and the 24h antibacterial rate against Gram-negative bacteria and Gram-positive bacteria reaches more than 70%, and when the antibacterial plastic is immersed in water for 15-30 days, it still shows good antibacterial effect.
  • the brominated polymer gradually precipitates from the solvent to form a granular slurry.
  • the solid particles are separated from the solvent, and the solid particles are taken out after being washed twice in hexane, and vacuum dried at 40°C to constant weight to obtain the isobutylene quaternary phosphonium salt ion polymer A-II-1.
  • the quaternary phosphonium salt content was determined by nuclear magnetic hydrogen spectrum, as shown in Figure 2b. As shown in Figure 2b, the signal peak (4.4-4.6ppm) of the side benzyl bromide disappeared, and all of it was converted into a quaternary phosphonium salt; the total quaternary phosphonium salt content was calculated to be 15.2mol%, the side benzyl quaternary phosphonium salt content was 11.4mol%, and the main chain tertiary carbon quaternary phosphonium salt content was 3.8mol%.
  • the characteristic peak with a chemical shift of 4.7-5.7ppm is the signal characteristic peak of the methylene group in the side benzyl quaternary phosphonium salt group, and the characteristic peak with a chemical shift of 7.3-8.3ppm is the signal characteristic peak of the benzene ring in the quaternary phosphonium salt.
  • the isobutylene quaternary phosphonium salt ion polymer A-II-1 contains 12.6 mol% of structural unit A, 3.3 mol% of structural unit B, and 84.1 mol% of structural unit C.
  • thermogravimetric analysis data of isobutylene-p-methylstyrene copolymer P-II-1, brominated isobutylene-p-methylstyrene copolymer XP-II-1, and isobutylene quaternary phosphonium salt ion polymer A-II-1 are shown in Table II-2, and the thermogravimetric curves are shown in Figures 2c, 2d, and 2e, respectively.
  • the isobutylene-p-methylstyrene copolymer P-II-1 has only one stage of thermal weight loss (one step), the thermal weight loss temperature is about 402.3°C, and the weight loss rate is 100wt%.
  • the brominated isobutylene-p-methylstyrene copolymer XP-II-1 has two stages of thermal weight loss (2 steps).
  • the first stage is concentrated at around 342.2°C, with a weight loss rate of 40.2wt%, which is due to thermal decomposition of carbon bromine groups;
  • the second stage is concentrated at around 420.2°C, with a weight loss rate of 53.1wt%, which is due to thermal decomposition of the polymer main chain structure, which is consistent with P-II-1.
  • the isobutylene quaternary phosphonium salt ion polymer A-II-1 has two stages of thermal weight loss (2 steps).
  • the first stage is concentrated at around 281.7°C, with a weight loss rate of 47.4wt%, which is due to thermal decomposition of the quaternary phosphonium salt group;
  • the second stage is concentrated at around 412.2°C, with a weight loss rate of 49.3wt%, which is due to thermal decomposition of the polymer main chain structure, which is consistent with P-II-1.
  • the brominated polymer gradually precipitates from the solvent to form a slurry state of solid particles.
  • the solid particles are separated from the solvent by filtration, and the solid particles are taken out after washing and filtering in hexane twice, and vacuum dried at 40°C to constant weight to obtain the isobutylene quaternary phosphonium salt ion polymer A-II-2.
  • the quaternary phosphonium salt content was determined by H NMR, and the benzyl bromide was completely converted into quaternary phosphonium salt.
  • the total quaternary phosphonium salt content was 12.4 mol%
  • the pendant benzyl quaternary phosphonium salt content was 9.4 mol%
  • the main chain tertiary carbon quaternary phosphonium salt content was 3 mol%.
  • the isobutylene quaternary phosphonium salt ion polymer A-II-2 contains 9.7 mol% of structural unit A, 1.7 mol% of structural unit B, and 88.6 mol% of structural unit C.
  • An isobutylene quaternary phosphonium salt ionomer was prepared according to the method of Example II-2, except that:
  • the brominated polymer gradually precipitates from the solvent to form blocky micelles.
  • the blocky micelles are separated from the solvent, and the micelles are taken out after washing and filtering in hexane twice, and vacuum dried at 40°C to constant weight to obtain isobutylene quaternary phosphonium salt ion polymer A-II-3.
  • the quaternary phosphonium salt content was determined by H NMR, and the benzyl bromide was completely converted into quaternary phosphonium salt.
  • the total quaternary phosphonium salt content was 12.4 mol%
  • the pendant benzyl quaternary phosphonium salt content was 9.4 mol%
  • the main chain tertiary carbon quaternary phosphonium salt content was 3 mol%.
  • the isobutylene quaternary phosphonium salt ion polymer A-II-3 contains 9.7 mol% of structural unit A, 1.7 mol% of structural unit B, and 88.6 mol% of structural unit C.
  • the brominated polymer gradually precipitates from the solvent to form a solid particle slurry.
  • the solid particles are separated from the solvent, and the solid particles are taken out after washing and filtering in hexane twice, and vacuum dried at 40°C to constant weight to obtain the isobutylene quaternary phosphonium salt ion polymer A-II-4.
  • the quaternary phosphonium salt content was determined by H NMR, and the benzyl bromide was completely converted into quaternary phosphonium salt.
  • the total quaternary phosphonium salt content was 10.6 mol %
  • the pendant benzyl quaternary phosphonium salt content was 7.8 mol %
  • the main chain tertiary carbon quaternary phosphonium salt content was 2.8 mol %.
  • the isobutylene quaternary phosphonium salt ion polymer A-II-4 contains 8 mol% of structural unit A, 0.6 mol% of structural unit B, and 91.4 mol% of structural unit C.
  • An isobutylene quaternary phosphonium salt ionomer was prepared according to the method of Example II-4, except that:
  • the brominated polymer gradually precipitates from the solvent to form blocky micelles.
  • the blocky micelles are separated from the solvent, and the micelles are taken out after washing and filtering in hexane twice, and vacuum dried at 40°C to constant weight to obtain isobutylene quaternary phosphonium salt ion polymer A-II-5.
  • the quaternary phosphonium salt content was determined by H NMR, and the benzyl bromide was completely converted into quaternary phosphonium salt.
  • the total quaternary phosphonium salt content was 10.6 mol %
  • the pendant benzyl quaternary phosphonium salt content was 7.8 mol %
  • the main chain tertiary carbon quaternary phosphonium salt content was 2.8 mol %.
  • the isobutylene quaternary phosphonium salt ion polymer A-II-5 contains 8 mol% of structural unit A, 0.6 mol% of structural unit B, and 91.4 mol% of structural unit C.
  • polymer P-II-3 (wherein the content of p-methylstyrene structural unit is 0.035mol) is mixed with n-heptane (62mL) and carbon tetrachloride (62mL) in an organic solvent, and 2.4g of sodium bicarbonate powder is added. Based on the molar content of the structural unit provided by p-methylstyrene, the molar ratio of polymer to liquid bromine is 1:0.8. The bromination reaction is carried out in a light-proof laboratory.
  • the brominated polymer gradually precipitates from the solvent to form a solid particle slurry.
  • the solid particles are separated from the solvent, and the solid particles are taken out after washing and filtering twice in hexane.
  • the mixture was dried under vacuum at 40°C to a constant weight to obtain isobutylene quaternary phosphonium salt ionic polymer A-II-6.
  • the quaternary phosphonium salt content was determined by H NMR, and the benzyl bromide was completely converted into quaternary phosphonium salt.
  • the total quaternary phosphonium salt content was 5.7 mol %
  • the pendant benzyl quaternary phosphonium salt content was 4.3 mol %
  • the main chain tertiary carbon quaternary phosphonium salt content was 1.4 mol %.
  • the isobutylene quaternary phosphonium salt ion polymer A-II-6 contains 4.8 mol% of structural unit A, 3.8 mol% of structural unit B, and 91.4 mol% of structural unit C.
  • 4.5mL of liquid bromine is taken with a pipette and added to a constant pressure dropping funnel (light-proof) containing 50mL of carbon tetrachloride solvent.
  • the light bromination reaction is carried out by irradiation with a 630nm LED light source, the light source power is 40W, and the pulse time is 20s. Turn on the light source for bromination reaction, drip liquid bromine at a slow speed, and carry out bromination reaction under the irradiation of the pulse light source until the liquid bromine is dripped, turn off the light source, stop the reaction, and the bromination reaction time is about 160min to obtain a brominated polymer solution XP-II-5.
  • the brominated polymer gradually precipitates from the solvent to form a solid particle slurry.
  • the solid particles are separated from the solvent, and the solid particles are taken out after washing and filtering in hexane twice, and vacuum dried at 40°C to constant weight to obtain the isobutylene quaternary phosphonium salt ion polymer A-II-7.
  • the quaternary phosphonium salt content was determined by H NMR spectroscopy. Most of the benzyl bromide was converted into quaternary phosphonium salt. The total quaternary phosphonium salt content was 8.8 mol %, the pendant benzyl quaternary phosphonium salt content was 5.1 mol %, and the main chain tertiary carbon quaternary phosphonium salt content was 3.7 mol %.
  • the isobutylene quaternary phosphonium salt ionomer A-II-7 contains 6.5 mol% of the structural unit A, 0.5 mol% of the structural unit B, and 93 mol% of the structural unit C.
  • polymer P-II-1 (wherein the content of p-methylstyrene structural unit is 0.077mol) is dissolved in a mixed solvent of n-hexane (80mL) and carbon tetrachloride (80mL), and then 4.1g of sodium carbonate powder is added.
  • the molar ratio of polymer to liquid bromine is 1:1 based on the molar content of the structural unit provided by p-methylstyrene.
  • the insoluble micelles are separated from the solvent by filtration, and the solids are taken out after washing and filtering in acetone twice, and vacuum dried at 40°C to constant weight to obtain isobutylene quaternary phosphonium salt ion polymer D-II-1.
  • the quaternary phosphonium salt content was determined by H NMR spectroscopy. All benzyl bromide was converted into quaternary phosphonium salt. The total quaternary phosphonium salt content was 1 mol %. The content of the side benzyl quaternary phosphonium salt group was 1 mol %. There was no tertiary carbon quaternary phosphonium group in the main chain.
  • the isobutylene quaternary phosphonium salt ion polymer D-II-1 contains 1 mol% of the structural unit A and 14.9 mol% of the structural unit B, 84.1 mol% of structural unit C.
  • the isobutylene quaternary phosphonium salt polymer A-II-1 prepared in Example II-1 was blended with ABS resin to prepare an antibacterial plastic, and the antibacterial properties of the antibacterial plastic were tested using Escherichia coli and Staphylococcus aureus as Gram-negative bacteria and Gram-positive bacteria, respectively.
  • the isobutylene quaternary phosphonium salt polymer A-II-1 and ABS resin were mixed in a mass ratio of 2:8, and melt-extruded and granulated at 190°C to prepare a 20wt% antibacterial masterbatch.
  • the antibacterial masterbatch was then mixed with ABS resin in different proportions, and then melt-extruded and granulated using a twin-screw extruder to prepare antibacterial plastics with a mass content of 1wt%, 2wt%, 4wt%, 6wt% and 8wt% of the isobutylene quaternary phosphonium salt polymer A-II-1, respectively.
  • Each antibacterial plastic pellet was molded by a tablet press at 200°C and a pressure of 20 MPa for 3 minutes; then it was cold pressed at 15 MPa for 10 minutes to obtain an experimental sheet with a thickness of 1 mm, which was then cut into 20 mm ⁇ 20 mm test specimens after being left for 24 hours.
  • R [(A-B)/A] ⁇ 100%, A is the number of live bacteria on the surface of the plastic sample without adding antibacterial agent, and B is the number of live bacteria on the surface of the antibacterial plastic sample.
  • the imidazole salt content was determined by H NMR, as shown in Figure 3b. As shown in Figure 3b, the signal peak (4.4-4.6ppm) of the side benzyl bromide disappeared, and all of it was converted into imidazole salt; the total imidazole salt content was calculated by area integration of the nitrogen ring signal peak (characteristic peak with chemical shift at 7.6-10.1ppm) to be 16.4mol%, the imidazole salt content of the side benzyl (characteristic peak with chemical shift at 5.1-5.9ppm) to be 12.3mol%, and the imidazole salt content of the main chain tertiary carbon to be 4.1mol%.
  • the isobutylene imidazolium salt ion polymer A-III-1 contains 13.4 mol% of structural unit A, 2.8 mol% of structural unit B, and 83.8 mol% of structural unit C.
  • thermogravimetric analysis data of isobutylene-p-methylstyrene copolymer P-III-1, brominated isobutylene-p-methylstyrene copolymer XP-III-1, and isobutylene imidazolium salt ion polymer A-III-1 are shown in Table III-2, and the thermogravimetric curves are shown in Figures 3c, 3d, and 3e, respectively.
  • the isobutylene-p-methylstyrene copolymer P-III-1 has only one thermal weight loss (one step), and the thermal weight loss temperature is 402.3°C About, the weight loss rate is 100wt%.
  • the brominated isobutylene-p-methylstyrene copolymer XP-III-1 has two concentrated thermal weight loss sections (2 steps).
  • the first section is concentrated at around 342.2°C, with a weight loss rate of 40.2wt%, which is due to thermal decomposition of carbon bromine groups; the second section is concentrated at around 420.2°C, with a weight loss rate of 53.1wt%, which is due to thermal decomposition of the polymer main chain structure, which is consistent with P-III-1.
  • the isobutylene imidazolium salt ionic polymer A-III-1 has two concentrated thermal weight loss sections (2 steps).
  • the first section is concentrated at around 280.2°C, with a weight loss rate of 34.2wt%, which is due to thermal decomposition of the imidazolium salt group;
  • the second section is concentrated at around 419.6°C, with a weight loss rate of 56.9wt%, which is due to thermal decomposition of the polymer main chain structure, which is consistent with P-III-1.
  • the isobutylene pyridinium salt ionomer was prepared according to the method of Example III-1, except that:
  • the blocky micelles were separated from the solvent, and the micelles were taken out after being pressed and washed twice in hexane, and vacuum dried at 40°C to constant weight to obtain isobutylene imidazole salt ion polymer A-III-2.
  • the total imidazolium salt content of the isobutylene imidazolium salt ion polymer A-III-2 was 16.4 mol%, and the content of the side benzyl imidazolium salt was 12.3 mol%, and the main chain imidazolium salt content was calculated to be 4.1 mol%.
  • the isobutylene imidazolium salt ion polymer A-III-2 contains 13.4 mol% of structural unit A, 2.8 mol% of structural unit B and 83.8 mol% of structural unit C.
  • a 630nm LED light source is used for photobromination reaction, the light source power is 60W, and the pulse time is 20s. Turn on the light source for bromination reaction, drip liquid bromine at a slow speed, and carry out bromination reaction under the irradiation of the pulse light source until the liquid bromine is dripped, turn off the light source, stop the reaction, and the bromination reaction time is about 130min to obtain a brominated polymer solution XP-III-2.
  • the imidazole salt content was determined by H NMR spectroscopy.
  • the benzyl bromide was partially converted into imidazole salt.
  • the total imidazole salt content was 15.9 mol %
  • the side group benzyl imidazole salt content was 9.7 mol %
  • the main chain tertiary carbon imidazole salt content was 6.2 mol %.
  • the isobutylene imidazolium salt ion polymer A-III-3 contains 10.6 mol% of structural unit A, 1.7 mol% of structural unit B, and 87.7 mol% of structural unit C.
  • a 630nm LED light source is used for photobromination reaction, the light source power is 60W, and the pulse time is 15s. Turn on the light source for bromination reaction, drip liquid bromine at a slow speed, and carry out bromination reaction under the irradiation of the pulse light source until the liquid bromine is dripped, turn off the light source, stop the reaction, and the bromination reaction time is about 120min to obtain a brominated polymer solution XP-III-3.
  • the brominated polymer solution XP-III-3 was centrifuged to remove insoluble solids, and 50 g of the clear liquid was added to a 250 mL three-necked flask equipped with a magnetic stirrer and placed in a constant temperature oil bath. 3.9 mL of 1-dodecyl imidazole (dissolved in 5 mL of carbon tetrachloride) was added, and the molar ratio of imidazole to liquid bromine was 1.1:1. The reaction was carried out at 80°C for 10 hours under nitrogen protection. During the ionization reaction, the brominated polymer gradually precipitated from the solvent to form insoluble colloid particles. After the reaction was completed, the colloid particles were separated from the solvent, washed and filtered twice in hexane, and then vacuum dried at 40°C to constant weight to obtain isobutylene imidazole salt ion polymer A-III-4.
  • the imidazole salt content was determined by H-NMR spectroscopy. All benzyl bromide was converted into imidazole salt. The total imidazole salt content was 13.9 mol %, the side group benzyl imidazole salt content was 8.1 mol %, and the main chain tertiary carbon imidazole salt content was 5.8 mol %.
  • the isobutylene imidazolium salt ion polymer A-III-4 contains 8.7 mol% of structural unit A, 0.4 mol% of structural unit B, and 90.9 mol% of structural unit C.
  • a 595nm LED light source is used for photobromination reaction, the light source power is 50W, and the pulse time is 15s. Turn on the light source for bromination reaction, drip liquid bromine at a slow speed, and carry out bromination reaction under the irradiation of the pulse light source until the liquid bromine is dripped, turn off the light source, stop the reaction, and the bromination reaction time is about 50min to obtain a brominated polymer solution XP-III-4.
  • the imidazole salt content was determined by H-NMR spectroscopy. All benzyl bromide was converted into imidazole salt. The total imidazole salt content was 4.3 mol %, the side group benzyl imidazole salt content was 3.2 mol %, and the main chain tertiary carbon imidazole salt content was 1.1 mol %.
  • the isobutylene imidazolium salt ion polymer A-III-5 contains 3.8 mol% of structural unit A, 2.8 mol% of structural unit B, and 93.4 mol% of structural unit C.
  • the pyridinium salt content was determined by H-NMR spectroscopy. All benzyl bromide was converted into imidazole salt. The total imidazole salt content was 0.9 mol %, the content of the side benzyl imidazole salt group was 0.9 mol %, and the main chain did not contain tertiary carbon imidazole groups.
  • the isobutylene imidazolium salt ion polymer D-III-1 contains 0.9 mol% of structural unit A, 15.3 mol% of structural unit B and 83.8 mol% of structural unit C.
  • Example III-1 The isobutylene imidazole salt polymer prepared in Example III-1 was blended with ABS resin to prepare an antibacterial plastic, and Penicillium and Staphylococcus aureus were used as fungi and bacteria, respectively, to test the antibacterial properties of the antibacterial plastic.
  • the isobutylene imidazole salt polymer and ABS resin were mixed in a mass ratio of 2:8, and melt-extruded and granulated at 200°C to produce a 20% antibacterial masterbatch.
  • the antibacterial masterbatch was then mixed with ABS resin in different proportions and melt-extruded and granulated using a twin-screw extruder to produce antibacterial plastics with isobutylene imidazole salt polymer contents of 1%, 3%, 5%, 7% and 10%, respectively.
  • Each antibacterial plastic pellet was molded by a tablet press at 200°C and a pressure of 20 MPa for 3 minutes; then it was cold pressed at 15 MPa for 10 minutes to obtain an experimental sheet with a thickness of 1 mm, which was then cut into 20 mm ⁇ 20 mm test specimens after being left for 24 hours.
  • R [(A-B)/A] ⁇ 100%, A is the number of live bacteria on the surface of the plastic sample without adding antibacterial agent, and B is the number of live bacteria on the surface of the antibacterial plastic sample.
  • the antibacterial plastic prepared by blending the isobutylene imidazole salt ion polymer prepared in Example III-1 as an antibacterial agent with ABS shows good antibacterial properties when the dosage reaches 4 parts or more, and the antibacterial plastic still maintains a good antibacterial effect after being immersed in water for 15-30 days.
  • the brominated polymer gradually precipitated from the solvent to form blocky micelles.
  • the blocky micelles were separated from the solvent, and the micelles were taken out after being pressed and washed twice in hexane, and vacuum dried at 40°C to constant weight to obtain isobutylene pyridinium salt ion polymer A-IV-1.
  • Pyridinium salt content was determined by nuclear magnetic hydrogen spectrum, as shown in Figure 4b. The result shows that the signal peak (4.4654ppm) of the side group benzyl bromide disappears, and all of them are converted into benzyl pyridinium salts.
  • the total pyridinium salt content can be calculated by the peak area integration of hydrogen on the pyridine ring in 4-ethylpyridine. Determination of total pyridinium salt group content is 17.5mol%, and the side group benzyl pyridinium salt group content is 12.8mol%, so the main chain tertiary carbon pyridinium salt group content is calculated to be 4.7mol%.
  • Nuclear magnetic hydrogen spectrum spectrogram is shown in Figure 4b, wherein the characteristic peak of chemical shift at 7.9-9.7ppm is the characteristic peak of pyridine ring signal in pyridinium salt group, and the characteristic peak of chemical shift at 5.6-6.3ppm is the characteristic peak of methylene signal in benzyl pyridinium salt group.
  • the isobutylene pyridinium salt ion polymer A-IV-1 contains 14.3 mol% of structural unit A, 2.2 mol% of structural unit B, and 83.5 mol% of structural unit C.
  • thermogravimetric analysis data of isobutylene-p-methylstyrene copolymer P-IV-1, brominated isobutylene-p-methylstyrene copolymer XP-IV-1, and isobutylene pyridinium salt ion polymer A-IV-1 are shown in Table IV-2, and the thermogravimetric curves are shown in Figures 4c, 4d, and 4e, respectively.
  • the isobutylene-p-methylstyrene copolymer P-IV-1 has only one stage of thermal weight loss (one step), the thermal weight loss temperature is about 402.3°C, and the weight loss rate is 100wt%.
  • the brominated isobutylene-p-methylstyrene copolymer XP-IV-1 has two concentrated thermal weight loss sections (2 steps).
  • the first section is concentrated at around 342.2°C, with a weight loss rate of 40.2wt%, which is due to thermal decomposition of carbon-bromine groups;
  • the second section is concentrated at around 420.2°C, with a weight loss rate of 53.1wt%, which is due to thermal decomposition of the polymer main chain structure, which is consistent with the isobutylene-p-methylstyrene copolymer P-IV-1.
  • the isobutylene pyridinium salt ionomer was prepared according to the method of Example IV-1, except that:
  • the brominated polymer gradually precipitated from the solvent to form blocky micelles.
  • the blocky micelles were separated from the solvent, and the micelles were taken out after being pressed and washed twice in hexane, and vacuum dried at 40°C to constant weight to obtain isobutylene pyridinium salt ion polymer A-IV-2.
  • the pyridinium salt content in the isobutylene pyridinium salt ionomer A-IV-2 is 17.5 mol%, and the content of the side group benzyl pyridinium salt is 12.8 mol%, and the main chain pyridinium salt content is calculated to be 4.7 mol%.
  • the isobutylene pyridinium salt ion polymer A-IV-2 contains 14.3 mol% of structural unit A, 2.2 mol% of structural unit B, and 83.5 mol% of structural unit C.
  • the pyridinium salt content was determined by H-NMR, and the benzyl bromide was partially converted into pyridinium salt.
  • the total pyridinium salt content was 21.6 mol %
  • the side group benzyl pyridinium salt content was 12.4 mol %
  • the main chain tertiary carbon pyridinium salt content was 9.2 mol %.
  • the isobutylene pyridinium salt ionomer A-IV-3 contains 13.2 mol% of structural unit A, 0.6 mol% of structural unit B, and 86.2 mol% of structural unit C.
  • the total pyridinium salt content in the isobutylene pyridinium salt ionomer A-IV-4 is 9.5 mol%
  • the side group benzyl pyridinium salt content is 7.3 mol%
  • the calculated main chain pyridinium salt content is 2.2 mol%.
  • the isobutylene pyridinium salt ion polymer A-IV-4 contains 8.4 mol% of structural unit A, 1.8 mol% of structural unit B, and 89.8 mol% of structural unit C.
  • Example IV-4 The photobromination method of Example IV-4 was used, except that the molar ratio of polymer to liquid bromine was 1:0.7 based on the molar content of the structural unit provided by p-methylstyrene. 2 mL of liquid bromine was taken with a pipette and added to a constant pressure dropping funnel (protected from light) containing 20 mL of carbon tetrachloride solvent. The bromination reaction time was about 40 minutes, and a brominated polymer solution XP-IV-4 was obtained.
  • the block-like micelles were separated from the solvent, and the micelles were taken out after being pressed and washed twice in hexane, and vacuum dried at 40°C to constant weight to obtain isobutylene pyridinium salt ion polymer A-IV-5.
  • the total pyridinium salt content in the isobutylene pyridinium salt ionomer A-IV-5 is 6.2 mol%
  • the side group benzyl pyridinium salt content is 4.8 mol%
  • the calculated main chain pyridinium salt content is 1.4 mol%.
  • the isobutylene pyridinium salt ion polymer A5 contains 5.6 mol% of structural unit A, 4.6 mol% of structural unit B, and 89.8 mol% of structural unit C.
  • the total pyridinium salt content in the isobutylene pyridinium salt ionomer A-IV-6 is 7.1 mol%
  • the side group benzyl pyridinium salt content is 5.2 mol%
  • the calculated main chain pyridinium salt content is 1.9 mol%.
  • the isobutylene pyridinium salt ion polymer A-IV-6 contains 6.2 mol% of structural unit A, 0.6 mol% of structural unit B, and 93.2 mol% of structural unit C.
  • the brominated polymer solution XP-IV-5 prepared in Example IV-6 was used for the ionization reaction.
  • the total pyridinium salt content in the isobutylene pyridinium salt ionomer A-IV-7 is 7.1 mol%
  • the side group benzyl pyridinium salt content is 5.2 mol%
  • the calculated main chain pyridinium salt content is 1.9 mol%.
  • the isobutylene pyridinium salt ion polymer A-IV-7 contains 6.2 mol% of structural unit A, 0.6 mol% of structural unit B and 93.2 mol% of structural unit C.
  • the pyridinium salt content was determined by H-NMR spectroscopy.
  • the benzyl bromide was completely converted into pyridinium salt.
  • the total pyridinium salt content was 0.9 mol %, the content of the side benzyl pyridinium salt group was 0.9 mol %, and the main chain did not contain a tertiary carbon pyridine group.
  • the isobutylene pyridinium salt ion polymer D-IV-1 contains 0.9 mol% of structural unit A, 15.6 mol% of structural unit B, and 83.5 mol% of structural unit C.
  • Example IV-1 The isobutylene pyridinium salt polymer prepared in Example IV-1 was blended with PS to prepare an antibacterial plastic, and the antibacterial properties of the antibacterial plastic were tested using Escherichia coli and Staphylococcus aureus as Gram-negative bacteria and Gram-positive bacteria, respectively.
  • Each antibacterial plastic pellet was molded by a tablet press at 150°C and a pressure of 20 MPa for 3 minutes; then it was cold pressed at 15 MPa for 10 minutes to obtain an experimental sheet with a thickness of 1 mm, which was then cut into 20 mm ⁇ 20 mm test specimens after being left for 24 hours.
  • R [(A-B)/A] ⁇ 100%, A is the number of live bacteria on the surface of the plastic sample without adding antibacterial agent, and B is the number of live bacteria on the surface of the antibacterial plastic sample.
  • the antibacterial plastic prepared by blending the isobutylene pyridinium salt ion polymer prepared in Example IV-1 as an antibacterial agent with PS shows good antibacterial effect when the dosage reaches 5 parts or more, and the 24h antibacterial rate against Gram-negative bacteria and Gram-positive bacteria reaches more than 90%, and when the antibacterial plastic is immersed in water for 15-30 days, it still maintains a good antibacterial effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明涉及高分子材料领域,公开了一种异丁烯基阳离子盐离子聚合物及其制备方法与应用。该聚合物包括式(2)和/式(3)所示结构和可选地式(1)所示结构的结构单元A,具有式(4)所示结构的结构单元B和式(5)所示结构的结构单元C;Q为式(6)、式(7)、式(8)或式(9)。在该聚合物的侧基和主链中均含有阳离子盐基团,使得该聚合物具有高的聚离子化程度,能够作为抗菌剂用于制备抗菌高分子材料,例如抗菌塑料、抗菌橡胶、抗菌纤维和抗菌涂料。

Description

异丁烯基阳离子盐聚合物及其制备方法与应用、抗菌高分子材料
相关申请的交叉引用
本申请要求2022年11月11日
2022年11月11日
2022年11月11日
2022年11月11日提交的中国专利申请202211411837.6
202211415126.6
202211411836.1
202211412278.0的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及抗菌功能高分子材料领域,具体地,涉及一种异丁烯基阳离子盐离子聚合物及其制备方法与应用、抗菌高分子材料。
背景技术
商业化生产的异丁烯基无规共聚物有两种,一种是异丁烯与异戊二烯的共聚物,属于不饱和型;另一种是异丁烯与对甲基苯乙烯的共聚物,属于饱和型。这两种共聚物均可以进行溴化反应得到溴化改性产品,分别为溴化异丁烯-异戊二烯橡胶(BIIR)和溴化异丁烯-对甲基苯乙烯橡胶(BIMS)。这两种产品的主要应用领域为轮胎气密层和医药胶塞。商业化生产的BIIR和BIMS作为橡胶类弹性体产品,其特征是分子量高(重均分子量Mw在50万以上),而且共聚功能单体含量低,一般共聚物中异戊二烯摩尔分数<3%,对甲基苯乙烯摩尔分数<5%,功能溴摩尔分数<1.5%。
现有技术中的异丁烯基离子聚合物,一般是采用市场上流通的商品BIIR或BIMS为基础胶制备,例如Synthesis and characterization of isobutylenen-based ammonium and phosphonium bromide ionomers(Macromolecules,2004,37,7477-7483)、Quaternary ammonium BIMS ionomers(Presented at the 163rd Technical Meeting of the Rubber Division,American Chemical Society,San Francisco,California,APril 28-30,2003)公开了在130℃下,在密炼机中将BIIR或BIMS橡胶与烷基胺、烷基膦、咪唑等进行熔融共混反应,在此过程中对BIIR中的烯丙基溴官能团或BIMS中的苄基溴官能团进行亲核取代反应,得到铵盐、鏻盐、咪唑盐等离子聚合物。或者例如An imidazolium-functionalized isobutylene polymer having improved mechanical and barrier properties:synthesis and characterization(J.APPL.POLYM.SCI.2012,DOl:10.1002/APP.38458)中将BIIR或BIMS产品再次溶解在有机溶剂中进行较长时间的离子化反应。由于BIIR或BIMS橡胶中共聚的功能单体含量低,只能进行有限程度的离子化,离子盐摩尔含量一般≤1%,难以对其应用领域进行大范围拓展,往往只能作为一种离子橡胶在传统硫化橡胶制品领域应用,例如CN112135848A。且这种离子化的橡胶弹性体很难与树脂进行简单的和直接的共混并用,需要采用特定的动态共混硫化技术制备橡塑复合材料。
细菌、真菌、病毒一直是威胁人类生命健康的病原体微生物,且随着病原体耐药性的增强和新病原体的不断出现,急需新的抗菌疗法。其中,切断病原体在环境中传播的重要途径之一就是在物体表面通过使用抗菌/抗病毒涂层来防止病原微生物的滋生,因此抗菌纤维、抗菌塑料、抗菌橡胶、抗菌涂料等抗菌高分子材料应运而生,且在日常生活中得到越来越广泛的应用。
在小分子有机抗菌剂中,阳离子盐化合物由于具有较强的正电性使病原微生物不容易产生耐药性,因此被广泛用作抗菌和杀菌剂、表面活性剂和抗静电剂,如季铵盐、季鏻盐、胍盐、咪唑盐、吡啶盐、嘧啶盐等,尤其是季铵盐作为杀菌、抑菌剂被广泛应用于日用洗涤、医学消毒、水产养殖、工业循环水除藻剂等领域,如常见的苯扎氯铵和苯扎溴铵等,对细菌包括革兰氏阴性菌和革兰氏阳性菌具有良好的杀菌和抑菌作用。但由于小分子抗菌剂属于环境释放型物质,不仅易流失,作用时效短,且会对环境造成污染,而且抗菌性越强,毒性往往越大,对人或动物的健康造成影响。此外,小分子有机抗菌剂一般不耐高温,难以耐受高分子材料的高温加工过程,而且在材料中容易发生迁移释放,因此在高分子材料领域仍以采用金属类型的无机纳米抗菌剂为主,其缺点仍然是向环境释放金属毒物杀菌,不仅不耐洗涤且作用实效短,即材料抗菌性能随时间延长而衰减。
虽然近年来对制备高分子类型的阳离子盐抗菌剂进行了大量的研究,但由于制备方法复杂、成本高等原因,难以实现大规模工业化生产而推向实际应用。例如,将高分子材料或制品在强氧化性溶液中浸泡,或者将高分子材料表面进行高能辐照、臭氧处理、等离子体处理等方法使其表面产生活性中心,引发季铵盐单体进行接枝共聚。 这种表面处理法容易导致高分子材料表面发生降解、交联,从而影响甚至破坏材料力学性能,且接枝量也不稳定,重复性差。或者将小分子季铵盐有机物通过化学反应接枝固载到某种填料上,再将抗菌填料添加到高分子材料中,一方面固载量不稳定,另一方面受到填料在高分子材料中分散性的影响,往往难以发挥出满意的抗菌效果。或者将季铵盐接枝到某种可以参与高分子合成的共聚单体上,直接通过共聚反应制备抗菌高分子材料,但一方面使高分子聚合物的制备工艺复杂化,生产成本上升,另一方面会影响高分子聚合反应,难以实现实际应用。
发明内容
本发明的目的是为了克服现有技术存在的异丁烯基共聚物的功能基团含量低、离子化程度很有限而导致异丁烯基阳离子盐聚合物的应用领域有限的问题,提供一种异丁烯基阳离子盐离子聚合物及其制备方法与应用,该异丁烯基阳离子盐离子聚合物包含异丁烯提供的主体结构单元和烷基苯乙烯提供的功能结构单元构成的大分子骨架,同时在聚合物的侧基和主链中均含有阳离子盐功能基团,使得该聚合物具有令人满意的更高的离子化程度,能够作为抗菌剂用于制备抗菌性能稳定、持久、安全、低毒的抗菌高分子材料,例如抗菌塑料、抗菌橡胶、抗菌纤维和抗菌涂料,并且能够有效抑制和杀灭细菌、真菌和病菌等。
为了实现上述目的,本发明第一方面提供一种异丁烯基阳离子盐离子聚合物,其特征在于,所述聚合物包括结构单元A、结构单元B和结构单元C;
所述结构单元A具有式(2)和/或式(3)中所示结构和可选地式(1)所示结构;所述结构单元B具有式(4)所示结构;所述结构单元C具有式(5)所示结构;
其中,R1为C1-C4的亚烷基;R2为C1-C4的烷基;
Q为
其中,R3、R4、R5各自独立地为C1-C20的直链烷基、C1-C20的支链烷基或C6-C20的芳基;
R6、R7、R8各自独立地为C1-C10的直链烷基、C1-C10的支链烷基、C3-C10环烷基或C6-C10的芳基;
R9为氢、C1-C20的直链烷基,R10、R11、R12各自独立地为氢、卤原子、C1-C10的直链烷基、C1-C10的支链烷基、羟基、硝基、-(CH2)n-NH、氰基或C6-C10的芳基,n为0-5的整数;
R13、R14、R15、R16、R17各自独立地为氢、卤原子、C1-C20的直链烷基、C1-C20的支链烷基、硝基、氨基或氰基;
X为Cl或Br。
本发明第二方面提供一种异丁烯基阳离子盐离子聚合物的制备方法,其特征在于,所述制备方法包括:
(1)将聚合物溶解于有机溶剂中,得到聚合物溶液,在聚合物溶液中加入卤素进行卤化反应,得到卤化的聚合物溶液;
(2)将叔胺化合物、叔膦化合物、咪唑化合物和吡啶化合物中的至少一种加入所述卤化的聚合物溶液中,进行离子化反应,得到所述异丁烯基阳离子盐离子聚合物;
所述聚合物为异丁烯与烷基苯乙烯的无规共聚物;
所述卤化反应在可见光的照射下进行,所述可见光的发光方式为脉冲式发光。
本发明第三方面提供一种由上述制备方法制得的异丁烯基阳离子盐离子聚合物。
本发明第四方面提供一种上述异丁烯基阳离子盐离子聚合物作为抗菌剂的应用。
本发明第五方面提供一种上述异丁烯基阳离子盐离子聚合物用于抑制和杀灭细菌、真菌和病毒中的至少一种。
本发明第六方面提供一种抗菌高分子材料,其特征在于,所述抗菌高分子材料包含上述异丁烯基阳离子盐离子聚合物。
通过上述技术方案,本发明提供的异丁烯基阳离子盐离子聚合物及其制备方法与应用、抗菌剂高分子材料获得以下有益效果:
本发明提供的异丁烯基阳离子盐离子聚合物包含异丁烯提供的主体结构单元和烷基苯乙烯提供的功能结构单元,并且该异丁烯基阳离子盐离子聚合物中包含高含量的阳离子盐功能基团,具有令人满意的更高的离子化程度,能够作为抗菌剂用于制备稳定、持久、安全、低毒的抗菌高分子材料,例如抗菌塑料、抗菌橡胶、抗菌纤维和抗菌涂料,并且能够有效抑制和杀灭细菌、真菌和病菌等。
附图说明
图1a是实施例I-1中溴化的异丁烯-对甲基苯乙烯共聚物XP-I-1的核磁氢谱谱图;
图1b是实施例I-1中异丁烯基季铵盐离子聚合物A-I-1的核磁氢谱谱图;
图1c是异丁烯-对甲基苯乙烯共聚物P-I-1的热失重图;
图1d是溴化的异丁烯-对甲基苯乙烯共聚物XP-I-1的热失重图;
图1e是实施例I-1中异丁烯基季铵盐离子聚合物A-I-1的热失重图;
图2a是实施例II-1中溴化的异丁烯-对甲基苯乙烯共聚物XP-II-1的核磁氢谱谱图;
图2b是实施例II-1中异丁烯基季鏻盐离子聚合物A-II-1的核磁氢谱谱图。
图2c是异丁烯-对甲基苯乙烯共聚物P-II-1的热失重图;
图2d是溴化的异丁烯-对甲基苯乙烯共聚物XP-II-1的热失重图;
图2e是实施例II-1中异丁烯基季鏻盐离子聚合物的热失重图;
图3a是实施例III-1中溴化异丁烯-对甲基苯乙烯共聚物XP-III-1的核磁氢谱谱图;
图3b是实施例III-1中异丁烯基咪唑盐离子聚合物A-III-1的核磁氢谱谱图;
图3c是异丁烯-对甲基苯乙烯共聚物P-III-1的热失重图;
图3d是实施例III-1中溴化异丁烯-对甲基苯乙烯共聚物XP-III-1的热失重图;
图3e是实施例III-1中异丁烯基咪唑盐离子聚合物A-III-1的热失重图;
图4a是实施例IV-1中溴化的异丁烯-对甲基苯乙烯共聚物XP-IV-1的核磁氢谱谱图;
图4b是实施例IV-1中异丁烯基吡啶盐离子聚合物A-IV-1的核磁氢谱谱图;
图4c是异丁烯-对甲基苯乙烯共聚物P-IV-1的热失重图;
图4d是实施例IV-1中溴化的异丁烯-对甲基苯乙烯共聚物XP-IV-1的热失重图;
图4e是实施例IV-1中异丁烯基吡啶盐离子聚合物A-IV-1的热失重图。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明第一方面提供一种异丁烯基阳离子盐离子聚合物,其特征在于,所述聚合物包括结构单元A、结构单元B和结构单元C;
所述结构单元A具有式(2)和/或式(3)中所示结构和可选地式(1)所示结构;所述结构单元B具有式 (4)所示结构;所述结构单元C具有式(5)所示结构;
其中,R1为C1-C4的亚烷基;R2为C1-C4的烷基;
Q为
其中,R3、R4、R5各自独立地为C1-C20的直链烷基、C1-C20的支链烷基或C6-C20的芳基;
R6、R7、R8各自独立地为C1-C10的直链烷基、C1-C10的支链烷基、C3-C10环烷基或C6-C10的芳基;
R9为氢、C1-C20的直链烷基,R10、R11、R12各自独立地为氢、卤原子、C1-C10的直链烷基、C1-C10的支链烷基、羟基、硝基、-(CH2)n-NH、氰基或C6-C10的芳基,n为0-5的整数;
R13、R14、R15、R16、R17各自独立地为氢、卤原子、C1-C20的直链烷基、C1-C20的支链烷基、硝基、氨基或氰基;
X为Cl或Br。
本发明中,所述异丁烯基阳离子盐离子聚合物包含异丁烯提供的主体结构单元和烷基苯乙烯提供的功能结构单元构成的大分子骨架,在聚合物中烷基苯乙烯单元的侧基和主链上同时引入阳离子盐功能基团,使得该聚合物具有令人满意的更高的离子化程度,并且含有高含量的阳离子盐功能基团,能够作为抗菌剂用于制备高效、稳定、持久、安全、低毒的抗菌高分子材料,例如抗菌塑料、抗菌橡胶、抗菌纤维和抗菌涂料,并且能够有效抑制和杀灭细菌、真菌和病菌等。
本发明的一个具体实施方式中,R1为亚甲基或亚乙基,优选为亚甲基;R2为甲基或乙基,优选为甲基;R3、R4R5各自独立地为C1-C18的直链烷基或C6-C9的芳基,优选为甲基、C8-C16的直链烷基或苯基;X为Br。
本发明的一个具体实施方式中,R1为亚甲基或亚乙基,优选为亚甲基;R2为甲基或乙基,优选为甲基;R6、R7、R8各自独立地为C1-C8的直链烷基、C5-C8环烷基C6-C8的芳基,优选为C1-C8的直链烷基、环戊基、环己基或苯基;X为Br。
本发明的一个具体实施方式中,R1为亚甲基或亚乙基,优选为亚甲基;R2为甲基或乙基,优选为甲基;R9为氢、C1-C18的直链烷基,优选为氢、C1-C16的直链烷基;R10、R11、R12各自独立地为氢、卤原子、C1-C5的直链烷基、C1-C5的支链烷基、羟基、硝基、-(CH2)n-NH、氰基或C6-C8的芳基,n为0-3的整数,优选为氢、C1-C16的直链烷基,R3、R4、R5各自独立地为氢、卤原子、C1-C4的直链烷基、羟基、硝基、氰基、氨基或苯基;X为Br。
本发明的一个具体实施方式中,R1为亚甲基或亚乙基,优选为亚甲基;R2为甲基或乙基,优选为甲基;R13、R14、R15、R16、R17各自独立地为氢、卤素、C1-C15的直链烷基、C1-C15的支链烷基、硝基、氨基或氰基,优选为氢、卤素、C1-C10的直链烷基、氨基或氰基;X为Br。
根据本发明,以所述聚合物的总摩尔量为基准,阳离子盐基团的含量为1.5-35mol%。
本发明中,当控制聚合物中本发明的一个具体实施方式中,基团的含量满足上述范围时,能够进一步提升该包含该聚合物的高分子材料的抗菌性能。
进一步地,以所述聚合物的总摩尔量为基准,本发明的一个具体实施方式中,基团的含量为2.5-25mol%。
根据本发明,以所述聚合物的总摩尔量为基准,侧基苄基阳离子盐基团的含量为1-20mol%,主链叔碳阳离子盐基团的含量为0.5-15mol%。
本发明中,当聚合物中侧基阳离子盐基团以及主链叔碳阳离子盐基团的含量满足上述范围时,该聚合物具有更高效的杀菌性能和抑菌性能。
本发明中,所述主链叔碳阳离子盐基团是指阳离子盐基团在烷基苯乙烯的主链上,包括式(2)所示的结构单元以及式(3)所示的结构单元中位于烷基苯乙烯主链上的阳离子盐基团。本发明中,所述主链阳离子盐基团的含量是式(2)所示结构单元中的阳离子盐基团含量和式(3)所示结构中位于主链的阳离子盐基团含量之和。
本发明中,所述侧基阳离子盐基团是指阳离子盐基团在烷基苯乙烯的侧基上,包括式(1)所示的结构单元以及式(3)所示的结构单元中位于烷基苯乙烯侧基上的阳离子盐基团。本发明中,所述侧基苄基阳离子盐基团的含量式(1)所示结构单元中的阳离子盐基团含量和式(3)所示结构单元侧基中的阳离子盐基团含量之和。
进一步地,以所述聚合物的总摩尔量为基准,侧基苄基阳离子盐基团的含量为1.5-15mol%,主链叔碳阳离子盐基团的含量为1-10mol%。
根据本发明,所述结构单元A的含量为1-20mol%,所述结构单元B的含量为0.5-10mol%,所述结构单元C的含量为75-97mol%。
本发明中,所述异丁烯基阳离子盐离子聚合物中包含式(3)所示的结构单元A,该结构单元同时包含侧基阳离子盐基团和主链阳离子盐基团,最终使得异丁烯阳离子盐离子聚合物中阳离子盐基团的总含量高于结构单元A的含量。
本发明中,所述异丁烯基阳离子盐离子聚合物中具有高含量的结构单元A,使得该聚合物中能够引入更多的阳离子盐功能基团,最终获得的聚合物中具有更高含量的阳离子盐功能基团,能够使得该聚合物作为抗菌剂用于制备抗菌性能稳定、持久、安全、低毒的抗菌高分子材料,例如抗菌塑料、抗菌橡胶、抗菌纤维和抗菌涂料,并且能够有效抑制和杀灭细菌、真菌和病菌等。
进一步地,以所述聚合物的总摩尔量为基准,所述结构单元A的含量为2-15mol%,所述结构单元B的含量为1-5mol%,所述结构单元C的含量为80-95mol%。
根据本发明,所述异丁烯基阳离子盐离子聚合物的热分解温度为150-550℃。
根据本发明,所述异丁烯基阳离子盐离子聚合物5wt%的热失重温度≥170℃。
本发明中,所述异丁烯基阳离子盐离子聚合物具有较高的热分解温度并且具有高的5wt%的热失重温度,使得该聚合物满足高分子材料热加工过程的条件需要,能够作为抗菌剂直接与高分子材料并用,用于制备抗菌塑料、抗菌橡胶、抗菌纤维、抗菌涂料等抗菌高分子材料。
进一步地,所述异丁烯基阳离子盐离子聚合物的热分解温度为180-500℃。
进一步地,所述异丁烯基阳离子盐离子聚合物5wt%的热失重温度≥180℃。
具体实施方式I
所述异丁烯基阳离子盐离子聚合物为异丁烯基季铵盐离子聚合物,其中,所述聚合物包括结构单元A、结构单元B和结构单元C;
所述结构单元A具有式(2-1)和/或式(3-1)中所示结构和可选地式(1-1)所示结构;所述结构单元B具有式(4-1)所示结构;所述结构单元C具有式(5-1)所示结构;

其中,R1为C1-C4的亚烷基;R2为C1-C4的烷基;R3、R4、R5各自独立地为C1-C20的直链烷基、C1-C20的支链烷基或C6-C20的芳基;X为Cl或Br。
进一步地,R1为亚甲基或亚乙基;R2为甲基或乙基;R3、R4、R5各自独立地为C1-C18的直链烷基或C6-C9的芳基;X为Br。
更进一步地,R1为亚甲基;R2为甲基;R3、R4、R5各自独立地为甲基,C8-C16的直链烷基或苯基;X为Br。
根据本发明,以所述聚合物的总摩尔量为基准,季铵盐基团的含量为1.5-35mol%。
进一步地,以所述聚合物的总摩尔量为基准,季铵盐基团的含量为2.5-25mol%。
根据本发明,以所述聚合物的总摩尔量为基准,侧基苄基季铵盐基团的含量为1-20mol%,主链叔碳季铵盐基团的含量为0.5-15mol%。
进一步地,以所述聚合物的总摩尔量为基准,侧基苄基季铵盐基团的含量为1.5-15mol%,主链叔碳季铵盐基团的含量为1-10mol%。
根据本发明,所述结构单元A的含量为1-20mol%,所述结构单元B的含量为0.5-10mol%,所述结构单元C的含量为75-97mol%。
进一步地,以所述聚合物的总摩尔量为基准,所述结构单元A的含量为2-15mol%,所述结构单元B的含量为1-5mol%,所述结构单元C的含量为80-95mol%。
根据本发明,所述异丁烯基季铵盐离子聚合物的热分解温度为150-500℃。
根据本发明,所述异丁烯基季胺盐离子聚合物5wt%的热失重温度≥170℃。
本发明中,所述异丁烯基季铵盐离子聚合物具有较高的热分解温度并且具有高的5wt%的热失重温度,使得该聚合物满足高分子材料热加工过程的条件需要,能够作为抗菌剂直接与高分子材料并用,用于制备抗菌塑料、抗菌橡胶、抗菌纤维、抗菌涂料等抗菌高分子材料。
进一步地,所述异丁烯基季铵盐离子聚合物的热分解温度为180-450℃。
进一步地,所述异丁烯基季铵盐离子聚合物5wt%的热失重温度≥180℃。
具体实施方式II
所述异丁烯基阳离子盐离子聚合物为异丁烯基季鏻盐离子聚合物,其中,所述聚合物包括结构单元A、结构单元B和结构单元C;
所述结构单元A具有式(2-2)和/或式(3-2)中至少一种所示结构和可选地式(1-2)所示结构;所述结构单元B具有式(4-2)所示结构;所述结构单元C具有式(5-2)所示结构;

其中,R1为C1-C4的亚烷基;R2为C1-C4的烷基;R6、R7、R8各自独立地为C1-C10的直链烷基、C1-C10的支链烷基、C3-C10环烷基或C6-C10的芳基;X为Cl或Br。
进一步地,R1为亚甲基或亚乙基;R2为甲基或乙基;R3、R4、R5各自独立地为C1-C18的直链烷基或C6-C9的芳基;X为Br。
更进一步地,R1为亚甲基;R2为甲基;R6、R7、R8各自独立地为C1-C8的直链烷基、环戊基、环己基或苯基;X为Br。
根据本发明,以所述聚合物的总摩尔量为基准,季鏻盐功能基团的含量为1.5-23mol%。
进一步地,以所述聚合物的总摩尔量为基准,季鏻盐功能基团的含量为3-18mol%。
根据本发明,以所述聚合物的总摩尔量为基准,侧基苄基季鏻盐功能基团的含量为1-15mol%,主链叔碳季鏻盐功能基团的含量为0.5-8mol%。
进一步地,以所述聚合物的总摩尔量为基准,侧基苄基季鏻盐功能基团的含量为2-13mol%,主链叔碳季鏻盐功能基团的含量为1-5mol%。
根据本发明,以所述聚合物的总摩尔量为基准,所述结构单元A的含量为1-20mol%,所述结构单元B的含量为0.5-10mol%,所述结构单元C的含量为75-97mol%。
进一步地,以所述聚合物的总摩尔量为基准,所述结构单元A的含量为2-15mol%,所述结构单元B的含量为1-5mol%,所述结构单元C的含量为80-95mol%。
根据本发明,所述异丁烯基季鏻盐离子聚合物的热分解温度为150-500℃。
根据本发明,所述异丁烯基季鏻盐离子聚合物5wt%的热失重温度≥200℃。
进一步地,所述异丁烯基季鏻盐离子聚合物的热分解温度为200-450℃。
进一步地,所述异丁烯基季鏻盐离子聚合物5wt%的热失重温度≥220℃。
具体实施方式III
本发明的一个具体实施方式中,所述异丁烯基阳离子盐离子聚合物为异丁烯基咪唑盐离子聚合物,其中,所述聚合物包括结构单元A、结构单元B和结构单元C;
所述结构单元A具有式(2-3)和/或式(3-3)中至少一种所示的结构和可选地式(1-3)所示结构;所述结构单元B具有式(4-3)所示结构;所述结构单元C具有式(5-3)所示结构;

其中,R1为C1-C4的亚烷基;R2为C1-C4的烷基;R13、R14、R15、R16、R17各自独立地为氢、卤原子、C1-C20的直链烷基、C1-C20的支链烷基、硝基、氨基或氰基;X为Cl或Br。
进一步地,R1为亚甲基或亚乙基;R2为甲基或乙基;R9为氢、C1-C18的直链烷基;R10、R11、R12各自独立地为氢、卤原子、C1-C5的直链烷基、C1-C5的支链烷基、羟基、硝基、-(CH2)n-NH、氰基或C6-C8的芳基,n为0-3的整数;X为Br。
更进一步地,R1为亚甲基;R2为甲基;R9为氢、C1-C16的直链烷基;;R10、R11、R12各自独立地为氢、卤原子、C1-C4的直链烷基、羟基、硝基、氨基、氰基或苯基;X为Br。
根据本发明,以所述聚合物的总摩尔量为基准,咪唑盐基团的含量为1.5-23mol%。
进一步地,以所述聚合物的总摩尔量为基准,咪唑盐基团的含量为3-18mol%。
根据本发明,以所述聚合物的总摩尔量为基准,侧基苄基咪唑盐基团的含量为1-15mol%,主链叔碳咪唑盐功能基团的含量为0.5-8mol%。
进一步地,以所述聚合物的总摩尔量为基准,侧基苄基咪唑盐基团的含量为2-13mol%,主链叔碳咪唑盐基团的含量为1-5mol%。
根据本发明,以所述聚合物的总摩尔量为基准,所述结构单元A的含量为1-20mol%,所述结构单元B的含量为0.5-10mol%,所述结构单元C的含量为75-97mol%。
进一步地,以所述聚合物的总摩尔量为基准,所述结构单元A的含量为2-15mol%,所述结构单元B的含量为1-5mol%,所述结构单元C的含量为80-95mol%。
根据本发明,所述异丁烯咪唑盐离子聚合物的热分解温度为150-550℃。
根据本发明,所述异丁烯基咪唑盐离子聚合物5wt%的热失重温度≥200℃。
进一步地,所述异丁烯基咪唑盐离子聚合物的热分解温度为200-500℃。
进一步地,所述异丁烯基咪唑盐离子聚合物5wt%的热失重温度≥220℃。
具体实施方式IV
本发明的一个具体实施方式中,所述异丁烯基阳离子盐离子聚合物为异丁烯基吡啶盐离子聚合物,其中,所述聚合物包括结构单元A、结构单元B和结构单元C;
所述结构单元A具有式(2-4)和/或式(3-4)中所示的结构和可选地式(1-4)所示结构;所述结构单元B具有式(4-4)所示结构;所述结构单元C具有式(5-4)所示结构;

其中,R1为C1-C4的亚烷基;R2为C1-C4的烷基;R13、R14、R15、R16、R17各自独立地为氢、卤原子、C1-C20的直链烷基、C1-C20的支链烷基、硝基、氨基或氰基;X为Cl或Br。
进一步地,R1为亚甲基或亚乙基;R2为甲基或乙基;R13、R14、R15、R16、R17各自独立地为氢、卤素、C1-C15的直链烷基、C1-C15的支链烷基、硝基、氨基或氰基;X为Br。
更进一步地,R1为亚甲基;R2为甲基;R13、R14、R15、R16、R17各自独立地为氢、卤原子、C1-C10的直链烷基、氨基或氰基;X为Br。
根据本发明,以所述聚合物的总摩尔量为基准,所述结构单元A的含量为1-20mol%,所述结构单元B的含量为0.5-10mol%,所述结构单元C的含量为75-97mol%。
进一步地,以所述聚合物的总摩尔量为基准,所述结构单元A的含量为2-15mol%,所述结构单元B的含量为1-5mol%,所述结构单元C的含量为80-95mol%。
根据本发明,以所述聚合物的总摩尔量为基准,吡啶盐功能基团的含量为1.5-35mol%。
进一步地,以所述聚合物的总摩尔量为基准,吡啶盐功能基团的含量为3-25mol%。
根据本发明,以所述聚合物的总摩尔量为基准,侧基苄基吡啶盐基团的含量为1-20mol%,主链叔碳吡啶盐基团的含量为0.5-15mol%。
进一步地,以所述聚合物的总摩尔量为基准,侧基苄基吡啶盐基团的含量为1.5-15mol%,主链叔碳吡啶盐基团的含量为1-10mol%。
根据本发明,所述异丁烯基吡啶盐离子聚合物的热分解温度为100-500℃。
根据本发明,所述异丁烯基季胺盐离子聚合物5wt%的热失重温度≥180℃。
进一步地,所述异丁烯基吡啶盐离子聚合物的热分解温度为150-450℃。
进一步地,所述异丁烯基吡啶盐离子聚合物5wt%的热失重温度≥200℃。
本发明第二方面提供一种异丁烯基阳离子盐离子聚合物的制备方法,其特征在于,所述制备方法包括:
(1)将聚合物溶解于有机溶剂中,得到聚合物溶液,在聚合物溶液中加入卤素进行卤化反应,得到卤化的聚合物溶液;
(2)将叔胺化合物、叔膦化合物、咪唑化合物和吡啶化合物中的至少一种加入所述卤化的聚合物溶液中,进行离子化反应,得到所述异丁烯基阳离子盐离子聚合物;
所述聚合物为异丁烯与烷基苯乙烯的无规共聚物;
所述卤化反应在可见光的照射下进行,所述可见光的发光方式为脉冲式发光。
本发明中,在可见光的照射下,特别地在脉冲式发光的可见光照射下,对异丁烯与烷基苯乙烯的无规共聚物进行卤化反应,不仅能够使得聚合体系具有高的纯净度、控制卤化反应速率,降低卤化副反应概率,更重要的是能够实现在卤化反应选择性的调控,获得高效率和高程度的卤化反应,进而制得本发明第一方面所述的异丁烯基阳离子盐离子聚合物,该聚合物在侧基和主链中均含有阳离子盐功能基团,使得该聚合物具有高的聚离子化程度,并且含有高含量的阳离子盐功能基团,能够作为抗菌剂用于制备抗菌高分子材料,例如抗菌塑料、抗菌橡胶、抗菌纤维和抗菌涂料,并且能够有效抑制和杀灭细菌、真菌和病菌等。
本发明中,采用步骤(1)的方法对聚合物溶液进行卤化反应,聚合物大分子链中来自烷基苯乙烯的结构单元发生卤取代反应,并且能够使得烷基苯乙烯苯环上的烷基氢和与苯环连接的主链叔碳氢均发生卤化反应,进而在聚合物大分子链的形成侧基烷基卤结构和主链叔碳卤结构,具体地,经卤化后,来自烷基苯乙烯的结构单元形成以下三种结构:
进一步地,本发明中采用特定波长范围的可见光引发所述卤化反应,能够实现卤化反应高度可控,副反应少,选择性高的特点,具体地,所述特定波长的可见光波特指黄色至红色波段,即560-630nm之间的光波,优选LED光源。本发明中,所述光源的输出功率为10-200W。
本发明中,所述脉冲式发光是指光源发射光波和停止发射光波为等时间差且交替进行,具体地,所述脉冲式发光的脉冲时间为5-40s,优选为10-30s。
本发明中,采用本发明的光照卤化方法,能够使得卤化反应效率能够达到80%以上,优选达到90%以上。
本发明中,卤化反应效率是指:对于以自由基机理进行的卤化取代反应,理论上卤素100%发生氢取代反应时,有50%的卤素取代到聚合物上,以实际测得的聚合物卤素含量与理论卤素含量之比即为卤化反应效率。
根据本发明,以所述聚合物的总摩尔量为基准,烷基苯乙烯提供的结构单元的含量为3-25mol%,异丁烯提供的结构单元的含量为75-97mol%。
进一步地,以所述聚合物的总摩尔量为基准,来自烷基苯乙烯的结构单元的含量为5-20mol%,来自异丁烯的结构单元的含量为80-95mol%。
根据本发明,所述聚合物的重均分子量Mw为1×104-1×105;分子量分布系数为2-3.5。
进一步地,所述聚合物的重均分子量Mw为2×104-8×104;分子量分布系数为2.2-3。
根据本发明,所述聚合物中铝离子的含量低于10ppm,优选低于5ppm。
本发明中,对于所述有机溶剂的种类没有特别限定,可以为本领域中常用的有机溶剂,优选C6-C10的直链烷烃、C6-C10的环烷烃、C1-C4的卤代烷烃等中的至少一种;所述直链烷烃包括正己烷、正庚烷、正辛烷、正壬完和正癸烷中的至少一种;所述环烷烃包括环己烷;所述卤代烷烃包括二氯甲烷、三氯甲烷和四氯化碳中的至少一种。
根据本发明,以烷基苯乙烯提供的结构单元的摩尔含量计,所述聚合物与所述卤素的摩尔比为1∶0.5-2,优选为1∶0.8-1.5。
本发明中,优选地,将卤素采用有机溶剂卤代烷烃稀释后使用,对于稀释浓度没有特别限制要求,以便于卤化反应控制为宜。
本发明中,所述卤化反应在避光环境中进行,对于卤化反应的温度没有特别要求,例如在室温下进行。
根据本发明,优选地,将卤素与有机溶剂混合得到卤素溶液,将所述卤素溶液滴加至所述聚合物溶液中进行卤化反应,以实现对卤化反应选择性的调控。
本发明的一个优选实施方式中,控制所述卤素溶液的滴加速度,使得卤化反应时间为30-180min。
本发明的一个具体实施方式中,将卤素溶液缓慢滴加至聚合物溶液中,在560nm-630nm的LED光源脉冲式发光的可见光照射下,进行光卤化反应,得到卤化的聚合物溶液。为了中和卤化反应过程中产生的卤化氢,可以在聚合物溶液中加入一定量的碱性化合物,如碳酸钠、碳酸氢钠、碳酸钙、碳酸镁、氧化钙、氧化镁等。所述卤化的聚合物溶液经过离心或过滤脱除固体卤盐化合物后,用于离子化反应。
根据本发明,所述卤素为液溴。
根据本发明,所述叔胺化合物具有式(6)所示的结构;
其中,R3、R4、R5各自独立地为C1-C20的直链烷基、C1-C20的支链烷基或C6-C20的芳基。
根据本发明,所述叔膦化合物具有式(7)所示的结构;
其中,R6、R7、R8各自独立地为C1-C10的直链烷基、C1-C10的支链烷基、C3-C10环烷基或C6-C10的芳基。
根据本发明,所述咪唑化合物具有式(8)所示的结构;
其中,R9为氢、C1-C20的直链烷基,R10、R11、R12各自独立地为氢、卤原子、C1-C10的直链烷基、C1-C10的支链烷基、羟基、硝基、-(CH2)n-NH、氰基或C6-C10的芳基,n为0-5的整数。
根据本发明,所述吡啶化合物具体式(9)所示的结构;
其中,R13、R14、R15、R16、R17各自独立地为氢、卤原子、C1-C20的直链烷基、C1-C20的支链烷基、硝基、氨基或氰基。
本发明的一个具体实施方式中,R3、R4、R5各自独立地为C1-C18的直链烷基或C6-C9的芳基,优选地,R3、R4、R5各自独立地为甲基、C8-C16的直链烷基或苯基,更优选地,R3、R4为甲基,R5为C8-C16的直链烷基或苯基。
本发明的一个具体实施方式中,R6、R7、R8各自独立地为C1-C8的直链烷基、C5-C8环烷基C6-C8的芳基,优选地,R6、R7、R8各自独立地为C1-C8的直链烷基、环戊基、环己基或苯基。
本发明的一个具体实施方式中,R9为氢、C1-C18的直链烷基;R10、R11、R12各自独立地为氢、卤原子、C1-C5的直链烷基、C1-C5的支链烷基、羟基、硝基、-(CH2)n-NH、氰基或C6-C8的芳基,n为0-3的整数,优选地,R9为氢、C1-C16的直链烷基;R10、R11、R12各自独立地为氢、卤原子、C1-C4的直链烷基、羟基、硝基、氰基、氨基或苯基。
本发明的一个具体实施方式中,R13、R14、R15、R16、R17各自独立地为氢、卤素、C1-C15的直链烷基、C1-C15的支链烷基、硝基、氨基或氰基,优选地,R13、R14、R15、R16、R17各自独立地为氢、卤素、C1-C10的直链烷基、氨基或氰基。
本发明中,式(6)所示的叔胺化合物包括但不限于三甲基胺、三乙基胺、三丙基胺、三丁基胺、三戊基胺、三己基胺、三庚基胺、三辛基胺、三壬基胺、三癸基胺、三(十一烷基)胺、三(十二烷基)胺、三(十三烷基)胺、三(十四烷基)胺、三(十五烷基)胺、三(十六烷基)胺、三(十七烷基)胺、三(十八烷基)胺、三(十九烷基)胺、三(二十烷基)胺、三苯基胺、N,N-二甲基乙基胺、N,N-二甲基丙基胺、N,N-二甲基丁基胺、N,N-二甲基戊基胺、N,N-二甲基己基胺、N,N-二甲基庚基胺、N,N-二甲基辛基胺、N,N-二甲基壬基胺、N,N-二甲基癸基胺、N,N-二甲基十烷基胺、N,N-二甲基十一烷基胺、N,N-二甲基十二烷基胺、N,N-二甲基十三烷基胺、N,N-二甲基十四烷基胺、N,N-二甲基十五烷基胺、N,N-二甲基十六烷基胺、N,N-二甲基十七烷基胺、N,N-二甲基十八烷基胺、N,N-二甲基十九烷基胺、N,N-二甲基二十烷基胺、N,N-二甲基苯基胺等。优选为N,N-二甲基烷基胺,尤其是N,N-二甲基C8-C16烷基胺中的至少一种,例如N,N-二甲基十烷基胺、N,N-二甲基十二烷基胺和N,N-二甲基十四烷基胺或其组合物。
本发明中,式(7)所示的叔膦化合物包括但不限于三甲基膦、三乙基膦、三丙基膦、三丁基膦、三戊基膦、三环戊基膦、三己基膦、三环己基膦、三庚基膦、三辛基膦、三壬基膦、三癸基膦、三苯基膦、二甲基苯基膦、二甲基乙基膦、二甲基丙基膦、二甲基丁基膦、二甲基戊基膦、二甲基己基膦、二甲基庚基膦、二甲基辛基膦、二甲基壬基膦、二甲基癸基膦、甲基乙基苯基膦、甲基乙基丙基膦、甲基乙基丁基膦、甲基乙基戊基膦、甲 基乙基己基膦、甲基乙基庚基膦、甲基乙基辛基膦、甲基乙基壬基膦、甲基乙基癸基膦、甲基乙基苯基膦、二乙基苯基膦、二乙基甲基膦、二乙基丙基膦、二乙基丁基膦、二乙基戊基膦、二乙基己基膦、二乙基庚基膦、二乙基辛基膦、二乙基壬基膦、二乙基癸基膦、乙基丙基苯基膦、乙基丙基丁基膦、乙基丙基戊基膦、乙基丙基己基膦、乙基丙基庚基膦、乙基丙基辛基膦、乙基丙基壬基膦、乙基丙基癸基膦、二丙基苯基膦、二丙基甲基膦、二丙基乙基膦、二丙基丁基膦、二丙基戊基膦、二丙基己基膦、二丙基环己基膦、二丙基庚基膦、二丙基辛基膦、二丙基壬基膦、二丙基癸基膦、丙基丁基苯基膦、丙基丁基戊基膦、丙基丁基己基膦、丙基丁基庚基膦、丙基丁基辛基膦、丙基丁基壬基膦、丙基丁基癸基膦、二丁基苯基膦、二丁基甲基膦、二丁基乙基膦、二丁基丙基膦、二丁基戊基膦、二丁基己基膦、二丁基环己基膦、二丁基庚基膦、二丁基辛基膦、二丁基壬基膦、二丁基癸基膦、二戊基苯基膦、二戊基甲基膦、二戊基乙基膦、二戊基丙基膦、二戊基丁基膦、二戊基己基膦、二戊基环己基膦、二戊基庚基膦、二戊基辛基膦、二戊基壬基膦、二戊基癸基膦、二己基苯基膦、二己基甲基膦、二己基乙基膦、二己基丙基膦、二己基丁基膦、二己基戊基膦、二己基庚基膦、二己基辛基膦、二己基壬基膦、二己基癸基膦、二环己基苯基膦、二环己基甲基膦、二环己基乙基膦、二环己基丙基膦、二环己基丁基膦、二环己基戊基膦、二环己基庚基膦、二环己基辛基膦、二环己基壬基膦、二环己基癸基膦、二庚基苯基膦、二庚基甲基膦、二庚基乙基膦、二庚基丙基膦、二庚基丁基膦、二庚基戊基膦、二庚基己基膦、二庚基辛基膦、二庚基壬基膦、二庚基癸基膦、二辛基苯基膦、二辛基甲基膦、二辛基乙基膦、二辛基丙基膦、二辛基丁基膦、二辛基戊基膦、二辛基己基膦、二辛基庚基膦、二辛基壬基膦、二辛基癸基膦、二壬基苯基膦、二壬基甲基膦、二壬基乙基膦、二壬基丙基膦、二壬基丁基膦、二壬基戊基膦、二壬基己基膦、二壬基环己基膦、二壬基庚基膦、二壬基辛基膦、二壬基癸基膦、二癸基苯基膦、二癸基甲基膦、二癸基乙基膦、二癸基丙基膦、二癸基丁基膦、二癸基戊基膦、二癸基己基膦、二癸基庚基膦、二癸基辛基膦、二癸基壬基膦中的至少一种;本发明优选三环己基膦和三苯基膦。
本发明中,式(8)所示的咪唑化合物包括但不限于咪唑、1-甲基咪唑、1-乙基咪唑、1-丙基咪唑、1-丁基咪唑、1-戊基咪唑、1-己基咪唑、1-庚基咪唑、1-辛基咪唑、1-壬基咪唑、1-癸基咪唑、1-十一烷基咪唑、1-十二烷基咪唑、1-十三烷基咪唑、1-十四烷基咪唑、1-十五烷基咪唑、1-十六烷基咪唑、1-十七烷基咪唑、1-十八烷基咪唑、1,2-二甲基咪唑、1,2-二乙基咪唑、1,2-二丙基咪唑、1,2-二丁基咪唑、1-甲基-2-乙基咪唑、1-甲基-2-丙基基咪唑、1-甲基-2-丁基咪唑、2-甲基咪唑、2-乙基咪唑、2-丙基咪唑、2-丁基咪唑、2-戊基咪唑、2-己基咪唑、2-庚基咪唑、2-辛基咪唑、2-壬基咪唑、2-癸基咪唑、2-硝基咪唑、4-硝基咪唑、5-硝基咪唑、1-甲基-4-硝基咪唑、1-甲基-5-硝基咪唑、1-乙基-4-硝基咪唑、1-乙基-5-硝基咪唑、1-丙基-4-硝基咪唑、1-丙基-5-硝基咪唑、1-丁基-4-硝基咪唑、1-丁基-5-硝基咪唑、2-甲基-5-硝基咪唑、1-丁基-2-甲基-4-硝基咪唑、1,2-二甲基-5-硝基咪唑、2-氯-4-硝基咪唑、2-氯-5-硝基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑、1-苄基-2-甲基咪唑、1-氰乙基-2-乙基-4-甲基咪唑和1-氰乙基-2-十一烷基咪唑、甲苯咪唑、苯并咪唑、2-氨基苯并咪唑中的至少一种;本发明优选1-烷基咪唑(N-烷基咪唑)。
本发明中,式(9)所示的吡啶化合物包括但不限于吡啶、2-甲基吡啶、3-甲基吡啶、4-甲基吡啶、5-甲基吡啶、6-甲基吡啶、2,6-二甲基吡啶、2,4,6-三甲基吡啶、2-乙基吡啶、3-乙基吡啶、4-乙基吡啶、5-乙基吡啶、6-乙基吡啶、2,6-二乙基吡啶、2,4,6-三乙基吡啶、2-丙基吡啶、3-丙基吡啶、4-丙基吡啶、5-丙基吡啶、6-丙基吡啶、2,6-二丙基吡啶、2,4,6-三丙基吡啶、2-丁基吡啶、3-丁基吡啶、4-丁基吡啶、5-丁基吡啶、6-丁基吡啶、2,6-二丁基吡啶、2,4,6-三丁基吡啶、2-戊基吡啶、3-戊基吡啶、4-戊基吡啶、5-戊基吡啶、6-戊基吡啶、2,6-二戊基吡啶、2,4,6-三戊基吡啶、2-己基吡啶、3-己基吡啶、4-己基吡啶、5-己基吡啶、6-己基吡啶、2-庚基吡啶、3-庚基吡啶、4-庚基吡啶、5-庚基吡啶、6-庚基吡啶、2-辛基吡啶、3-辛基吡啶、4-辛基吡啶、5-辛基吡啶、6-辛基吡啶、2-壬基吡啶、3-壬基吡啶、4-壬基吡啶、5-壬基吡啶、6-壬基吡啶、2-癸基吡啶、3-癸基吡啶、4-癸基吡啶、5-癸基吡啶、6-癸基吡啶、4-十一烷基吡啶、4-十二烷基吡啶、4-十三烷基吡啶、4-十四烷基吡啶、4-十五烷基吡啶、4-十六烷基吡啶、4-十七烷基吡啶、4-十八烷基吡啶、4-十九烷基吡啶、4-二十烷基吡啶、2-羟基吡啶、3-羟基吡啶、4-羟基吡啶、5-羟基吡啶、6-羟基吡啶、2,6-二羟基吡啶、2,4,6-三羟基吡啶、2-氟吡啶、3-氟吡啶、4-氟吡啶、5-氟吡啶、6-氟吡啶、2-氯吡啶、3-氯吡啶、4-氯吡啶、5-氯吡啶、6-氯吡啶、2,3-二氯吡啶、2,3,6-三氯吡啶、2,6-二氨基-3,5-二硝基吡啶、2,6-二氨基吡啶、2,4,6-三氨基吡啶、2,4,6-三硝基吡啶、2,4,6-三氯吡啶和2,4,6-三溴吡啶中的至少一种;本发明优选4-烷基吡啶。
本发明的一个具体实施方式中,将含叔胺化合物、叔膦化合物、咪唑化合物、吡啶化合物中的至少一种溶解在有机溶剂卤代烷烃中,加入至卤化的聚合物溶液中,在保护性气体的存在下,进行离子化反应,反应温度为20-150℃,优选为40-120℃;反应时间为1-24h,优选为2-20h。
根据本发明,所述叔胺化合物、叔膦化合物、咪唑化合物、吡啶化合物中的至少一种与所述卤素的摩尔比为0.8-1.5∶1,优选为0.9-1.2∶1。
本发明中,当离子化反应达到一定程度后,以固体不溶物从有机溶剂中沉淀析出,反应结束后过滤分离出溶剂,并将不溶的离子聚合物用己烷洗涤1-2次后进行真空干燥得到本发明第一方面所述的异丁烯基阳离子盐离子聚合物。
具体实施方式I
本发明的一个具体实施方式中,所述异丁烯基阳离子盐离子聚合物为异丁烯基季铵盐离子聚合物,其中,该异丁烯基季铵盐离子聚合物的制备方法包括:
(1)将聚合物溶解于有机溶剂中,得到聚合物溶液,在聚合物溶液中加入卤素进行卤化反应,得到卤化的聚合物溶液;
(2)将叔胺加入所述卤化的聚合物溶液中,进行离子化反应,得到所述异丁烯基季铵盐离子聚合物;
所述聚合物为异丁烯与烷基苯乙烯的无规共聚物;
所述卤化反应在可见光的照射下进行,所述可见光的发光方式为脉冲式发光。
进一步地,本发明中采用特定波长范围的可见光引发所述卤化反应,能够实现卤化反应高度可控,副反应少,选择性高的特点,具体地,所述特定波长的可见光波特指黄色至红色波段,即560-630nm之间的光波,优选LED光源。本发明中,所述光源的输出功率为10-200W。
本发明中,所述脉冲式发光是指光源发射光波和停止发射光波为等时间差且交替进行,具体地,所述脉冲式发光的脉冲时间为5-40s,优选为10-30s。
本发明中,采用本发明的光照卤化方法,能够使得卤化反应效率能够达到80%以上,优选达到90%以上。
本发明中,卤化反应效率是指:对于以自由基机理进行的卤化取代反应,理论上卤素100%发生氢取代反应时,有50%的卤素取代到聚合物上,以实际测得的聚合物卤素含量与理论卤素含量之比即为卤化反应效率。
根据本发明,以所述聚合物的总摩尔量为基准,烷基苯乙烯提供的结构单元的含量为3-25mol%,异丁烯提供的结构单元的含量为75-97mol%。
进一步地,以所述聚合物的总摩尔量为基准,来自烷基苯乙烯的结构单元的含量为5-20mol%,来自异丁烯的结构单元的含量为80-95mol%。
根据本发明,所述聚合物的重均分子量Mw为1×104-1×105;分子量分布系数为2-3.5。
进一步地,所述聚合物的重均分子量Mw为2×104-8×104;分子量分布系数为2.2-3。
根据本发明,所述聚合物中铝离子的含量低于10ppm,优选低于5ppm。
本发明中,对于所述有机溶剂的种类没有特别限定,可以为本领域中常用的有机溶剂,优选C6-C10的直链烷烃、C6-C10的环烷烃、C1-C4的卤代烷烃等中的至少一种;所述直链烷烃包括正己烷、正庚烷、正辛烷、正壬完和正癸烷中的至少一种;所述环烷烃包括环己烷;所述卤代烷烃包括二氯甲烷、三氯甲烷和四氯化碳中的至少一种。
根据本发明,以烷基苯乙烯提供的结构单元的摩尔含量计,所述聚合物与所述卤素的摩尔比为1∶0.5-2,优选为1∶0.8-1.5。
本发明中,优选地,将卤素采用有机溶剂卤代烷烃稀释后使用,对于稀释浓度没有特别限制要求,以便于卤化反应控制为宜。
本发明中,所述卤化反应在避光环境中进行,对于卤化反应的温度没有特别要求,例如在室温下进行。
根据本发明,优选地,将卤素与有机溶剂混合得到卤素溶液,将所述卤素溶液滴加至所述聚合物溶液中进行卤化反应,以实现对卤化反应选择性的调控。
本发明的一个优选实施方式中,控制所述卤素溶液的滴加速度,使得卤化反应时间为30-180min。
本发明的一个具体实施方式中,将卤素溶液缓慢滴加至聚合物溶液中,在560nm-630nm的LED光源脉冲式发光的可见光照射下,进行光卤化反应,得到卤化的聚合物溶液。为了中和卤化反应过程中产生的卤化氢,可以在聚合物溶液中加入一定量的碱性化合物,如碳酸钠、碳酸氢钠、碳酸钙、碳酸镁、氧化钙、氧化镁等。所述卤化的聚合物溶液经过离心或过滤脱除固体卤盐化合物后,用于离子化反应。
根据本发明,所述卤素为液溴。
根据本发明,所述叔胺具有式(6)所示的结构;
其中,R3、R4、R5各自独立地为C1-C20的直链烷基、C1-C20的支链烷基或C6-C20的芳基。
进一步地,R3、R4、R5各自独立地为C1-C18的直链烷基、C6-C9的芳基。
更进一步地,R3、R4为甲基,R5为C8-C16直链烷基或苯基。
本发明中,所述叔胺包括但不限于三甲基胺、三乙基胺、三丙基胺、三丁基胺、三戊基胺、三己基胺、三庚基胺、三辛基胺、三壬基胺、三癸基胺、三(十一烷基)胺、三(十二烷基)胺、三(十三烷基)胺、三(十四烷基)胺、三(十五烷基)胺、三(十六烷基)胺、三(十七烷基)胺、三(十八烷基)胺、三(十九烷基)胺、三(二十烷基)胺、三苯基胺、N,N-二甲基乙基胺、N,N-二甲基丙基胺、N,N-二甲基丁基胺、N,N-二甲基戊基胺、N,N-二甲基己基胺、N,N-二甲基庚基胺、N,N-二甲基辛基胺、N,N-二甲基壬基胺、N,N-二甲基癸基胺、N,N-二甲基十烷基胺、N,N-二甲基十一烷基胺、N,N-二甲基十二烷基胺、N,N-二甲基十三烷基胺、N,N-二甲基十四烷基胺、N,N-二甲基十五烷基胺、N,N-二甲基十六烷基胺、N,N-二甲基十七烷基胺、N,N-二甲基十八烷基胺、N,N-二甲基十九烷基胺、N,N-二甲基二十烷基胺、N,N-二甲基苯基胺等。优选地,所述叔胺为N,N-二甲基烷基胺,尤其是N,N-二甲基C8-C16烷基胺中的至少一种,例如N,N-二甲基十烷基胺、N,N-二甲基十二烷基胺和N,N-二甲基十四烷基胺或其组合物。
本发明的一个具体实施方式中,将叔胺溶解在有机溶剂卤代烷烃中,加入至卤化的聚合物溶液中,在保护性气体的存在下,进行离子化反应,反应温度为20-100℃,优选为40-80℃;反应时间为1-10h,优选为2-8h。
根据本发明,所述叔胺与所述卤素的摩尔比为0.8-1.5∶1,优选为0.9-1.2∶1。
本发明中,当离子化反应达到一定程度后,以固体不溶物从有机溶剂中沉淀析出,反应结束后过滤分离出溶剂,并将不溶的离子聚合物用己烷洗涤1-2次后进行真空干燥得到所述的异丁烯基季铵盐离子聚合物。
具体实施方式II
本发明的一个具体实施方式中,所述异丁烯基阳离子盐离子聚合物为异丁烯基季鏻盐离子聚合物,其中,所述异丁烯基季鏻盐离子聚合物的制备方法包括:
(1)将聚合物溶解于有机溶剂中,得到聚合物溶液,在聚合物溶液中加入卤素进行卤化反应,得到卤化的聚合物溶液;
(2)将叔膦加入所述卤化的聚合物溶液中,进行离子化反应,得到所述异丁烯基季鏻盐离子聚合物;
所述聚合物为异丁烯与烷基苯乙烯的无规共聚物;所述卤化反应在可见光的照射下进行,所述可见光的发光方式为脉冲式发光。
进一步地,本发明中采用特定波长范围的可见光引发所述卤化反应,能够实现卤化反应高度可控,副反应少,选择性高的特点,具体地,所述特定波长的可见光波特指黄色至红色波段,即560-630nm之间的光波,优选LED光源。本发明中,所述光源的输出功率为10-200W。
本发明中,所述脉冲式发光是指光源发射光波和停止发射光波为等时间差且交替进行,具体地,所述脉冲式发光的脉冲时间为5-40s,优选为10-30s。
本发明中,采用本发明的光照卤化方法,能够使得卤化反应效率能够达到80%以上,优选达到90%以上。
本发明中,卤化反应效率是指:对于以自由基机理进行的卤化取代反应,理论上卤素100%发生氢取代反应时,有50%的卤素取代到聚合物上,以实际测得的聚合物卤素含量与理论卤素含量之比即为卤化反应效率。
根据本发明,以烷基苯乙烯提供的结构单元的摩尔含量计,所述聚合物与所述卤素的摩尔比为1∶0.5-2,优选为1∶0.8-1.5。
根据本发明,所述卤素为液溴。
本发明中,所述卤化反应在避光环境中进行,对于卤化反应的温度没有特别要求,例如在室温下进行。
根据本发明,优选地,将卤素与有机溶剂混合得到卤素溶液,将所述卤素溶液滴加至所述聚合物溶液中进行卤化反应,以实现对卤化反应选择性的调控。
本发明中,对于卤素溶液的浓度没有特别限制要求,以便于卤化反应控制为宜。
本发明的一个优选实施方式中,控制所述卤素溶液的滴加速度使得卤化反应的时间为30-180min。
本发明的一个具体实施方式中,将卤素溶液缓慢滴加至聚合物溶液中,在脉冲式发光的可见光照射下,进行光卤化反应,得到卤化的聚合物溶液。为了中和卤化反应过程中产生的卤化氢,可以在聚合物溶液中加入一定 量的碱性化合物,如碳酸钠、碳酸氢钠、碳酸钙、碳酸镁、氧化钙、氧化镁等。所述卤化的聚合物溶液经过离心或过滤脱除固体卤盐化合物后,用于离子化反应。
根据本发明,以所述聚合物的总摩尔量为基准,烷基苯乙烯提供的结构单元的含量为3-25mol%,异丁烯提供的结构单元的含量为75-97mol%。
进一步地,以所述聚合物的总摩尔量为基准,来自烷基苯乙烯的结构单元的含量为5-20mol%,来自异丁烯的结构单元的含量为80-95wt%。
根据本发明,所述聚合物的重均分子量为Mw为1×104-1×105;分子量分布系数为2-3.5。
进一步地,所述聚合物的重均分子量Mw为2×104-8×104;分子量分布系数为2.2-3。
根据本发明中,所述聚合物中铝离子的含量低于10ppm,优选低于5ppm。
本发明中,对于所述有机溶剂的种类没有特别限定,可以为本领域中常用的有机溶剂,优选C6-C10的直链烷烃、C6-C10的环烷烃、C1-C4的卤代烷烃等中的至少一种;所述直链烷烃包括正己烷、正庚烷、正辛烷、正壬完和正癸烷中的至少一种;所述环烷烃包括环己烷;所述卤代烷烃包括二氯甲烷、三氯甲烷和四氯化碳中的至少一种。
根据本发明,所述叔膦具有式(7)所示的结构;
其中,R6、R7、R8各自独立地为C1-C10的直链烷基、C1-C10的支链烷基、C3-C10环烷基或C6-C10的芳基。
进一步地,R6、R7、R8各自独立地为C1-C8的直链烷基、C5-C8环烷基C6-C8的芳基。
更进一步地,R6、R7、R8各自独立地为C1-C8的直链烷基、环戊基、环己基或苯基。
本发明中,所述叔膦包括但不限于三甲基膦、三乙基膦、三丙基膦、三丁基膦、三戊基膦、三环戊基膦、三己基膦、三环己基膦、三庚基膦、三辛基膦、三壬基膦、三癸基膦、三苯基膦、二甲基苯基膦、二甲基乙基膦、二甲基丙基膦、二甲基丁基膦、二甲基戊基膦、二甲基己基膦、二甲基庚基膦、二甲基辛基膦、二甲基壬基膦、二甲基癸基膦、甲基乙基苯基膦、甲基乙基丙基膦、甲基乙基丁基膦、甲基乙基戊基膦、甲基乙基己基膦、甲基乙基庚基膦、甲基乙基辛基膦、甲基乙基壬基膦、甲基乙基癸基膦、甲基乙基苯基膦、二乙基苯基膦、二乙基甲基膦、二乙基丙基膦、二乙基丁基膦、二乙基戊基膦、二乙基己基膦、二乙基庚基膦、二乙基辛基膦、二乙基壬基膦、二乙基癸基膦、乙基丙基苯基膦、乙基丙基丁基膦、乙基丙基戊基膦、乙基丙基己基膦、乙基丙基庚基膦、乙基丙基辛基膦、乙基丙基壬基膦、乙基丙基癸基膦、二丙基苯基膦、二丙基甲基膦、二丙基乙基膦、二丙基丁基膦、二丙基戊基膦、二丙基己基膦、二丙基环己基膦、二丙基庚基膦、二丙基辛基膦、二丙基壬基膦、二丙基癸基膦、丙基丁基苯基膦、丙基丁基戊基膦、丙基丁基己基膦、丙基丁基庚基膦、丙基丁基辛基膦、丙基丁基壬基膦、丙基丁基癸基膦、二丁基苯基膦、二丁基甲基膦、二丁基乙基膦、二丁基丙基膦、二丁基戊基膦、二丁基己基膦、二丁基环己基膦、二丁基庚基膦、二丁基辛基膦、二丁基壬基膦、二丁基癸基膦、二戊基苯基膦、二戊基甲基膦、二戊基乙基膦、二戊基丙基膦、二戊基丁基膦、二戊基己基膦、二戊基环己基膦、二戊基庚基膦、二戊基辛基膦、二戊基壬基膦、二戊基癸基膦、二己基苯基膦、二己基甲基膦、二己基乙基膦、二己基丙基膦、二己基丁基膦、二己基戊基膦、二己基庚基膦、二己基辛基膦、二己基壬基膦、二己基癸基膦、二环己基苯基膦、二环己基甲基膦、二环己基乙基膦、二环己基丙基膦、二环己基丁基膦、二环己基戊基膦、二环己基庚基膦、二环己基辛基膦、二环己基壬基膦、二环己基癸基膦、二庚基苯基膦、二庚基甲基膦、二庚基乙基膦、二庚基丙基膦、二庚基丁基膦、二庚基戊基膦、二庚基己基膦、二庚基辛基膦、二庚基壬基膦、二庚基癸基膦、二辛基苯基膦、二辛基甲基膦、二辛基乙基膦、二辛基丙基膦、二辛基丁基膦、二辛基戊基膦、二辛基己基膦、二辛基庚基膦、二辛基壬基膦、二辛基癸基膦、二壬基苯基膦、二壬基甲基膦、二壬基乙基膦、二壬基丙基膦、二壬基丁基膦、二壬基戊基膦、二壬基己基膦、二壬基环己基膦、二壬基庚基膦、二壬基辛基膦、二壬基癸基膦、二癸基苯基膦、二癸基甲基膦、二癸基乙基膦、二癸基丙基膦、二癸基丁基膦、二癸基戊基膦、二癸基己基膦、二癸基庚基膦、二癸基辛基膦、二癸基壬基膦中的至少一种;本发明优选三环己基膦和三苯基膦。
本发明的一个具体实施方式中,将叔膦溶解在有机溶剂卤代烷烃中,加入至卤化的聚合物溶液中,在保护性气体的存在下,进行离子化反应,反应温度为60-150℃,优选为80-120℃;反应时间为4-24h,优选为6-20h。
根据本发明,所述叔膦与所述卤素的摩尔比为0.8-1.5∶1,优选为0.9-1.2∶1。
本发明中,当离子化反应达到一定程度后,以固体不溶物从有机溶剂中沉淀析出,反应结束后过滤分离出溶剂,并将不溶的离子盐聚合物用己烷洗涤1-2次后进行真空干燥得到所述的异丁烯基季鏻盐离子聚合物。
具体实施方式III
本发明的一个具体实施方式中,所述异丁烯基阳离子盐离子聚合物为异丁烯基咪唑盐离子聚合物,其中,所述异丁烯基咪唑盐离子聚合物的制备方法包括:
(1)将聚合物溶解于机溶剂中,得到聚合物溶液,在聚合物溶液中加入卤素进行卤化反应,得到卤化的聚合物溶液;
(2)将咪唑加入所述卤化的聚合物溶液中,进行离子化反应,得到所述异丁烯基咪唑盐离子聚合物;
所述聚合物为异丁烯与烷基苯乙烯的无规共聚物;所述卤化反应在可见光的照射下进行,所述可见光的发光方式为脉冲式发光。
进一步地,本发明中采用特定波长范围的可见光引发所述卤化反应,能够实现卤化反应高度可控,副反应少,选择性高的特点,具体地,所述特定波长的可见光波特指黄色至红色波段,即560-630nm之间的光波,优选LED光源。本发明中,所述光源的输出功率为10-200W。
本发明中,所述脉冲式发光是指光源发射光波和停止发射光波为等时间差且交替进行,具体地,所述脉冲式发光的脉冲时间为5-40s,优选为10-30s。
根据本发明,以烷基苯乙烯提供的结构单元的摩尔含量计,所述聚合物与所述卤素的摩尔比为1∶0.5-2,优选为1∶0.8-1.5。
本发明中,在可见光的照射下,并通过控制卤素与聚合物的摩尔比满足上述范围,能够使得卤化反应效率能够达到80%以上,优选达到90%以上。
本发明中,卤化反应效率是指:对于以自由基机理进行的卤化取代反应,理论上卤素100%发生氢取代反应时,有50%的卤素取代到聚合物上,以实际测得的聚合物卤素含量与理论卤素含量之比即为卤化反应效率。
本发明中,优选地,将卤素采用有机溶剂稀释后使用,对于稀释浓度没有特别限制要求,以便于卤化反应控制为宜。对于有机溶剂的种类没有特别限制,可以为本领域中常规的有机溶剂,例如卤代烷烃和/或烷烃。
本发明中,所述卤化反应在避光环境中进行,对于卤化反应的温度没有特别要求,例如在室温下进行。
根据本发明,优选地,将卤素和有机溶剂混合后得到卤素溶液,将所述卤素溶液滴加至所述聚合物溶液中进行卤化反应,以实现对卤化反应选择性的调控。
本发明的一个优选实施方式中,控制所述卤素溶液的滴加速度,使得卤化反应时间为30-180min。
本发明的一个具体实施方式中,将卤素溶液缓慢滴加至聚合物溶液中,在脉冲式发光的可见光照射下,进行光卤化反应,得到卤化的聚合物溶液。为了中和卤化反应过程中产生的卤化氢,可以在胶液中加入一定量的碱性化合物,如碳酸钠、碳酸氢钠、碳酸钙、碳酸镁、氧化钙、氧化镁等。
所述卤化的聚合物溶液经过离心或过滤脱除固体卤盐化合物后,用于离子化反应。
根据本发明,所述卤素为液溴。
根据本发明,以所述聚合物的总摩尔量为基准,烷基苯乙烯提供的结构单元的含量为3-25mol%,异丁烯提供的结构单元的含量为75-97mol%。
进一步地,以所述聚合物的总摩尔量为基准,来自烷基苯乙烯的结构单元的含量为5-20mol%,来自异丁烯的结构单元的含量为80-95wt%。
根据本发明,所述聚合物的重均分子量为Mw为1×104-1×105;分子量分布系数为2-3.5。
进一步地,所述聚合物的重均分子量Mw为2×104-8×104;分子量分布系数为2.2-3。
根据本发明中,所述聚合物中铝离子的含量低于10ppm,优选低于5ppm。
本发明中,对于所述有机溶剂的种类没有特别限定,可以为本领域中常用的有机溶剂,优选C6-C10的直链烷烃、C6-C10的环烷烃、C1-C4的卤代烷烃等中的至少一种;所述直链烷烃包括正己烷、正庚烷、正辛烷、正壬完和正癸烷中的至少一种;所述环烷烃包括环己烷;所述卤代烷烃包括二氯甲烷、三氯甲烷和四氯化碳中的至少一种。
根据本发明,所述咪唑具有式(8)所示的结构;
其中,R9为氢、C1-C20的直链烷基,R10、R11、R12各自独立地为氢、卤原子、C1-C10的直链烷基、C1-C10的支链烷基、羟基、硝基、-(CH2)n-NH、氰基或C6-C10的芳基,n为0-5的整数。
进一步地,R9为氢、C1-C18的直链烷基;R10、R11、R12各自独立地为氢、卤原子、C1-C5的直链烷基、C1-C5的支链烷基、羟基、硝基、-(CH2)n-NH、氰基或C6-C8的芳基,n为0-3的整数。
更进一步地,R9为氢、C1-C16的直链烷基;R10、R11、R12各自独立地为氢、卤原子、C1-C4的直链烷基、羟基、硝基、氰基、氨基或苯基。
本发明中,所述咪唑化合物包括但不限于咪唑、1-甲基咪唑、1-乙基咪唑、1-丙基咪唑、1-丁基咪唑、1-戊基咪唑、1-己基咪唑、1-庚基咪唑、1-辛基咪唑、1-壬基咪唑、1-癸基咪唑、1-十一烷基咪唑、1-十二烷基咪唑、1-十三烷基咪唑、1-十四烷基咪唑、1-十五烷基咪唑、1-十六烷基咪唑、1-十七烷基咪唑、1-十八烷基咪唑、1,2-二甲基咪唑、1,2-二乙基咪唑、1,2-二丙基咪唑、1,2-二丁基咪唑、1-甲基-2-乙基咪唑、1-甲基-2-丙基基咪唑、1-甲基-2-丁基咪唑、2-甲基咪唑、2-乙基咪唑、2-丙基咪唑、2-丁基咪唑、2-戊基咪唑、2-己基咪唑、2-庚基咪唑、2-辛基咪唑、2-壬基咪唑、2-癸基咪唑、2-硝基咪唑、4-硝基咪唑、5-硝基咪唑、1-甲基-4-硝基咪唑、1-甲基-5-硝基咪唑、1-乙基-4-硝基咪唑、1-乙基-5-硝基咪唑、1-丙基-4-硝基咪唑、1-丙基-5-硝基咪唑、1-丁基-4-硝基咪唑、1-丁基-5-硝基咪唑、2-甲基-5-硝基咪唑、1-丁基-2-甲基-4-硝基咪唑、1,2-二甲基-5-硝基咪唑、2-氯-4-硝基咪唑、2-氯-5-硝基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑、1-苄基-2-甲基咪唑、1-氰乙基-2-乙基-4-甲基咪唑和1-氰乙基-2-十一烷基咪唑、甲苯咪唑、苯并咪唑、2-氨基苯并咪唑中的至少一种;本发明优选1-烷基咪唑(N-烷基咪唑)。
本发明的一个具体实施方式中,将咪唑化合物溶解在有机溶剂卤代烷烃中,加入至卤化的聚合物溶液中,在保护性气体的存在下,进行离子化反应,反应温度为60-120℃,优选为70-100℃;反应时间为6-20h,优选为8-16h。
根据本发明,所述咪唑与所述卤素的摩尔比为0.8-1.5∶1,优选为0.9-1.2∶1。
本发明中,当离子化反应达到一定程度后,以固体不溶物从有机溶剂中沉淀析出,反应结束后分离出溶剂,并将不溶的离子聚合物用己烷洗涤1-2次后进行真空干燥得到所述的异丁烯基咪唑盐离子聚合物。
具体实施方式IV
本发明的一个具体实施方式中,所述异丁烯基阳离子盐离子聚合物为异丁烯基吡啶盐离子聚合物,其中,所述异丁烯基吡啶盐离子聚合物的制备方法包括:
(1)将聚合物溶解于有机溶剂中,得到聚合物溶液,在聚合物溶液中加入卤素进行卤化反应,得到卤化的聚合物溶液;
(2)将吡啶加入所述卤化的聚合物溶液中,进行离子化反应,得到所述异丁烯基吡啶盐离子聚合物;
所述聚合物为异丁烯与烷基苯乙烯的无规共聚物;
所述卤化反应在可见光的照射下进行,所述可见光的发光方式为脉冲式发光。
进一步地,本发明中采用特定波长范围的可见光引发所述卤化反应,能够实现卤化反应高度可控,副反应少,选择性高的特点,具体地,所述特定波长的可见光波特指黄色至红色波段,即560-630nm之间的光波,优选LED光源。本发明中,所述光源的输出功率为10-200W。
本发明中,所述脉冲式发光是指光源发射光波和停止发射光波为等时间差且交替进行,具体地,所述脉冲式发光的脉冲时间为5-40s,优选为10-30s。
本发明中,采用本发明的光照卤化方法,能够使得卤化反应效率能够达到80%以上,优选达到90%以上。
本发明中,卤化反应效率是指:对于以自由基机理进行的卤化取代反应,理论上卤素100%发生氢取代反应时,有50%的卤素取代到聚合物上,以实际测得的聚合物卤素含量与理论卤素含量之比即为卤化反应效率。
根据本发明,以烷基苯乙烯提供的结构单元的摩尔含量计,所述聚合物与所述卤素的摩尔比为1∶0.5-2,优选为1∶0.8-1.5。
根据本发明,所述卤素为液溴。
本发明中,所述卤化反应在避光环境中进行,对于卤化反应的温度没有特别要求,例如在室温下进行。
本发明中,优选地,将卤素采用有机溶剂稀释后使用,对于稀释浓度没有特别限制要求,以便于卤化反应控制为宜。
根据本发明,优选地,将卤素与有机溶剂混合得到卤素溶液,将所述卤素溶液滴加至所述聚合物溶液中进行卤化反应,以实现对卤化反应选择性的调控。
本发明中,对于卤素溶液的浓度没有特别限制要求,以便于卤化反应控制为宜。
本发明的一个优选实施方式中,控制所述卤素溶液的滴加速度使得卤化反应的时间为30-180min。
本发明的一个具体实施方式中,将卤素溶液缓慢滴加至聚合物溶液中,在脉冲式发光的可见光照射下,进行光卤化反应,得到卤化的聚合物溶液。为了中和卤化反应过程中产生的卤化氢,可以在聚合物溶液中加入一定量的碱性化合物,如碳酸钠、碳酸氢钠、碳酸钙、碳酸镁、氧化钙、氧化镁等。所述卤化的聚合物溶液经过离心或过滤脱除固体卤盐化合物后,用于离子化反应。
根据本发明,以所述聚合物的总摩尔量为基准,烷基苯乙烯提供的结构单元的含量为3-25mol%,异丁烯提供的结构单元的含量为75-97mol%。
进一步地,以所述聚合物的总摩尔量为基准,来自烷基苯乙烯的结构单元的含量为5-20mol%,来自异丁烯的结构单元的含量为80-95mol%。
根据本发明,所述聚合物的重均分子量Mw为1×104-1×105;分子量分布系数为2-3.5。
进一步地,所述聚合物的重均分子量Mw为2×104-8×104;分子量分布系数为2.2-3。
根据本发明,所述聚合物中铝离子的含量低于10ppm,优选低于5ppm。
本发明中,对于所述有机溶剂的种类没有特别限定,可以为本领域中常用的有机溶剂,优选C6-C10的直链烷烃、C6-C10的环烷烃、C1-C4的卤代烷烃等中的至少一种;所述直链烷烃包括正己烷、正庚烷、正辛烷、正壬完和正癸烷中的至少一种;所述环烷烃包括环己烷;所述卤代烷烃包括二氯甲烷、三氯甲烷和四氯化碳中的至少一种。
根据本发明,所述吡啶具有式(9)所示的结构;
其中,R13、R14、R15、R16、R17各自独立地为氢、卤原子、C1-C20的直链烷基、C1-C20的支链烷基、硝基、氨基或氰基。
进一步地,R13、R14、R15、R16、R17各自独立地为氢、卤素、C1-C15的直链烷基、C1-C15的支链烷基、硝基、氨基或氰基。
更进一步地,R13、R14、R15、R16、R17各自独立地为氢、卤素、C1-C10的直链烷基、氨基或氰基。
本发明中,所述吡啶包括但不限于吡啶、2-甲基吡啶、3-甲基吡啶、4-甲基吡啶、5-甲基吡啶、6-甲基吡啶、2,6-二甲基吡啶、2,4,6-三甲基吡啶、2-乙基吡啶、3-乙基吡啶、4-乙基吡啶、5-乙基吡啶、6-乙基吡啶、2,6-二乙基吡啶、2,4,6-三乙基吡啶、2-丙基吡啶、3-丙基吡啶、4-丙基吡啶、5-丙基吡啶、6-丙基吡啶、2,6-二丙基吡啶、2,4,6-三丙基吡啶、2-丁基吡啶、3-丁基吡啶、4-丁基吡啶、5-丁基吡啶、6-丁基吡啶、2,6-二丁基吡啶、2,4,6-三丁基吡啶、2-戊基吡啶、3-戊基吡啶、4-戊基吡啶、5-戊基吡啶、6-戊基吡啶、2,6-二戊基吡啶、2,4,6-三戊基吡啶、2-己基吡啶、3-己基吡啶、4-己基吡啶、5-己基吡啶、6-己基吡啶、2-庚基吡啶、3-庚基吡啶、4-庚基吡啶、5-庚基吡啶、6-庚基吡啶、2-辛基吡啶、3-辛基吡啶、4-辛基吡啶、5-辛基吡啶、6-辛基吡啶、2-壬基吡啶、3-壬基吡啶、4-壬基吡啶、5-壬基吡啶、6-壬基吡啶、2-癸基吡啶、3-癸基吡啶、4-癸基吡啶、5-癸基吡啶、6-癸基吡啶、4-十一烷基吡啶、4-十二烷基吡啶、4-十三烷基吡啶、4-十四烷基吡啶、4-十五烷基吡啶、4-十六烷基吡啶、4-十七烷基吡啶、4-十八烷基吡啶、4-十九烷基吡啶、4-二十烷基吡啶、2-羟基吡啶、3-羟基吡啶、4-羟基吡啶、5-羟基吡啶、6-羟基吡啶、2,6-二羟基吡啶、2,4,6-三羟基吡啶、2-氟吡啶、3-氟吡啶、4-氟吡啶、5-氟吡啶、6-氟吡啶、2-氯吡啶、3-氯吡啶、4-氯吡啶、5-氯吡啶、6-氯吡啶、2,3-二氯吡啶、2,3,6-三氯吡啶、2,6-二氨基-3,5-二硝基吡啶、2,6-二氨基吡啶、2,4,6-三氨基吡啶、2,4,6-三硝基吡啶、2,4,6-三氯吡啶和2,4,6-三溴吡啶中的至少一种;本发明优选4-烷基吡啶。
本发明的一个具体实施方式中,将吡啶溶解在有机溶剂卤代烷烃(例如四氯化碳)中,滴加至卤化的聚合 物溶液中,在保护性气体的存在下,进行离子化反应,反应温度为60-150℃,优选为80-120℃;反应时间为4-20h,优选为6-16h。
根据本发明,所述吡啶与所述卤素的摩尔比为0.8-1.5∶1,优选为0.9-1.2∶1。
本发明中,当离子化反应达到一定程度后,以固体不溶物从有机溶剂中沉淀析出,反应结束后分离出溶剂,并将不溶的离子聚合物用己烷洗涤1-2次后进行真空干燥得到本发明所述的异丁烯基吡啶盐离子聚合物。
本发明第三方面提供由上述制备方法制得的异丁烯基阳离子盐离子聚合物。
本发明中,根据含阳离子盐化合物的种类的不同,所述异丁烯基阳离子盐离子聚合物为异丁烯基季铵盐离子聚合物、异丁烯基季鏻盐离子聚合物、异丁烯基咪唑盐离子聚合物或异丁烯基吡啶盐离子聚合物。
本发明第四方面提供上述异丁烯基阳离子盐离子聚合物作为抗菌剂的应用。
本发明第五方面提供上述异丁烯基阳离子盐离子聚合物用于抑制和杀灭细菌、真菌和病毒中的至少一种。
本发明中,根据异丁烯基阳离子盐离子聚合物中阳离子盐的种类的不同,所述异丁烯基阳离子盐离子聚合物有效抑制和杀灭的细菌、真菌或病毒的种类有所不同。
本发明的一个具体实施方式中,所述异丁烯基阳离子盐离子聚合物为异丁烯基季铵盐离子聚合物,所述异丁烯基季铵盐离子聚合物能够用于抑制和杀灭细菌。
具体地,所述细菌选自革兰氏阴性菌和/或革兰氏阳性菌。
本发明的一个具体实施方式中,所述异丁烯基阳离子盐离子聚合物为异丁烯基季鏻盐离子聚合物,所述异丁烯基季鏻盐离子聚合物能够用于抑制和杀灭细菌、真菌和病毒中的至少一种。
本发明的一个具体实施方式中,所述异丁烯基阳离子盐离子聚合物为异丁烯基咪唑盐离子聚合物,所述异丁烯基咪唑盐离子聚合物能够用于抑制和杀灭细菌和/或真菌。
具体地,所述细菌为厌氧菌;所述真菌为霉菌。
本发明的一个具体实施方式中,所述异丁烯基阳离子盐离子聚合物为异丁烯基吡啶盐离子聚合物,所述异丁烯基吡啶盐离子聚合物能够用于抑制和杀灭细菌、真菌和病毒中的至少一种。
本发明第六方面提供一种高分子材料,其特征在于,所述抗菌高分子材料包含上述异丁烯基阳离子盐离子聚合物。
本发明中,所述异丁烯基阳离子盐离子聚合物的T5wt%热失重温度达到170℃以上,满足一般高分子材料的热加工工艺要求,能够作为抗菌剂用于制备抗菌高分子材料。
根据本发明,相对于100份的高分子材料,所述异丁烯基阳离子盐离子聚合物的用量为1-10份,优选为2-7份。
本发明中,将上述异丁烯基阳离子盐离子聚合物用于制备抗菌高分子材料,抗菌剂不会发生迁移和释放,进而能够保持高效、稳定、低毒、安全、持久的抗菌以及抑菌的效果。
根据本发明,所述高分子材料选自塑料、橡胶、纤维和涂料中的至少一种。
本发明的一个具体实施方式中,当所述异丁烯基阳离子盐离子聚合物为异丁烯基季铵盐离子聚合物时,相对于100份的高分子材料,所述异丁烯基季铵盐离子聚合物的用量为1-10份,优选为5-7份。
本发明的一个具体实施方式中,当所述异丁烯基阳离子盐离子聚合物为异丁烯基季鏻盐离子聚合物时,相对于100份的高分子材料,所述异丁烯基季鏻盐离子聚合物的用量为1-8份,优选为2-6份。
本发明的一个具体实施方式中,当所述异丁烯基阳离子盐离子聚合物为异丁烯基咪唑盐离子聚合物时,相对于100份的高分子材料,所述异丁烯基咪唑盐离子聚合物的用量为1-10份,优选为3-7份。
本发明的一个具体实施方式中,当所述异丁烯基阳离子盐离子聚合物为异丁烯基吡啶盐离子聚合物时,相对于100份的高分子材料,所述异丁烯基吡啶盐离子聚合物的用量为1-10份,优选为3-7份。
以下将通过实施例对本发明进行详细描述。
聚合物中各结构单元含量、苄基溴含量和阳离子盐(季铵盐、季鏻盐、咪唑盐、吡啶盐)的含量测试,采用瑞士Bruker公司生产的AVANCE400核磁共振仪测定,磁场强度9.40特斯拉,以氘代氯仿(CDCL3)或氘代二甲亚砜(DMSO)作溶剂,四甲基硅烷(TMS)为内标,室温下测试。
聚合物分子量及其分布,使用日本Shimadzu公司生产的LC-20 A型凝胶渗透色谱(GPC),采用TOSOH公司生产的TSKgel GMH HR-H(30)型色谱柱2柱串联,校正曲线以聚苯乙烯为标样。
聚合物中金属元素含量,采用电感耦合等离子体原子发射光谱仪(ICP-OES)测定,执行标准为JYT015-1996。
聚合物的热分解温度及热失重,采用METTLER TGA/DSC1型号仪器,测试温度范围25-600℃,升温速率 10℃/min,氮气气氛50mL/min。
具体实施方式I
以下实施例以及对比例所用异丁烯-对甲基苯乙烯无规共聚物的物化参数如表1所示,其制备方法可参见专利CN104558357B。
表I-1
以下实施例以及对比例所用其他原料均为市售品。
实施例I-1
(1)光溴化反应
在1000mL配有磁力搅拌的三口烧瓶中,将32g聚合物P1(其中,对甲基苯乙烯结构单元的含量为0.077mol)溶解于正己烷(80mL)与四氯化碳(80mL)的混合溶剂中,再加入碳酸氢钠粉末6.5g。以对甲基苯乙烯提供的结构单元的摩尔含量计,聚合物与液溴的摩尔比为1∶1。溴化反应在避光的实验室中进行。用移液管取液溴4mL加入到装有30mL四氯化碳的恒压滴液漏斗(避光)中。采用595nm的LED光源照射进行光溴化反应,光源功率为80W,脉冲时间为10s。开启光源进行溴化反应,以缓慢的速度滴加液溴,在脉冲光源照射下进行溴化反应,直至液溴滴加完为止,继续保持反应3-5min,待胶液颜色变为淡黄色,关闭光源,停止反应,溴化反应时间约120min,得到溴化的聚合物溶液XP-I-1。
取10毫升上述溴化反应物溶液离心处理,分离出其中的不溶性沉淀物,取其清液在40℃下真空干燥至恒重,测定胶液浓度14.3wt%。核磁氢谱测定反应物中的侧基苄基溴含量为11.4mol%(苄基溴化率71.7%),由于主链叔碳氢经溴取代反应转变为叔碳溴,在核磁氢谱中无特征峰。核磁氢谱谱图见图1a,其中化学位移在4.4654ppm的特征峰为侧基苄基溴特征峰。
(2)离子化反应
溴化的聚合物溶液XP-I-1经离心脱除不溶性固体后取其清液50g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入N,N-二甲基十四烷基胺(式6中R3、R4为甲基,R5为C14的直链烷基)4mL(用5mL二氯甲烷溶解),叔胺与液溴的摩尔比为1.1∶1,在氮气保护下于60℃进行反应4小时。溴化聚合物在离子化反应过程中,逐渐从溶剂中析出,形成块状胶粒团。反应结束后将块状胶粒团与溶剂分离,并在己烷中按压洗涤2遍后将胶团取出,在40℃下真空干燥至恒重,得到异丁烯基季铵盐离子聚合物A-I-1。
采用核磁氢谱测定季铵盐含量,见图1b。结果表明,侧基苄基溴的信号峰(4.4654ppm)消失,全部转变为苄基季铵盐,通过N,N-二甲基十四烷基胺中甲基峰面积积分可以计算出主链叔碳季铵盐含量。测定总季铵盐基团含量为15.3mol%,侧基苄基季铵盐基团含量为11.4mol%,因此计算出主链叔碳季铵盐基团含量为3.9mol%。核磁氢谱谱图见图1b,其中化学位移在3-4ppm的特征峰为季铵盐基团中甲基信号特征峰,化学位移在4.5-5.5ppm的特征峰为苄基季铵盐基团中亚甲基信号特征峰。
经测试分析和计算,异丁烯基季铵盐离子聚合物A-I-1中包含12.6mol%的结构单元A,3.3mol%的结构单元B,84.1mol%的结构单元C。
异丁烯-对甲基苯乙烯共聚物P-I-1、溴化的异丁烯-对甲基苯乙烯共聚物XP-I-1、异丁烯基季铵盐离子聚合物A-I-1的热失重分析数据见表2,热失重曲线图分别见图1c、图1d和图1e。
由图1c可以看出,异丁烯-对甲基苯乙烯共聚物P-I-1只存在一段热失重(1个台阶),热失重温度为402.3℃左右,失重率为100wt%。
由图1d可以看出,溴化的异丁烯-对甲基苯乙烯共聚物XP-I-1存在两段热失重情况(2个台阶),第1段集中在342.2℃左右,失重率为40.2wt%,为碳溴基团发生热分解;第2段集中在420.2℃左右,失重率为53.1wt%,为聚合物主链结构发生热分解,与P-I-1相一致。
由图1e可以看出,异丁烯基季铵盐离子聚合物A-I-1存在两段热失重情况(2个台阶),第1段集中在219.8℃ 左右,失重率为34.4wt%,为季铵盐基团发生热分解;第2段集中在408.6℃左右,失重率为64.6wt%,为聚合物主链结构发生热分解,与P-I-1相一致,不存在XP-I-1中的碳溴基团热分解段,说明碳溴基团全部被季铵盐离子化,且异丁烯基季铵盐离子聚合物A-I-1的5wt%的热失重温度为191.3℃。
表I-2
实施例I-2
按照实施例I-1的方法制备异丁烯基季铵盐离子聚合物,不同的是:
步骤(2)中,加入N,N-二甲基十四烷基胺2mL(式6中R3、R4为甲基、R5为C14的直链烷基)和N,N-二甲基十烷基胺2mL(式6中R3、R4为甲基、R5为C8的直链烷基)(用5mL二氯甲烷溶解),叔胺与液溴的摩尔比为1.1∶1,在氮气保护下于60℃进行反应4小时。得到复合型异丁烯基季铵盐离子聚合物A-I-2。
经测试,异丁烯基季铵盐离子聚合物A-I-2中总季铵盐基团含量为15.3mol%,侧基苄基季铵盐基团含量为11.4mol%,由此计算得出主链季铵盐基团含量为3.9mol%。
经测试分析和计算,异丁烯基季铵盐离子聚合物A-I-2中包含12.6mol%的结构单元A,3.3mol%的结构单元B,84.1mol%的结构单元C。
实施例I-3
(1)光溴化反应
在1000mL配有磁力搅拌的三口烧瓶中,将32g聚合物P-I-1(其中,对甲基苯乙烯结构单元的含量为0.077mol)溶解于正己烷(60mL)与二氯甲烷(100mL)的混合溶剂中,剂中,再加入碳酸氢钠粉末10g。以对甲基苯乙烯提供的结构单元的摩尔含量计,聚合物与液溴的摩尔比为1∶1.5。溴化反应在避光的实验室中进行。用移液管取液溴6mL加入到装有40mL二氯己烷混合溶剂的恒压滴液漏斗(避光)中。采用630nm的LED光源照射进行光溴化反应,光源功率为60W,脉冲时间为15s。开启光源进行溴化反应,控制较慢的液溴滴加速度,在脉冲光源照射下进行溴化反应,直至液溴滴加完为止,继续保持反应3-5min,胶液颜色变为淡黄色,关闭光源,停止反应,溴化反应时间约180min,得到溴化的聚合物溶液XP-I-2。
取10毫升上述溴化反应物溶液离心处理,分离出其中的不溶性固体沉淀物,取其清液在40℃下真空干燥至恒重,测定胶液浓度15.3wt%。核磁氢谱测定反应物中的侧基苄基溴含量为13.6mol%(苄基溴化率85.8%)。
(2)离子化反应
溴化的聚合物溶液XP-I-2经离心脱除不溶性固体后取其清液50g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入三乙基胺(式6中R3、R4、R5均为乙基)4.5mL(用5mL二氯甲烷溶解),叔胺与液溴的摩尔比为1.5∶1,在氮气保护下于60℃进行反应5小时。溴化聚合物在离子化反应过程中,逐渐从溶剂中析出,形成块状胶粒团。反应结束后将块状胶粒团与溶剂分离,并在己烷中按压洗涤2遍后将胶团取出,在40℃下真空干燥至恒重,得到异丁烯基季铵盐离子聚合物A-I-3。
经测试,异丁烯基季铵盐离子聚合物A-I-3中总季铵盐含量为22.4mol%,侧基苄基季铵盐含量为13.6mol%,由此计算出主链季铵盐含量为8.8mol%。
经测试分析和计算,异丁烯基季铵盐离子聚合物A-I-3中包含14.7mol%的结构单元A,1.2mol%的结构单元B,84.1mol%的结构单元C。
实施例I-4
(1)光溴化反应
在1000mL配有磁力搅拌的三口烧瓶中,将35g聚合物P-I-2(其中,对甲基苯乙烯结构单元的含量为0.067mol)溶解于正己烷(60mL)与二氯甲烷(100mL)的混合溶剂中,再加入固体碳酸氢钠粉末7g。以对甲基苯乙烯提供的结构单元的摩尔含量计,聚合物与液溴的摩尔比为1∶1.2。溴化反应在避光的实验室中进行。用移液管取液溴4mL加入到装有30mL二氯甲烷溶剂的恒压滴液漏斗(避光)中。采用采用实施例1的溴化方法,不同的是光源功率60W,脉冲时间15s,溴化反应时间约140min,得到溴化的聚合物溶液XP-I-3。
取10毫升上述溴化反应物溶液离心处理,分离出其中的不溶性固体沉淀物,取其清液在40℃下真空干燥至恒重,测定胶液浓度16.1%。核磁氢谱测定反应物中的侧基苄基溴含量为10.1mol%(苄基溴化率82.8%)。
(2)离子化反应
溴化的聚合物溶液XP-I-3经离心脱除不溶性固体后取其清液50g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入N,N-二甲基辛基胺(式6中R3、R4为甲基、R5为C8的直链烷基)3mL(用5mL二氯甲烷溶解),叔胺与液溴的摩尔比为1∶1,在氮气保护下于60℃进行反应4小时。溴化聚合物在离子化反应过程中,逐渐从溶剂中析出,形成块状胶粒团。反应结束后将块状胶粒团与溶剂分离,并在己烷中按压洗涤2遍后将胶团取出,在40℃下真空干燥至恒重,得到异丁烯基季铵盐离子聚合物A-I-4。
经测试,异丁烯基季铵盐离子聚合物A-I-4中季铵盐总含量为13.5mol%,侧基苄基季铵盐含量为10.1mol%,由此计算出主链季铵盐含量为3.4mol%。
经测试分析和计算,异丁烯基季铵盐离子聚合物A-I-4中包含11.8mol%的结构单元A,0.4mol%的结构单元B,87.8mol%的结构单元C。
实施例I-5
(1)光溴化反应
在1000mL配有磁力搅拌的三口烧瓶中,将35g聚合物P-I-3(其中,对甲基苯乙烯结构单元的含量为0.052mol)溶解于正己烷(60mL)与二氯甲烷(100mL)的混合溶剂中,加入固体碳酸氢钠粉末5.8g。以对甲基苯乙烯提供的结构单元的摩尔含量计,聚合物与液溴的摩尔比为1∶1.3,溴化反应在避光的实验室中进行。用移液管取液溴3.5mL加入到装有20mL二氯己烷溶剂的恒压滴液漏斗(避光)中。采用实施例1的溴化方法,溴化反应时间约100min,得到溴化的聚合物溶液XP-I-4。
取10毫升上述溴化反应物溶液离心处理,分离出其中的不溶性固体沉淀物,取其清液在40℃下真空干燥至恒重,测定胶液浓度16.7wt%。核磁氢谱测定反应物中的侧基苄基溴含量为8.3mol%(苄基溴化率90.2%)。
(2)离子化反应
溴化的聚合物溶液XP-I-4经离心脱除不溶性固体后取其清液50g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入三丁基胺3.7mL(式6中R3、R4、R5为正丁基)(用5mL二氯甲烷溶解),叔胺与液溴的摩尔比为1.1∶1,在氮气保护下于60℃进行反应4小时。溴化聚合物在离子化反应过程中,逐渐从溶剂中析出,形成块状胶粒团。反应结束后将块状胶粒团与溶剂分离,并在己烷中按压洗涤2遍后将胶团取出,在40℃下真空干燥至恒重,得到异丁烯基季铵盐离子聚合物A-I-5。
经测试,异丁烯基季铵盐离子聚合物A-I-5中总季铵盐含量为11.1mol%,侧基苄基季铵盐含量为8.3mol%,计算主链季铵盐含量为2.8mol%。
经测试分析和计算,异丁烯基季铵盐离子聚合物A-I-5中包含8.7mol%的结构单元A,0.5mol%的结构单元B,90.8mol%的结构单元C。
实施例I-6
(1)光溴化反应
在1000mL配有磁力搅拌的三口烧瓶中,将35g聚合物P-I-3(其中,对甲基苯乙烯结构单元的含量为0.052mol)溶解于环己烷(80mL)与四氯化碳(80mL)的混合溶剂中,加入固体碳酸氢钠粉末3.6g。以对甲基苯乙烯提供的结构单元的摩尔含量计,聚合物与液溴的摩尔比为1∶0.8,溴化反应在避光的实验室中进行。用移液管取液溴2.4mL加入到装有20mL四氯化碳溶剂的恒压滴液漏斗(避光)中。采用实施例1的溴化方法,光源功率50W,溴化反应时间约80min,得到溴化的聚合物溶液XP-I-5。
取10毫升上述溴化反应物溶液离心处理,分离出其中的不溶性固体沉淀物,取其清液在40℃下真空干燥至恒重,测定胶液浓度14.8%。核磁氢谱测定反应物中的侧基苄基溴含量为5.1mol%(苄基溴化率55.4%)。
(2)离子化反应
溴化的聚合物溶液XP-I-5经离心脱除不溶性固体后取其清液50g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入N,N-二甲基苯基胺1.3mL(式6中R3、R4为甲基、R5为苯基)(用5mL四氯化碳溶解),叔胺与液溴的摩尔比为1.1∶1。在氮气保护下于80℃进行回流反应8小时。溴化聚合物在离子化反应过程中,逐渐从溶剂中析出,形成不溶胶粒。反应结束后将胶粒与溶剂分离,并在己烷中按压洗涤2遍后将胶团取出,在 40℃下真空干燥至恒重,得到异丁烯基季铵盐离子聚合物A-I-6。
经测试,异丁烯基季铵盐离子聚合物A-I-6中总季铵盐基团含量为6.5mol%,侧基苄基季铵盐基团含量为5.1mol%,由此计算主链季铵盐基团为1.4mol%。
经测试分析和计算,异丁烯基季铵盐离子聚合物A-I-6中包含5.7mol%的结构单元A,3.5mol%的结构单元B,90.8mol%的结构单元C。
实施例I-7
(1)光溴化反应
在1000mL配有磁力搅拌的三口烧瓶中,将35g聚合物P-I-4(其中,对甲基苯乙烯结构单元的含量为0.041mol)溶解于环己烷(80mL)和四氯化碳(80mL)的混合有机溶剂中,加入固体碳酸氢钠粉末5.2g。以对甲基苯乙烯提供的结构单元的摩尔含量计,聚合物与液溴的摩尔比为1∶1.5。用移液管取液溴3.2mL加入到装有30mL四氯化碳溶剂的恒压滴液漏斗(避光)中。采用630nm的LED光源照射进行光溴化反应,光源功率为40W,脉冲时间为20s。开启光源进行溴化反应,以缓慢的速度滴加液溴,在脉冲光源照射下进行溴化反应,直至液溴滴加完为止,关闭光源,停止反应,溴化反应时间约140min,得到溴化的聚合物溶液XP-I-6。
取10毫升上述溴化反应物溶液离心处理,分离出其中的不溶性固体沉淀物,取其清液在40℃下真空干燥至恒重,测定胶液浓度14.1wt%。核磁氢谱测定反应物中的侧基苄基溴含量为5.2mol%(苄基溴化率74.2%)。
(2)离子化反应
溴化的聚合物溶液XP-I-6经离心脱除不溶性固体后取其清液50g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入N,N-二甲基苯基胺1.5mL(用5mL四氯化碳溶解),叔胺与液溴的摩尔比为1.1∶1,在氮气保护下于80℃进行反应8小时。溴化聚合物在离子化反应过程中,逐渐从溶剂中析出,形成不溶胶粒。反应结束后将胶粒与溶剂分离,并在己烷中洗涤过滤2遍后在40℃下真空干燥至恒重,得到异丁烯基季铵盐离子聚合物A-I-7。
采用核磁氢谱测定季铵盐含量,苄基溴部分转变为季铵盐,总季铵盐含量为8.7mol%,侧基苄基季铵盐含量为5.2mol%,主链叔碳季铵盐含量为3.5mol%。
异丁烯基季铵盐离子聚合物A-I-7中包含6.5mol%的结构单元A,0.5mol%的结构单元B,93mol%的结构单元C。
对比例I-1
(1)光溴化反应
在1000mL配有磁力搅拌的三口烧瓶中,将32g聚合物P-I-1(其中,对甲基苯乙烯结构单元的含量为0.077mol)溶解于正己烷(80mL)与四氯化碳(80mL)的混合溶剂中,再加入碳酸钠粉末4.1g。以对甲基苯乙烯提供的结构单元的摩尔含量计,聚合物与液溴的摩尔比为1∶1。用移液管将4mL液溴分两次即每次2mL加入到装有15mL四氯化碳的恒压滴液漏斗(避光)中。采用595nm的LED光源照射进行光溴化反应,光源功率为80W。将恒压滴液漏斗中的液溴溶液一次性加入聚合物溶液中,开启光源进行溴化反应,发生剧烈的冒烟溴化反应,产生的大量HBr无法被中和,溴化反应时间为10min,胶液体系褪色,关闭光源,停止反应。加入100mL 0.1wt%的NaOH水溶液中和HBr,得到溴化后的聚合物溶液XDP-I-1。
取5毫升上述溴化反应物溶液在40℃下真空干燥至恒重,采用核磁氢谱测定苄基溴含量仅为1.1mol%(苄基溴化率为6.9%),不仅溴化率极低,且含有大量溴化正己烷。
(2)离子化反应
取上述溴化的聚合物溶液XDP-I-1清液50g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入N,N-二甲基十四烷基胺(式6中R3、R4为甲基,R5为C14的直链烷基)4mL(用5mL二氯甲烷溶解),叔胺与液溴的摩尔比为1.1∶1,在氮气保护下于60℃进行反应4小时。反应结束后将不溶胶团与溶剂过滤分离,并在丙酮中洗涤过滤2遍后将固体物取出,在40℃下真空干燥至恒重,得到异丁烯基季铵盐离子聚合物D-I-1。
采用核磁氢谱测定季铵盐含量,苄基溴全部转变为季铵盐,总季铵盐含量为1.1mol%,侧基苄基季铵盐基团含量为1.1mol%,主链中不含有叔碳季铵基团。
经测试分析和计算,异丁烯基季铵盐离子聚合物D-I-1中包含1.1mol%的结构单元A,14.8mol%的结构单元B,84.1mol%的结构单元C。
测试例I
以实施例I-1制备的异丁烯基季铵盐聚合物与LDPE进行共混制备抗菌塑料,以大肠杆菌和金黄色葡萄球菌分别作为革兰氏阴性菌和革兰氏阳性菌,对抗菌塑料进行抗菌性能测试。
采用Polylab OS PTW 16/40型双螺杆挤出机,按照异丁烯基季铵盐聚合物与LDPE树脂以质量比2∶8混合,在135℃下进行熔融挤出造粒,制成20%的抗菌母料,然后再将抗菌母料与LDPE树脂分别按照不同比例混和,再通过双螺杆挤出机熔融挤出造粒,制得异丁烯基季铵盐聚合物质量含量分别为1%、3%、5%、7%和10%的抗菌塑料。
在130℃、压力为20MPa下采用压片机将各抗菌塑料粒料模压成型,时间为3min;随后在15MPa下进行冷压10min得到厚度为1mm实验片材,放置24h后剪成20mm×20mm的测试样片。
(1)将样片放置在六孔细胞培养板中,两面均用紫外线照射灭菌30min。在每片样片表面滴加30μL浓度为1×106CFU/mL的细菌悬液,用灭菌的圆形盖玻片覆盖菌液,使菌液平铺在样片表面上。将六孔细胞培养板放入37℃的恒温培养箱中培养,并保持相对湿度大于90%。24h后,用移液枪向六孔培养板中的每个孔加入2mL生理盐水冲洗样品表面,并对六孔培养板进行1min超声处理,使细菌分散。用移液枪吸取冲洗液100μL,用生理盐水进行梯度稀释,选取适宜稀释倍数的稀释液,涂布到营养琼脂平板上,在37℃的恒温培养箱中培养24h,选取菌落数在30-300的平板进行计数,计算样品表面的活菌数量,计算抗菌率R。结果如表I-3所示。
R=[(A-B)/A]×100%,A为未添加抗菌剂的塑料样片表面的活菌数目,B为抗菌塑料样片表面的活菌数目。
表I-3
(2)取6片抗菌塑料样片,称其重量,放入锥形瓶中,根据GB/T16886.12-2005的要求,按0.1g/mL的比例加入去离子水,置于37℃的恒温水浴振荡器中以150r/min的转速震荡浸泡,分别测试浸泡15天和30天后样片的抗菌性能,测试方法与上述相同,浸泡15天后结果如表I-4所示,浸泡30天后结果如表I-5所示。
表I-4
表I-5

由以上结果可以看出,以实施例I-1制备的异丁烯基季铵盐离子聚合物为抗菌剂与LDPE共混制备抗菌塑料,当用量达到5份以上时显示出良好的抗菌效果,对革兰氏阴性菌和阳性菌的24h抗菌率达到70%以上,且当抗菌塑料在水中浸泡15-30天后,仍表现出良好的抗菌效果。
具体实施方式II
以下实施例以及对比例所用异丁烯-对甲基苯乙烯无规共聚物的物化参数如表II-1所示,其制备方法可参见专利CN104558357B。
表II-1
以下实施例以及对比例所用其他原料均为市售品。
实施例II-1
(1)光溴化反应
在1000mL配有磁力搅拌的三口烧瓶中,将32g聚合物P-II-1(其中,对甲基苯乙烯结构单元的含量为0.077mol)溶解于正己烷(80mL)与四氯化碳(80mL)的混合溶剂中,再加入碳酸氢钠粉末6.5g。以对甲基苯乙烯提供的结构单元的摩尔含量计,聚合物与液溴的摩尔比为1∶1。溴化反应在避光的实验室中进行。用移液管取液溴4mL加入到装有30mL四氯化碳的恒压滴液漏斗(避光)中。采用595nm的LED光源照射进行光溴化反应,光源功率为80W,脉冲时间为10s。开启光源进行溴化反应,以缓慢的速度滴加液溴溶液,在脉冲光源照射下进行溴化反应,直至液溴滴加完为止,继续保持反应3-5min,待胶液颜色变为淡黄色,关闭光源,停止反应,溴化反应时间约120min,得到溴化的聚合物溶液XP-II-1。
取10毫升上述溴化反应物溶液离心处理,分离出其中的不溶性沉淀物,取其清液在40℃下真空干燥至恒重,测定胶液浓度14.3wt%。核磁氢谱测定产物中的侧基苄基溴含量为11.4mol%(苄基溴化率71.7wt%),由于主链叔碳氢经溴取代反应转变为叔碳溴,在核磁氢谱中无特征峰。核磁氢谱谱图见图2a,由图2a可以看出,化学位移在4.4654ppm的特征峰为侧基苄基溴特征峰。
(2)离子化反应
溴化的聚合物溶液XP-II-1经离心脱除不溶性固体后取其清液50g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入三苯基膦(式7中R6、R7、R8为苯基)3.8g(用10mL四氯化碳溶解),叔膦与液溴的摩尔比为1∶1,在氮气保护下于80℃进行回流反应16小时。溴化聚合物在离子化反应过程中,逐渐从溶剂中析出,形成颗粒淤浆状。反应结束后将固体颗粒与溶剂分离,并在己烷中洗涤2遍后将固体颗粒取出,在40℃下真空干燥至恒重,得到异丁烯基季鏻盐离子聚合物A-II-1。
采用核磁氢谱测定季鏻盐含量,见图2b。由图2b看出,侧基苄基溴的信号峰(4.4-4.6ppm)消失,全部转变为季鏻盐;通过苯环峰面积积分扣除聚合物主链苯环含量计算出总季鏻盐含量为15.2mol%,侧基苄基季鏻盐含量为11.4mol%,主链叔碳季鏻盐含量为3.8mol%。化学位移在4.7-5.7ppm的特征峰为侧基苄基季鏻盐基团中亚甲基的信号特征峰,化学位移在7.3-8.3ppm的特征峰为季鏻盐中苯环信号特征峰。
异丁烯基季鏻盐离子聚合物A-II-1中包含12.6mol%的结构单元A,3.3mol%的结构单元B,84.1mol%的结构单元C。
异丁烯-对甲基苯乙烯共聚物P-II-1、溴化的异丁烯-对甲基苯乙烯共聚物XP-II-1、异丁烯基季鏻盐离子聚合物A-II-1的热失重分析数据见表II-2,热失重曲线图分别见图2c、图2d和图2e。
由图2c可以看出,异丁烯-对甲基苯乙烯共聚物P-II-1只存在一段热失重(1个台阶),热失重温度为402.3℃左右,失重率为100wt%。
由图2d可以看出,溴化的异丁烯-对甲基苯乙烯共聚物XP-II-1存在两段热失重情况(2个台阶),第1段集中在342.2℃左右,失重率为40.2wt%,为碳溴基团发生热分解;第2段集中在420.2℃左右,失重率为53.1wt%,为聚合物主链结构发生热分解,与P-II-1相一致。
由图2e可以看出,异丁烯基季鏻盐离子聚合物A-II-1存在两段热失重情况(2个台阶),第1段集中在281.7℃左右,失重率为47.4wt%,为季鏻盐基团发生热分解;第2段集中在412.2℃左右,失重率为49.3wt%,为聚合物主链结构发生热分解,与P-II-1相一致,不存在XP-II-1中的碳溴基团热分解段,说明碳溴基团全部被季鏻盐离子化,且异丁烯基季鏻盐离子聚合物A-II-1的5wt%的热失重温度为232.2℃。
表II-2
实施例II-2
(1)光溴化反应
在1000mL配有磁力搅拌的三口烧瓶中,将35g聚合物P-II-2(其中,对甲基苯乙烯结构单元的含量为0.062mol)溶解于环己烷(60mL)和四氯化碳(65mL)混合有机溶剂中,再加入碳酸氢钠粉末6.5g。以对甲基苯乙烯提供的结构单元的摩尔含量计,聚合物与液溴的摩尔比为比为1∶1.2。溴化反应在避光的实验室中进行。用移液管取液溴3.8mL加入到装有40mL四氯化碳溶剂的恒压滴液漏斗(避光)中。采用595nm的LED光源照射进行光溴化反应,光源功率为50W,脉冲时间为15s。开启光源进行溴化反应,以缓慢的速度滴加液溴溶液,在脉冲光源照射下进行溴化反应,直至液溴滴加完为止,溴化反应时间约130min,得到溴化的聚合物溶液XP-II-2。
取10毫升上述溴化反应物溶液离心处理,分离出其中的不溶性固体沉淀物,取其清液在40℃下真空干燥至恒重,测定胶液浓度16.7wt%。核磁氢谱测定反应物中的侧基苄基溴含量为9.4mol%(苄基溴化率82.5%)。
(2)离子化反应
溴化的聚合物溶液XP-II-2经离心脱除不溶性固体后取其清液40g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入三苯基膦(式7中R6、R7、R8为苯基)3.6g(用10mL四氯化碳溶解),叔膦与液溴的摩尔比为1.1∶1,在氮气保护下于80℃进行回流反应12小时。溴化聚合物在离子化反应过程中,逐渐从溶剂中析出,形成固体颗粒的淤浆状态。反应结束后将固体颗粒与溶剂过滤分离,并在己烷中洗涤过滤2遍后将固体颗粒取出,在40℃下真空干燥至恒重,得到异丁烯基季鏻盐离子聚合物A-II-2。
采用核磁氢谱测定季鏻盐含量,苄基溴全部转变为季鏻盐,总季鏻盐含量为12.4mol%,侧基苄基季鏻盐含量为9.4mol%,主链叔碳季鏻盐含量为3mol%。
经测试分析和计算,异丁烯基季鏻盐离子聚合物A-II-2中包含9.7mol%的结构单元A,1.7mol%的结构单元B,88.6mol%的结构单元C。
实施例II-3
按照实施例II-2的方法制备异丁烯基季鏻盐离子聚合物,不同的是:
溴化的聚合物溶液XP-II-2经离心脱除不溶性固体后取其清液40g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入三环己基膦4g(式7中R6、R7、R8均为环己基)(用10mL四氯化碳溶解),叔膦与液溴的摩尔比为1.2∶1,在氮气保护下于80℃进行回流反应16小时。溴化聚合物在离子化反应过程中,逐渐从溶剂中析出,形成块状胶粒团。反应结束后将块状胶团与溶剂分离,并在己烷中洗涤过滤2遍后将胶团取出,在40℃下真空干燥至恒重,得到异丁烯基季鏻盐离子聚合物A-II-3。
采用核磁氢谱测定季鏻盐含量,苄基溴全部转变为季鏻盐,总季鏻盐含量为12.4mol%,侧基苄基季鏻盐含量为9.4mol%,主链叔碳季鏻盐含量为3mol%。
异丁烯基季鏻盐离子聚合物A-II-3中包含9.7mol%的结构单元A,1.7mol%的结构单元B,88.6mol%的结构单元C。
实施例II-4
(1)光溴化反应
在500mL配有磁力搅拌的三口烧瓶中,将25g聚合物P-II-3(其中,对甲基苯乙烯结构单元的含量为0.035mol)于环己烷(60mL)和四氯化碳(60mL)混合有机溶剂中,加入碳酸氢钠粉末4g。以对甲基苯乙烯提供的结构单元的摩尔含量计,聚合物与液溴的摩尔比为1∶1.3。溴化反应在避光的实验室中进行。用移液管取液溴2.4mL加入到装有15mL四氯化碳溶剂的恒压滴液漏斗(避光)中。采用实施例1的方法进行溴化,溴化反应时间约90min,得到溴化的聚合物溶液XP-II-3。
取10毫升上述溴化反应物溶液离心处理,分离出其中的不溶性固体沉淀物,取其清液在40℃下真空干燥至恒重,测定胶液浓度14.6wt%。核磁氢谱测定反应物中的侧基苄基溴含量为7.8mol%(苄基溴化率90.7%)。
(2)离子化反应
溴化的聚合物溶液XP-II-3经离心脱除不溶性固体后取其清液40g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入三苯基膦2.7g(式7中R6、R7、R8均为苯基)(用10mL四氯化碳溶解),叔膦与液溴的摩尔比为1.1∶1,在氮气保护下于80℃进行回流反应12小时。溴化聚合物在离子化反应过程中,逐渐从溶剂中析出,形成固体颗粒淤浆状。反应结束后将固体颗粒与溶剂分离,并在己烷中洗涤过滤2遍后将固体颗粒取出,在40℃下真空干燥至恒重,得到异丁烯基季鏻盐离子聚合物A-II-4。
采用核磁氢谱测定季鏻盐含量,苄基溴全部转变为季鏻盐,总季鏻盐含量为10.6mol%,侧基苄基季鏻盐含量为7.8mol%,主链叔碳季鏻盐含量为2.8mol%。
异丁烯基季鏻盐离子聚合物A-II-4中包含8mol%的结构单元A,0.6mol%的结构单元B,91.4mol%的结构单元C。
实施例II-5
按照实施例II-4的方法制备异丁烯基季鏻盐离子聚合物,不同的是:
溴化的聚合物溶液XP-II-3经离心脱除不溶性固体后取其清液40g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入三丁基膦3mL(式7中R6、R7、R8均为丁基)(用10mL四氯化碳溶解),叔膦与液溴的摩尔比为1.2∶1,在氮气保护下于60℃进行回流反应10小时。溴化聚合物在离子化反应过程中,逐渐从溶剂中析出,形成块状胶粒团。反应结束后将块状胶团与溶剂分离,并在己烷中洗涤过滤2遍后将胶团取出,在40℃下真空干燥至恒重,得到异丁烯基季鏻盐离子聚合物A-II-5。
采用核磁氢谱测定季鏻盐含量,苄基溴全部转变为季鏻盐,总季鏻盐含量为10.6mol%,侧基苄基季鏻盐含量为7.8mol%,主链叔碳季鏻盐含量为2.8mol%。
异丁烯基季鏻盐离子聚合物A-II-5中包含8mol%的结构单元A,0.6mol%的结构单元B,91.4mol%的结构单元C。
实施例II-6
(1)光溴化反应
在500mL配有磁力搅拌的三口烧瓶中,将25g聚合物P-II-3(其中,对甲基苯乙烯结构单元的含量为0.035mol)与正庚烷(62mL)和四氯化碳(62mL)混合有机溶剂中,加入碳酸氢钠粉末2.4g。以对甲基苯乙烯提供的结构单元的摩尔含量计,聚合物与液溴的摩尔比为1∶0.8。溴化反应在避光的实验室中进行。用移液管取液溴1.4mL加入到装有15mL四氯化碳溶剂的恒压滴液漏斗(避光)中。采用实施例2的方法溴化,溴化反应时间约60min,得到溴化的聚合物溶液XP-II-4。
取10毫升上述溴化反应物溶液离心处理,分离出其中的不溶性固体沉淀物,取其清液在40℃下真空干燥至恒重,测定胶液浓度14.1wt%。核磁氢谱测定反应物中的侧基苄基溴含量为4.3mol%(苄基溴化率50%)。
(2)离子化反应
溴化的聚合物溶液XP-II-4经离心脱除不溶性固体后取其清液40g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入三苯基膦1.8g(式7中R6、R7、R8均为苯基)(用5mL四氯化碳溶解),叔膦与液溴的摩尔比为1.2∶1,在氮气保护下于80℃进行回流反应10小时。溴化聚合物在离子化反应过程中,逐渐从溶剂中析出,形成固体颗粒淤浆状。反应结束后将固体颗粒与溶剂分离,并在己烷中洗涤过滤2遍后将固体颗粒取出, 在40℃下真空干燥至恒重,得到异丁烯基季鏻盐离子聚合物A-II-6。
采用核磁氢谱测定季鏻盐含量,苄基溴全部转变为季鏻盐,总季鏻盐含量为5.7mol%,侧基苄基季鏻盐含量为4.3mol%,主链叔碳季鏻盐含量为1.4mol%。
异丁烯基季鏻盐离子聚合物A-II-6中包含4.8mol%的结构单元A,3.8mol%的结构单元B,91.4mol%的结构单元C。
实施例II-7
(1)光溴化反应
在1000mL配有磁力搅拌的三口烧瓶中,将50g聚合物P-II-4(其中,对甲基苯乙烯结构单元的含量为0.058mol)溶解于环己烷(120mL)和四氯化碳(120mL)的混合有机溶剂中,加入碳酸氢钠粉末7.6g。以对甲基苯乙烯提供的结构单元的摩尔含量计,聚合物与液溴的摩尔比为1∶1.5。溴化反应在避光的实验室中进行。用移液管取液溴4.5mL加入到装有50mL四氯化碳溶剂的恒压滴液漏斗(避光)中。采用630nm的LED光源照射进行光溴化反应,光源功率为40W,脉冲时间为20s。开启光源进行溴化反应,以缓慢的速度滴加液溴,在脉冲光源照射下进行溴化反应,直至液溴滴加完为止,关闭光源,停止反应,溴化反应时间约160min,得到溴化的聚合物溶液XP-II-5。
取10毫升上述溴化反应物溶液离心处理,分离出其中的不溶性固体沉淀物,取其清液在40℃下真空干燥至恒重,测定胶液浓度13.6wt%。核磁氢谱测定反应物中的侧基苄基溴含量为5.1mol%(苄基溴化率72.8%)。
(2)离子化反应
溴化的聚合物溶液XP-II-5经离心脱除不溶性固体后取其清液40g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入三苯基膦2.2g(式7中R6、R7、R8均为苯基)(用5mL四氯化碳溶解),叔膦与液溴的摩尔比为1∶1,在氮气保护下于80℃进行回流反应12小时。溴化聚合物在离子化反应过程中,逐渐从溶剂中析出,形成固体颗粒淤浆状。反应结束后将固体颗粒与溶剂分离,并在己烷中洗涤过滤2遍后将固体颗粒取出,在40℃下真空干燥至恒重,得到异丁烯基季鏻盐离子聚合物A-II-7。
采用核磁氢谱测定季鏻盐含量,苄基溴大部分转变为季鏻盐,总季鏻盐含量为8.8mol%,侧基苄基季鏻盐含量为5.1mol%,主链叔碳季鏻盐含量为3.7mol%。
异丁烯基季鏻盐离子聚合物A-II-7中包含6.5mol%的结构单元A、0.5mol%的结构单元B、93mol%的结构单元C。
对比例II-1
(1)光溴化反应
在1000mL配有磁力搅拌的三口烧瓶中,将32g聚合物P-II-1(其中,对甲基苯乙烯结构单元的含量为0.077mol)溶解于正己烷(80mL)与四氯化碳(80mL)的混合溶剂中,再加入碳酸钠粉末4.1g。以对甲基苯乙烯提供的结构单元的摩尔含量计,聚合物与液溴的摩尔比为1∶1。用移液管将4mL液溴分两次即每次2mL加入到装有15mL四氯化碳的恒压滴液漏斗(避光)中。采用595nm的LED光源照射进行光溴化反应,光源功率为80W。将恒压滴液漏斗中的液溴溶液一次性加入聚合物溶液中,开启光源进行溴化反应,发生剧烈的冒烟溴化反应,产生的大量HBr无法被中和,溴化反应时间为10min,胶液体系褪色,关闭光源,停止反应。加入100mL 0.1wt%的NaOH水溶液中和HBr,得到溴化后的聚合物溶液XDP-II-1。
取5毫升上述溴化反应物溶液在40℃下真空干燥至恒重,采用核磁氢谱测定苄基溴含量仅为0.98mol%(苄基溴化率为6.2%),不仅溴化率极低,且含有大量溴化正己烷。
(2)离子化反应
取上述溴化的聚合物溶液XDP-II-1清液50g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入三苯基膦(式7中R6、R7、R8为苯基)4g(用10mL四氯化碳溶解),叔膦与液溴的摩尔比为1∶1,在氮气保护下于80℃进行回流反应6小时。反应结束后将不溶胶团与溶剂过滤分离,并在丙酮中洗涤过滤2遍后将固体物取出,在40℃下真空干燥至恒重,得到异丁烯基季鏻盐离子聚合物D-II-1。
采用核磁氢谱测定季鏻盐含量,苄基溴全部转变为季鏻盐,总季鏻盐含量为1mol%,侧基苄基季鏻盐基团含量为1mol%,主链中不含有叔碳季鏻基团。
经测试分析和计算,异丁烯基季鏻盐离子聚合物D-II-1中包含1mol%的结构单元A,14.9mol%的结构单元 B,84.1mol%的结构单元C。
测试例II
以实施例II-1制备的异丁烯基季鏻盐聚合物A-II-1与ABS树脂进行共混制备抗菌塑料,以大肠杆菌和金黄色葡萄球菌分别作为革兰氏阴性菌和革兰氏阳性菌,对抗菌塑料进行抗菌性能测试。
采用Polylab OS PTW 16/40型双螺杆挤出机,按照异丁烯基季鏻盐聚合物A-II-1与ABS树脂以质量比2∶8混合,在190℃下进行熔融挤出造粒,制成20wt%的抗菌母料,然后再将抗菌母料与ABS树脂分别按照不同比例混和,再通过双螺杆挤出机熔融挤出造粒,制得异丁烯基季鏻盐聚合物A-II-1质量含量分别为1wt%、2wt%、4wt%、6wt%和8wt%的抗菌塑料。
在200℃、压力为20MPa下采用压片机将各抗菌塑料粒料模压成型,时间为3min;随后在15MPa下进行冷压10min得到厚度为1mm实验片材,放置24h后剪成20mm×20mm的测试样片。
(1)将样片放置在六孔细胞培养板中,两面均用紫外线照射灭菌30min。在每片样片表面滴加30μL浓度为1×106CFU/mL的细菌悬液,用灭菌的圆形盖玻片覆盖菌液,使菌液平铺在样片表面上。将六孔细胞培养板放入37℃的恒温培养箱中培养,并保持相对湿度大于90%。24h后,用移液枪向六孔培养板中的每个孔加入2mL生理盐水冲洗样品表面,并对六孔培养板进行1min超声处理,使细菌分散。用移液枪吸取冲洗液100μL,用生理盐水进行梯度稀释,选取适宜稀释倍数的稀释液,涂布到营养琼脂平板上,在37℃的恒温培养箱中培养24h,选取菌落数在30-300的平板进行计数,计算样品表面的活菌数量,计算抗菌率R。结果如表II-3所示。
R=[(A-B)/A]×100%,A为未添加抗菌剂的塑料样片表面的活菌数目,B为抗菌塑料样片表面的活菌数目。
表II-3
(2)取6片抗菌塑料样片,称其重量,放入锥形瓶中,根据GB/T16886.12-2005的要求,按0.1g/mL的比例加入去离子水,置于37℃的恒温水浴振荡器中以150r/min的转速震荡浸泡,分别测试浸泡15天和30天后样片的抗菌性能,测试方法与上述相同,浸泡15天后结果如表II-4所示,浸泡30天后结果如表II-5所示。
表II-4
表II-5

通过表II-3-表II-5的结果可以看出,采用本发明异丁烯基季鏻盐离子聚合物与ABS树脂并用制备抗菌塑料,当其添加量达到2份以上时,显示出高效的杀菌和抑菌性能,即使经过水中浸泡15-30天,杀菌和抑菌性能仍然保持良好,抗菌时效优异。
具体实施方式III
以下实施例以及对比例所用异丁烯-对甲基苯乙烯无规共聚物的物化参数如表III-1所示,其制备方法可参见专利CN104558357B。
表III-1
以下实施例以及对比例所用其他原料均为市售品。
实施例III-1
(1)光溴化反应
在1000mL配有磁力搅拌的三口烧瓶中,将30g聚合物P-III-1(其中,对甲基苯乙烯结构单元的含量为0.074mol)溶解于正己烷(80mL)与四氯化碳(80mL)的混合溶剂中,再加入碳酸氢钠粉末6.4g。以对甲基苯乙烯提供的结构单元的摩尔含量计,聚合物与液溴的摩尔比为1∶1.1。溴化反应在避光的实验室中进行。用移液管取液溴4.2mL加入到装有30mL四氯化碳的恒压滴液漏斗(避光)中。采用595nm的LED光源照射进行光溴化反应,光源功率为80W,脉冲时间为10s。开启光源进行溴化反应,以缓慢的速度滴加液溴溶液,在脉冲光源照射下进行溴化反应,直至液溴滴加完为止,关闭光源,停止反应,溴化反应时间约120min,得到溴化的聚合物溶液XP-III-1。
取10毫升上述溴化反应物溶液离心处理,分离出其中的不溶性沉淀物,取其清液在40℃下真空干燥至恒重,测定胶液浓度13.5wt%。核磁氢谱测定产物中的侧基苄基溴含量为12.3mol%(苄基溴化率75.9wt%),由于主链叔碳氢经溴取代反应转变为叔碳溴,在核磁氢谱中无特征峰。核磁氢谱谱图见图3a,由图3a可以看出,化学位移在4.4654ppm的特征峰为侧基苄基溴特征峰。
(2)离子化反应
溴化的聚合物溶液XP-III-1经离心脱除不溶性固体后取其清液50g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入1-丁基咪唑2mL(用5mL四氯化碳溶解),咪唑与液溴的摩尔比为1.1∶1,在氮气保护下于80℃进行回流反应8小时。溴化聚合物在离子化反应过程中,逐渐从溶剂中析出,形成不溶胶团。反应结束后将胶团与溶剂分离,并在己烷中洗涤2遍后取出,在40℃下真空干燥至恒重,得到异丁烯基咪唑盐离子聚合物A-III-1。
采用核磁氢谱测定咪唑盐含量,见图3b。由图3b看出,侧基苄基溴的信号峰(4.4-4.6ppm)消失,全部转变为咪唑盐;通过氮环信号峰(化学位移在7.6-10.1ppm的特征峰)面积积分计算出总咪唑盐含量为16.4mol%,侧基苄基(化学位移在5.1-5.9ppm的特征峰)咪唑盐含量为12.3mol%,主链叔碳咪唑盐含量为4.1mol%。
异丁烯基咪唑盐离子聚合物A-III-1中包含13.4mol%的结构单元A,2.8mol%的结构单元B,83.8mol%的结构单元C。
异丁烯-对甲基苯乙烯共聚物P-III-1、溴化的异丁烯-对甲基苯乙烯共聚物XP-III-1、异丁烯基咪唑盐离子聚合物A-III-1的热失重分析数据见表III-2,热失重曲线图分别见图3c、图3d和图3e。
由图3c可以看出,异丁烯-对甲基苯乙烯共聚物P-III-1只存在一段热失重(1个台阶),热失重温度为402.3℃ 左右,失重率为100wt%。
由图3d可以看出,溴化的异丁烯-对甲基苯乙烯共聚物XP-III-1存在两段集中热失重情况(2个台阶),第1段集中在342.2℃左右,失重率为40.2wt%,为碳溴基团发生热分解;第2段集中在420.2℃左右,失重率为53.1wt%,为聚合物主链结构发生热分解,与P-III-1相一致。
由图3e可以看出,异丁烯基咪唑盐离子聚合物A-III-1存在两段集中热失重情况(2个台阶),第1段集中在280.2℃左右,失重率为34.2wt%,为咪唑盐基团发生热分解;第2段集中在419.6℃左右,失重率为56.9wt%,为聚合物主链结构发生热分解,与P-III-1相一致,不存在XP-III-1中的碳溴基团热分解段,说明碳溴基团全部被咪唑盐离子化,且异丁烯基咪唑盐离子聚合物A-III-1的5wt%的热失重温度为233.7℃。
表III-2
实施例III-2
(1)离子化反应
按照实施例III-1的方法制备异丁烯基吡啶盐离子聚合物,不同的是:
溴化的聚合物溶液XP-III-1经离心脱除不溶性固体后取其清液50g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入1,2-二甲基-5-硝基咪唑1.6mL(用5mL四氯化碳溶解),咪唑与液溴的摩尔比为1.1∶1,在氮气保护下升温至80℃进行回流反应8小时。溴化聚合物在离子化反应过程中,逐渐从溶剂中析出,形成块状胶粒团。反应结束后将块状胶粒团与溶剂分离,并在己烷中按压洗涤2遍后将胶团取出,在40℃下真空干燥至恒重,得到异丁烯基咪唑盐离子聚合物A-III-2。
经测试,异丁烯基咪唑盐离子聚合物A-III-2总咪唑盐含量为16.4mol%,侧基苄基咪唑盐含量为12.3mol%,由此计算出主链咪唑盐含量为4.1mol%。
经测试分析和计算,异丁烯基咪唑盐离子聚合物A-III-2中包含13.4mol%的结构单元A,2.8mol%的结构单元B,83.8mol%的结构单元C。
实施例III-3
(1)光溴化反应
在1000mL配有磁力搅拌的三口烧瓶中,将30g聚合物P-III-2(其中,对甲基苯乙烯结构单元的含量为0.058mol)溶解于环己烷(80mL)和四氯化碳(80mL)的混合有机溶剂中,加入固体碳酸氢钠粉末7g。以对甲基苯乙烯提供的结构单元的摩尔含量计,聚合物与液溴的摩尔比为1∶1.4。用移液管取液溴4.2mL加入到装有30mL四氯化碳溶剂的恒压滴液漏斗(避光)中。采用630nm的LED光源照射进行光溴化反应,光源功率为60W,脉冲时间为20s。开启光源进行溴化反应,以缓慢的速度滴加液溴,在脉冲光源照射下进行溴化反应,直至液溴滴加完为止,关闭光源,停止反应,溴化反应时间约130min,得到溴化的聚合物溶液XP-III-2。
取10毫升上述溴化反应物溶液离心处理,分离出其中的不溶性固体沉淀物,取其清液在40℃下真空干燥至恒重,测定胶液浓度13.2wt%。核磁氢谱测定反应物中的侧基苄基溴含量为9.7mol%(苄基溴化率78.9%)。
(2)离子化反应
溴化的聚合物溶液XP-III-2经离心脱除不溶性固体后取其清液50g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入1-丁基咪唑2.3mL(用5mL四氯化碳溶解),咪唑与液溴的摩尔比为1.2∶1,在氮气保护下于80℃进行反应12小时。溴化聚合物在离子化反应过程中,逐渐从溶剂中析出,形成不溶胶粒。反应结束后将胶粒与溶剂分离,并在己烷中洗涤过滤2遍后在40℃下真空干燥至恒重,得到异丁烯基咪唑盐离子聚合物A-III-3。
采用核磁氢谱测定咪唑盐含量,苄基溴部分转变为咪唑盐,总咪唑盐含量为15.9mol%,侧基苄基咪唑盐含量为9.7mol%,主链叔碳咪唑盐含量为6.2mol%。
异丁烯基咪唑盐离子聚合物A-III-3中包含10.6mol%的结构单元A,1.7mol%的结构单元B,87.7mol%的结构单元C。
实施例III-4
(1)光溴化反应
在1000mL配有磁力搅拌的三口烧瓶中,将35g聚合物P-III-3(其中,对甲基苯乙烯结构单元的含量为0.052mol)溶解于环己烷(80mL)和四氯化碳(100mL)的混合有机溶剂中,加入固体碳酸氢钠粉末7g。以对甲基苯乙烯提供的结构单元的摩尔含量计,聚合物与液溴的摩尔比为1∶1.6。用移液管取液溴4.3mL加入到装有30mL四氯化碳溶剂的恒压滴液漏斗(避光)中。采用630nm的LED光源照射进行光溴化反应,光源功率为60W,脉冲时间为15s。开启光源进行溴化反应,以缓慢的速度滴加液溴,在脉冲光源照射下进行溴化反应,直至液溴滴加完为止,关闭光源,停止反应,溴化反应时间约120min,得到溴化的聚合物溶液XP-III-3。
取10毫升上述溴化反应物溶液离心处理,分离出其中的不溶性固体沉淀物,取其清液在40℃下真空干燥至恒重,测定胶液浓度13.3wt%。核磁氢谱测定反应物中的侧基苄基溴含量为8.1mol%(苄基溴化率89%)。
(2)离子化反应
溴化的聚合物溶液XP-III-3经离心脱除不溶性固体后取其清液50g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入1-十二烷基咪唑3.9mL(用5mL四氯化碳溶解),咪唑与液溴的摩尔比为1.1∶1,在氮气保护下于80℃进行反应10小时。溴化聚合物在离子化反应过程中,逐渐从溶剂中析出,形成不溶胶粒。反应结束后将胶粒与溶剂分离,并在己烷中洗涤过滤2遍后在40℃下真空干燥至恒重,得到异丁烯基咪唑盐离子聚合物A-III-4。
采用核磁氢谱测定咪唑盐含量,苄基溴全部转变为咪唑盐,总咪唑盐含量为13.9mol%,侧基苄基咪唑盐含量为8.1mol%,主链叔碳咪唑盐含量为5.8mol%。
异丁烯基咪唑盐离子聚合物A-III-4中包含8.7mol%的结构单元A,0.4mol%的结构单元B,90.9mol%的结构单元C。
实施例III-5
(1)光溴化反应
在1000mL配有磁力搅拌的三口烧瓶中,将35g聚合物P-III-4(其中,对甲基苯乙烯结构单元的含量为0.039mol)溶解于正己烷(80mL)和四氯化碳(80mL)的混合有机溶剂中,加入固体碳酸氢钠粉末2.4g。以对甲基苯乙烯提供的结构单元的摩尔含量计,聚合物与液溴的摩尔比为1∶0.7。用移液管取液溴1.4mL加入到装有15mL四氯化碳溶剂的恒压滴液漏斗(避光)中。采用595nm的LED光源照射进行光溴化反应,光源功率为50W,脉冲时间为15s。开启光源进行溴化反应,以缓慢的速度滴加液溴,在脉冲光源照射下进行溴化反应,直至液溴滴加完为止,关闭光源,停止反应,溴化反应时间约50min,得到溴化的聚合物溶液XP-III-4。
取10毫升上述溴化反应物溶液离心处理,分离出其中的不溶性固体沉淀物,取其清液在40℃下真空干燥至恒重,测定胶液浓度15.2wt%。核磁氢谱测定反应物中的侧基苄基溴含量为3.2mol%(苄基溴化率48.5%)。
(2)离子化反应
溴化的聚合物溶液XP-III-4经离心脱除不溶性固体后取其清液50g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入1-丁基咪唑0.9mL(用5mL四氯化碳溶解),咪唑与液溴的摩尔比为1.2∶1,在氮气保护下于80℃进行反应10小时。溴化聚合物在离子化反应过程中,逐渐从溶剂中析出,形成不溶胶粒。反应结束后将胶粒与溶剂分离,并在己烷中洗涤过滤2遍后在40℃下真空干燥至恒重,得到异丁烯基咪唑盐离子聚合物A-III-5。
采用核磁氢谱测定咪唑盐含量,苄基溴全部转变为咪唑盐,总咪唑盐含量为4.3mol%,侧基苄基咪唑盐含量为3.2mol%,主链叔碳咪唑盐含量为1.1mol%。
异丁烯基咪唑盐离子聚合物A-III-5中包含3.8mol%的结构单元A,2.8mol%的结构单元B,93.4mol%的结构单元C。
对比例III-1
(1)光溴化反应
在1000mL配有磁力搅拌的三口烧瓶中,将30g聚合物P-III-1(其中,对甲基苯乙烯结构单元的含量为0.074mol)溶解于正己烷(80mL)与四氯化碳(80mL)的混合溶剂中,再加入碳酸钠粉末3.6g。以对甲基苯乙 烯提供的结构单元的摩尔含量计,聚合物与液溴的摩尔比为1∶1.1。溴化反应在避光的实验室中进行。用移液管取液溴4.2mL分两次即每次2.1mL加入到装有15mL四氯化碳的恒压滴液漏斗(避光)中。采用595nm的LED光源照射进行光溴化反应,光源功率为80W。将恒压滴液漏斗中的液溴溶液一次性加入聚合物溶液中,开启光源进行溴化反应,发生剧烈的冒烟溴化反应,产生的大量HBr无法被中和,溴化反应时间为10min,胶液体系褪色,关闭光源,停止反应。加入100mL 0.1wt%的NaOH水溶液中和HBr,得到溴化后的聚合物溶液XDP-III-1。
取5毫升上述溴化反应物溶液在40℃下真空干燥至恒重,采用核磁氢谱测定苄基溴含量仅为0.88mol%(苄基溴化率为5.4%),不仅溴化率极低,且含有大量溴化正己烷。
(2)离子化反应
取上述溴化的聚合物溶液XDP-III-1清液50g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入1-丁基咪唑2mL(用5mL四氯化碳溶解),吡啶与液溴的摩尔比为1.1∶1,在氮气保护下于80℃进行反应10小时。反应结束后将不溶胶团与溶剂过滤分离,并在丙酮中洗涤过滤2遍后将固体物取出,在40℃下真空干燥至恒重,得到异丁烯基吡啶盐离子聚合物D-III-1。
采用核磁氢谱测定吡啶盐含量,苄基溴全部转变为咪唑盐,总咪唑盐含量为0.9mol%,侧基苄基咪唑盐基团含量为0.9mol%,主链中不含有叔碳咪唑基团。
经测试分析和计算,异丁烯基咪唑盐离子聚合物D-III-1中包含0.9mol%的结构单元A,15.3mol%的结构单元B,83.8mol%的结构单元C。
测试例III
将实施例III-1制备的异丁烯基咪唑盐聚合物与ABS树脂进行共混制备抗菌塑料,分别以青霉菌和金黄色葡萄球菌作为真菌和细菌,对抗菌塑料进行抗菌性能测试。
采用Polylab OS PTW 16/40型双螺杆挤出机,按照异丁烯基咪唑盐聚合物与ABS树脂以质量比2∶8混合,在200℃下进行熔融挤出造粒,制成20%的抗菌母料,然后再将抗菌母料与ABS树脂分别按照不同比例混和,再通过双螺杆挤出机熔融挤出造粒,制得异丁烯基咪唑盐聚合物质量含量分别为1%、3%、5%、7%和10%的抗菌塑料。
在200℃、压力为20MPa下采用压片机将各抗菌塑料粒料模压成型,时间为3min;随后在15MPa下进行冷压10min得到厚度为1mm实验片材,放置24h后剪成20mm×20mm的测试样片。
(1)将样片放置在六孔细胞培养板中,两面均用紫外线照射灭菌30min。在每片样片表面滴加30μL浓度为1×106CFU/mL的菌悬液,用灭菌的圆形盖玻片覆盖菌液,使菌液平铺在样片表面上。将六孔细胞培养板放入37℃的恒温培养箱中培养,并保持相对湿度大于90%。24h后,用移液枪向六孔培养板中的每个孔加入2mL生理盐水冲洗样品表面,并对六孔培养板进行1min超声处理,使菌液分散。用移液枪吸取冲洗液100μL,用生理盐水进行梯度稀释,选取适宜稀释倍数的稀释液,涂布到琼脂平板上,在37℃的恒温培养箱中培养24h,选取菌落数在30-300的平板进行计数,计算样品表面的活菌数量,计算抗菌率R。结果如表III-3所示。
R=[(A-B)/A]×100%,A为未添加抗菌剂的塑料样片表面的活菌数目,B为抗菌塑料样片表面的活菌数目。
表III-3
(2)取6片抗菌塑料样片,称其重量,放入锥形瓶中,根据GB/T16886.12-2005的要求,按0.1g/mL的比例加入蒸馏水,置于37℃的恒温水浴振荡器中以150r/min的转速震荡浸泡,分别测试浸泡15天和30天后样片的抗菌性能,测试方法与上述相同,浸泡15天后结果如表III-4所示,浸泡30天后结果如表III-5所示。
表III-4
表III-5
由以上结果可以看出,以实施例III-1制备的异丁烯基咪唑盐离子聚合物为抗菌剂与ABS共混制备抗菌塑料,当用量达到4份以上时显示出良好的抗菌性能,且当抗菌塑料在水中浸泡15-30天后,仍保持良好的抗菌效果。
具体实施方式IV
以下实施例以及对比例所用异丁烯-对甲基苯乙烯无规共聚物的物化参数如表IV-1所示,其制备方法可参见专利CN104558357B。
表IV-1
以下实施例以及对比例所用其他原料均为市售品。
实施例IV-1
(1)光溴化反应
在1000mL配有磁力搅拌的三口烧瓶中,将30g聚合物P-IV-1(其中,对甲基苯乙烯结构单元的含量为0.075mol)溶解于正己烷(80mL)与四氯化碳(80mL)的混合溶剂中,再加入碳酸氢钠粉末7g。以对甲基苯乙烯提供的结构单元的摩尔含量计,聚合物与液溴的摩尔比为1∶1.1。溴化反应在避光的实验室中进行。用移液管取液溴4.2mL加入到装有30mL四氯化碳的恒压滴液漏斗(避光)中。采用595nm的LED光源照射进行光溴化反应,光源功率为60W,脉冲时间为10s。开启光源进行溴化反应,以缓慢的速度滴加液溴,在脉冲光源照射下进行溴化反应,直至液溴滴加完为止,关闭光源,停止反应,溴化反应时间约130min,得到溴化的聚合物溶液XP-IV-1。
取10毫升上述溴化反应物溶液离心处理,分离出其中的不溶性沉淀物,取其清液在40℃下真空干燥至恒重,测定胶液浓度13.4wt%。核磁氢谱测定反应物中的侧基苄基溴含量为12.8mol%(苄基溴化率77.6%),由于主链叔碳氢经溴取代反应转变为叔碳溴,在核磁氢谱中无特征峰。核磁氢谱谱图见图4a,其中化学位移在4.4654ppm的特征峰为侧基苄基溴特征峰。
(2)离子化反应
溴化的聚合物溶液XP-IV-1经离心脱除不溶性固体后取其清液50g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入4-乙基吡啶(式9中R15为乙基,R13、R14、R16、R17为氢)1.9mL(用5mL四氯化碳溶解),吡啶与液溴的摩尔比为1.1∶1,在氮气保护下于80℃进行反应10小时。溴化聚合物在离子化反应过程中,逐渐从溶剂中析出,形成块状胶粒团。反应结束后将块状胶粒团与溶剂分离,并在己烷中按压洗涤2遍后将胶团取出,在40℃下真空干燥至恒重,得到异丁烯基吡啶盐离子聚合物A-IV-1。
采用核磁氢谱测定吡啶盐含量,见图4b。结果表明,侧基苄基溴的信号峰(4.4654ppm)消失,全部转变为苄基吡啶盐,通过4-乙基吡啶中吡啶环上氢的峰面积积分可以计算出总吡啶盐含量。测定总吡啶盐基团含量为17.5mol%,侧基苄基吡啶盐基团含量为12.8mol%,因此计算出主链叔碳吡啶盐基团含量为4.7mol%。核磁氢谱谱图见图4b,其中化学位移在7.9-9.7ppm的特征峰为吡啶盐基团中吡啶环信号特征峰,化学位移在5.6-6.3ppm的特征峰为苄基吡啶盐基团中亚甲基信号特征峰。
经测试分析和计算,异丁烯基吡啶盐离子聚合物A-IV-1中包含14.3mol%的结构单元A,2.2mol%的结构单元B,83.5mol%的结构单元C。
异丁烯-对甲基苯乙烯共聚物P-IV-1、溴化的异丁烯-对甲基苯乙烯共聚物XP-IV-1、异丁烯基吡啶盐离子聚合物A-IV-1的热失重分析数据见表IV-2,热失重曲线图分别见图4c、图4d和图4e。
由图4c可以看出,异丁烯-对甲基苯乙烯共聚物P-IV-1只存在一段热失重(1个台阶),热失重温度为402.3℃左右,失重率为100wt%。
由图4d可以看出,溴化的异丁烯-对甲基苯乙烯共聚物XP-IV-1存在两段集中热失重情况(2个台阶),第1段集中在342.2℃左右,失重率为40.2wt%,为碳溴基团发生热分解;第2段集中在420.2℃左右,失重率为53.1wt%,为聚合物主链结构发生热分解,与异丁烯-对甲基苯乙烯共聚物P-IV-1相一致。
由图4e可以看出,异丁烯基吡啶盐离子聚合物A-IV-1存在两段集中热失重情况(2个台阶),第1段集中在280.5℃左右,失重率为30.7wt%,为吡啶盐基团发生热分解;第2段集中在416.2℃左右,失重率为60.0wt%,为聚合物主链结构发生热分解,与P-IV-1相一致,不存在XP-IV-1中的碳溴基团热分解段,说明碳溴基团全部被吡啶盐离子化,且异丁烯基吡啶盐离子聚合物A-IV-1的5wt%的热失重温度为211.3℃。
表IV-2
实施例IV-2
(2)离子化反应
按照实施例IV-1的方法制备异丁烯基吡啶盐离子聚合物,不同的是:
溴化的聚合物溶液XP-IV-1经离心脱除不溶性固体后取其清液50g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入2-甲基吡啶(式9中R15为甲基,R13、R14、R16、R17为氢)1.6mL(用5mL四氯化碳溶解),吡啶与液溴的摩尔比为1.1∶1,在氮气保护下升温至80℃进行回流反应10小时。溴化聚合物在离子化反应过程中,逐渐从溶剂中析出,形成块状胶粒团。反应结束后将块状胶粒团与溶剂分离,并在己烷中按压洗涤2遍后将胶团取出,在40℃下真空干燥至恒重,得到异丁烯基吡啶盐离子聚合物A-IV-2。
经测试,异丁烯基吡啶盐离子聚合物A-IV-2中吡啶盐含量为17.5mol%,侧基苄基吡啶盐含量为12.8mol%,由此计算出主链吡啶盐含量为4.7mol%。
经测试分析和计算,异丁烯基吡啶盐离子聚合物A-IV-2中包含14.3mol%的结构单元A,2.2mol%的结构单元B,83.5mol%的结构单元C。
实施例IV-3
(1)光溴化反应
在1000mL配有磁力搅拌的三口烧瓶中,将35g聚合物P-IV-2(其中,对甲基苯乙烯结构单元的含量为0.075mol)溶解于环己烷(80mL)和四氯化碳(80mL)的混合有机溶剂中,加入固体碳酸氢钠粉末11g。以对 甲基苯乙烯提供的结构单元的摩尔含量计,聚合物与液溴的摩尔比为1∶1.7。用移液管取液溴6.5mL加入到装有40mL四氯化碳溶剂的恒压滴液漏斗(避光)中。采用630nm的LED光源照射进行光溴化反应,光源功率为50W,脉冲时间为20s。开启光源进行溴化反应,以缓慢的速度滴加液溴,在脉冲光源照射下进行溴化反应,直至液溴滴加完为止,关闭光源,停止反应,溴化反应时间约160min,得到溴化的聚合物溶液XP-IV-2。
取10毫升上述溴化反应物溶液离心处理,分离出其中的不溶性固体沉淀物,取其清液在40℃下真空干燥至恒重,测定胶液浓度15.1wt%。核磁氢谱测定反应物中的侧基苄基溴含量为12.4mol%(苄基溴化率73.8%)。
(2)离子化反应
溴化的聚合物溶液XP-IV-2经离心脱除不溶性固体后取其清液50g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入吡啶2.5mL(用5mL四氯化碳溶解),吡啶与液溴的摩尔比为1.3∶1,在氮气保护下于80℃进行反应12小时。溴化聚合物在离子化反应过程中,逐渐从溶剂中析出,形成不溶胶粒。反应结束后将胶粒与溶剂分离,并在己烷中洗涤过滤2遍后在40℃下真空干燥至恒重,得到异丁烯基吡啶盐离子聚合物A-IV-3。
采用核磁氢谱测定吡啶盐含量,苄基溴部分转变为吡啶盐,总吡啶盐含量为21.6mol%,侧基苄基吡啶盐含量为12.4mol%,主链叔碳吡啶盐含量为9.2mol%。
异丁烯基吡啶盐离子聚合物A-IV-3中包含13.2mol%的结构单元A,0.6mol%的结构单元B,86.2mol%的结构单元C。
实施例IV-4
(1)光溴化反应
在1000mL配有磁力搅拌的三口烧瓶中,将35g聚合物P-IV-3(其中,对甲基苯乙烯结构单元的含量为0.057mol)溶解于正己烷(80mL)与四氯化碳(80mL)的混合溶剂中,加入固体碳酸氢钠粉末4.8g。以对甲基苯乙烯提供的结构单元的摩尔含量计,聚合物与液溴的摩尔比为1∶1,溴化反应在避光的实验室中进行。用移液管取液溴3mL加入到装有20mL四氯化碳溶剂的恒压滴液漏斗(避光)中。采用实施例1的溴化方法,溴化反应时间约70min,得到溴化的聚合物溶液XP-IV-3。
取10毫升上述溴化反应物溶液离心处理,分离出其中的不溶性固体沉淀物,取其清液在40℃下真空干燥至恒重,测定胶液浓度15.4wt%。核磁氢谱测定反应物中的侧基苄基溴含量为7.3mol%(苄基溴化率71.6%)。
(2)离子化反应
溴化的聚合物溶液XP-IV-3经离心脱除不溶性固体后取其清液50g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入2-氨甲基吡啶1.3mL(用5mL四氯化碳溶解),吡啶与液溴的摩尔比为1.2∶1,在氮气保护下于80℃进行反应10小时。溴化聚合物在离子化反应过程中,逐渐从溶剂中析出,形成块状胶粒团。反应结束后将块状胶粒团与溶剂分离,并在己烷中按压洗涤2遍后将胶团取出,在40℃下真空干燥至恒重,得到异丁烯基吡啶盐离子聚合物A-IV-4。
经测试,异丁烯基吡啶盐离子聚合物A-IV-4中总吡啶盐含量为9.5mol%,侧基苄基吡啶盐含量为7.3mol%,计算主链吡啶盐含量为2.2mol%。
经测试分析和计算,异丁烯基吡啶盐离子聚合物A-IV-4中包含8.4mol%的结构单元A,1.8mol%的结构单元B,89.8mol%的结构单元C。
实施例IV-5
(1)光溴化反应
采用实施例IV-4的光溴化方法,不同的是以对甲基苯乙烯提供的结构单元的摩尔含量计,聚合物与液溴的摩尔比为1∶0.7。用移液管取液溴2mL加入到装有20mL四氯化碳溶剂的恒压滴液漏斗(避光)中。溴化反应时间约40min,得到溴化的聚合物溶液XP-IV-4。
取10毫升上述溴化反应物溶液离心处理,分离出其中的不溶性固体沉淀物,取其清液在40℃下真空干燥至恒重,测定胶液浓度15wt%。核磁氢谱测定反应物中的侧基苄基溴含量为4.8mol%(苄基溴化率47.1%)。
(2)离子化反应
溴化的聚合物溶液XP-IV-4经离心脱除不溶性固体后取其清液50g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入2,3-二氯吡啶1mL(用5mL四氯化碳溶解),吡啶与液溴的摩尔比为1.4∶1,在氮气保护下于80℃进行反应10小时。溴化聚合物在离子化反应过程中,逐渐从溶剂中析出,形成块状胶粒团。反应结 束后将块状胶粒团与溶剂分离,并在己烷中按压洗涤2遍后将胶团取出,在40℃下真空干燥至恒重,得到异丁烯基吡啶盐离子聚合物A-IV-5。
经测试,异丁烯基吡啶盐离子聚合物A-IV-5中总吡啶盐含量为6.2mol%,侧基苄基吡啶盐含量为4.8mol%,计算主链吡啶盐含量为1.4mol%。
经测试分析和计算,异丁烯基吡啶盐离子聚合物A5中包含5.6mol%的结构单元A,4.6mol%的结构单元B,89.8mol%的结构单元C。
实施例IV-6
(1)光溴化反应
在1000mL配有磁力搅拌的三口烧瓶中,将40g聚合物P-IV-4(其中,对甲基苯乙烯结构单元的含量为0.045mol)溶解于正己烷(100mL)与四氯化碳(100mL)的混合溶剂中,再加入碳酸氢钠粉末4.6g。以对甲基苯乙烯提供的结构单元的摩尔含量计,聚合物与液溴的摩尔比为1∶1.2。溴化反应在避光的实验室中进行。用移液管取液溴2.8mL加入到装有20mL四氯化碳的恒压滴液漏斗(避光)中。采用595nm的LED光源照射进行光溴化反应,光源功率为50W,脉冲时间为15s。开启光源进行溴化反应,以缓慢的速度滴加液溴,在脉冲光源照射下进行溴化反应,直至液溴滴加完为止,关闭光源,停止反应,溴化反应时间约100min,得到溴化的聚合物溶液XP-IV-5。
取10毫升上述溴化反应物溶液离心处理,分离出其中的不溶性固体沉淀物,取其清液在40℃下真空干燥至恒重,测定胶液浓度14.5wt%。核磁氢谱测定反应物中的侧基苄基溴含量为5.2mol%(苄基溴化率76.5%)。
(2)离子化反应
溴化的聚合物溶液XP-IV-5经离心脱除不溶性固体后取其清液50g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入4-丁基吡啶1.6mL(用5mL四氯化碳溶解),吡啶与液溴的摩尔比为1.2∶1,在氮气保护下于80℃进行反应10小时。溴化聚合物在离子化反应过程中,逐渐从溶剂中析出,形成块状胶粒团。反应结束后将块状胶粒团与溶剂分离,并在己烷中按压洗涤2遍后将胶团取出,在40℃下真空干燥至恒重,得到异丁烯基吡啶盐离子聚合物A-IV-6。
经测试,异丁烯基吡啶盐离子聚合物A-IV-6中总吡啶盐含量为7.1mol%,侧基苄基吡啶盐含量为5.2mol%,计算主链吡啶盐含量为1.9mol%。
经测试分析和计算,异丁烯基吡啶盐离子聚合物A-IV-6中包含6.2mol%的结构单元A,0.6mol%的结构单元B,93.2mol%的结构单元C。
实施例IV-7
采用实施例IV-6制备的溴化聚合物溶液XP-IV-5进行离子化反应。
(2)离子化反应
溴化的聚合物溶液XP-IV-5经离心脱除不溶性固体后取其清液50g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入4-辛基吡啶2.1mL(用5mL四氯化碳溶解),吡啶与液溴的摩尔比为1.1∶1,在氮气保护下于80℃进行反应10小时。溴化聚合物在离子化反应过程中,逐渐从溶剂中析出,形成块状胶粒团。反应结束后将块状胶粒团与溶剂分离,并在己烷中按压洗涤2遍后将胶团取出,在40℃下真空干燥至恒重,得到异丁烯基吡啶盐离子聚合物A-IV-7。
经测试,异丁烯基吡啶盐离子聚合物A-IV-7中总吡啶盐含量为7.1mol%,侧基苄基吡啶盐含量为5.2mol%,计算主链吡啶盐含量为1.9mol%。
经测试分析和计算,异丁烯基吡啶盐离子聚合物A-IV-7中包含6.2mol%的结构单元A,0.6mol%的结构单元B,93.2mol%的结构单元C。
对比例IV-1
(1)光溴化反应
在1000mL配有磁力搅拌的三口烧瓶中,将30g聚合物P-IV-1(其中,对甲基苯乙烯结构单元的含量为0.075mol)溶解于正己烷(80mL)与四氯化碳(80mL)的混合溶剂中,再加入碳酸钠粉末3.6g。以对甲基苯乙烯提供的结构单元的摩尔含量计,聚合物与液溴的摩尔比为1.1∶1。溴化反应在避光的实验室中进行。用移液管 取液溴4.2mL分两次即每次2.1mL加入到装有15mL四氯化碳的恒压滴液漏斗(避光)中。采用595nm的LED光源照射进行光溴化反应,光源功率为80W。将恒压滴液漏斗中的液溴溶液一次性加入聚合物溶液中,开启光源进行溴化反应,发生剧烈的冒烟溴化反应,产生的大量HBr无法被中和,溴化反应时间为10min,胶液体系褪色,关闭光源,停止反应。加入100mL 0.1wt%的NaOH水溶液中和HBr,得到溴化后的聚合物溶液XDP-IV-1。
取5毫升上述溴化反应物溶液在40℃下真空干燥至恒重,采用核磁氢谱测定苄基溴含量仅为0.92mol%(苄基溴化率为5.6%),不仅溴化率极低,且含有大量溴化正己烷。
(2)离子化反应
取上述溴化的聚合物溶液XDP-IV-1清液50g加入到配有磁力搅拌的250mL三口瓶中,置于恒温油浴中。加入4-乙基吡啶1.9mL(用5mL四氯化碳溶解),吡啶与液溴的摩尔比为1.1∶1,在氮气保护下于80℃进行反应10小时。反应结束后将不溶胶团与溶剂过滤分离,并在丙酮中洗涤过滤2遍后将固体物取出,在40℃下真空干燥至恒重,得到异丁烯基吡啶盐离子聚合物D-IV-1。
采用核磁氢谱测定吡啶盐含量,苄基溴全部转变为吡啶盐,总吡啶盐含量为0.9mol%,侧基苄基吡啶盐基团含量为0.9mol%,主链中不含有叔碳吡啶基团。
经测试分析和计算,异丁烯基吡啶盐离子聚合物D-IV-1中包含0.9mol%的结构单元A,15.6mol%的结构单元B,83.5mol%的结构单元C。
测试例IV
将实施例IV-1制备的异丁烯基吡啶盐聚合物与PS进行共混制备抗菌塑料,以大肠杆菌和金黄色葡萄球菌分别作为革兰氏阴性菌和革兰氏阳性菌,对抗菌塑料进行抗菌性能测试。
采用Polylab OS PTW 16/40型双螺杆挤出机,按照异丁烯基吡啶盐聚合物与PS树脂以质量比2∶8混合,在150℃下进行熔融挤出造粒,制成20%的抗菌母料,然后再将抗菌母料与PS树脂分别按照不同比例混和,再通过双螺杆挤出机熔融挤出造粒,制得异丁烯基吡啶盐聚合物质量含量分别为1%、3%、5%、7%和10%的抗菌塑料。
在150℃、压力为20MPa下采用压片机将各抗菌塑料粒料模压成型,时间为3min;随后在15MPa下进行冷压10min得到厚度为1mm实验片材,放置24h后剪成20mm×20mm的测试样片。
(1)将样片放置在六孔细胞培养板中,两面均用紫外线照射灭菌30min。在每片样片表面滴加30μL浓度为1×106CFU/mL的细菌悬液,用灭菌的圆形盖玻片覆盖菌液,使菌液平铺在样片表面上。将六孔细胞培养板放入37℃的恒温培养箱中培养,并保持相对湿度大于90%。24h后,用移液枪向六孔培养板中的每个孔加入2mL生理盐水冲洗样品表面,并对六孔培养板进行1min超声处理,使细菌分散。用移液枪吸取冲洗液100μL,用生理盐水进行梯度稀释,选取适宜稀释倍数的稀释液,涂布到营养琼脂平板上,在37℃的恒温培养箱中培养24h,选取菌落数在30-300的平板进行计数,计算样品表面的活菌数量,计算抗菌率R。结果如表IV-3所示。
R=[(A-B)/A]×100%,A为未添加抗菌剂的塑料样片表面的活菌数目,B为抗菌塑料样片表面的活菌数目。
表IV-3
(2)取6片抗菌塑料样片,称其重量,放入锥形瓶中,根据GB/T16886.12-2005的要求,按0.1g/mL的比例加入去离子水,置于37℃的恒温水浴振荡器中以150r/min的转速震荡浸泡,分别测试浸泡15天和30天后样片的抗菌性能,测试方法与上述相同,浸泡15天后结果如表IV-4所示,浸泡30天后结果如表IV-5所示。
表IV-4

表IV-5
由以上结果可以看出,以实施例IV-1制备的异丁烯基吡啶盐离子聚合物为抗菌剂与PS共混制备抗菌塑料,当用量达到5份以上时显示出良好的抗菌效果,对革兰氏阴性菌和阳性菌的24h抗菌率达到90%以上,且当抗菌塑料在水中浸泡15-30天后,仍保持良好的抗菌效果。

Claims (18)

  1. 一种异丁烯基阳离子盐离子聚合物,其特征在于,所述聚合物包括结构单元A、结构单元B和结构单元C;
    所述结构单元A具有式(2)和/或式(3)所示的结构和可选地式(1)所示结构;所述结构单元B具有式(4)所示结构;所述结构单元C具有式(5)所示结构;
    其中,R1为C1-C4的亚烷基;R2为C1-C4的烷基;
    Q为
    其中,R3、R4、R5各自独立地为C1-C20的直链烷基、C1-C20的支链烷基或C6-C20的芳基;
    R6、R7、R8各自独立地为C1-C10的直链烷基、C1-C10的支链烷基、C3-C10环烷基或C6-C10的芳基;
    R9为氢、C1-C20的直链烷基,R10、R11、R12各自独立地为氢、卤原子、C1-C10的直链烷基、C1-C10的支链烷基、羟基、硝基、-(CH2)n-NH、氰基或C6-C10的芳基,n为0-5的整数;
    R13、R14、R15、R16、R17各自独立地为氢、卤原子、C1-C20的直链烷基、C1-C20的支链烷基、硝基、氨基或氰基;
    X为Cl或Br。
  2. 根据权利要求1所述的异丁烯基阳离子盐离子聚合物,其中,R1为亚甲基或亚乙基,优选为亚甲基;R2为甲基或乙基,优选为甲基;R3、R4、R5各自独立地为C1-C18的直链烷基或C6-C9的芳基,优选为甲基、C8-C16的直链烷基或苯基;X为Br;
    优选地,R1为亚甲基或亚乙基,优选为亚甲基;R2为甲基或乙基,优选为甲基;R6、R7、R8各自独立地为C1-C8的直链烷基、C5-C8环烷基C6-C8的芳基,优选为C1-C8的直链烷基、环戊基、环己基或苯基;X为Br;
    优选地,R1为亚甲基或亚乙基,优选为亚甲基;R2为甲基或乙基,优选为甲基;R9为氢、C1-C18的直链烷基,优选为氢、C1-C16的直链烷基;R10、R11、R12各自独立地为氢、卤原子、C1-C5的直链烷基、C1-C5的支链烷基、羟基、硝基、-(CH2)n-NH、氰基或C6-C8的芳基,n为0-3的整数,优选各自独立地为氢、卤原子、C1-C4的直链烷基、羟基、硝基、氰基、氨基或苯基;X为Br;
    优选地,R1为亚甲基或亚乙基,优选为亚甲基;R2为甲基或乙基,优选为甲基;R13、R14、R15、R16、R17各自独立地为氢、卤素、C1-C15的直链烷基、C1-C15的支链烷基、硝基、氨基或氰基,优选为氢、卤素、C1-C10的直链烷基、氨基或氰基;X为Br。
  3. 根据权利要求1或2所述的异丁烯基阳离子盐离子聚合物,其中,以所述聚合物的总摩尔量为基准,阳 离子盐基团的含量为1.5-35mol%,优选为2.5-25mol%;
    优选地,Q为时,以所述聚合物的总摩尔量为基准,阳离子盐基团的含量为1.5-35mol%,优选为2.5-25mol%;
    优选地,Q为时,以所述聚合物的总摩尔量为基准,阳离子盐基团的含量为1.5-23mol%,优选为3-18mol%;
    优选地,Q为时,以所述聚合物的总摩尔量为基准,阳离子盐基团的含量为1.5-23mol%,优选为3-18mol%;
    优选地,Q为时,以所述聚合物的总摩尔量为基准,阳离子盐基团的含量为1.5-35mol%,优选为3-25mol%。
  4. 根据权利要求1-3任意一项所述的异丁烯基阳离子盐离子聚合物,其中,以所述聚合物的总摩尔量为基准,侧链苄基阳离子盐基团的含量为1-20mol%,优选为1.5-15mol%;主链叔碳阳离子盐基团的含量为0.5-15mol%,优选为1-10mol%;
    优选地,当Q为时,以所述聚合物的总摩尔量为基准,侧基苄基阳离子盐基团的含量为1-20mol%,优选为1.5-15mol%;主链叔碳阳离子盐基团的含量为0.5-15mol%,优选为1-10mol%;
    优选地,当Q为时,以所述聚合物的总摩尔量为基准,以所述聚合物的总摩尔量为基准,侧基苄基阳离子盐基团的含量为1-15mol%,优选为2-13mol%,主链叔碳阳离子盐基团的含量为0.5-8mol%,优选为1-5mol%;
    优选地,当Q为时,以所述聚合物的总摩尔量为基准,侧基苄基阳离子盐基团的含量为1-15mol%,优选为2-13mol%,主链叔碳阳离子盐基团的含量为0.5-8mol%,优选为1-5mol%;
    优选地,当Q为时,以所述聚合物的总摩尔量为基准,侧基苄基阳离子盐基团的含量为1-20mol%,优选为2-15mol%,主链叔碳阳离子盐基团的含量为0.5-15mol%,优选为1-10mol%。
  5. 根据权利要求1-4中任意一项所述的异丁烯基阳离子盐离子聚合物,其中,以所述聚合物的总摩尔量为基准,所述结构单元A的含量为1-20mol%,所述结构单元B的含量为0.5-10mol%,所述结构单元C的含量为75-97mol%;
    优选地,以所述聚合物的总摩尔量为基准,所述结构单元A的含量为2-15mol%,所述结构单元B的含量为1-5mol%,所述结构单元C的含量为80-95mol%。
  6. 根据权利要求1-5中任意一项所述的异丁烯基阳离子盐离子聚合物,其中,所述异丁烯基阳离子盐聚合物的热分解温度为150-550℃,优选为180-500℃;
    优选地,所述异丁烯基阳离子盐聚合物为异丁烯基季铵盐聚合物,所述异丁烯基季铵盐聚合物的热分解温度为150-500℃,优选为180-450℃;
    优选地,所述异丁烯基阳离子盐聚合物为异丁烯基季鏻盐聚合物,所述异丁烯基季鏻盐离子聚合物的热分解温度为150-500℃,优选为200-450℃;
    优选地,所述异丁烯基阳离子盐聚合物为异丁烯基咪唑盐聚合物,所述异丁烯基咪唑盐离子聚合物的热分解温度为150-550℃,优选为200-500℃。
    优选地,所述异丁烯基吡啶盐离子盐为异丁烯基吡啶盐离子盐,所述异丁烯基吡啶盐离子聚合物的热分解温度为100-500℃,优选为150-450℃。
  7. 根据权利要求1-6中任意一项所述的异丁烯基阳离子盐离子聚合物,其中,所述异丁烯基阳离子盐离子聚合物5wt%的热失重温度≥170℃,优选为≥180℃;
    优选地,所述异丁烯基阳离子盐聚合物为异丁烯基季铵盐聚合物,所述异丁烯基季铵盐离子聚合物5wt%的热失重温度≥170℃,优选≥180℃;
    优选地,所述异丁烯基阳离子盐聚合物为异丁烯基季鏻盐离子聚合物,所述异丁烯基季鏻盐离子聚合物5wt%的热失重温度≥200℃,优选≥220℃;
    优选地,所述异丁烯基阳离子盐聚合物为异丁烯基咪唑盐离子聚合物,所述异丁烯基咪唑盐离子聚合物5wt%的热失重温度≥200℃,优选≥220℃;
    优选地,所述异丁烯基阳离子盐聚合物为异丁烯基吡啶盐离子聚合物,所述异丁烯基吡啶盐离子聚合物5wt%的热失重温度≥180℃,优选≥200℃。
  8. 一种异丁烯基阳离子盐离子聚合物的制备方法,其特征在于,所述制备方法包括:
    (1)将聚合物溶解于有机溶剂中,得到聚合物溶液,在聚合物溶液中加入卤素进行卤化反应,得到卤化的聚合物溶液;
    (2)将叔胺化合物、叔膦化合物、咪唑化合物和吡啶化合物中的至少一种加入所述卤化的聚合物溶液中,进行离子化反应,得到所述异丁烯基阳离子盐离子聚合物;
    所述聚合物为异丁烯与烷基苯乙烯的无规共聚物;
    所述卤化反应在可见光的照射下进行,所述可见光的发光方式为脉冲式发光。
  9. 根据权利要求8所述的制备方法,其中,以所述聚合物的总摩尔量为基准,烷基苯乙烯提供的结构单元的含量为3-25mol%,优选为5-20mol%,异丁烯提供的结构单元的含量为75-97mol%,优选为80-95mol%;
    优选地,所述聚合物的重均分子量为Mw为1×104-1×105,优选为2×104-8×104;分子量分布系数为2-3.5,优选为2.2-3;
    优选地,所述聚合物中铝离子的含量低于10ppm,优选低于5ppm。
  10. 根据权利要求8或9所述的制备方法,其中,所述可见光的波长为560-630nm;
    优选地,所述脉冲式发光的脉冲时间为5-40s,优选为10-30s。
  11. 根据权利要求8-10中任意一项所述的制备方法,其中,以烷基苯乙烯提供的结构单元的摩尔含量计,所述聚合物与所述卤素的摩尔比为1:0.5-2,优选为1:0.8-1.5;
    优选地,所述卤素为液溴;
    优选地,将卤素与有机溶剂混合得到卤素溶液,将所述卤素溶液滴加至所述聚合物溶液中进行卤化反应;
    优选地,控制所述卤素溶液的滴加速度使得卤化反应的时间为30-180min。
  12. 根据权利要求8-11中任意一项所述的制备方法,其中,所述叔胺化合物具有式(6)所示的结构;
    式(6),其中,R3、R4、R5各自独立地为C1-C20的直链烷基、C1-C20的支链烷基或C6-C20的芳基;
    优选地,所述叔膦化合物具有式(7)所示的结构;
    式(7),其中,R6、R7、R8各自独立地为C1-C10的直链烷基、C1-C10的支链烷基、C3-C10环烷基或C6-C10的芳基;
    优选地,所述咪唑化合物具有式(8)所示的结构;
    式(8),其中,R9为氢、C1-C20的直链烷基,R10、R11、R12各自独立地为氢、卤原子、C1-C10的直链烷基、C1-C10的支链烷基、羟基、硝基、-(CH2)n-NH、氰基或C6-C10的芳基,n为0-5的整数;
    优选地,所述吡啶化合物具有式(9)所示的结构;
    式(9),其中,R13、R14、R15、R16、R17各自独立地为氢、卤原子、C1-C20的直链烷基、C1-C20的支链烷基、硝基、氨基或氰基;
    优选地,R3、R4、R5各自独立地为C1-C18的直链烷基或C6-C9的芳基,更优选为R3、R4、R5各自独立地为 甲基、C8-C16的直链烷基或苯基,更进一步优选地,R3、R4为甲基,R5为C8-C16的直链烷基或苯基;
    优选地,R6、R7、R8各自独立地为C1-C8的直链烷基、C5-C8环烷基C6-C8的芳基,更优选地,R6、R7、R8各自独立地为C1-C8的直链烷基、环戊基、环己基或苯基;
    优选地,R9为氢、C1-C18的直链烷基;R10、R11、R12各自独立地为氢、卤原子、C1-C5的直链烷基、C1-C5的支链烷基、羟基、硝基、-(CH2)n-NH、氰基或C6-C8的芳基,n为0-3的整数,更优选地,R9为氢、C1-C16的直链烷基;R10、R11、R12各自独立地为氢、卤原子、C1-C4的直链烷基、羟基、硝基、氰基、氨基或苯基;
    优选地,R13、R14、R15、R16、R17各自独立地为氢、卤素、C1-C15的直链烷基、C1-C15的支链烷基、硝基、氨基或氰基,更优选地,R13、R14、R15、R16、R17各自独立地为氢、卤素、C1-C10的直链烷基、氨基或氰基。
  13. 根据权利要求8-12中任意一项所述的制备方法,其中,所述叔胺化合物、叔膦化合物、咪唑化合物和吡啶化合物中的至少一种与所述卤素的摩尔比为0.8-1.5:1,优选为0.9-1.2:1。
  14. 根据权利要求8-13中任意一项所述的制备方法,其中,步骤(2)中,所述离子化反应的条件包括:在保护性气体的保护下,反应温度为20-150℃,优选为40-120℃;反应时间为1-24h,优选为2-20h;
    优选地,所述离子化反应的条件包括:在保护性气体的保护下,反应温度为20-100℃,优选为40-80℃;反应时间为1-10h,优选为2-8h;
    优选地,所述离子化反应的条件包括:在保护性气体的存在下,反应温度为60-150℃,优选为80-120℃;反应时间为4-24h,优选为6-20h;
    优选地,所述离子化反应的条件包括:在保护性气体的存在下,反应温度为60-120℃,优选为70-100℃;反应时间为6-20h,优选为8-16h;
    优选地,所述离子化反应的条件包括:在保护性气体的存在下,反应温度为60-150℃,优选为80-120℃;反应时间为4-20h,优选为6-16h。
  15. 由权利要求8-14中任意一项所述的制备方法制得的异丁烯基阳离子盐离子聚合物;
    优选地,所述异丁烯基阳离子盐离子聚合物选自异丁烯基季铵盐离子聚合物、异丁烯基季鏻盐离子聚合物、异丁烯基咪唑盐离子聚合物和异丁烯基吡啶盐离子聚合物中的至少一种。
  16. 权利要求1-7和15中任意一项所述的异丁烯基阳离子盐离子聚合物作为抗菌剂的应用。
  17. 权利要求1-7和15中任意一项所述的异丁烯基阳离子盐离子聚合物用于抑制和杀灭细菌、真菌和病毒中的至少一种。
  18. 一种抗菌高分子材料,其特征在于,所述抗菌高分子材料包含权利要求1-7和15中任意一项所述的异丁烯基阳离子盐离子聚合物;
    优选地,相对于100份的高分子材料,所述异丁基阳离子盐离子聚合物的用量为1-10份,优选为2-7份;
    优选地,所述异丁烯基阳离子盐离子聚合物为异丁烯基季铵盐离子聚合物,相对于100份的高分子材料,所述异丁烯基季铵盐离子聚合物的用量为1-10份,优选为5-7份;
    优选地,所述异丁烯基阳离子盐离子聚合物为异丁烯基季鏻盐离子聚合物,相对于100份的高分子材料为基准,所述异丁烯基季鏻盐离子聚合物的用量为1-8份,优选为2-6份;
    优选地,所述异丁烯基阳离子盐离子聚合物为异丁烯基咪唑盐离子聚合物,相对于100份的高分子材料,所述异丁烯基咪唑盐离子聚合物的用量为1-10份,优选为3-7份;
    优选地,所述异丁烯基阳离子盐离子聚合物为异丁烯基吡啶盐离子聚合物,相对于100份的高分子材料,所述异丁烯基吡啶盐离子聚合物的用量为1-10份,优选为3-7份;
    优选地,所述高分子材料选自塑料、橡胶、纤维和涂料中的至少一种。
PCT/CN2023/109511 2022-11-11 2023-07-27 异丁烯基阳离子盐聚合物及其制备方法与应用、抗菌高分子材料 WO2024098840A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202211415126.6A CN118027253A (zh) 2022-11-11 2022-11-11 异丁烯基季鏻盐离子聚合物及其制备方法与应用、抗菌高分子材料
CN202211412278.0A CN118027254A (zh) 2022-11-11 2022-11-11 异丁烯基吡啶盐离子聚合物及其制备方法与应用、抗菌高分子材料
CN202211415126.6 2022-11-11
CN202211411836.1 2022-11-11
CN202211412278.0 2022-11-11
CN202211411836.1A CN118027252A (zh) 2022-11-11 2022-11-11 异丁烯基咪唑盐离子聚合物及其制备方法与应用、抗菌高分子材料
CN202211411837.6 2022-11-11
CN202211411837.6A CN118027265A (zh) 2022-11-11 2022-11-11 异丁烯基季铵盐离子聚合物及其制备方法与应用、抗菌高分子材料

Publications (1)

Publication Number Publication Date
WO2024098840A1 true WO2024098840A1 (zh) 2024-05-16

Family

ID=91031877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109511 WO2024098840A1 (zh) 2022-11-11 2023-07-27 异丁烯基阳离子盐聚合物及其制备方法与应用、抗菌高分子材料

Country Status (1)

Country Link
WO (1) WO2024098840A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1043506A (zh) * 1988-12-02 1990-07-04 中国科学院物理研究所 激光增强催化制备聚合物的方法
US5366727A (en) * 1991-02-21 1994-11-22 Nippon Chemical Industrial Co., Ltd. Antibacterial agent
CN102796214A (zh) * 2012-06-08 2012-11-28 上海师范大学 一类含有季铵盐和卤胺或卤胺前置体官能团的杀菌聚合物及其制备方法和应用
CN104761666A (zh) * 2015-04-07 2015-07-08 肖金亭 一种氯化聚氯乙烯cpvc树脂的微波辐射熔体法氯化生产方法
CN107347909A (zh) * 2017-05-15 2017-11-17 北京化工大学 一种含有双羟基的四季鏻阳离子抗菌剂及其制备方法
CN107709374A (zh) * 2015-07-01 2018-02-16 株式会社钟化 卤代异烯烃系聚合物的制造方法
CN109942629A (zh) * 2019-03-21 2019-06-28 北京化工大学 一种含有三羟基的六季鏻阳离子抗菌剂及其制备方法
CN110256617A (zh) * 2019-02-26 2019-09-20 华南理工大学 含季鏻盐结构的聚(甲基)丙烯酸酯抗菌剂及其制备方法和在塑料中的应用
CN111434695A (zh) * 2019-01-14 2020-07-21 中国石油化工股份有限公司 一种改进的共聚物溴化的方法
CN111434696A (zh) * 2019-01-14 2020-07-21 中国石油化工股份有限公司 将共聚物进行溴化方法
CN111434697A (zh) * 2019-01-14 2020-07-21 中国石油化工股份有限公司 共聚物溴化的方法
CN112608402A (zh) * 2020-12-10 2021-04-06 北京化工大学 一种苯乙烯类嵌段共聚物及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1043506A (zh) * 1988-12-02 1990-07-04 中国科学院物理研究所 激光增强催化制备聚合物的方法
US5366727A (en) * 1991-02-21 1994-11-22 Nippon Chemical Industrial Co., Ltd. Antibacterial agent
CN102796214A (zh) * 2012-06-08 2012-11-28 上海师范大学 一类含有季铵盐和卤胺或卤胺前置体官能团的杀菌聚合物及其制备方法和应用
CN104761666A (zh) * 2015-04-07 2015-07-08 肖金亭 一种氯化聚氯乙烯cpvc树脂的微波辐射熔体法氯化生产方法
CN107709374A (zh) * 2015-07-01 2018-02-16 株式会社钟化 卤代异烯烃系聚合物的制造方法
CN107347909A (zh) * 2017-05-15 2017-11-17 北京化工大学 一种含有双羟基的四季鏻阳离子抗菌剂及其制备方法
CN111434695A (zh) * 2019-01-14 2020-07-21 中国石油化工股份有限公司 一种改进的共聚物溴化的方法
CN111434696A (zh) * 2019-01-14 2020-07-21 中国石油化工股份有限公司 将共聚物进行溴化方法
CN111434697A (zh) * 2019-01-14 2020-07-21 中国石油化工股份有限公司 共聚物溴化的方法
CN110256617A (zh) * 2019-02-26 2019-09-20 华南理工大学 含季鏻盐结构的聚(甲基)丙烯酸酯抗菌剂及其制备方法和在塑料中的应用
CN109942629A (zh) * 2019-03-21 2019-06-28 北京化工大学 一种含有三羟基的六季鏻阳离子抗菌剂及其制备方法
CN112608402A (zh) * 2020-12-10 2021-04-06 北京化工大学 一种苯乙烯类嵌段共聚物及其制备方法

Similar Documents

Publication Publication Date Title
JP4652813B2 (ja) 固体支持体の表面処理法およびその表面処理法により得られる固体支持体
JP4610904B2 (ja) 一種の機能化ポリオレフィンマスターバッチ及びその製造法と応用
CN101812160B (zh) 一种聚烯烃功能化母粒及其制备方法和应用
CN102796214A (zh) 一类含有季铵盐和卤胺或卤胺前置体官能团的杀菌聚合物及其制备方法和应用
DE69307112T2 (de) Polymerisierbares monomer, polymere und verfahren zu seiner herstellung
CN108250578B (zh) 一种环保、无毒持久抗菌聚丙烯材料
WO2024098840A1 (zh) 异丁烯基阳离子盐聚合物及其制备方法与应用、抗菌高分子材料
JPH0229644B2 (ja) Bokabi*satsukinzai
CN105111367A (zh) 含有卤胺官能团的大孔交联杀菌高分子树脂及制备和应用
JP5282279B2 (ja) 抗菌性発泡樹脂
CN111793272B (zh) 一种荧光抗菌聚丙烯组合物及其制备方法和应用
CN110776599B (zh) 一种抗菌水凝胶
CN111793340B (zh) 一种荧光抗菌聚碳酸酯复合材料及其制备方法和应用
US5281414A (en) Three-dimensional water disinfectants
CN118027254A (zh) 异丁烯基吡啶盐离子聚合物及其制备方法与应用、抗菌高分子材料
CN118027252A (zh) 异丁烯基咪唑盐离子聚合物及其制备方法与应用、抗菌高分子材料
CN118027253A (zh) 异丁烯基季鏻盐离子聚合物及其制备方法与应用、抗菌高分子材料
CN118027265A (zh) 异丁烯基季铵盐离子聚合物及其制备方法与应用、抗菌高分子材料
CA3178561A1 (en) Compositions and methods for antimicrobial articles
JP3832685B2 (ja) 抗菌性吸水性樹脂、その製造方法および抗菌性吸水性樹脂組成物
AT510488B1 (de) Antimikrobielles mittel für polymere
JP3643151B2 (ja) 抗菌性含リン樹脂およびその製造方法
CN112142929A (zh) 一种抗菌聚乙烯材料及其制备方法
CN104710563A (zh) 一种长效离子型抗菌复合膜及其制备方法
Shevchenko et al. Effect of some metal β-diketonates on the bactericidal activity of polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23887536

Country of ref document: EP

Kind code of ref document: A1