WO2024098720A1 - 散热器 - Google Patents

散热器 Download PDF

Info

Publication number
WO2024098720A1
WO2024098720A1 PCT/CN2023/096202 CN2023096202W WO2024098720A1 WO 2024098720 A1 WO2024098720 A1 WO 2024098720A1 CN 2023096202 W CN2023096202 W CN 2023096202W WO 2024098720 A1 WO2024098720 A1 WO 2024098720A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
fin
heat
substrate
fins
Prior art date
Application number
PCT/CN2023/096202
Other languages
English (en)
French (fr)
Inventor
涂益建
Original Assignee
广东英维克技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东英维克技术有限公司 filed Critical 广东英维克技术有限公司
Publication of WO2024098720A1 publication Critical patent/WO2024098720A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the embodiments of the present application relate to the technical field of heat dissipation equipment, and in particular to a heat sink.
  • the existing radiator fins have great resistance to the liquid after heating and liquefaction, which makes the radiator's current heat dissipation effect on the equipment limited. For example, it can only solve some low-end electronic devices with low power consumption and low heat flux density. Once the equipment is upgraded and the heat generation increases, this radiator will find it difficult to meet the heat dissipation needs of the upgraded equipment.
  • the embodiments of the present application provide a radiator to solve the technical problem that the existing radiator has a poor heat dissipation effect.
  • a heat sink provided in an embodiment of the present application includes: a substrate cavity group and a cavity fin array;
  • Each cavity fin in the cavity fin array is connected to the refrigerant inlet channel of the substrate cavity group, so that the liquid working medium filled in the substrate cavity group absorbs heat and vaporizes, and then passes through the refrigerant inlet channel to the cavity fin inner cavity for heat dissipation, and the heat absorbed by the liquid working medium comes from the heat source to be cooled;
  • each cavity fin is provided with a guide wall with a preset inclination structure, wherein the preset inclination structure forms an inclined edge relative to the horizontal plane, which is used to guide the liquid in the cavity of the cavity fin back to the inner wall of the cavity fin.
  • the substrate cavity group is provided.
  • the cavity fin is vertically plugged into the refrigerant inlet passage; and/or,
  • the preset inclination angle structure includes an oblique square or oblique semicircular structure with a preset inclination angle relative to the refrigerant inlet passage.
  • it further comprises: a spoiler fin spaced apart from the cavity fin;
  • Each of the spoiler fins is provided with a through hole on the plate wall facing the refrigerant air inlet passage.
  • the spoiler fins are integrally stamped.
  • the cavity fins and the spoiler fins are respectively provided with connection layers for interconnection with respect to vertical side walls of the substrate cavity group.
  • connection layer is an aluminum material layer acting as solder, specifically a 4343 aluminum material layer or a 4045 aluminum material layer.
  • the spoiler fin is a wave-shaped tooth plate including a rectangular wave or a sine wave;
  • the tooth pitch between two adjacent corrugated tooth plates is 2.2 ⁇ 0.2 mm, and the plate wall thickness of each corrugated tooth plate is 0.2 ⁇ 0.1 mm.
  • the substrate cavity group includes a cavity cover, a substrate cavity and a liquid wick structure
  • the cavity cover is installed on the top of the substrate cavity and is provided with a plurality of refrigerant air inlet channels, the number of which is not less than the number of the cavity fins;
  • the liquid wick structure is installed inside the substrate cavity, and is used to absorb heat and vaporize the liquid working medium filled in the substrate cavity into a gaseous working medium that flows to the cavity fins.
  • the wick structure is a cylindrical structure with a diameter ⁇ of 1 mm and a height of 3 mm.
  • a fin guard is also included;
  • the fin guard plate is vertically installed on the side end of the substrate cavity group to form a circumferential enclosure for the cavity fin array.
  • the liquid working medium After the liquid working medium absorbs the heat generated by the heat source and vaporizes, it can enter the cavity fin cavity through the refrigerant inlet channel for heat exchange.
  • the use of multiple cavity fins can increase the heat exchange area, thereby achieving efficient heat removal of the heat source.
  • the preset inclination structure set on the inner wall of the cavity fin helps the liquefied liquid in the cavity fin cavity to move along the inclination of the preset inclination structure with weak or even no impedance due to gravity.
  • the bevel edge flows back into the substrate cavity group, thereby realizing the working medium circulation in the substrate cavity group, improving the working medium gas-liquid conversion efficiency, and further improving the heat exchange effect of the radiator.
  • FIG. 1a is a schematic diagram of an assembly of a conventional radiator in a mainframe case
  • FIG. 1b is a schematic structural diagram of a conventional heat dissipation module in the structure of FIG. 1a;
  • FIG2 is a schematic diagram of the working medium flow of a traditional heat dissipation module
  • FIG3 is a schematic structural diagram of the radiator of the present application.
  • FIG4 a is a side view of the cavity fin of the present application.
  • FIG4 b is another side view of the cavity fin of the present application.
  • FIG4c is another side view of the cavity fin of the present application.
  • FIG5 is another schematic diagram of the structure of the radiator of the present application.
  • FIG6 a is a side view of the spoiler fin of the present application.
  • FIG6 b is another side view of the spoiler fin of the present application and a partial enlarged view thereof;
  • FIG6c is another side view schematic diagram of the spoiler fin of the present application and a partial enlarged view thereof;
  • FIG7a is a schematic diagram of an assembly of the heat sink of the present application in a mainframe box
  • FIG7b is a side schematic diagram of FIG7a
  • FIG8a is a schematic structural diagram of a substrate chamber assembly of the present application.
  • FIG8b is a schematic diagram of an internal structure of the structure of FIG8a;
  • FIG8c is a structural schematic diagram corresponding to the structure of FIG8b;
  • FIG9 is a schematic diagram of heat dissipation of the radiator of the present application in a mainframe case
  • FIG10 is a comparison diagram of simulation effects of a traditional radiator and the radiator of the present application.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or it can be indirectly connected through an intermediate medium, or it can be the internal communication of two components.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or it can be indirectly connected through an intermediate medium, or it can be the internal communication of two components.
  • the radiator currently used in the desktop host generally adopts the traditional heat dissipation module structure, such as heat pipe + copper plate + aluminum extrusion profile or heat pipe + copper plate + heat exchanger, and its circumferential components also include a housing 1, a power supply 2, an inductor 3, a resistor 4, a heat drive fan 5, a capacitor 6 and an integrated circuit IC chip 7.
  • the main heating element is the central processing unit CPU13; specifically, the traditional heat dissipation module is mainly composed of three parts: aluminum extrusion profile 9, heat pipe 10 and copper plate 11. During the manufacturing process, after these three parts are assembled, they are coated on their welding surfaces.
  • the solder paste can be welded in a soldering furnace to obtain a formed heat dissipation product, in which the heat pipe 10 is buried in the heat pipe groove 12.
  • the entire radiator is locked in the main chassis, and is often locked directly above the CPU 13.
  • the heat generated in the power consumption area of the CPU 13 is transferred to the heat pipe 10, the copper plate 11 and the aluminum extruded profile 9 in turn through the heat-conducting medium (such as the working fluid), and the heat-driving fan 5 sends the heat in the heat pipe groove 12 out of the main chassis system; at the same time, part of the heat of the power-consuming components on the printed circuit board 8 will also be taken out of the main chassis system, such as the outside of the casing, by the wind force of the heat-driving fan 5.
  • the heat-conducting medium such as the working fluid
  • the core component of the entire heat dissipation module is the heat pipe 10.
  • the heated liquid working medium 16 flows from the evaporation section 15 to the condensation section 17 (arrow pointing to the right), and after the working medium is cooled, it flows back under the capillary force of the capillary structure (copper powder/copper mesh/groove) 14, that is, it flows from the condensation section 17 to the evaporation section 15, and so on and so forth to achieve heat exchange balance.
  • this traditional water-cooled heat dissipation module often uses pure water as the working medium 16. Since the pure water is injected into the heat pipe, its phase change process is small and the working medium heat exchange efficiency is low.
  • the traditional radiator product is prone to burn out or the heat dissipation efficiency is attenuated, and thus cannot meet the heat dissipation requirements of contemporary or upgraded electronic devices.
  • the traditional water-cooled heat dissipation module needs to add an additional power pump to promote the circulation of the working medium inside, and also needs to install a sensor to detect whether the module product is leaking, which makes the auxiliary components more and the assembly difficult.
  • radiator of the present application will be described in detail below, where, for example, during the actual assembly process, the radiator is locked above the CPU power consumption area facing the heat source surface of the host PCB for use.
  • the present application provides an embodiment of a heat sink, the heat sink comprising:
  • each cavity fin 21 in the cavity fin array is connected to the refrigerant air inlet channel 26 of the substrate cavity group, so that the liquid working medium filled in the substrate cavity group absorbs heat and vaporizes and then passes through the refrigerant air inlet channel 26 to the inner cavity of the cavity fin for heat dissipation, and the heat absorbed by the liquid working medium comes from the heat source to be cooled (such as the CPU);
  • the inner wall of each cavity fin 21 is provided with a guide wall with a preset inclination structure 210, wherein the preset inclination structure 210 forms an inclined edge relative to the horizontal plane, which is used to guide the liquid in the cavity fin cavity back to the substrate cavity group.
  • the heat generated by the heat source can be absorbed by the vaporization of the liquid working fluid and carried to the inner cavity of the cavity fin for heat exchange through the refrigerant inlet channel.
  • the use of multiple cavity fins can increase the heat exchange area to achieve efficient heat removal of the heat source.
  • the preset inclination structure of the inner wall of the cavity fin helps to reduce the heat of the cavity fin.
  • the impedance force on the liquefied liquid in the inner cavity makes the liquid flow back to the substrate cavity group more smoothly along the inclined edge of the preset inclination structure, thereby realizing the working medium circulation in the substrate cavity group, improving the working medium gas-liquid conversion efficiency, and further improving the heat exchange effect of the radiator. Therefore, it can be understood that the use of the preset inclination structure can effectively improve the resource utilization rate of the working medium and maintain the heat exchange balance of the radiator.
  • the cavity fin 21 is vertically plugged into the refrigerant inlet channel 26, and/or the internal preset angle structure 210 includes an oblique square or oblique semicircle structure with a preset angle of inclination relative to the refrigerant inlet channel.
  • the cavity fin can also be indirectly connected to the refrigerant inlet channel through an assembly (such as a screw or an adhesive), and the preset angle structure can also be set to other shapes besides an oblique square or an oblique semicircle, as long as the design of the shape helps to reduce the liquid impedance and has a guiding effect on the liquid.
  • the preset inclination structure 210 may be a 5 ⁇ 5 mm oblique square structure with an inclination angle of 45° relative to the refrigerant inlet passage.
  • the refrigerant inlet width H corresponding to the cavity fin of this structure may be 1.5 mm.
  • the radiator of the present application may also include a fin guard plate 29 as shown in Figure 3, which is vertically installed on the side end of the substrate cavity group to form a circumferential enclosure for the cavity fin array, thereby preventing external force from impacting and damaging the cavity fins; specifically, the two fin guard plates are vertically welded at both ends of the substrate cavity group, which is equivalent to being arranged at the head and tail ends of the cavity fin array; the fin guard plate can specifically be a stamped solid cover plate. Compared with the aluminum extrusion process, this stamped solid cover plate process is simple and structurally stable.
  • the heat sink of the present application may also include spoiler fins 20 (which may be referred to as spoiler FIN or spoiler structure) spaced apart from the cavity fins, and each spoiler fin 20 is provided with a through hole 201 (such as a square through hole) on the plate wall facing the refrigerant inlet passage.
  • spoiler fins 20 which may be referred to as spoiler FIN or spoiler structure
  • each spoiler fin 20 is provided with a through hole 201 (such as a square through hole) on the plate wall facing the refrigerant inlet passage.
  • the aforementioned spoiler FIN is a corrugated tooth plate including a rectangular wave or a sine wave
  • the tooth pitch P (Pitch) between two adjacent corrugated tooth plates may be specifically 2.2 ⁇ 0.2 mm
  • the plate wall thickness T of each corrugated tooth plate (thinkness) can be specifically 0.2 ⁇ 0.1mm
  • the aforementioned corrugated tooth plate can also be a plate of other shapes besides rectangular wave and sine wave, as long as the design of this shape can provide the maximum heat exchange area of up and down dislocation or undulation, and improve the heat removal effect
  • the tooth spacing and plate wall thickness of the corrugated tooth plate can be set according to actual needs (such as heat exchange efficiency).
  • a plurality of spoiler FIN20 (or spoiler structure) with a tooth pitch P of 2.2mm and a plate wall thickness T of 0.1mm are stacked into a FIN group, and the plate wall of each spoiler structure is provided with one-to-one aligned FIN through holes 201 to form a broken hole air duct.
  • the heat-driving fan which can be installed on the inner side of the housing marked with the number 1 in Figure 7a) blows air from the side, the wind can pass through the broken hole air duct, from one spoiler structure flow channel to another spoiler structure, thereby increasing the heat exchange area and improving the heat removal performance of the radiator.
  • the spoiler FIN in order to ensure the overall hardness and surface flatness of the spoiler FIN (to prevent surface bulging during the aluminum extrusion manufacturing process), the spoiler FIN can be stamped in one piece, and its material can be selected from AL3003 easy-to-braze coil.
  • the cavity fins and the spoiler FIN can be provided with connecting layers for interconnection relative to the vertical side walls of the substrate cavity group, such as an aluminum material layer acting as a solder (specifically, a 4343 type aluminum material layer or a 4045 type aluminum material layer), so that the spoiler FIN of the present application can be directly welded (such as brazing) on the outer side walls of two adjacent cavity fins without the need for traditional solder paste; of course, other materials besides 4343 type or 4045 type aluminum materials can also be used, as long as they can replace solder paste to maintain the connection relationship between the cavity fins and the spoiler FIN and play a heat transfer effect.
  • the connecting layer can be used as a component of the corrugated tooth plate wall. For example, in the above-mentioned 0.2 ⁇ 0.1mm plate wall thickness thinkness, the thickness of the connecting layer accounts for half of the thickness.
  • the above-mentioned substrate cavity group may specifically include a cavity cover plate 24, a substrate cavity 25 and a wick structure 23; the cavity cover plate is installed on the top of the substrate cavity (such as the two are brazed together), and a plurality of refrigerant air inlet channels 26 are opened, the number of which is not less than the number of cavity fins, to ensure that the heat of the heat source has more heat dissipation paths and shorten the heat dissipation time.
  • the wick structure 23 can be specifically installed inside the substrate cavity and facing the heat source.
  • the wick structure 23 can be used to absorb heat and vaporize the liquid working medium filled in the substrate cavity into a gaseous working medium that leads to the cavity fins.
  • a liquid wick structure 23 can be added to the heat sink in the heat source area corresponding to the CPU13 heat source so that The liquid absorption core structure strengthens the boiling of the liquid working medium, i.e. the refrigerant, and at the same time strengthens the liquefaction absorption capacity of the reflux process, thereby promoting the circulation of the working medium and improving the operating performance of the product.
  • the liquid absorption core structure 23 of the present application can be specifically a cylindrical structure with a diameter ⁇ of 1 mm and a height of 3 mm.
  • This parameter-verified thermal siphon liquid absorption core structure not only has a simpler structure and production process than traditional sintering capillary structures, but also its capillary force can achieve a better liquid absorption effect, thereby providing good help for the working fluid circulation and heat exchange capacity of the radiator.
  • two-phase phase change refrigerant materials such as R134a or R1233zd can be used as the liquid working fluid (which can be called heat dissipation working fluid or refrigerant) of the present application to solve the problem that the power consumption of electronic equipment increases, but the heat dissipation per unit area cannot be increased or the heat is not relieved in time, resulting in the equipment burning dry. In other words, it is used to deal with the heat dissipation problem of upgraded high-consumption electronic equipment.
  • the height of the cavity fins can be increased according to actual needs, such as the height of the main chassis, to obtain a larger cavity volume and heat exchange area, etc.
  • the radiator of the present application can be made mainly of aluminum, and assembled, positioned and clamped on a brazing jig, and finally brazed in an aluminum brazing tunnel furnace.
  • the present application can also add FIN.
  • these three parts can be screwed as a whole above the PCB power consumption area 19 (similar to the power consumption area of a traditional heat dissipation module), so that the PCB power consumption area 19 and the radiator 18 are combined to form a working module of the host, and after the PCB power consumption area 19 starts the power consumption, the radiator 18 starts to work; of course, the bottom of this substrate cavity can be in contact with power consumption components other than the CPU, so that the radiator can also provide auxiliary heat dissipation to each power consumption component to reduce the temperature in the host box.
  • the cavity fins and spoiler FINs arranged at intervals can be regarded as the heat exchange cavity constituting the radiator, which is used to provide a larger heat exchange area for the heat generated by the heat source, so that this radiator product can not only be used for current mid-range electronic devices, but also can cope with the heat dissipation problems of upgraded high-end servers and desktop hosts, etc., laying a new foundation for the heat dissipation of future high-end electronic devices and broadening the application field.
  • the working process of the radiator shown in FIG5 and FIG7a includes: after the CPU heat source surface is heated, the liquid working medium 27 absorbs heat inside the substrate cavity group and vaporizes into a gaseous working medium 28, and the gaseous working medium 28 can enter the cavity fin through the refrigerant air inlet channel 26 and transfer heat to the FIN sheet in the side wall direction for heat exchange.
  • the heat can be taken out of the radiator and the main chassis in the horizontal and vertical directions under the wind force of the heat-driving fan, so as to achieve continuous and efficient heat removal for high-power products; in addition, the liquid in the gas-liquid mixture Under the action of gravity, the working fluid can be guided back to the interior of the substrate cavity group by the preset inclination structure of the cavity fins, thereby promoting the recycling of the working fluid and the reciprocating heat dissipation of the heat source.
  • the following finite element analysis comparison is performed on the traditional radiator and the radiator of the present application, wherein the radiator of the present application is equipped with a spoiler FIN and a liquid wick structure with a diameter of ⁇ of 1mm and a height of 3mm, and uses R134a refrigerant material as the liquid working fluid; because the main power consumption of the electronic equipment (host) is concentrated on the two CPUs, the simulation comparison results only need to reflect the temperatures of the two CPUs.
  • the power consumption parameters of the four CPUs facing CPU1 and CPU2 of the traditional radiator and CPU1-1 and CPU2-2 of the radiator of the present application are all 350W
  • the air volume Q of the heat-driving fans of the two radiators is 120CFM
  • the 3D drawing is imported into the finite element analysis software Flotherm, and then the component fillet is optimized.
  • the simulation results of the entire main chassis system are shown in Figure 10, where the left figure is a simulation schematic diagram of the traditional radiator, and the right figure is a simulation schematic diagram of the radiator of the present application:
  • CPU1_Temperature 50.1°C
  • CPU2_Temperature 58.7°C

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本申请实施例公开了散热器,该散热器包括:基板腔体组和空腔翅片阵列,空腔翅片阵列中各空腔翅片与基板腔体组的冷媒进气通道连通,每一空腔翅片的内壁设置有预设倾角结构的导流壁。因此,液态工质吸收发热源产生的热量汽化后,通过冷媒进气通道可进入空腔翅片内腔进行换热,而多个空腔翅片的使用能加大换热面积,从而实现对发热源的高效解热。另一方面,设置于空腔翅片内壁的预设倾角结构,有助于空腔翅片内腔中液化的液体因重力作用弱阻抗甚至无阻抗地沿该预设倾角结构的倾斜边沿回流至基板腔体组内,从而实现基板腔体组内的工质循环,提高工质气液转换效率,进而提高散热器的换热效果。

Description

散热器
本申请要求于2022年11月8日提交中国专利局、申请号为202211391793.5、发明名称为“散热器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及散热设备技术领域,尤其涉及散热器。
背景技术
随着时代的发展,如台式主机等电子设备的集成化程度越来越高,运算速度急剧加快,这使得它们的功耗和热流密度不断升高,发热量不断增多。
在实现本申请的过程中,发明人发现现有技术中至少存在如下问题:
现有的散热器翅片对受热液化后的液体的阻力大,使得散热器目前对设备热量的驱散效果有限,如只能解决一些功耗小、热流密度小的低端电子设备,而一旦该设备进行了升级,发热量增多了,这种散热器将难以应对升级设备的解热需求。
发明内容
本申请实施例提供了散热器,用以解决现有散热器解热效果不佳的技术问题。
本申请实施例提供的一种散热器,包括:基板腔体组和空腔翅片阵列;
所述空腔翅片阵列中各空腔翅片与所述基板腔体组的冷媒进气通道连通,以使得填充在所述基板腔体组内的液态工质,吸热汽化后通过所述冷媒进气通道通往空腔翅片内腔进行散热,所述液态工质吸收的热量来源于待解热的发热源;
每一空腔翅片的内壁设置有预设倾角结构的导流壁,其中,所述预设倾角结构相对于水平面形成的倾斜边沿,用以将所述空腔翅片腔内的液体导流回到 所述基板腔体组。
可选地,所述空腔翅片竖直插接于所述冷媒进气通道;和/或,
所述预设倾角结构包括相对于所述冷媒进气通道呈预设倾斜角度的斜正方形或斜半圆结构。
可选地,还包括:与所述空腔翅片间隔设置的扰流鳍片;
每一所述扰流鳍片朝向所述冷媒进气通道的板壁均开设有通孔。
可选地,所述扰流鳍片一体冲压成型。
可选地,所述空腔翅片和所述扰流鳍片相对于所述基板腔体组的竖向侧壁分别设置用以相互连接的连接层。
可选地,所述连接层为充当焊料的铝材料层,具体可为4343型铝材料层或4045型铝材料层。
可选地,所述扰流鳍片为包括矩形波状或正弦波状的波形齿板;
相邻两个所述波形齿板之间的齿节距为2.2±0.2mm,每一所述波形齿板的板壁厚度为0.2±0.1mm。
可选地,所述基板腔体组包括腔体盖板、基板腔体和吸液芯结构;
所述腔体盖板安装于所述基板腔体顶部,并开设通道条数不少于所述空腔翅片片数的多条所述冷媒进气通道;
所述吸液芯结构安装在所述基板腔体内部,所述吸液芯结构用于将填充在基板腔体内的液态工质吸热汽化成通往空腔翅片的气态工质。
可选地,所述吸液芯结构为直径φ为1mm、高度为3mm的圆柱形结构。
可选地,还包括翅片护板;
所述翅片护板竖向安装于所述基板腔体组的侧端,以对所述空腔翅片阵列形成周向围护。
从以上技术方案可以看出,本申请实施例至少具有以下优点:
液态工质吸收发热源产生的热量汽化后,通过冷媒进气通道可进入空腔翅片内腔进行换热,而多个空腔翅片的使用能加大换热面积,从而实现对发热源的高效解热。另一方面,设置于空腔翅片内壁的预设倾角结构,有助于空腔翅片内腔中液化的液体因重力作用弱阻抗甚至无阻抗地沿该预设倾角结构的倾 斜边沿回流至基板腔体组内,从而实现基板腔体组内的工质循环,提高工质气液转换效率,进而提高散热器的换热效果。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1a为传统散热器在主机箱内的一个装配示意图;
图1b为图1a结构中传统散热模组的一个结构示意图;
图2为传统散热模组的工质流动示意图;
图3为本申请散热器的一个结构示意图;
图4a为本申请空腔翅片的一个侧面示意图;
图4b为本申请空腔翅片的另一侧面示意图;
图4c为本申请空腔翅片的另一侧面示意图;
图5为本申请散热器的另一结构示意图;
图6a为本申请扰流鳍片的一个侧面示意图;
图6b为本申请扰流鳍片的另一侧面示意图及其局部放大图;
图6c为本申请扰流鳍片的另一侧面示意图及其局部放大图;
图7a为本申请散热器在主机箱内的一个装配示意图;
图7b为图7a的一个侧面示意图;
图8a为本申请基板腔体组的一个结构示意图;
图8b为图8a结构的一个内部结构示意图;
图8c为图8b结构所对应的一个结构示意图;
图9为本申请散热器在主机箱内的散热示意图;
图10为传统散热器和本申请散热器的仿真效果对比图;
其中,附图标记为:
1.机壳;2.电源;3.电感;4.电阻;5.驱热风扇;6.电容;7.集成电路IC芯
片;8.PCB;9.铝挤型材;10.热管;11.铜板;12.热管槽;13.CPU;14.毛细结 构;15.蒸发段;16(或27).液态工质;17.冷凝段;18.散热器;19.PCB功耗区;20.扰流鳍片或扰流FIN;201.通孔;21.空腔翅片;210.预设倾角结构;22.基板腔体组;23.吸液芯结构;24.腔体盖板;25.基板腔体;26.冷媒进气通道;28.气态工质;29.翅片护板。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请实施例的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请实施例中的具体含义。
如图1a和图1b所示,目前台式主机使用的散热器,普遍采用传统的散热模组结构,如热管+铜板+铝挤型材或热管+铜板+换热片,其周向组件还包括机壳1、电源2、电感3、电阻4、驱热风扇5、电容6和集成电路IC芯片7,该主机内部会存在很多的功耗电子元器件,但主要发热元件是中央处理器CPU13;具体的,传统散热模组主要由铝挤型材9、热管10和铜板11三种部件组成,生产制造过程中,组装好此三种部件后,借助涂覆在它们焊接面上的 锡膏,则可在锡焊炉中焊接得到成形的散热产品,其中热管10埋入热管槽12里面。使用过程中,此整个散热器被锁固在主机箱内,且常被正对地锁固在CPU13上方,主机系统启动工作后,CPU13功耗区产生的热量通过导热介质(如工质)依次传到热管10、铜板11和铝挤型材9上,驱热风扇5将热管槽12内的热量送出主机箱系统之外;同时,印制电路板8上面的功耗元件的部分热量也会被驱热风扇5的风力带出到主机箱系统外面如机壳之外。
可见传统地,整个散热模组最核心的部件即热管10,如图2所示,热管启动后,受热的液态工质16从蒸发段15流向冷凝段17(箭头指向朝右),工质冷却后在毛细结构(铜粉/铜网/沟槽)14的毛细力作用下回流,即从冷凝段17流向蒸发段15,如此循环往复,以达到换热平衡。但此传统水冷散热模组,常使用纯水作为工质16,而由于纯水注入热管内部工作后,其相变过程微小,工质换热效率低,故当出现热管过长或者CPU功耗过高时,传统散热器产品容易发生烧干或散热效能衰减,从而无法满足当代或升级版电子设备的散热需求。此外,传统的水冷散热模组需额外增加动力泵,来推动里面的工质循环流动,同时还需要装上传感器检测其模组产品是否漏水,使得辅助部件多,装配困难。
以上为传统散热器的结构和使用说明。下面将对本申请的散热器进行详细说明,其中示例性的,实际装配过程中,该散热器锁固在朝向主机PCB热源面的CPU功耗区上方以供使用。
请参阅图3至图4b,本申请提供散热器的一个实施例,该散热器包括:
基板腔体组22和空腔翅片阵列,空腔翅片阵列中各空腔翅片21与基板腔体组的冷媒进气通道26连通,以使得填充在基板腔体组内的液态工质,吸热汽化后通过冷媒进气通道26通往空腔翅片内腔进行散热,液态工质吸收的热量来源于待解热的发热源(如CPU);每一空腔翅片21的内壁设置有预设倾角结构210的导流壁,其中,预设倾角结构210相对于水平面形成的倾斜边沿,用以将空腔翅片腔内的液体导流回到基板腔体组。
可见,发热源产生的热量可被液态工质汽化吸收,并由冷媒进气通道带往空腔翅片内腔换热,而多个空腔翅片的使用能加大换热面积,以实现对发热源的高效解热。另一方面,空腔翅片内壁的预设倾角结构,有助于减少空腔翅片 内腔中液化的液体所受到的阻抗力,使得该液体更顺畅地沿预设倾角结构的倾斜边沿回流至基板腔体组内,从而实现基板腔体组内的工质循环,提高工质气液转换效率,进而提高散热器的换热效果。因此,可理解的是,预设倾角结构的使用能有效提高工质的资源利用率及保持散热器的换热平衡。
在上述示例说明本申请散热器的基础上,下面将提供一些具体的可能实施示例,实际应用中,这些示例之间的实施内容可根据相应的功能原理和应用逻辑由需地结合实施。
作为一种可能的实施方式,空腔翅片21竖直插接于冷媒进气通道26,和/或,内部的预设倾角结构210包括相对于冷媒进气通道呈预设倾斜角度的斜正方形或斜半圆结构。当然,空腔翅片也可通过装配物(如螺丝或粘接剂)间接连通冷媒进气通道,预设倾角结构也可设置成除斜正方形或斜半圆之外的其他形状,只要该形状的设计有助于减少液体阻抗并对液体起到导流效果。实际应用中,蒸汽(包含液态工质汽化后得到的气态工质)沿着竖直方向向上流动,当其遇冷液化成液体时,在自身的重力作用下,将顺着预设倾角结构的倾斜边沿往下回流到基板腔体组内,从而有效减小对散热器组件的浸湿破坏,并提高工质的循环使用,此外,可通过此处的回流效果初步判断散热器的散热能力是否失效。示例性地,如图4a至图4c所示,预设倾角结构210具体可为,相对于冷媒进气通道呈45°倾斜角度的5×5mm的斜正方形结构,此种结构的空腔翅片对应的冷媒进气口宽度H可为1.5mm。
此外,本申请的散热器还可包括如图3所示的翅片护板29,该翅片护板29竖向安装于基板腔体组的侧端,以对空腔翅片阵列形成周向围护,从而避免外力撞击破坏空腔翅片;具体地,两片翅片护板分别竖直焊接在基板腔体组两端,相当于排列在空腔翅片阵列的首尾两端;翅片护板具体可为冲压成型的实体盖板,相对于挤铝工艺而言,此种冲压成型的实体盖板工艺简单结构稳定。
如图5至图6c所示,在一些具体示例中,本申请的散热器还可包括与空腔翅片间隔设置的扰流鳍片20(可称为扰流FIN或扰流结构),每一扰流鳍片20朝向冷媒进气通道的板壁均开设有通孔201(如方形状的通孔)。示例性地,前述扰流FIN为包括矩形波状或正弦波状的波形齿板,相邻两个波形齿板之间的齿节距P(Pitch)具体可为2.2±0.2mm,每一波形齿板的板壁厚度T (thinkness)具体可为0.2±0.1mm;当然,前述波形齿板还可以是除矩形波状和正弦波状之外的其他形状板,只要此形状的设计能提供上下错位或起伏性的换热面积最大化,提高解热效果,而该波形齿板的齿间距和板壁厚度可根据实际需要(如换热效率)设置。具体地,如图5、图7a和图7b所示,多个齿节距P为2.2mm、板壁厚度T为0.1mm的扰流FIN20(或称为扰流结构)堆叠成一个FIN组,每个扰流结构的板壁均开设一一对齐的FIN通孔201以形成破孔风道,当驱热风扇(可装设在图7a标注有标号1的机壳内侧)从侧面吹风时,风可以经破孔风道,从一个扰流结构流道另一个扰流结构,从而增大换热面积,提高散热器的解热性能。此外,为确保扰流FIN的整体硬度和表面平整度(防止出现如挤铝制造过程中的表面鼓包状况),扰流FIN可一体冲压成型,且其材质可选用AL3003易钎焊卷料。
在一些具体示例中,空腔翅片和扰流FIN相对于基板腔体组的竖向侧壁可分别设置用以相互连接的连接层,如充当焊料的铝材料层(具体可为4343型铝材料层或4045型铝材料层),以使得本申请的扰流FIN无需传统的锡膏便可直接焊接(如钎焊)在相邻两个空腔翅片的外侧壁上;当然,还可以采用除4343型或4045型铝材料之外的其他材料,只要其能替代锡膏用以维持空腔翅片与扰流FIN之间的连接关系,并起到传热效果。实际应用中,连接层可作为波形齿板板壁的组成部分,如上述0.2±0.1mm的板壁厚度thinkness中,连接层的厚度占有一半厚度。
如图8a至图8b所示,在一些具体示例中,上述基板腔体组具体可包括腔体盖板24、基板腔体25和吸液芯结构23;腔体盖板安装于基板腔体顶部(如二者钎焊结合),并开设通道条数不少于空腔翅片片数的多条冷媒进气通道26,以确保发热源的热量得到更多的散热路径,缩短解热时长。为集中应对和驱散功耗热源区产生的热量,针对性地提高散热水平,设置过程中,吸液芯结构23具体可安装在基板腔体内部且朝向发热源,该吸液芯结构23可用于将填充在基板腔体内的液态工质吸热汽化成通往空腔翅片的气态工质。
具体地,如图8b和图8c所示,因中间两个CPU13发热源是整个PCB工作时的高功耗或主要热源区,故为了让电子设备正常运作,且保证有关产品的可靠性,可在CPU13发热源对应的热源区为散热器增设吸液芯结构23,以使 得吸液芯结构强化液态工质即冷媒的沸腾,同时强化回流过程的液化吸液能力,从而促进工质的循环,提高产品的运行性能。
此外,根据实际经验,本申请的吸液芯结构23具体可为直径φ为1mm、高度为3mm的圆柱形结构,这种参数经验证的热虹吸式吸液芯结构,不仅结构和生产工艺比传统烧结之类的毛细结构简单,且相比之下其毛细力能达到更优的吸液效果,从而为散热器的工质循环和换热能力提供良好的帮助。
在一些具体示例中,可采用R134a或R1233zd等两相相变的制冷材料作为本申请的液态工质(可称为散热工质或冷媒),以解决电子设备的功耗上升,但单位面积散热量无法上升或解热不及时导致设备烧干等问题,即用以应对升级版高耗电子设备的散热难题。
在一些具体示例中,可根据实际需要如主机箱高度增加空腔翅片的高度,以得到更大的腔体体积和换热面积等。本申请的散热器整体主要可采用铝材为制作材料,并在钎焊治具上进行组装、定位和夹紧,最后在铝钎焊隧道炉中钎焊成形。
综上,如图5、图7a和图7b所示,在基板腔体组和空腔翅片阵列的基础上,本申请还可增设FIN,此三部分通过铝钎焊工艺焊接组装成散热器后,可由螺丝整体锁固在PCB功耗区19(类似传统散热模组的功耗区)上方,使得PCB功耗区19和散热器18结合形成主机的工作模块,且PCB功耗区19启动功耗后,散热器18开始工作;当然,此基板腔体底部可与除CPU之外的功耗元件接触,以便散热器还给各功耗元器件进行辅助散热,降低主机箱内温度。其中,间隔设置的空腔翅片和扰流FIN可视为组成散热器的换热腔体,该换热腔体用于为发热源产生的热量提供更大化的换热面积,使得本散热器产品不仅能适用当下的中端电子设备,还可以应对升级后的高端服务器和台式主机等的散热问题,为未来高端电子设备的散热打下更新基础,拓宽应用领域。
如图9所示,如图5和图7a所示的散热器工作过程包括:CPU热源面加热后,液态工质27在基板腔体组内部吸热汽化成气态工质28,该气态工质28可通过冷媒进气通道26进入空腔翅片并传热给其侧壁方向的FIN片进行换热,同时,热量在驱热风扇的风力作用下,可从水平和垂直等方向被带出散热器、主机箱之外,以实现对高功耗产品持续的高效解热;此外,气液混合中的液态 工质在重力作用下,可由空腔翅片的预设倾角结构导流回到基板腔体组内部,从而促进工质的循环利用及对热源的往复性散热。
下面对传统散热器和本申请散热器进行有限元分析对比,其中,本申请散热器的配有扰流FIN和直径φ为1mm、高度为3mm的吸液芯结构,并以R134a制冷材料为液体工质;因电子设备(主机)的主要功耗集中在两个CPU上面,故仿真对比结果只需要体现两个CPU的温度即可。
具体地,传统散热器面对的CPU1、CPU2,与本申请散热器面对的CPU1-1和CPU2-2,四个CPU的功耗参数均为350W,两散热器的驱热风扇的风量Q均为120CFM,所处的环境温度均为Ta=25℃;将3D图面导入到有限元分析软件Flotherm中,随后进行部件圆角优化后,整个主机箱系统的仿真结果如图10所示,其中,左侧示图为传统散热器的仿真示意图,右侧示图为本申请散热器的仿真示意图:
当主机系统平衡时,CPU1_Temperature(温度)=50.1℃,CPU2_Temperature=58.7℃;
CPU1-1_Temperature=46.1℃,CPU2-2_Temperature=46.7℃,两组数据显示,本申请散热器对CPU的散热效果分别优于传统散热器4℃、12℃,可见,本申请散热器较比传统散热器,能达到更优的散热水平,从而有效应对高功耗产品的解热需求。需说明的是,本申请的散热器不设置扰流FIN时,因其具有一定换热面积的空腔翅片,故其解热效果同样优于前述传统散热器。
以上实施例仅用以说明本申请的技术方案,而非对其限制。

Claims (10)

  1. 一种散热器,其特征在于,包括:基板腔体组和空腔翅片阵列;
    所述空腔翅片阵列中各空腔翅片与所述基板腔体组的冷媒进气通道连通,以使得填充在所述基板腔体组内的液态工质,吸热汽化后通过所述冷媒进气通道通往所述空腔翅片内腔进行散热,所述液态工质吸收的热量来源于待解热的发热源;
    每一所述空腔翅片的内壁设置有预设倾角结构的导流壁,其中,所述预设倾角结构相对于水平面形成的倾斜边沿,用以将所述空腔翅片腔内的液体导流回到所述基板腔体组。
  2. 根据权利要求1所述的散热器,其特征在于,所述空腔翅片竖直插接于所述冷媒进气通道;和/或,
    所述预设倾角结构包括相对于所述冷媒进气通道呈预设倾斜角度的斜正方形或斜半圆结构。
  3. 根据权利要求1所述的散热器,其特征在于,还包括:与所述空腔翅片间隔设置的扰流鳍片;
    每一所述扰流翅片朝向所述冷媒进气通道的板壁均开设有通孔。
  4. 根据权利要求3所述的散热器,其特征在于,所述扰流鳍片一体冲压成型。
  5. 根据权利要求3或4所述的散热器,其特征在于,所述空腔翅片和所述扰流鳍片相对于所述基板腔体组的竖向侧壁分别设置用以相互连接的连接层。
  6. 根据权利要求5所述的散热器,其特征在于,所述连接层为充当焊料的铝材料层。
  7. 根据权利要求3所述的散热器,其特征在于,所述扰流鳍片为包括矩形波状或正弦波状的波形齿板;
    相邻两个所述波形齿板之间的齿节距为2.2±0.2mm,每一所述波形齿板的板壁厚度为0.2±0.1mm。
  8. 根据权利要求1所述的散热器,其特征在于,所述基板腔体组包括腔体盖板、基板腔体和吸液芯结构;
    所述腔体盖板安装于所述基板腔体顶部,并开设通道条数不少于所述空腔翅片片数的多条所述冷媒进气通道;
    所述吸液芯结构安装在所述基板腔体内部,所述吸液芯结构用于将填充在基板腔体内的液态工质吸热汽化成通往所述空腔翅片的气态工质。
  9. 根据权利要求8所述的散热器,其特征在于,所述吸液芯结构为直径φ为1mm、高度为3mm的圆柱形结构。
  10. 根据权利要求1所述的散热器,其特征在于,还包括翅片护板;
    所述翅片护板竖向安装于所述基板腔体组的侧端,以对所述空腔翅片阵列形成周向围护。
PCT/CN2023/096202 2022-11-08 2023-05-25 散热器 WO2024098720A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211391793.5 2022-11-08
CN202211391793.5A CN115756120A (zh) 2022-11-08 2022-11-08 散热器

Publications (1)

Publication Number Publication Date
WO2024098720A1 true WO2024098720A1 (zh) 2024-05-16

Family

ID=85368087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096202 WO2024098720A1 (zh) 2022-11-08 2023-05-25 散热器

Country Status (2)

Country Link
CN (1) CN115756120A (zh)
WO (1) WO2024098720A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115756120A (zh) * 2022-11-08 2023-03-07 广东英维克技术有限公司 散热器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201828175U (zh) * 2010-07-25 2011-05-11 东莞市为开金属制品厂 热管式散热器
CN210168388U (zh) * 2019-04-08 2020-03-20 昆山品岱电子有限公司 光伏逆变器散热器
CN113865393A (zh) * 2021-09-22 2021-12-31 上海精智实业股份有限公司 一种用于通讯设置的散热器
WO2022141626A1 (en) * 2021-01-04 2022-07-07 Telefonaktiebolaget Lm Ericsson (Publ) Heatsink and communication device having the heatsink
CN217037749U (zh) * 2021-11-16 2022-07-22 深圳市英维克科技股份有限公司 热虹吸散热器
WO2022193169A1 (zh) * 2021-03-17 2022-09-22 上海精智实业股份有限公司 用于通讯设置的散热器
CN115756120A (zh) * 2022-11-08 2023-03-07 广东英维克技术有限公司 散热器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201828175U (zh) * 2010-07-25 2011-05-11 东莞市为开金属制品厂 热管式散热器
CN210168388U (zh) * 2019-04-08 2020-03-20 昆山品岱电子有限公司 光伏逆变器散热器
WO2022141626A1 (en) * 2021-01-04 2022-07-07 Telefonaktiebolaget Lm Ericsson (Publ) Heatsink and communication device having the heatsink
WO2022193169A1 (zh) * 2021-03-17 2022-09-22 上海精智实业股份有限公司 用于通讯设置的散热器
CN113865393A (zh) * 2021-09-22 2021-12-31 上海精智实业股份有限公司 一种用于通讯设置的散热器
CN217037749U (zh) * 2021-11-16 2022-07-22 深圳市英维克科技股份有限公司 热虹吸散热器
CN115756120A (zh) * 2022-11-08 2023-03-07 广东英维克技术有限公司 散热器

Also Published As

Publication number Publication date
CN115756120A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
TWI525300B (zh) 功率模組用複合式散熱器組件
WO2024098720A1 (zh) 散热器
WO2022057938A1 (zh) 均温腔,电子设备以及制造均温腔的方法
US7701717B2 (en) Notebook computer having heat pipe
CN216818326U (zh) 大功率芯片高效散热冷却装置
WO2011058622A1 (ja) ヒートシンク、ヒートシンクアセンブリ、半導体モジュール及び冷却装置付き半導体装置
CN108811447B (zh) 一种带通道的液冷板
TWM609021U (zh) 液冷散熱裝置及具有該液冷散熱裝置的液冷散熱系統
CN212115993U (zh) 一种应用热管作为导热元件的热管式温度控制机柜
CN210200705U (zh) 高效散热模组
CN210534699U (zh) 服务器用散热模组结构
WO1999053256A1 (en) Plate type heat pipe and its installation structure
CN208434247U (zh) 一种带有均热板的电子元器件散热装置
CN201039655Y (zh) 散热器结构
WO2022148435A1 (zh) 散热器及通信设备
CN211152537U (zh) 服务器散热器
JPS63232399A (ja) ガス熱交換器及びその製造方法
CN211152536U (zh) 高导热散热模组
CN220383421U (zh) 电源供应器
CN217241026U (zh) 一种具有散热功能的线路板模组
CN218125285U (zh) 鳍片散热器
CN216566086U (zh) 液冷散热装置、液冷散热系统及电子装置
CN220776330U (zh) 一种vpx机箱
CN219204800U (zh) 一种折线通孔散热型电路板
CN218122605U (zh) 散热器及电子设备