WO1999053256A1 - Plate type heat pipe and its installation structure - Google Patents

Plate type heat pipe and its installation structure Download PDF

Info

Publication number
WO1999053256A1
WO1999053256A1 PCT/JP1999/001841 JP9901841W WO9953256A1 WO 1999053256 A1 WO1999053256 A1 WO 1999053256A1 JP 9901841 W JP9901841 W JP 9901841W WO 9953256 A1 WO9953256 A1 WO 9953256A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
wall
main surface
heat pipe
surface portion
Prior art date
Application number
PCT/JP1999/001841
Other languages
French (fr)
Japanese (ja)
Inventor
Masaaki Yamamoto
Masami Ikeda
Tatsuhiko Ueki
Hitoshi Sho
Original Assignee
Furukawa Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co., Ltd. filed Critical Furukawa Electric Co., Ltd.
Priority to GB9928393A priority Critical patent/GB2342152B/en
Priority to JP55147499A priority patent/JP4278720B2/en
Priority to DE19980819T priority patent/DE19980819T1/en
Publication of WO1999053256A1 publication Critical patent/WO1999053256A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Definitions

  • the present invention relates to a plate-type heat pipe for effectively cooling electric and electronic components such as semiconductor elements, and a mounting structure using the same.
  • Electric and electronic components such as semiconductor devices mounted on various devices such as personal computers and electric and electronic equipment such as power equipment generate heat to some extent by their use. If the temperature of such electrical-electronic components rises excessively, their performance will be reduced or their life will be shortened. In recent years, the miniaturization of electric devices such as personal computers has been progressing, and attention has been paid to the development of technology for cooling electric and electronic components mounted on electric devices.
  • cooled parts As a method of cooling electric and electronic elements that need to be cooled (hereinafter referred to as “cooled parts”), for example, an air-cooled type, that is, a fan etc. There is known a method of preventing the temperature of a component to be cooled from excessively rising by cooling an atmosphere in a housing. This method is particularly effective for relatively large electrical equipment.
  • the heat pipe has a sealed cavity.
  • heat is transferred by the phase transformation and movement of the working fluid contained in the cavity.
  • the operation of the heat pipe will be briefly described. Taking a rod-shaped heat pipe as an example, a heat-generating component (cooled component) is connected near one end, and a fin for heat dissipation is mounted near the other end. The part to which the component to be cooled is attached
  • the working fluid evaporates due to the heat of the part to be cooled transmitted through the thick part of the container by heat conduction, and the vapor is attached to the fins ( (Hereinafter referred to as “radiator or radiator”). Then, the vapor returns to the liquid phase again in the heat radiating section, and the heat is released to the outside from the cavity almost through the fins. In this way, heat is transferred from the heat absorbing section to the heat radiating section.
  • the working fluid that has returned to the liquid phase on the heat radiation side must be moved (refluxed) to the heat absorption side again.
  • the heat-absorbing side may be located below the heat-radiating side (this form is called bottom heat).
  • the working fluid that has changed to a liquid phase due to phase transformation on the heat radiation side returns to the heat absorption side due to gravity.
  • top heat the working fluid is not sufficiently recirculated to the heat-absorbing side, and a phenomenon called dry-out occurs. May be confused.
  • a plate-shaped heat pipe By the way, the shape of a heat pipe has attracted attention in recent years, in addition to a typical round pipe shape, a plate-shaped heat pipe.
  • Plate-type heat pipes are sometimes referred to as flat-type heat pipes, flat-type heat pipes, and the like; depending on the shape, the plate-type heat pipe has a large area with components to be cooled such as semiconductor elements. There are advantages such as easy contact.
  • the plate-type heat pipe has an advantage that it can contact the component to be cooled on its wide main surface. Even in the case of using a plate-type heat pipe, it is desirable to use it in the bottom heat mode in order to further ensure the recirculation of the working fluid, as in the case of a round pipe-shaped heat pipe. Therefore, as a desirable mounting structure, a plate-type heat pipe is arranged so that one main surface faces downward, the component to be cooled contacts the lower main surface, and a heat sink is attached to the other upper main surface. Structure is conceivable. In this way, the lower main surface part is on the heat absorbing side, The part of the upper main surface where the heat sink is attached is the heat radiation side, and it is in the bottom heat mode.
  • a heat transfer block for transferring heat is provided inside the container so as to connect between the inner wall of the main surface portion A and the inner wall of the main surface portion B, and at least a part of the heat transfer block.
  • the plate-type heat pipe of the present invention has been made based on the above findings, and a first embodiment of the plate-type heat pipe of the present invention is a plate-type heat pipe including the following members:
  • a sealed container having opposed main surface portions A and B,
  • At least one heat transfer block for transmitting heat which is provided to connect between the inner wall of the main surface portion A and the inner wall of the main surface portion B inside the container,
  • a second aspect of the plate heat pipe of the present invention is characterized in that the main surface portion A and the main surface portion B are made of a flat plate-like material.
  • a third aspect of the plate-type heat pipe of the present invention is that the main surface portion A or the main surface portion Any one of B has at least one convex portion extending outwardly of the container.
  • a fourth aspect of the plate-type heat pipe of the present invention is characterized in that the protrusions extend outward at different heights from the container.
  • a fifth aspect of the plate-type heat pipe of the present invention is characterized in that the protrusions extend at the same height toward the outside of the container.
  • a sixth aspect of the plate-type heat pipe of the present invention is characterized in that the heat transfer block is provided so as to be connected to each of the at least one projection.
  • the heat transfer block has a cylindrical shape or a prismatic shape, and the entire heat transfer block is formed by metal bonding, and the inner wall of the main surface portion A is formed. And a connection between the inner walls of the main surface portion B.
  • the wick is formed on at least one part of the inner wall of the main surface part A, the inner wall of the main surface part B, and the side wall of the heat transfer block. It is characterized by being provided.
  • a ninth aspect of the plate-type heat pipe of the present invention is characterized in that the wick is further provided on the entire surface of one of the inner wall of the main surface portion A and the inner wall of the main surface portion B. It is.
  • the wick further includes an entire surface of one of an inner wall of the main surface portion A and an inner wall of the main surface portion B, and an entire surface of a side wall of the heat transfer block. Are provided.
  • the wick is not provided on the entire surface, and the wick is provided on the inner wall of the main surface portion A or the inner wall of the main surface portion B. It is characterized by being bent at the connection portion with the side wall.
  • the wick includes at least an inner wall of the main surface portion A, an inner wall of the main surface portion B, and a side wall of the heat transfer block. It is characterized by being provided in contact with or joined to one.
  • a thirteenth aspect of the plate-type heat pipe of the present invention is characterized in that the wick is fixed by a side surface of the heat transfer block and an inner wall of the projection.
  • a fourteenth aspect of the plate-type heat pipe of the present invention is characterized in that a component to be cooled is mounted on an outer wall of the projection provided so as to be connected to the heat transfer block. is there.
  • a fifteenth aspect of the plate heat pipe of the present invention is characterized in that fins are provided on one of the inner wall of the main surface portion A and the inner wall of the main surface portion B. is there.
  • the plate heat pipe is disposed so as to face a substrate on which a component to be cooled is mounted, and the heat transfer block is provided in at least one position. Is a mounting structure of a plate-type heat pipe to which the component to be cooled is connected.
  • FIG. 1 is an explanatory view showing an example of a plate-type heat pipe according to the present invention.
  • FIG. 2 is an explanatory view showing an example of a plate-type heat pipe according to the present invention.
  • FIG. 3 is a partially enlarged explanatory view of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the plate heat pipe of the present invention is a plate heat pipe capable of maintaining excellent performance even in the top heat mode.
  • the plate-type heat pipe of the present invention includes the following members. (1) a sealed container having opposed main surface portions A and B,
  • At least one heat transfer block for transmitting heat which is provided so as to connect between the inner wall of the main surface portion A and the inner wall of the main surface portion B inside the container. At least part of the heat transfer block inside the container (4) The working fluid enclosed in the container.
  • the main surface portion A and the main surface portion B are made of a flat plate-like material.
  • one of the main surface portion A and the main surface portion B may have at least one convex portion extending outwardly of the container. Good.
  • the above-mentioned convex portions may extend outward of the container at different heights.
  • the above-mentioned projections may extend outward of the container at the same height.
  • a heat transfer block may be provided so as to be connected to each of the at least one projection.
  • the heat transfer block has a cylindrical shape or a prismatic shape, and the heat transfer block is formed between the inner wall of the main surface portion A and the inner wall of the main surface portion B by metal bonding. May be connected.
  • the wick is at least a part of the heat transfer block, preferably at least each of the inner wall of the main surface portion A, the inner wall of the main surface portion B, and the side wall of the heat transfer block. It is provided in one part.
  • the wick may be further provided on the entire surface of one of the inner wall of the main surface portion A and the inner wall of the main surface portion B.
  • the wick may be further provided on the entire surface of one of the inner wall of the main surface portion A and the inner wall of the main surface portion B, and on the entire surface of the side wall of the heat transfer block.
  • the wick is not provided on the entire surface, and the wick is bent at the connection portion with the side wall of the heat transfer block on the inner wall of the main surface portion A or the inner wall of the main surface portion B. It may be provided.
  • the wick is provided so as to be in contact with or in contact with at least one of the inner wall of the main surface portion A, the inner wall of the main surface portion B, and the side wall of the heat transfer block. It is a feature.
  • the wick may be fixed by a side surface of the heat transfer block and an inner wall of the projection.
  • a component to be cooled may be mounted on an outer wall of the projection provided to connect the heat transfer block.
  • fins may be provided on any one of the inner wall of the main surface portion A and the inner wall of the main surface portion B.
  • the above-described plate-type heat pipe is arranged so as to be opposed to the substrate on which the component-to-be-cooled is mounted, and at least one of the positions provided with the heat transfer blocks is provided. Is a mounting structure to which the component to be cooled is connected.
  • FIG. 1 is an explanatory diagram schematically showing an example of a plate-type heat pipe of the present invention and an example of a mounting structure thereof.
  • a substrate 30 is assumed to be a printed circuit board or the like, on which a cooled component 40 such as a semiconductor element is provided. Has been implemented.
  • Reference numeral 31 in the figure indicates a lead.
  • the plate-shaped heat pipe 1 is arranged so as to be in contact with the upper surface side of the component to be cooled 40.
  • the component to be cooled 40 and the plate-type heat pipe 1 may be brought into contact with each other with direct interposition of heat transfer grease or the like as necessary, in addition to direct contact. In some cases, these may be joined by soldering or the like.
  • the material of the container 10 constituting the plate-type heat pipe 1 is not particularly limited, but if a material having excellent thermal conductivity such as copper material or aluminum material is used, the plate-type heat pipe 1 having excellent thermal performance can be used. And it is desirable. Copper material is JIS standard C100, C110, etc.Alluminum material is also JTS standard A110, A300, A500, A500 60000 system and the like.
  • Working fluids include water, alternative chlorofluorocarbons, ammonia, alcohol, acetone, etc.
  • the heat transfer block 11 is provided in the cavity 13 at a position corresponding to a portion where the component to be cooled 40 is connected to the plate-shaped heat pipe 1.
  • the heat transfer block 11 is in contact with the inner wall of the hollow portion 13 corresponding to both the upper and lower main surfaces of the container 10.
  • the heat transfer block 11 may be metal-joined to its inner wall by soldering or brazing. If the heat transfer block 11 is joined to the inner wall by metal joining, This is desirable because the thermal resistance between them will be smaller.
  • the cavity 13 is provided with a wick 12.
  • the wick 12 is arranged along the inner wall of a portion corresponding to the upper surface of the container 10 (the upper main surface of the container 10). It extends to the inner wall corresponding to the lower part of container 10 (the lower main surface of container 10), and its tip contacts the inner wall. In the case of the embodiment shown in FIG. 1, the wick 12 is brought into contact with the inner wall corresponding to the lower surface while bending the heat transfer block 11 such that the tip is bent. By doing so, a connection state with lower thermal resistance between the wick 12 and the inner wall is realized.
  • the tip of the wick 12 may be metal-joined to its inner wall. With metal bonding, the thermal resistance between them will be even lower.
  • the wick 12 is also in contact with or joined to the inner wall on the side where the component to be cooled 40 is mounted, the working fluid is reliably returned. If the wick 12 is brought into contact with or joined to the heat transfer block 11, the reflux of the wick 12 is further ensured.
  • the heat transfer block 11 is arranged at the connection position of the component to be cooled 40, the heat of the component to be cooled 40 is directly transmitted to the heat transfer block through the container 10. The heat transferred to the heat transfer block returns to the working fluid flowing through the wick 12.
  • the plate-shaped heat pipe 2 is composed of a plurality of components to be cooled 41 to 3 mounted on the substrate 30 through the leads 31.
  • the container 20 is formed by joining an upper container member 201 and a lower container member 202 in the figure. As shown in the figure, the three convex portions are formed by previously performing press working or the like on the container member 202. An appropriate amount of working fluid (not shown) is stored in the hollow portion 22 inside the container 20.
  • a heat sink 50 is attached to the upper surface of the plate-shaped heat pipe 2. The heat sink 50 is applied, for example, a heat radiating work made of aluminum.
  • At least one of the one or more protrusions has heat transfer blocks 23 to 25 disposed therein.
  • a wick 21 is provided in the hollow portion 22. The wick 21 is in contact with the upper inner wall, and further along the heat transfer blocks 23 to 25, comes into contact with the bottom surface of the lower inner wall, or the convex portion. Are joined. The wick 21 may also be in contact with or joined to the heat transfer block 24.
  • the metal may be joined by, for example, a brazing method.
  • a brazing method As shown in Fig. 2, when the container 20 has a convex portion and the heat transfer blocks 23, 24, and 25 are arranged inside the container, the heat transfer blocks 23 to 25 and the container 20 It is also effective to fix the wick 21 by sandwiching it between and.
  • FIG. 3 is an enlarged view of the vicinity of the heat transfer block 24, showing a state in which the wick 21 is fixed so as to be sandwiched between the heat transfer block 24 and the inner wall of the container member 202 which forms the convex portion. Is shown.
  • the plate heat pipe 2 shown in FIG. 2 also maintains the reflux of the working fluid in the top heat mode, similarly to the plate heat pipe 1 (FIG. 1) described above. Also, in this case, the cooling structure for multiple components to be cooled with different heights can be handled by one plate-type heat pipe because the components to be cooled have protrusions according to the height of 23 to 25. It has practical advantages and is practical. Example
  • a plate-type heat pipe having a length of 10 O mm, a width of 7 O mm, and a thickness of 6 mm shown in FIG. 1 was produced.
  • the heat transfer blocks are made of metal by brazing the upper and lower inner walls of the cavity.
  • wicks were placed on the entire inner wall of the upper surface in the cavity, on the entire side surface of the heat transfer block, and on a part of the lower surface in the cavity in contact with the component to be cooled. . Furthermore, the pressure inside the cavity was reduced, and water as a working fluid was sealed.
  • a plate-type heat pipe as shown in Fig. 2 by joining a lmm thick copper upper plate and a 1mm thick copper lower plate with three convex parts formed by pressing. was made.
  • the three projections were formed so that the central part was higher and the both sides were relatively lower, corresponding to the height of the component to be cooled.
  • the container formed in this way is 10 O mm long x 7 O mm wide x 6 mm wide, and the width including the convex part is 9 mm at the central convex part and 8 mm at the convex parts on both sides. Met.
  • a copper heat transfer block of 25 mm (length) x 25 mm (width) x 7 mm (height) is placed in the central convex part by a copper heat transfer block (length 25 mm x width 25 mm x height 6 mm).
  • the heat blocks were placed in the protrusions on both sides, respectively, and the heat transfer blocks were each metal-bonded by brazing to the upper and lower inner walls of the cavity.
  • wicks were placed all over the inner wall of the upper surface inside the cavity and all over the side surfaces of the heat transfer block. Furthermore, as shown in FIG. The wick was sandwiched between the side wall and the heat transfer block.
  • MPUs having different heights provided on the substrate were brought into contact with the plate-shaped heat pipe manufactured as described above as heat-receiving parts via heat transfer grease.
  • this plate-type heat pipe was used at an angle of 60 degrees from the horizontal plane, excellent cooling performance was obtained without causing dryout.
  • the plate-type heat pipe of the present invention it is possible to provide a plate-type heat pipe capable of maintaining excellent performance even in the top heat.
  • the mounting structure using the plate-type heat pie of the present invention can be used, for example, if the plate-type heat pipe of the present invention is used in an electric or electronic device on which a component to be cooled such as a semiconductor element to be cooled is mounted.
  • Excellent cooling performance can be maintained even when the top heat mode is set, for example, when the air conditioner is used at an angle.

Abstract

A plate type heat pipe, comprising an enclosed container having principal plane parts (A) and (B) opposed to each other, at least one heat transfer block for heat transfer installed in the container so that the inner wall of the principal plane part (A) is connected through the heat transfer block to the inner wall of the principal plane part (B), a wick disposed in the container at at least one part of the heat transfer block, and a working fluid sealed in the container.

Description

明細書  Specification
板型ヒートパイプとその実装構造 技 fer分野 Plate type heat pipe and its mounting structure
本発明は半導体素子等の電気 ·電子部品を効果的に冷却するための板型ヒート パイプおよびそれを用いた実装構造に関する。 背景技術  The present invention relates to a plate-type heat pipe for effectively cooling electric and electronic components such as semiconductor elements, and a mounting structure using the same. Background art
パソコン等の各種機器や電力設備等の電気 ·電子機器に搭載されている半導体 素子等の電気 ·電子部品は、 その使用によってある程度発熱する。 このような電 気 -電子部品の温度が過度に上昇すると、 その性能が低下したり、 その寿命が短 縮したりする。 近年はパソコン等に代表される電気機器の小型化が進み、 電気機 器に搭載された電気 ·電子部品を冷却する技術の開発が注目されている。  Electric and electronic components such as semiconductor devices mounted on various devices such as personal computers and electric and electronic equipment such as power equipment generate heat to some extent by their use. If the temperature of such electrical-electronic components rises excessively, their performance will be reduced or their life will be shortened. In recent years, the miniaturization of electric devices such as personal computers has been progressing, and attention has been paid to the development of technology for cooling electric and electronic components mounted on electric devices.
冷却が必要な電気,電子素子 (以下、 「被冷却部品」 と称する) を冷却する方 法としては、 例えば、 空冷式、 即ち、 それら搭載される電気機器の筐体にファン 等を取り付け、 その筐体内の雰囲気を冷やすことによって被冷却部品の温度が過 度に上昇することを防ぐ方法が知られている。 この方法は、 特に、 比較的大型の 電気機器においては有効である。  As a method of cooling electric and electronic elements that need to be cooled (hereinafter referred to as “cooled parts”), for example, an air-cooled type, that is, a fan etc. There is known a method of preventing the temperature of a component to be cooled from excessively rising by cooling an atmosphere in a housing. This method is particularly effective for relatively large electrical equipment.
上述したような空冷式の他、 近年は被冷却部品にヒートシンクゃフィン等を接 続し、そのヒートシンク等を経由して熱を放散する方法が有力になってきている。 そのヒートシンクまたはフィンと被冷却部品との間にヒートパイプを介在させ!) 場合もある。 また、 そのヒートシンクやフィン等に電動ファンで送風し、 一層高 い冷却効率を実現させる技術も知られている。  In addition to the air-cooling method described above, in recent years, a method of connecting a heat sink and fins to a component to be cooled and dissipating heat via the heat sink has become effective. Interpose a heat pipe between the heat sink or fin and the part to be cooled! ) In some cases. Also, there is known a technology in which an electric fan is used to blow the heat sink and fins to achieve higher cooling efficiency.
以下に、 ヒートパイプについて説明する。 ヒートパイプは密封された空洞部を 備えており、 ヒー卜パイプにおいては、 その空洞部に収容された作動流体の相変 態と移動により熱の輸送が行われる。 ヒートパイプを構成する容器 (コンテナ) 中を熱伝導する熱移動もあるが、 通常、 それは前述の作動流体の相変態と移動に よる熱輸送に比べ相対的に小さい。 次に、 ヒー卜パイプの作動について簡単に説明する。 棒状のヒートパイプを例 に説明すると、 その一方端付近に発熱部品 (被冷却部品) を接続し、 他方端付近 には放熱用のフインを取り付けておく。被冷却部品が取り付けられた部分(以下、Hereinafter, the heat pipe will be described. The heat pipe has a sealed cavity. In the heat pipe, heat is transferred by the phase transformation and movement of the working fluid contained in the cavity. There is also heat transfer that conducts heat through the container (container) that constitutes the heat pipe, but it is usually relatively small compared to the above-mentioned heat transfer by phase transformation and movement of the working fluid. Next, the operation of the heat pipe will be briefly described. Taking a rod-shaped heat pipe as an example, a heat-generating component (cooled component) is connected near one end, and a fin for heat dissipation is mounted near the other end. The part to which the component to be cooled is attached
「吸熱部または吸熱側」 と呼ぶ) において、 コンテナの肉厚部分を熱伝導によつ て伝わってきた被冷却部品の熱により作動流体が蒸発し、 その蒸気がフィンを取 り付けた部分 (以下、 「放熱部または放熱側」 と呼ぶ) に移動する。 そしてその 蒸気は放熱部において再び液相に戻り、 その熱は概ねフィンを経由して空洞部か ら外部に放出される。 このようにして吸熱部から放熱部に熱移動がなされる。 上述した熱移動が連続的になされるようにするためには、 放熱側で液相状態に 戻った作動流体を、 再び吸熱側に移動 (還流) させる必要がある。 重力式のヒー トパイプの場合は、 吸熱側を放熱側より下方に位置させればよい (このような形 態をボトムヒートと呼ぶ)。 この場合、 放熱側において相変態により液相状態に なった作動流体は、 重力作用により吸熱側に還流する。 しかし、 吸熱側が放熱側 より上方に位置している場合 (このような形態をトップヒートと呼ぶ) は、 吸熱 側への作動流体の環流が不十分になり、 所謂、 ドライアウトと呼ばれる現象が生 じる場合がある。 In the “heat-absorbing section or heat-absorbing side”), the working fluid evaporates due to the heat of the part to be cooled transmitted through the thick part of the container by heat conduction, and the vapor is attached to the fins ( (Hereinafter referred to as “radiator or radiator”). Then, the vapor returns to the liquid phase again in the heat radiating section, and the heat is released to the outside from the cavity almost through the fins. In this way, heat is transferred from the heat absorbing section to the heat radiating section. In order for the above-mentioned heat transfer to be performed continuously, the working fluid that has returned to the liquid phase on the heat radiation side must be moved (refluxed) to the heat absorption side again. In the case of a gravity-type heat pipe, the heat-absorbing side may be located below the heat-radiating side (this form is called bottom heat). In this case, the working fluid that has changed to a liquid phase due to phase transformation on the heat radiation side returns to the heat absorption side due to gravity. However, when the heat-absorbing side is located above the heat-dissipating side (this form is called top heat), the working fluid is not sufficiently recirculated to the heat-absorbing side, and a phenomenon called dry-out occurs. May be confused.
ところでヒートパイプの形状は、 代表的な丸パイプ形状のものの他、 近年は板 型の形状のヒートパイプも注目されている。 板型のヒー卜パイプは平面型ヒ一卜 パイプ、 平板型ヒートパイプ等と呼称されることもある力;、 この板型ヒートパイ プは、 その形状によって、 半導体素子等の被冷却部品と広い面積において接触さ せやすい等の利点がある。  By the way, the shape of a heat pipe has attracted attention in recent years, in addition to a typical round pipe shape, a plate-shaped heat pipe. Plate-type heat pipes are sometimes referred to as flat-type heat pipes, flat-type heat pipes, and the like; depending on the shape, the plate-type heat pipe has a large area with components to be cooled such as semiconductor elements. There are advantages such as easy contact.
即ち、 板型ヒートパイプは、 その広い主面において被冷却部品と接触すること ができる、 という利点がある。 板型ヒートパイプを用いる場合でも、 作動流体の 還流をより確実にするために、 ボトムヒートモ一ドで使用することが望ましいの は、 丸パイプ形状のヒートパイプの場合と同様である。 そこで望ましい実装構造 として、 板型ヒートパイプをその一方の主面が下向きになるように配置し、 その 下側の主面に被冷却部品を接触させ、 そして上側の他方の主面にヒートシンクを 取り付ける構造が考えられる。 こうすれば、 その下側の主面の部分が吸熱側に、 ヒートシンクが取り付けられた上側の主面の部分が放熱側となり、 ボトムヒート モードとなる。 That is, the plate-type heat pipe has an advantage that it can contact the component to be cooled on its wide main surface. Even in the case of using a plate-type heat pipe, it is desirable to use it in the bottom heat mode in order to further ensure the recirculation of the working fluid, as in the case of a round pipe-shaped heat pipe. Therefore, as a desirable mounting structure, a plate-type heat pipe is arranged so that one main surface faces downward, the component to be cooled contacts the lower main surface, and a heat sink is attached to the other upper main surface. Structure is conceivable. In this way, the lower main surface part is on the heat absorbing side, The part of the upper main surface where the heat sink is attached is the heat radiation side, and it is in the bottom heat mode.
しかしながら、 近年はコンピュータ一等の小型化が進み、 被冷却部品が搭載さ れる電気 ·電子機器も定置型から携帯型へと対象が広がってきている。 特に、 小 型コンピュータ一等の場合、 それがある程度傾けられて使用される場合も想定さ れる。 このような事情から、 トップヒートモードでもある程度の性能が維持でき る板型ヒートパイプが求められていた。 発明の開示  However, in recent years, miniaturization of computers and the like has progressed, and the scope of electric and electronic devices on which components to be cooled are mounted has been expanding from stationary to portable. In particular, in the case of a small computer, etc., it may be assumed that it is used with a certain inclination. Under these circumstances, a plate-type heat pipe that can maintain a certain level of performance even in the top heat mode has been demanded. Disclosure of the invention
発明者等は、上述した従来の問題点を克服すべく鋭意研究を重ねた。その結果、 コンテナの内部において、 対向する主面部 Aの内壁および主面部 Bの内壁の間を 接続するように設けられた、 熱を伝えるための伝熱ブロックを備え、 少なくとも 伝熱ブロックの一部にウィックを配置することによって、 傾けて使用されて、 ト ップヒートモードとなっても効率的に冷却性能が維持できる板型ヒートパイプを 提供することができることを知見した。  The inventors have intensively studied to overcome the above-mentioned conventional problems. As a result, a heat transfer block for transferring heat is provided inside the container so as to connect between the inner wall of the main surface portion A and the inner wall of the main surface portion B, and at least a part of the heat transfer block. By disposing the wicks in the tub, it was found that a plate-type heat pipe that can be used at an angle and can maintain the cooling performance efficiently even in the top heat mode can be provided.
この発明の板型ヒートパイプは、 上述した知見に基づいてなされたものであつ て、 この発明の板型ヒートパイプの第 1の態様は、 下記部材を備えている板型ヒ ートパイプである :  The plate-type heat pipe of the present invention has been made based on the above findings, and a first embodiment of the plate-type heat pipe of the present invention is a plate-type heat pipe including the following members:
( 1 ) 相対する主面部 Aおよび主面部 Bを備えている、 密閉されたコンテナ、 (1) A sealed container having opposed main surface portions A and B,
( 2 ) 前記コンテナの内部において、 前記主面部 Aの内壁および前記主面部 Bの 内壁の間を接続するように設けられた、 熱を伝えるための少なくとも 1個の伝熱 プロック、 (2) At least one heat transfer block for transmitting heat, which is provided to connect between the inner wall of the main surface portion A and the inner wall of the main surface portion B inside the container,
( 3 ) 前記コンテナの内部の少なくとも前記伝熱ブロックの一部に配置されたゥ ィック、 および  (3) Dick disposed on at least a part of the heat transfer block inside the container, and
( 4 ) 前記コンテナ内に封入されている作動流体。  (4) Working fluid sealed in the container.
この発明の板型ヒートパイプの第 2の態様は、 前記主面部 Aおよび前記主面部 Bは、 平らな板状材からなつていることを特徴とするものである。  A second aspect of the plate heat pipe of the present invention is characterized in that the main surface portion A and the main surface portion B are made of a flat plate-like material.
この発明の板型ヒートパイプの第 3の態様は、 前記主面部 Aまたは前記主面部 Bの何れか 1つは、 前記コンテナの外方に向って延びている、 少なくとも 1個の 凸部を備えていることを特徴とするものである。 A third aspect of the plate-type heat pipe of the present invention is that the main surface portion A or the main surface portion Any one of B has at least one convex portion extending outwardly of the container.
この発明の板型ヒートパイプの第 4の態様は、 前記凸部は、 異なる高さで前記 コンテナの外方に向って延びていることを特徴とするものである。  A fourth aspect of the plate-type heat pipe of the present invention is characterized in that the protrusions extend outward at different heights from the container.
この発明の板型ヒートパイプの第 5の態様は、 前記凸部は、 同一高さで前記コ ンテナの外方に向って延びていることを特徴とするものである。  A fifth aspect of the plate-type heat pipe of the present invention is characterized in that the protrusions extend at the same height toward the outside of the container.
この発明の板型ヒートパイプの第 6の態様は、 前記少なくとも 1個の凸部のそ れそれに、 前記伝熱プロックが接続するように設けられていることを特徴とする ものである。  A sixth aspect of the plate-type heat pipe of the present invention is characterized in that the heat transfer block is provided so as to be connected to each of the at least one projection.
この発明の板型ヒートパイプの第 7の態様は、 前記伝熱プロックが円柱形状ま たは角柱形状からなっており、 全記伝熱ブロックは、 金属接合によって、 前記前 記主面部 Aの内壁および前記主面部 Bの内壁の間を接続していることを特徴とす るものである。  In a seventh aspect of the plate-type heat pipe of the present invention, the heat transfer block has a cylindrical shape or a prismatic shape, and the entire heat transfer block is formed by metal bonding, and the inner wall of the main surface portion A is formed. And a connection between the inner walls of the main surface portion B.
この発明の板型ヒートパイプの第 8の態様は、 前記ウィックが、 前記前記主面 部 Aの内壁、 前記主面部 Bの内壁、 および、 前記伝熱ブロックの側壁のそれそれ の少なくとも 1部に設けられていることを特徴とするものである。  In an eighth aspect of the plate heat pipe of the present invention, the wick is formed on at least one part of the inner wall of the main surface part A, the inner wall of the main surface part B, and the side wall of the heat transfer block. It is characterized by being provided.
この発明の板型ヒートパイプの第 9の態様は、 前記ウィックが、 更に前記主面 部 Aの内壁および前記主面部 Bの内壁の何れか一方の全面に設けられていること を特徴とするものである。  A ninth aspect of the plate-type heat pipe of the present invention is characterized in that the wick is further provided on the entire surface of one of the inner wall of the main surface portion A and the inner wall of the main surface portion B. It is.
この発明の板型ヒートパイプの第 1 0の態様は、 前記ウィックが、 更に前記主 面部 Aの内壁および前記主面部 Bの内壁の何れか一方の全面、 および、 前記伝熱 プロックの側壁の全面に設けられていることを特徴とするものである。  According to a tenth aspect of the plate heat pipe of the present invention, the wick further includes an entire surface of one of an inner wall of the main surface portion A and an inner wall of the main surface portion B, and an entire surface of a side wall of the heat transfer block. Are provided.
この発明の板型ヒートパイプの第 1 1の態様は、 前記ウィックが全面に設けら れていない、 前記主面部 Aの内壁または前記主面部 Bの内壁には、 前記ウィック が前記伝熱ブロックの側壁との接続部位において折り曲げられて設けられている ことを特徴とするものである。  According to a first aspect of the plate-type heat pipe of the present invention, the wick is not provided on the entire surface, and the wick is provided on the inner wall of the main surface portion A or the inner wall of the main surface portion B. It is characterized by being bent at the connection portion with the side wall.
この発明の板型ヒートパイプの第 1 2の態様は、 前記ウィックは、 前記主面部 Aの内壁、 前記主面部 Bの内壁、 および、 前記伝熱ブロックの側壁の少なくとも 1つと接触または接合されて設けられていることを特徴とするものである。 この発明の板型ヒートパイプの第 1 3の態様は、 前記ウィックは、 前記伝熱ブ 口ックの側面と前記凸部の内壁とによって固定されていることを特徴とするもの である。 According to a twelfth aspect of the plate heat pipe of the present invention, the wick includes at least an inner wall of the main surface portion A, an inner wall of the main surface portion B, and a side wall of the heat transfer block. It is characterized by being provided in contact with or joined to one. A thirteenth aspect of the plate-type heat pipe of the present invention is characterized in that the wick is fixed by a side surface of the heat transfer block and an inner wall of the projection.
この発明の板型ヒ一卜パイプの第 1 4の態様は、 前記伝熱プロックが接続する ように設けられた前記凸部の外壁に、 被冷却部品が装着されることを特徴とする ものである。  A fourteenth aspect of the plate-type heat pipe of the present invention is characterized in that a component to be cooled is mounted on an outer wall of the projection provided so as to be connected to the heat transfer block. is there.
この発明の板型ヒートパイプの第 1 5の態様は、 前記主面部 Aの内壁および前 記主面部 Bの内壁の何れか一方の外壁にフィンが設けられていることを特徴とす るものである。  A fifteenth aspect of the plate heat pipe of the present invention is characterized in that fins are provided on one of the inner wall of the main surface portion A and the inner wall of the main surface portion B. is there.
この発明の板型ヒートパイプの第 1 6の態様は、 板型ヒートパイプが、 被冷却 部品が実装された基板に相対して配置され、 前記伝熱ブロックの備わる位置の少 なくとも 1つには、 前記被冷却部品が接続された、 板型ヒートパイプの実装構造 である。 図面の簡単な説明  According to a sixteenth aspect of the plate heat pipe of the present invention, the plate heat pipe is disposed so as to face a substrate on which a component to be cooled is mounted, and the heat transfer block is provided in at least one position. Is a mounting structure of a plate-type heat pipe to which the component to be cooled is connected. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明に係わる板型ヒートパイブの例を示す説明図である。  FIG. 1 is an explanatory view showing an example of a plate-type heat pipe according to the present invention.
第 2図は、 本発明に係わる板型ヒートパイプの例を示す説明図である。  FIG. 2 is an explanatory view showing an example of a plate-type heat pipe according to the present invention.
第 3図は、 第 2図の一部拡大説明図である。 発明を実施するための最良の形態  FIG. 3 is a partially enlarged explanatory view of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
この発明の板型ヒートパイプは、 トヅプヒートモードになっても優れた性能が 維持できる板型ヒートパイプである。  The plate heat pipe of the present invention is a plate heat pipe capable of maintaining excellent performance even in the top heat mode.
この発明の板型ヒートパイプは、 下記部材を備えている。 即ち、 ( 1 ) 相対す る主面部 Aおよび主面部 Bを備えている、 密閉されたコンテナ、  The plate-type heat pipe of the present invention includes the following members. (1) a sealed container having opposed main surface portions A and B,
( 2 ) 前記コンテナの内部において、 前記主面部 Aの内壁および前記主面部 Bの 内壁の間を接続するように設けられた、 熱を伝えるための少なくとも 1個の伝熱 ブロック、 (3 ) 前記コンテナの内部の少なくとも前記伝熱ブロックの一部に配 置されたウィック、 および、 (4 ) 前記コンテナ内に封入されている作動流体。 更に、 この発明の板型ヒートパイプにおいて、 主面部 Aおよび主面部 Bは、 平 らな板状材からなつている。 更に、 この発明の板型ヒートパイプにおいて、 主面 部 Aまたは主面部 Bの何れか 1つは、 コンテナの外方に向って延びている、 少な くとも 1個の凸部を備えていてもよい。この発明の板型ヒー卜パイプにおいては、 上述した凸部は、異なる高さでコンテナの外方に向って延びていてもよい。更に、 この発明の板型ヒートパイプにおいて、 上述した凸部は、 同一高さでコンテナの 外方に向って延びていてもよい。 (2) At least one heat transfer block for transmitting heat, which is provided so as to connect between the inner wall of the main surface portion A and the inner wall of the main surface portion B inside the container. At least part of the heat transfer block inside the container (4) The working fluid enclosed in the container. Further, in the plate-type heat pipe of the present invention, the main surface portion A and the main surface portion B are made of a flat plate-like material. Further, in the plate-type heat pipe of the present invention, one of the main surface portion A and the main surface portion B may have at least one convex portion extending outwardly of the container. Good. In the plate-type heat pipe of the present invention, the above-mentioned convex portions may extend outward of the container at different heights. Further, in the plate-type heat pipe of the present invention, the above-mentioned projections may extend outward of the container at the same height.
更に、 この発明の板型ヒートパイプにおいては、 少なくとも 1個の凸部のそれ それに、 伝熱プロックが接続するように設けられていてもよい。  Further, in the plate heat pipe of the present invention, a heat transfer block may be provided so as to be connected to each of the at least one projection.
更に、 この発明の板型ヒートパイプにおいては、 伝熱ブロックが円柱形状また は角柱形状からなっており、 伝熱ブロックは、 金属接合によって、 主面部 Aの内 壁および主面部 Bの内壁の間を接続していてもよい。  Further, in the plate-type heat pipe of the present invention, the heat transfer block has a cylindrical shape or a prismatic shape, and the heat transfer block is formed between the inner wall of the main surface portion A and the inner wall of the main surface portion B by metal bonding. May be connected.
更に、 この発明の板型ヒートパイプにおいては、 ウィックが、 少なくとも伝熱 ブロックの一部、 好ましくは、 主面部 Aの内壁、 主面部 Bの内壁、 および、 伝熱 ブロックの側壁のそれそれの少なくとも 1部に設けられている。 この発明の板型 ヒートパイプにおいては、 ウィックが、 更に、 主面部 Aの内壁および主面部 Bの 内壁の何れか一方の全面に設けられていてもよい。 この発明の板型ヒートパイプ においては、 ウィックが、 更に、 主面部 Aの内壁および主面部 Bの内壁の何れか 一方の全面、 および、 伝熱ブロックの側壁の全面に設けられていてもよい。  Further, in the plate-type heat pipe of the present invention, the wick is at least a part of the heat transfer block, preferably at least each of the inner wall of the main surface portion A, the inner wall of the main surface portion B, and the side wall of the heat transfer block. It is provided in one part. In the plate-type heat pipe of the present invention, the wick may be further provided on the entire surface of one of the inner wall of the main surface portion A and the inner wall of the main surface portion B. In the plate heat pipe of the present invention, the wick may be further provided on the entire surface of one of the inner wall of the main surface portion A and the inner wall of the main surface portion B, and on the entire surface of the side wall of the heat transfer block.
この発明の板型ヒートパイプにおいては、 更に、 ウィックが全面に設けられて いない、 主面部 Aの内壁または主面部 Bの内壁には、 ウィックが伝熱ブロックの 側壁との接続部位において折り曲げられて設けられていてもよい。  In the plate-type heat pipe of the present invention, further, the wick is not provided on the entire surface, and the wick is bent at the connection portion with the side wall of the heat transfer block on the inner wall of the main surface portion A or the inner wall of the main surface portion B. It may be provided.
更に、 この発明の板型ヒートパイプにおいては、 ウィックは、 主面部 Aの内壁、 主面部 Bの内壁、 および、 伝熱ブロックの側壁の少なくとも 1つと接触または接 合されて設けられていることを特徴とするものである。  Further, in the plate heat pipe of the present invention, the wick is provided so as to be in contact with or in contact with at least one of the inner wall of the main surface portion A, the inner wall of the main surface portion B, and the side wall of the heat transfer block. It is a feature.
この発明の板型ヒートパイプにおいては、 前記ウィックは、 前記伝熱ブロック の側面と前記凸部の内壁とによって固定されていてもよい。 この発明の板型ヒートパイプにおいては、 前記伝熱プロックが接続するように 設けられた前記凸部の外壁に、 被冷却部品が装着されていてもよい。 In the plate-type heat pipe of the present invention, the wick may be fixed by a side surface of the heat transfer block and an inner wall of the projection. In the plate-type heat pipe of the present invention, a component to be cooled may be mounted on an outer wall of the projection provided to connect the heat transfer block.
この発明の板型ヒートパイプにおいては、 前記主面部 Aの内壁および前記主面 部 Bの内壁の何れか一方の外壁にフィンが設けられていてもよい。  In the plate-type heat pipe of the present invention, fins may be provided on any one of the inner wall of the main surface portion A and the inner wall of the main surface portion B.
更に本発明の板型ヒートパイプの実装構造は、 上述の板型ヒートパイプを被冷 却部品基板が実装された基板に相対して配置し、 伝熱プロックの備わる位置の少 なくとも一つにはその被冷却部品が接続されるようにした実装構造である。  Furthermore, in the mounting structure of the plate-type heat pipe of the present invention, the above-described plate-type heat pipe is arranged so as to be opposed to the substrate on which the component-to-be-cooled is mounted, and at least one of the positions provided with the heat transfer blocks is provided. Is a mounting structure to which the component to be cooled is connected.
図を参照して、 この発明の板型ヒートパイプを更に詳しく説明する。 図 1 は 本発明の板型ヒートパイプの例とその実装構造の例を模式的に示す説明図である 基板 30 はプリント基板等を想定し、 その上には半導体素子等の被冷却部品 40 が実装されている。 図中の符号 31はリードを示す。  With reference to the drawings, the plate-type heat pipe of the present invention will be described in more detail. FIG. 1 is an explanatory diagram schematically showing an example of a plate-type heat pipe of the present invention and an example of a mounting structure thereof. A substrate 30 is assumed to be a printed circuit board or the like, on which a cooled component 40 such as a semiconductor element is provided. Has been implemented. Reference numeral 31 in the figure indicates a lead.
被冷却部品 40の上面側に接するように板型ヒートパイプ 1 を配置する。 被冷 却部品 40 と板型ヒートパイプ 1 とは、 直接に接触させる場合の他、 必要に応じ て伝熱グリス等を介在させて接触させれば良い。 また場合によってはこれらを半 田付け等によって接合しても構わない。 板型ヒートパイプ 1 を構成するコンテ ナ 1 0の材質は特に限定されないが、 銅材ゃアルミニウム材等の熱伝導性に優れ る材質を用いると、 優れた熱的性能を有する板型ヒートパイプ 1 を得ることが でき、 望ましい。 銅材としては JIS 規格 C 1 0 2 0、 C 1 1 0 0等、 アルミ二 ゥム材としては同じく JTS 規格 A 1 1 0 0、 A 3 0 0 0系、 A 5 0◦ 0系、 A 6 0 0 0系等が挙げられる。  The plate-shaped heat pipe 1 is arranged so as to be in contact with the upper surface side of the component to be cooled 40. The component to be cooled 40 and the plate-type heat pipe 1 may be brought into contact with each other with direct interposition of heat transfer grease or the like as necessary, in addition to direct contact. In some cases, these may be joined by soldering or the like. The material of the container 10 constituting the plate-type heat pipe 1 is not particularly limited, but if a material having excellent thermal conductivity such as copper material or aluminum material is used, the plate-type heat pipe 1 having excellent thermal performance can be used. And it is desirable. Copper material is JIS standard C100, C110, etc.Alluminum material is also JTS standard A110, A300, A500, A500 60000 system and the like.
板型ヒートパイプ 1の空洞部 13内には図示しない作動流体が適量収容される.。 作動流体としては、 水の他、 代替フロン、 アンモニア、 アルコール、 アセトン等 がある。  An appropriate amount of working fluid (not shown) is accommodated in the hollow portion 13 of the plate-type heat pipe 1. Working fluids include water, alternative chlorofluorocarbons, ammonia, alcohol, acetone, etc.
さて、 空洞部 13内には、 被冷却部品 40が板型ヒートパイプ 1 に接続する部 分に対応する位置に伝熱ブロック 1 1が備わっている。 その伝熱ブロック 11は、 コンテナ 10 の上側と下側の両方の主面に相当する部分の空洞部 13の内壁に接 している。 この伝熱ブロック 11 は、 その内壁に半田付けやろう付け等によって 金属接合しても良い。 金属接合により伝熱ブロック 11を内壁に接合しておけば、 これらの間の熱抵抗がより小さくなるので望ましい。 The heat transfer block 11 is provided in the cavity 13 at a position corresponding to a portion where the component to be cooled 40 is connected to the plate-shaped heat pipe 1. The heat transfer block 11 is in contact with the inner wall of the hollow portion 13 corresponding to both the upper and lower main surfaces of the container 10. The heat transfer block 11 may be metal-joined to its inner wall by soldering or brazing. If the heat transfer block 11 is joined to the inner wall by metal joining, This is desirable because the thermal resistance between them will be smaller.
また空洞部 13には、 ウィック 12が備えられている。 そのウィック 12は、 コ ンテナ 1 0の上面部 (コンテナ 10 の上側の主面) に相当する部分の内壁に沿つ て配置されており、 更にウィック 12 は、 伝熱ブロック 11 を迪るようにコンテ ナ 10 の下部 (コンテナ 10 の下側の主面) に相当する内壁まで延び、 その先端 部はその内壁に接触している。 図 1に示す態様の場合は、 伝熱ブロック 11 を迪 りながら下面部に相当する内壁にウイック 1 2は先端部が折り曲がるようにして 接触させている。 このようにすることで、 ウィック 12 と内壁とのより熱抵抗小 さい接続状態が実現する。 尚、 ウィック 12 の先端部をその内壁に金属接合して も良い。 金属接合すれば、 これらの間の熱抵抗は一層小さくなる。  The cavity 13 is provided with a wick 12. The wick 12 is arranged along the inner wall of a portion corresponding to the upper surface of the container 10 (the upper main surface of the container 10). It extends to the inner wall corresponding to the lower part of container 10 (the lower main surface of container 10), and its tip contacts the inner wall. In the case of the embodiment shown in FIG. 1, the wick 12 is brought into contact with the inner wall corresponding to the lower surface while bending the heat transfer block 11 such that the tip is bent. By doing so, a connection state with lower thermal resistance between the wick 12 and the inner wall is realized. The tip of the wick 12 may be metal-joined to its inner wall. With metal bonding, the thermal resistance between them will be even lower.
さて被冷却部品 40 の温度が上昇すると、 その被冷却部品 40 の熱はヒートパ イブの作動によって、 板型ヒートパイプ 1 の上面側に伝わり、 その熱が概ねフ イン 14 を経て外部に放出されるようになる。 こうして被冷却部品 4 0の冷却が 実現する。 図 1に示すようなボトムヒートモードである限り、 板型ヒ一トパイプ 1 内の図示しない作動流体の、 重力作用による還流が期待できる。 しかし、 板ヒ ートパイプ 1 の場合、 それが大きく傾いたりしてトヅプヒートモ一ドになった としても、 本発明の板型ヒートパイプによると、 ウィック 12 による毛細管作用 によって、 作動流体の還流は維持される。  When the temperature of the cooled component 40 rises, the heat of the cooled component 40 is transmitted to the upper surface of the plate-shaped heat pipe 1 by the operation of the heat pipe, and the heat is generally released to the outside via the fins 14. Become like In this way, cooling of the cooled component 40 is realized. As long as the bottom heat mode is as shown in FIG. 1, the working fluid (not shown) in the plate-shaped heat pipe 1 can be expected to return by gravity. However, in the case of the plate heat pipe 1, even if the plate heat pipe 1 is greatly inclined and the top heat mode is set, the reflux of the working fluid is maintained by the capillary action of the wick 12 according to the plate heat pipe of the present invention. .
特にウイック 12 が被冷却部品 40 が取り付けられる側の内壁にも接触または 接合しているので、 作動流体の還流は確実になる。 またウィック 12 を伝熱プロ ック 11 に接触または接合させておけば、 その還流は一層確実になる。 特に図.1 の態様の場合、 伝熱ブロック 11 は被冷却部品 40 の接続位置に配置されている ので、 被冷却部品 40 の熱はコンテナ 10 を通じて直接、 伝熱ブロックにも伝わ る。 伝熱ブロックに伝わった熱は、 ウィック 12 を迪つて還流してきた作動流体 In particular, since the wick 12 is also in contact with or joined to the inner wall on the side where the component to be cooled 40 is mounted, the working fluid is reliably returned. If the wick 12 is brought into contact with or joined to the heat transfer block 11, the reflux of the wick 12 is further ensured. In particular, in the case of the embodiment shown in FIG. 1, since the heat transfer block 11 is arranged at the connection position of the component to be cooled 40, the heat of the component to be cooled 40 is directly transmitted to the heat transfer block through the container 10. The heat transferred to the heat transfer block returns to the working fluid flowing through the wick 12.
(液相) によって伝熱ブロックの側面の広い面において、 冷却される。 (Liquid phase) cools the heat transfer block on the wide side surface.
次に本発明の他の実施の態様を図 2、 3 を参照しながら説明する。 板型ヒート パイプ 2は、 リード 31 を介して基板 30 に実装された複数の被冷却部品 41〜3 Next, another embodiment of the present invention will be described with reference to FIGS. The plate-shaped heat pipe 2 is composed of a plurality of components to be cooled 41 to 3 mounted on the substrate 30 through the leads 31.
(この図には 3 個の被冷却部品が示される) の高さに対応した 3 個の凸部が備 つたコンテナ 20 を有する。 この態様の場合、 コンテナ 20 は図の上側のコンテ ナ部材 201 と下側のコンテナ部材 202 とを接合して形成されている。 図示する ように、 3個の凸部は、 予めコンテナ部材 202にプレス加工等を施して形成され る。 コンテナ 20 の内部の空洞部 22 には図示しない作動流体が適量収容されて いる。 また板型ヒートパイプ 2の上側の面にはヒートシンク 50が取り付けられ ている。 このヒートシンク 50、 例えばアルミニウム材製の放熱プロヅク等を適 用する。 (Three parts to be cooled are shown in this figure) It has 20 containers. In this embodiment, the container 20 is formed by joining an upper container member 201 and a lower container member 202 in the figure. As shown in the figure, the three convex portions are formed by previously performing press working or the like on the container member 202. An appropriate amount of working fluid (not shown) is stored in the hollow portion 22 inside the container 20. A heat sink 50 is attached to the upper surface of the plate-shaped heat pipe 2. The heat sink 50 is applied, for example, a heat radiating work made of aluminum.
一つまたは複数個の凸部の内の少なくとも一つには (この図の例の場合は 3 個の全てに)、 その内部に伝熱ブロック 23~25 が配置されている。 そして空洞 部 2 2内にはウイヅク 21 が備えられ、 そのウイック 21 は上側の内壁に接して おり、 更に伝熱ブロック 23〜25 に沿って下側の内壁である凸部の底面に接触、 または接合されている。 ウィック 21 は、 更に伝熱ブロック 24 にも接触、 或い は接合させておくと良い。  At least one of the one or more protrusions (all three in the example of this figure) has heat transfer blocks 23 to 25 disposed therein. A wick 21 is provided in the hollow portion 22. The wick 21 is in contact with the upper inner wall, and further along the heat transfer blocks 23 to 25, comes into contact with the bottom surface of the lower inner wall, or the convex portion. Are joined. The wick 21 may also be in contact with or joined to the heat transfer block 24.
ウィック 21 と下側の内壁との接触させる方法、 またはこれらを接合する方法 は、 例えばろう付け法等によってこれらを金属接合しても構わない。 図 2 の態 様のように、 コンテナ 20 に凸部が形成され、 その内部に伝熱ブロック 2 3、 2 4、 2 5を配置した形態の場合は、 その伝熱ブロック 23~25 とコンテナ 20 と の間に挟み込むようにしてウイック 21を固定する方法も有力である。 図 3は伝 熱プロック 24の近傍を拡大した説明図であり、 ウィック 21が伝熱プロック 24 と、 凸部を構成する部分のコンテナ部材 202 の内壁との間に挟まるように固定 された状態を示している。 このようにウィック 21 を固定すれば、 別途、 ろう付 け等の工程を要せず、 簡易にしてウィック 21 と内壁、 更には伝熱ブロック 24 とを熱抵抗小さく接続することが可能になるので実用的である。  As for the method of bringing the wick 21 into contact with the lower inner wall or the method of joining them, the metal may be joined by, for example, a brazing method. As shown in Fig. 2, when the container 20 has a convex portion and the heat transfer blocks 23, 24, and 25 are arranged inside the container, the heat transfer blocks 23 to 25 and the container 20 It is also effective to fix the wick 21 by sandwiching it between and. FIG. 3 is an enlarged view of the vicinity of the heat transfer block 24, showing a state in which the wick 21 is fixed so as to be sandwiched between the heat transfer block 24 and the inner wall of the container member 202 which forms the convex portion. Is shown. By fixing the wick 21 in this way, it is possible to connect the wick 21 to the inner wall and further to the heat transfer block 24 with low thermal resistance without the need for a separate step such as brazing. It is practical.
図 2に示す板型ヒートパイプ 2も上述した板型ヒートパイプ 1 (図 1) と同様、 トップヒートモードでの作動流体の還流が維持される。 またこの例の場合、 被冷 却部品 23〜25の高さに応じて凸部を有しているので、 高さが異なる複数の被冷 却部品の冷却構造を一つの板型ヒートパイプで対応できる利点があり実用的であ る。 実施例 The plate heat pipe 2 shown in FIG. 2 also maintains the reflux of the working fluid in the top heat mode, similarly to the plate heat pipe 1 (FIG. 1) described above. Also, in this case, the cooling structure for multiple components to be cooled with different heights can be handled by one plate-type heat pipe because the components to be cooled have protrusions according to the height of 23 to 25. It has practical advantages and is practical. Example
実施例 1 Example 1
厚さ 1 mmの銅製の板材を使用して、 図 1に示す縦 1 0 O mm x横 7 O mm, 厚さ 6 mmの板型ヒートパイプを作製した。 縦 2 5 mm x横 2 5 mm x高さ 4 m mの銅製の 1 個の伝熱ブロックを、 空洞部内の被冷却部品が接続する位置に配 置した。 伝熱ブロックは、 空洞部の上下の内壁にろう付けによってそれそれ金属 Using a copper plate material having a thickness of 1 mm, a plate-type heat pipe having a length of 10 O mm, a width of 7 O mm, and a thickness of 6 mm shown in FIG. 1 was produced. One heat transfer block made of copper, 25 mm long x 25 mm wide x 4 mm high, was placed in the cavity at the position where the parts to be cooled are connected. The heat transfer blocks are made of metal by brazing the upper and lower inner walls of the cavity.
Hiロロしだ。 Hi Hi!
更に、 図 1に示すように、 空洞部内の上面部の内壁の全域、 伝熱ブロックの側 面の全域、 および、 被冷却部品と接触する空洞部内の下面部の一部に、 ウィック を配置した。 更に、 空洞部内を減圧し、 作動流体としての水を封入した。  Furthermore, as shown in Fig. 1, wicks were placed on the entire inner wall of the upper surface in the cavity, on the entire side surface of the heat transfer block, and on a part of the lower surface in the cavity in contact with the component to be cooled. . Furthermore, the pressure inside the cavity was reduced, and water as a working fluid was sealed.
このように作製した板型ヒートパイブに被冷却部品として M P Uを伝熱グリス を介して接触させた。 この板型ヒートパイプを水平面から 度傾斜させて使用し たところ、 ドライアウトを生じることなく、 優れた冷却性能が得られた。 実施例 2  MPU as a component to be cooled was brought into contact with the plate-shaped heat pipe thus produced via heat transfer grease. When this plate-type heat pipe was used at an angle from the horizontal plane, excellent cooling performance was obtained without dry-out. Example 2
厚 l mmの銅製の上板材と、 プレス加工によって形成された 3つの凸部を有す る、 厚さ 1 mmの銅製の下板材とを接合させて、 図 2に示すような板型ヒートパ イブのコンテナを作製した。 3 つの凸部は、 被冷却部品の高さに対応して、 中央 部が高く、 両側部は相対的に低くなるように形成した。 このように形成されたコ ンテナは、 縦 1 0 O mm x横 7 O mm x幅 6 mmで、 凸部を含む幅は、 中央部 凸部で、 9 mm、 両側の凸部で、 8 mmであった。  A plate-type heat pipe as shown in Fig. 2 by joining a lmm thick copper upper plate and a 1mm thick copper lower plate with three convex parts formed by pressing. Was made. The three projections were formed so that the central part was higher and the both sides were relatively lower, corresponding to the height of the component to be cooled. The container formed in this way is 10 O mm long x 7 O mm wide x 6 mm wide, and the width including the convex part is 9 mm at the central convex part and 8 mm at the convex parts on both sides. Met.
縦 2 5 mm x横 2 5 mm x高さ 7 mmの銅製の 1 個の伝熱プロックを、 中央 部の凸部内に、 縦 2 5 mm x横 2 5 mm x高さ 6 mmの銅製の伝熱プロックを、 両側の凸部内にそれそれ配置し、 伝熱ブロックは、 空洞部の上下の内壁にろう付 けによつてそれそれ金属結合した。  A copper heat transfer block of 25 mm (length) x 25 mm (width) x 7 mm (height) is placed in the central convex part by a copper heat transfer block (length 25 mm x width 25 mm x height 6 mm). The heat blocks were placed in the protrusions on both sides, respectively, and the heat transfer blocks were each metal-bonded by brazing to the upper and lower inner walls of the cavity.
更に、 図 2に示すように、 空洞部内の上面部の内壁の全域、 および、 伝熱プロ ックの側面の全域に、 ウィックを配置した。 更に、 図 3に示すように、 凸部の内 側壁と伝熱プロックによってウィックを挟み込んだ。 Furthermore, as shown in Fig. 2, wicks were placed all over the inner wall of the upper surface inside the cavity and all over the side surfaces of the heat transfer block. Furthermore, as shown in FIG. The wick was sandwiched between the side wall and the heat transfer block.
更に、 空洞部内を減圧し、 作動流体としての水を封入した。 Furthermore, the pressure inside the cavity was reduced, and water as a working fluid was sealed.
このように作製した板型ヒートパイプに被冷却部品として、 基板上に備えられ た高さの異なる M P Uを伝熱グリスを介して接触させた。 この板型ヒートパイプ を水平面から 6 0度傾斜させて使用したところ、ドライアウトを生じることなく、 優れた冷却性能が得られた。 産業上の利用可能性  MPUs having different heights provided on the substrate were brought into contact with the plate-shaped heat pipe manufactured as described above as heat-receiving parts via heat transfer grease. When this plate-type heat pipe was used at an angle of 60 degrees from the horizontal plane, excellent cooling performance was obtained without causing dryout. Industrial applicability
以上のように本発明の板型ヒートパイプによると、 トップヒ一トードでも優れ た性能を維持できる板型ヒートパイプを提供することができる。 このため本発明 の板型ヒートパイを用いた実装構造は、 例えば冷却すべき半導体素子等の被冷却 部品が搭載される電気'電子機器に本発明の板型ヒートパイプを用いれば、例え、 その機器が傾けられて使される場合等においてトップヒートモ一ドになっても、 優れた冷却性能が維持できる。  As described above, according to the plate-type heat pipe of the present invention, it is possible to provide a plate-type heat pipe capable of maintaining excellent performance even in the top heat. For this reason, the mounting structure using the plate-type heat pie of the present invention can be used, for example, if the plate-type heat pipe of the present invention is used in an electric or electronic device on which a component to be cooled such as a semiconductor element to be cooled is mounted. Excellent cooling performance can be maintained even when the top heat mode is set, for example, when the air conditioner is used at an angle.

Claims

請求の範囲 The scope of the claims
1 . 下記部材を備えている板型ヒートパイプ:  1. Plate heat pipe with the following components:
( 1 ) 相対する主面部 Aおよび主面部 Bを備えている、 密閉されたコンテナ、 (1) A sealed container having opposed main surface portions A and B,
( 2 ) 前記コンテナの内部において、 前記主面部 Aの内壁および前記主面部 Bの 内壁の間を接続するように設けられた、 熱を伝えるための少なくとも 1個の伝熱 プロヅク、 (2) Inside the container, at least one heat transfer workpipe for transmitting heat, which is provided to connect between the inner wall of the main surface portion A and the inner wall of the main surface portion B,
( 3 ) 前記コンテナの内部の少なくとも伝熱ブロックの一部に配置されたウイッ ク、 および  (3) a wick arranged at least in part of the heat transfer block inside the container, and
( 4 ) 前記コンテナ内に封入されている作動流体。  (4) Working fluid sealed in the container.
2 . 前記主面部 Aおよび前記主面部 Bは、 平らな板状材からなつていることを 特徴とする、 請求項 1に記載の板型ヒートパイプ。  2. The plate-type heat pipe according to claim 1, wherein the main surface portion A and the main surface portion B are made of a flat plate-like material.
3 . 前記主面部 Aまたは前記主面部 Bの何れか 1つは、 前記コンテナの外方に 向って延びている、 少なくとも 1個の凸部を備えていることを特徴とする、 請求 項 1に記載の板型ヒートパイプ。  3. The method according to claim 1, wherein at least one of the main surface portion A and the main surface portion B includes at least one convex portion extending outwardly of the container. The plate-shaped heat pipe as described.
4 . 前記凸部は、 異なる高さで前記コンテナの外方に向って延びていることを特 徴とする、 請求項 3に記載の板型ヒートパイプ。  4. The plate-type heat pipe according to claim 3, wherein the convex portions extend outwardly of the container at different heights.
5 . 前記凸部は、 同一高さで前記コンテナの外方に向って延びていることを特徴 とする、 請求項 3に記載の板型ヒートパイプ。  5. The plate-shaped heat pipe according to claim 3, wherein the protrusions extend at the same height toward the outside of the container.
6 . 前記少なくとも 1個の凸部のそれそれに、 前記伝熱ブロックが接続するよ うに設けられていることを特徴とする、 請求項 3に記載の板型ヒートパイプ。 6. The plate-type heat pipe according to claim 3, wherein the heat transfer block is provided so as to be connected to that of the at least one convex portion.
7 . 前記凸部の少なくとも 1つに、 前記伝熱ブロックが接続するように設けら れていることを特徴とする、 請求項 3に記載の板型ヒートパイプ。 7. The plate-type heat pipe according to claim 3, wherein the heat transfer block is provided so as to be connected to at least one of the protrusions.
8 . 前記伝熱ブロックが円柱形状または角柱形状からなっており、 全記伝熱ブ ロックは、 金属接合によって、 前記主面部 Aの内壁および前記主面部 Bの内壁の 間を接続していることを特徴とする、 請求項 2または 3に記載の板型ヒートパイ プ。  8. The heat transfer block has a cylindrical or prismatic shape, and all the heat transfer blocks connect between the inner wall of the main surface portion A and the inner wall of the main surface portion B by metal bonding. The plate-shaped heat pipe according to claim 2, wherein
9 . 前記ウィックが、 前記主面部 Aの内壁、 前記主面部 Bの内壁、 および、 前 記伝熱ブロックの側壁のそれそれの少なくとも 1部に設けられていることを特徴 とする、 請求項 1に記載の板型ヒートパイプ。 9. The wick is provided on at least one of the inner wall of the main surface portion A, the inner wall of the main surface portion B, and the side wall of the heat transfer block. The plate-type heat pipe according to claim 1, wherein
1 0 . 前記ウィックが、 前記主面部 Aの内壁および前記主面部 Bの内壁の何れか 一方の全面に設けられていることを特徴とする、 請求項 9に記載の板型ヒートパ イブ。  10. The plate-type heat pipe according to claim 9, wherein the wick is provided on an entire surface of one of the inner wall of the main surface portion A and the inner wall of the main surface portion B.
1 1 . 前記ウィックが、 前記主面部 Aの内壁および前記主面部 Bの内壁の何れか 一方の全面、 および、 前記伝熱ブロックの側壁の全面に設けられていることを特 徴とする、 請求項 9に記載の板型ヒートパイプ。  11. The wick is characterized in that it is provided on the entire surface of one of the inner wall of the main surface portion A and the inner wall of the main surface portion B, and on the entire surface of the side wall of the heat transfer block. Item 10. A plate-type heat pipe according to item 9.
1 2 . 前記ウィックが全面に設けられていない、 前記主面部 Aの内壁または前記 主面部 Bの内壁には、 前記ウイックが前記伝熱ブロックの側壁との接続部位にお いて折り曲げられて設けられていることを特徴とする、 請求項 1 0に記載の板型 ヒ一トパイプ。  12. On the inner wall of the main surface portion A or the inner wall of the main surface portion B where the wick is not provided on the entire surface, the wick is provided by being bent at a connection portion with the side wall of the heat transfer block. 10. The plate-shaped heat pipe according to claim 10, wherein:
1 3 . 前記ウィックは、 前記主面部 Aの内壁、 前記主面部 Bの内壁、 および、 前 記伝熱ブロックの側壁の少なくとも 1つと接触または接合されて設けられている ことを特徴とする、 請求項 9から 1 2の何れか 1つに記載の板型ヒートパイプ。 13. The wick is provided so as to be in contact with or joined to at least one of the inner wall of the main surface portion A, the inner wall of the main surface portion B, and the side wall of the heat transfer block. Item 13. A plate-type heat pipe according to any one of Items 9 to 12.
1 4 . 前記ウィックは、 前記伝熱プロヅクの側面と前記凸部の内壁とによって固 定されていることを特徴とする、 請求項 1 0または 1 1に記載の板型ヒートパイ プ。 14. The plate-type heat pipe according to claim 10, wherein the wick is fixed by a side surface of the heat transfer work and an inner wall of the projection.
1 5 . 前記伝熱ブロックが接続するように設けられた前記凸部の外壁に、 被冷 却部品が装着されることを特徴とする、 請求項 6または 7に記載の板型ヒー卜パ ィプ。  15. The plate-type heat paper according to claim 6 or 7, wherein a component to be cooled is mounted on an outer wall of the projection provided to connect the heat transfer block. H.
1 6 . 前記主面部 Aの内壁および前記主面部 Bの内壁の何れか一方の外壁に 7 ィンが設けられていることを特徴とする、 請求項 1に記載の板型ヒートパイプ。  16. The plate-type heat pipe according to claim 1, wherein a 7-pin is provided on one of an outer wall of the inner surface of the main surface portion A and an inner wall of the main surface portion B. 17.
1 7 . 請求項 1から 7の何れか 1 項に記載の板型ヒートパイプが、 被冷却部 品が実装された基板に相対して配置され、 前記伝熱ブロックの備わる位置の少な くとも 1つには、 前記被冷却部品が接続された、 板型ヒ一卜パイプの実装構造。 17. The plate-shaped heat pipe according to any one of claims 1 to 7, wherein the plate-shaped heat pipe is arranged to face a substrate on which a component to be cooled is mounted, and at least one of the positions where the heat transfer block is provided. One is a mounting structure of a plate-shaped heat pipe to which the component to be cooled is connected.
PCT/JP1999/001841 1998-04-15 1999-04-07 Plate type heat pipe and its installation structure WO1999053256A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB9928393A GB2342152B (en) 1998-04-15 1999-04-07 Plate type heat pipe and cooling device using same
JP55147499A JP4278720B2 (en) 1998-04-15 1999-04-07 Plate heat pipe
DE19980819T DE19980819T1 (en) 1998-04-15 1999-04-07 Plate-shaped heat sink pipe and cooling device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/104530 1998-04-15
JP10453098 1998-04-15

Publications (1)

Publication Number Publication Date
WO1999053256A1 true WO1999053256A1 (en) 1999-10-21

Family

ID=14383059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001841 WO1999053256A1 (en) 1998-04-15 1999-04-07 Plate type heat pipe and its installation structure

Country Status (6)

Country Link
JP (1) JP4278720B2 (en)
CN (1) CN1179188C (en)
DE (1) DE19980819T1 (en)
GB (1) GB2342152B (en)
TW (1) TW414854B (en)
WO (1) WO1999053256A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183080A (en) * 1999-12-24 2001-07-06 Furukawa Electric Co Ltd:The Method for manufacturing compressed mesh wick and flat surface type heat pipe having compressed mesh wick

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1432295T3 (en) * 2002-12-20 2005-08-08 Innowert Gmbh Cooling device for an electrical and / or electronic device
CN100447989C (en) * 2005-05-18 2008-12-31 新灯源科技有限公司 Integrated circuit packaging and manufacturing method
CN100424860C (en) * 2005-08-19 2008-10-08 南茂科技股份有限公司 Heat elimination type structure for packing complex crystal
US7447029B2 (en) 2006-03-14 2008-11-04 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Vapor chamber for dissipation heat generated by electronic component
CN101403578A (en) * 2008-11-03 2009-04-08 赵耀华 Plate-shaped heat pipe and its processing technique
CN101709929B (en) * 2008-11-03 2012-05-30 赵耀华 Plate-type heat pipe and process for processing same
CN105338784A (en) * 2014-08-08 2016-02-17 联想(北京)有限公司 Cooling device and electronic equipment
JP6513427B2 (en) * 2015-02-27 2019-05-15 昭和電工株式会社 Liquid cooling system
CN204707386U (en) * 2015-04-30 2015-10-14 讯凯国际股份有限公司 Radiating subassembly, water cooled heat radiating assembly and cooling system
CN108458613A (en) * 2017-02-21 2018-08-28 Ibt株式会社 For outdoor template vacuum heat transfer unit (HTU)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07208884A (en) * 1994-01-19 1995-08-11 Fujikura Ltd Plate type heat pipe
JPH10227585A (en) * 1997-02-13 1998-08-25 Furukawa Electric Co Ltd:The Heat spreader and cooler employing the same
JPH10288481A (en) * 1997-04-11 1998-10-27 Furukawa Electric Co Ltd:The Planar heat pipe and cooling structure employing it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07208884A (en) * 1994-01-19 1995-08-11 Fujikura Ltd Plate type heat pipe
JPH10227585A (en) * 1997-02-13 1998-08-25 Furukawa Electric Co Ltd:The Heat spreader and cooler employing the same
JPH10288481A (en) * 1997-04-11 1998-10-27 Furukawa Electric Co Ltd:The Planar heat pipe and cooling structure employing it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183080A (en) * 1999-12-24 2001-07-06 Furukawa Electric Co Ltd:The Method for manufacturing compressed mesh wick and flat surface type heat pipe having compressed mesh wick

Also Published As

Publication number Publication date
DE19980819T1 (en) 2000-05-31
CN1179188C (en) 2004-12-08
JP4278720B2 (en) 2009-06-17
CN1263592A (en) 2000-08-16
TW414854B (en) 2000-12-11
GB2342152B (en) 2002-01-09
GB9928393D0 (en) 2000-01-26
GB2342152A (en) 2000-04-05

Similar Documents

Publication Publication Date Title
JP4391366B2 (en) Heat sink with heat pipe and method of manufacturing the same
US6263959B1 (en) Plate type heat pipe and cooling structure using it
US6256201B1 (en) Plate type heat pipe method of manufacturing same and cooling apparatus using plate type heat pipe
US6626233B1 (en) Bi-level heat sink
JP3936308B2 (en) Fin integrated heat sink and method of manufacturing the same
CN100456461C (en) Heat sink of heat pipe
US6749013B2 (en) Heat sink
JP2004111968A (en) Heat sink with heat pipe directly brought into contact with component
US7701717B2 (en) Notebook computer having heat pipe
JP2010251756A (en) Heat dissipation device and method of manufacturing the same
JP2009290118A (en) Electronic device
JP2004111969A (en) Heat sink with angled heat pipe
JP4278720B2 (en) Plate heat pipe
JP4728522B2 (en) heatsink
JP3665508B2 (en) Heat sink with fins
JPH1183355A (en) Heat sink with fan
JPH11317482A (en) Heat sink
US20090151909A1 (en) Heat-Dissipating Unit
JP3332858B2 (en) Plate type heat pipe and cooling structure using it
JP2006013217A (en) Heatsink using carbon graphite
JP4360624B2 (en) Heat sink for semiconductor element cooling
JPH11101585A (en) Plate-type heat pump and its packaging structure
JPH10227585A (en) Heat spreader and cooler employing the same
JPH11237193A (en) Plate type heat pipe and mounting structure using it
JP2000065490A (en) Plate type heat pipe and cooling structure employing same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99800554.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE GB JP US

ENP Entry into the national phase

Ref document number: 9928393

Country of ref document: GB

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09445855

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 19980819

Country of ref document: DE

Date of ref document: 20000531

WWE Wipo information: entry into national phase

Ref document number: 19980819

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607