WO2024092864A1 - 一种厚朴酚/糖基呋喃双生物基环氧树脂单体及其制备方法与应用 - Google Patents

一种厚朴酚/糖基呋喃双生物基环氧树脂单体及其制备方法与应用 Download PDF

Info

Publication number
WO2024092864A1
WO2024092864A1 PCT/CN2022/131060 CN2022131060W WO2024092864A1 WO 2024092864 A1 WO2024092864 A1 WO 2024092864A1 CN 2022131060 W CN2022131060 W CN 2022131060W WO 2024092864 A1 WO2024092864 A1 WO 2024092864A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
magnolol
glycosyl
bio
based epoxy
Prior art date
Application number
PCT/CN2022/131060
Other languages
English (en)
French (fr)
Inventor
郭凯
孟晶晶
管浩
李春雨
李智勇
Original Assignee
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工业大学 filed Critical 南京工业大学
Publication of WO2024092864A1 publication Critical patent/WO2024092864A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/14Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/504Amines containing an atom other than nitrogen belonging to the amine group, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention belongs to the field of chemical industry, and specifically relates to a magnolol/glycosyl furan bibi-based epoxy resin monomer and a preparation method and application thereof.
  • Epoxy resin has excellent electrical insulation properties, wear resistance, chemical stability, and the material is easy to produce and process. It is widely used in electrical and electronic insulation materials, aerospace and other fields; however, traditional epoxy resins are generally easy to burn. Although some materials have good mechanical properties, their thermal properties and flame retardant properties are not ideal, which greatly limits their application. Therefore, the existing technology usually enhances the flame retardant properties of epoxy resins through molecular modification and additive compounding, improves the shortcomings of current epoxy resins, and reduces safety risks. In this way, thermosetting flame retardant resins are gradually coming into people's field of vision and attracting the attention of scholars.
  • Thermosetting resin is a kind of resin that can form a highly cross-linked network polymer after polymerization. It is widely used in the field of engineering technology research due to its excellent mechanical properties, thermal properties and corrosion resistance. In addition, in the context of the decreasing petrochemical resources, the search for renewable and recyclable biomass epoxy resin has become a current research hotspot.
  • Biomass such as lignin and natural phenolic compounds are rich in unsaturated double bonds or hydroxyl groups with good reaction activity, and can be obtained through epoxidation reaction to obtain epoxy compounds.
  • lignin and natural phenolic compounds are rich in raw material sources, low in cost, and have the advantages of being degradable, renewable, and environmentally friendly.
  • the continuous emergence and research of biomass epoxy resins have enriched the use options of epoxy resins, reduced dependence on petroleum products, and reduced harm to the environment.
  • Magnolol is a renewable biomass raw material extracted from the bark of Magnolia officinalis. It belongs to a biphenol compound with high rigidity. This type of structure can improve the heat resistance of epoxy resin materials and reduce the free volume to achieve the purpose of improving toughness.
  • magnolol as a raw material to synthesize a new type of epoxy resin. The synthesis steps are simple, the reaction conditions are mild, and the raw materials are widely available and easy to obtain.
  • the polymer material polymerized from the epoxy resin monomer has good thermal properties and a higher decomposition temperature, which has many advantages over the traditional bisphenol A epoxy resin.
  • the technical problem to be solved by the present invention is to provide a magnolol/glycosyl furan bibio-based epoxy resin monomer in view of the deficiencies in the prior art.
  • the technical problem that the present invention needs to solve is to provide a method for preparing the above-mentioned magnolol/glycosyl furan bibio-based epoxy resin monomer.
  • the technical problem that the present invention needs to solve is to provide a magnolol/glycosyl furan bibio-based epoxy resin.
  • the technical problem that the present invention needs to solve is to provide a method for preparing the above-mentioned magnolol/glycosyl furan bibio-based epoxy resin.
  • the technical problem that the present invention needs to solve is to provide the application of the above-mentioned magnolol/glycosyl furan bibio-based epoxy resin.
  • the present invention discloses a magnolol/glycosyl furan bis bio-based epoxy resin monomer MF;
  • the present invention discloses a method for preparing the above magnolol/glycosyl furan bibi-based epoxy resin monomer MF, as shown in FIG1 , comprising the following steps:
  • the alkaline solution is a mixed solution of an alkali and an organic solvent in a mass ratio of 1:2 to 20; wherein the alkali includes but is not limited to any one or a combination of sodium hydroxide, potassium hydroxide, sodium hydride, potassium carbonate and sodium carbonate; and the organic solvent includes but is not limited to any one or a combination of dichloromethane, ethyl acetate, acetonitrile, acetone, tetrahydrofuran and dioxane.
  • the 5-chloromethylfurfural can be prepared according to the prior art, or according to the following method: 5-hydroxymethylfurfural is mixed and dissolved with a solvent, concentrated hydrochloric acid is added, and the mixture is reacted for 12 hours at 25° C.
  • the solvent is any one or a combination of dichloromethane, ethyl acetate, acetonitrile, acetone, tetrahydrofuran and dioxane;
  • the mass volume ratio of 5-hydroxymethylfurfural to solvent is 1 g: 4 to 10 mL;
  • the concentration of the concentrated hydrochloric acid is 12 mol/L;
  • the molar ratio of hydrochloric acid to 5-hydroxymethylfurfural is 1.5 to 3: 1; and the reaction is carried out under stirring at a rotation speed of 800 to 2000 rpm.
  • step (1) the molar ratio of magnolol to 5-chloromethylfurfural is 1:2.05-3.
  • the catalyst includes but is not limited to sodium iodide; the amount of the catalyst used is 5% to 15% of the molar amount of magnolol.
  • the reaction temperature is 60 to 100° C., preferably 80° C.; the reaction time is 8 to 16 hours.
  • step (1) after the reaction is completed, the reaction solution is diluted with an appropriate amount of water to completely dissolve the salt generated by the reaction, and then extracted with an organic solvent, dried over anhydrous sodium sulfate, filtered, and the filtrate is decompressed to remove the solvent. After column separation and purification, a light yellow viscous liquid is obtained, which is compound c.
  • the protic solvent is any one or a combination of methanol, ethanol and water.
  • step (2) the concentration of compound c is 0.05 to 0.15 g/mL.
  • the reducing agent is any one of sodium borohydride, lithium aluminum hydride, aluminum triisopropoxide and hydrogen; and the molar ratio of compound c to the reducing agent is 1:0.5-2.5.
  • step (2) the reaction temperature is -5 to 5°C, preferably 0°C; and the reaction time is 12 to 18 hours.
  • step (2) after the reaction is completed, an appropriate amount of distilled water is added to quench the reaction, and the magnolol disubstituted furan hydroxy compound is purified to obtain compound d.
  • the inert environment is preferably nitrogen protection, and the nitrogen inlet flow rate is 50 to 200 mL/min.
  • the phase transfer catalyst includes but is not limited to one of tetrabutylammonium bromide, tetraethylammonium bromide, benzyltriethylammonium chloride or a mixture of several of them.
  • step (3) compound d is dissolved in an organic solvent and then added to epichlorohydrin, an alkaline solution and a phase transfer catalyst; wherein the organic solvent includes but is not limited to any one or a combination of dichloromethane, ethyl acetate, acetonitrile, acetone, tetrahydrofuran and dioxane; and the alkaline solution is any one or a combination of potassium carbonate solution, sodium carbonate solution, sodium hydroxide solution and potassium hydroxide solution.
  • step (3) the molar ratio of compound d to epichlorohydrin, the base in the alkaline solution and the phase transfer catalyst is 1:15-25:15-25:0.15-0.3.
  • step (3) the reaction is carried out under stirring at a rotation speed of 800 to 2000 rpm.
  • step (3) the reaction temperature is 40 to 60° C., preferably 50° C.; and the reaction time is 2 to 8 hours.
  • step (3) after the reaction is completed, the reaction solution is extracted after dilution with water, dried, filtered, and the filtrate is decompressed to remove the solvent, and the magnolol/glycosyl furan bibio-based epoxy resin monomer MF is purified.
  • the desiccant used in the post-treatment of each synthesis step in the above process is anhydrous sodium sulfate.
  • the present invention discloses a magnolol/glycosyl furan bibi-based epoxy resin, which is a binary polymer composed of A and B, or a binary polymer composed of A and C;
  • the binary polymer composed of A and B has a repeating structural unit shown in formula I
  • the binary polymer composed of A and C has a repeating structural unit shown in formula II;
  • the initial decomposition temperature of the magnolol/glycosyl furan bis-bio-based epoxy resin in a nitrogen atmosphere is 310-370° C., preferably 314-363° C.
  • the maximum decomposition temperature of the magnolol/glycosyl furan bis-bio-based epoxy resin in a nitrogen atmosphere is 420-490° C., preferably 420-480° C., preferably 420-470° C., preferably 420-460° C., preferably 425-457° C.
  • the initial decomposition temperature of the magnolol/glycosyl furan bis bio-based epoxy resin in air atmosphere is 280-330°C, preferably 290-320°C, and preferably 293-316°C.
  • the maximum decomposition temperature of the magnolol/glycosyl furan bis bio-based epoxy resin in air atmosphere is 480-670°C, preferably 480-650°C, preferably 490-650°C, preferably 490-645°C, preferably 500-643°C.
  • the residual carbon content of the magnolol/glycosyl furan bis bio-based epoxy resin at 750° C. in an air atmosphere is 1% to 11%, preferably 2% to 10%, and preferably 2.5% to 9.5%.
  • the storage modulus of the magnolol/glycosyl furan bis bio-based epoxy resin is 3 to 9 GPa, preferably 3 to 6 GPa, preferably 3.5 to 5.5 GPa, and preferably 3.96 to 5.04 GPa.
  • the phase transition temperature of the magnolol/glycosyl furan bis bio-based epoxy resin is 200-250°C, preferably 200-240°C, preferably 200-230°C, preferably 200-225°C, and preferably 202-223°C.
  • the average heat release rate of the magnolol/glycosyl furan bis-bio-based epoxy resin is 50 to 100 W/g, preferably 55 to 95 W/g, preferably 60 to 95 W/g, and preferably 64 to 93 W/g.
  • the present invention discloses a method for preparing the above-mentioned magnolol/glycosyl furan bis-bio-based epoxy resin, comprising mixing magnolol/glycosyl furan bis-bio-based epoxy resin monomer MF and aromatic sulfone diamine curing agent, stirring and heating to completely melt, uniformly injection molding, and continuing to heat and cure under the protection of inert gas to obtain magnolol/glycosyl furan bis-bio-based epoxy resin.
  • the aromatic sulfone diamine curing agent includes but is not limited to 4,4'-diaminodiphenyl sulfone (44DDS) and/or 3,3'-diaminodiphenyl sulfone (33DDS).
  • the molar ratio of the epoxy group in the magnolol/glycosyl furan bis-bio-based epoxy resin monomer MF to the amino group in the aromatic sulfone diamine curing agent is 0.8 to 1.5:1, preferably 0.8 to 1.2:1.
  • the melting temperature is 120-180°C; the solidification temperature is 200-230°C; and the solidification time is 2-5h.
  • the present invention discloses the use of the above-mentioned magnolol/glycosyl furan bibio-based epoxy resin as or in the preparation of a heat-resistant material, which has a higher Tg value, indicating that it can work at a very high temperature.
  • the present invention has the following advantages:
  • the present invention provides a structure of a novel bi-biobased epoxy resin monomer of magnolol/glycosylfuran and a method for preparing the same.
  • the preparation process is highly green and is a novel bi-biobased composite epoxy monomer material.
  • the magnolol and glycosyl 5-hydroxymethylfurfural in the present invention can be obtained by biological preparation, by conversion or separation from magnolia officinalis and biomass such as corn, wheat or straw, so the biological added value of the monomer is very high.
  • the present invention constructs a polymer material of a new structure based on a synthesized new monomer structure.
  • the polymer material is synthesized from bio-based raw materials and has not only excellent thermal stability but also good biosafety.
  • the new structural polymer material in the present invention has a higher glass transition temperature and can be used in a wide temperature range; its high storage modulus (>3GPa) shows that the polymer material has high stiffness properties, which is a great advantage over traditional petroleum-based epoxy resin materials; its average heat release rate value is low, indicating that the resin has good flame retardant properties, releases less heat during combustion, and can reduce the risk of fire.
  • FIG1 is a reaction path of the present invention.
  • FIG. 2 is a hydrogen nuclear magnetic resonance spectrum of epoxy resin monomer MF.
  • FIG. 3 is a carbon NMR spectrum of epoxy resin monomer MF.
  • FIG4 is a high-resolution mass spectrum of epoxy resin monomer MF.
  • FIG5 is a Fourier transform infrared spectrum of epoxy resin monomer MF.
  • FIG. 6 is a Fourier transform infrared spectrum of the epoxy resin polymer in Example 5.
  • FIG. 7 is a Fourier transform infrared spectrum of the epoxy resin polymer in Example 6.
  • FIG8 is a TGA graph of epoxy resin monomer MF.
  • Figure 9 is the TGA graph of the epoxy resin monomer Meng-guan HF.
  • FIG. 10 is a TGA graph of the epoxy resin polymer of Example 5 under nitrogen.
  • FIG. 11 is a TGA graph of the epoxy resin polymer of Example 5 under air.
  • FIG. 12 is a TGA chart of the epoxy resin polymer of Example 6 under nitrogen.
  • FIG. 13 is a TGA graph of the epoxy resin polymer of Example 6 under air.
  • FIG. 14 is a DMA (Tan-Delta) graph of the epoxy resin polymers of Examples 5 and 6.
  • FIG. 15 is a DMA (storage modulus) graph of the epoxy resin polymers of Examples 5 and 6.
  • FIG. 16 is a DSC graph of the epoxy resin polymers of Examples 5 and 6.
  • FIG. 17 is an MCC diagram of the epoxy resin polymers of Examples 5 and 6.
  • Figure 18 is the MCC diagram of Meng-gaun HF system epoxy resin polymer.
  • the aqueous phase was extracted with dichloromethane (90 mL) for 3 times, and the organic phases were combined, dried over anhydrous sodium sulfate, filtered, and the solvent was removed by distillation under reduced pressure.
  • the crude product was purified by column chromatography using pure dichloromethane as an eluent to obtain high-purity 5-chloromethylfurfural b (32.7 g) with a yield of 90.8%.
  • 5-Chloromethylfurfural b (14.3 g, 100 mmol) obtained by the reaction in Example 1 was weighed and dissolved in 60 ml of acetonitrile and placed in a constant pressure low liquid funnel for later use; magnolol (11 g, 41.3 mmol) was added to a 500 ml round-bottom flask, and 50 ml of acetonitrile was added to completely dissolve it. Potassium carbonate (13.7 g, 100 mmol) was added at room temperature with stirring (800 rpm) and stirred for 30 min; then the 5-chloromethylfurfural acetonitrile solution described above was added dropwise, and sodium iodide (0.5 g, 3.
  • Petroleum ether-ethyl acetate (PE/EA:2/1-PE/EA:1/1) system was used as an eluent for elution and purification to obtain compound d (12 g, 24.7 mmol) with a yield of 78.8% as a white solid powder.
  • the NMR mass spectra are shown in Figures 2 to 4, the IR is shown in Figure 5, and the TGA test is shown in Figure 8.
  • the initial decomposition temperature (T d5 ) of the monomer is 296.3°C, while the initial decomposition temperature (T d5 ) of Meng-guan HF ( Figure 9) is 260.5°C, indicating that the MF monomer has better thermal stability.
  • Thermogravimetric data analysis under nitrogen shows that the initial decomposition temperature is 314°C, the maximum decomposition temperature is 457°C, and the obtained material has good heat resistance.
  • Thermogravimetric data analysis under air shows that the initial decomposition temperature is 293.6°C, the maximum decomposition temperature is 500.7/640.7°C, and the residual carbon content at 750°C is 9.22%, and the obtained material has good heat resistance.
  • the epoxy resin obtained in Example 5 was analyzed by a dynamic mechanical analyzer (DMA), as shown in Figures 14-15.
  • the curve data shows that the polymer has a high storage modulus (E>3GPa), which is 3.96GPa (25°C), indicating that the curing system of MF and 4,4'-diaminodiphenyl sulfone has a polymer structure with a high storage modulus.
  • the peak of its dynamic mechanical loss data appears at 204.3°C, indicating that its glass transition temperature is high and its thermal properties are good.
  • the storage modulus of the sample of this embodiment at 25°C is significantly greater than that of the Meng-guan HF/44DDS data (Comparative Example 1, 3.07GPa), which has certain advantages.
  • DSC Differential scanning calorimetry
  • the flame retardancy of the epoxy resin obtained in Example 5 was tested by microscale combustion calorimetry (MCC). Its heat release rate (HRR) and temperature curve are shown in Figure 17, and the average heat release rate value of the polymer is 64.5W/g. Compared with 498.8W/g of the traditional resin DGEBA under the same curing system, the average heat release rate value of the resin obtained in Example 5 is significantly lower; and compared with the MCC data of Meng-gaun HF/44DDS of the same system ( Figure 18), the average heat release rate value of Meng-gaun HF/44DDS is 137.5W/g, indicating that the resin has good flame retardant properties, less combustion heat release, and can reduce the risk of fire.
  • MCC microscale combustion calorimetry
  • the infrared data of the polymer are attributed as follows: 1104 cm -1 is the vibration of the carbon-oxygen bond in the ether bond COC; 1403 cm -1 is the characteristic peak of the CN bond; 1597, 1562, 1494 cm -1 are the characteristic peaks of the benzene ring; the peaks around 2918 cm -1 are the stretching vibrations of the saturated CH bond on the aliphatic chain; the broad absorption peak at 3405 cm -1 is the peak formed by the appearance of the OH group due to the ring opening of ethylene oxide.
  • Thermogravimetric data analysis under nitrogen shows that the initial decomposition temperature is 363°C, the maximum decomposition temperature is 425°C, and the obtained material has good heat resistance.
  • Thermogravimetric data analysis under air shows that the initial decomposition temperature is 316°C, the maximum decomposition temperature is 565°C, and the residual carbon content at 750°C is 2.59%, and the obtained material has good heat resistance.
  • the epoxy resin obtained in Example 6 was analyzed by a dynamic mechanical analyzer (DMA), as shown in Figures 14-15.
  • the curve data shows that the polymer has a higher storage modulus of 5.04 GPa (25°C) compared with Example 5, indicating that the curing system of MF and 3,3'-diaminodiphenyl sulfone has a polymer structure with a higher storage modulus.
  • the peak of its dynamic mechanical loss data appears at 218.6°C, indicating that its glass transition temperature is high and its thermal properties are good.
  • the storage modulus of the sample in this example at 25°C is significantly greater than that of the Meng-guan HF/44DDS data (3.07 GPa), which has certain advantages.
  • DSC Differential scanning calorimetry
  • the flame retardancy of the epoxy resin obtained in Example 6 was tested by microscale combustion calorimetry (MCC). Its heat release rate (HRR) and temperature curve are shown in Figure 17, and the average heat release rate value of the polymer is 92.6W/g. Compared with 553W/g of the traditional resin DGEBA in the same curing system, the average heat release rate value of the resin obtained in Example 6 is significantly lower. Moreover, compared with the MCC data of Meng-guan HF/33DDS in the same system ( Figure 18), the average heat release rate value of Meng-guan HF/33DDS is 117.5W/g, indicating that the resin has good flame retardant properties, less combustion heat release, and can reduce the risk of fire.
  • MCC microscale combustion calorimetry
  • the present invention provides a magnolol/glycosyl furan bibi-based epoxy resin monomer and its preparation method and application ideas and methods. There are many methods and ways to implement the technical solution. The above is only a preferred embodiment of the present invention. It should be pointed out that for ordinary technicians in this technical field, several improvements and modifications can be made without departing from the principle of the present invention. These improvements and modifications should also be regarded as the scope of protection of the present invention. All components not specified in this embodiment can be implemented by existing technologies.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epoxy Resins (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

一种厚朴酚/糖基呋喃双生物基环氧树脂单体及其制备方法和应用,所述厚朴酚/糖基呋喃双生物基环氧树脂单体如式MF所示。聚合物材料拥有较高的玻璃化转变温度,可应用温度范围广,其高储能模量(>3GPa)显示出该聚合物材料具有高刚度性质,相较于传统的石油基环氧树脂具有教导优势,其平均热释放速度值较低,表明该树脂具有很好的阻燃性质,燃烧热释放较少,可降低火灾的风险性。

Description

一种厚朴酚/糖基呋喃双生物基环氧树脂单体及其制备方法与应用 技术领域
本发明属于化工领域,具体涉及一种厚朴酚/糖基呋喃双生物基环氧树脂单体及其制备方法与应用。
背景技术
环氧树脂(EP)具有优异的电绝缘性能、耐磨性能、化学稳定性,并且材料易于生产加工,在电气电子绝缘材料、航空航天等领域具有广泛应用;但是,传统的环氧树脂一般较为容易燃烧,一些材料虽然具有较好的力学性能,但是其热性能和阻燃性能却不太理想,这极大限制了其应用,所以现有技术中通常通过分子改性和添料复合方式来增强环氧树脂的阻燃性能,改善目前环氧树脂存在的不足,以降低安全风险,这样,热固阻燃性树脂逐渐走近人们的视野,受到学者的关注。
热固性树脂是一种聚合后可以形成高度交联网络状聚合物的树脂,因其优异的力学性能、热学性能及耐腐蚀性能等在工程技术研究领域中应用较广。并且在石化资源日益减少的大环境下,寻找可再生回收利用的生物质环氧树脂成为当下的研究热点。
生物质如木质素、天然酚化合物等,富含不饱和的双键或者反应活性较好的羟基,可以经过环氧化反应得到环氧化合物。木质素、天然酚化合物等作为可再生资源,原料来源丰富,成本低,具有可降解、可再生利用、环境友好等优点。生物质环氧树脂的不断出现与研究,丰富了环氧树脂使用选择,减少了对石油产品的依赖,减少对环境的危害。
厚朴酚是一种从厚朴树皮中提取的可再生的生物质原料,属于一种具有高刚性的联苯酚类化合物。这类结构可以提高环氧树脂材料的耐热性,减小自由体积从而达到提高韧性的目的。在本文中,我们使用厚朴酚作为原料,合成了新型的环氧树脂,合成步骤简便,反应条件温和,原料来源广泛易制得;用该环氧树脂单体聚合而来的聚合物材料热性能较好,拥有较高的分解温度,相较于传统的双酚A型环氧树脂具有很多优势。
发明内容
发明目的:本发明所要解决的技术问题是针对现有技术的不足,提供一种厚朴酚/糖基呋喃双生物基环氧树脂单体。
本发明还要解决的技术问题是提供上述厚朴酚/糖基呋喃双生物基环氧树脂单体的制备方法。
本发明还要解决的技术问题是提供一种厚朴酚/糖基呋喃双生物基环氧树脂。
本发明还要解决的技术问题是提供上述厚朴酚/糖基呋喃双生物基环氧树脂的制备方法。
本发明还要解决的技术问题是提供上述厚朴酚/糖基呋喃双生物基环氧树脂的应用。
为了解决上述第一个技术问题,本发明公开了一种厚朴酚/糖基呋喃双生物基环氧树脂单体MF;
Figure PCTCN2022131060-appb-000001
为了解决上述第二个技术问题,本发明公开了上述厚朴酚/糖基呋喃双生物基环氧树脂单体MF的制备方法,如图1所示,包括以下步骤:
(1)醚化反应:碱性溶液中,在催化剂作用下,厚朴酚与5-氯甲基糠醛在空气氛围下搅拌进行第一反应,制得化合物c;
(2)还原反应:质子性溶剂中,所得化合物c与还原剂进行第二反应,制得化合物d;
(3)环氧化反应:于惰性环境下,所得化合物d、环氧氯丙烷、碱性溶液和相转移催化剂进行第三反应,制得厚朴酚/糖基呋喃双生物基环氧树脂单体MF;
Figure PCTCN2022131060-appb-000002
步骤(1)中,所述碱性溶液为碱与有机溶剂按照质量比为1:2~20组成的混合溶液;其中,所述碱包括但不限于氢氧化钠、氢氧化钾、氢化钠、碳酸钾和碳酸钠中的任意一种或几种组合;所述有机溶剂包括但不限于二氯甲烷、乙酸乙酯、乙腈、丙酮、四氢呋喃和二氧六环中的任意一种或几种组合。
步骤(1)中,所述5-氯甲基糠醛可以是按照现有技术制备得到,也可以按照下述方法制备得到:将5-羟甲基糠醛与溶剂混合溶解,加入浓盐酸,在25℃下、搅拌条件下反应12h,精制得到5-氯甲基糠醛;其中,所述溶剂为二氯甲烷、乙酸乙酯、乙腈、丙酮、四氢呋喃和二氧六环中的任意一种或几种组合;所述5-羟甲基糠醛与溶剂的质量体积比为1g:4~10mL;所述浓盐酸的浓度12mol/L;所述盐酸与5-羟甲基糠醛摩尔比为1.5~3:1;所述反应为在转速为800~2000rpm的搅拌状态下进行。
步骤(1)中,所述厚朴酚与5-氯甲基糠醛的摩尔比为1:2.05~3。
步骤(1)中,所述催化剂包括但不限于碘化钠;所述催化剂的用量为厚朴酚摩尔量的5%~15%。
步骤(1)中,所述反应的温度为60~100℃,优选为80℃;所述反应的时间为8~16h。
步骤(1)中,所述反应结束后用适量水稀释反应液,使反应生成的盐完全溶解,然后用有机溶剂萃取,无水硫酸钠干燥,过滤,滤液减压去除溶剂,柱分离纯化后得淡黄色粘稠液体,即为化合物c。
步骤(2)中,所述质子性溶剂为甲醇、乙醇和水中的任意一种或几种组合。
步骤(2)中,所述化合物c的浓度为0.05~0.15g/mL。
步骤(2)中,所述还原剂为硼氢化钠、氢化铝锂、三异丙醇铝和氢气的任意一种;所述化合物c与还原剂的摩尔量比为1:0.5~2.5。
步骤(2)中,所述反应的温度为-5~5℃,优选为0℃;所述反应的时间为12~18h。
步骤(2)中,所述反应结束后,加适量蒸馏水淬灭反应,纯化得厚朴酚二取代度呋喃羟基化合物,即为化合物d。
步骤(3)中,所述惰性环境优选为氮气保护,氮气通入流速为50~200mL/min。
步骤(3)中,所述相转移催化剂包括但不限于四丁基溴化铵、四乙基溴化铵、苄基三乙基氯化铵中的一种或其几种的混合物。
步骤(3)中,将化合物d溶于有机溶剂中,再加入到环氧氯丙烷、碱性溶液和相转移催化剂中;其中,所述有机溶剂包括但不限于二氯甲烷、乙酸乙酯、乙腈、丙酮、四氢呋喃和二氧六环中的任意一种或几种组合;所述碱性溶液为碳酸钾溶液、碳酸钠溶液、氢氧化钠溶液和氢氧化钾溶液中的 任意一种或几种组合。
步骤(3)中,所述化合物d与环氧氯丙烷、碱性溶液中碱和相转移催化剂的摩尔比为1:15~25:15~25:0.15~0.3。
步骤(3)中,所述反应为在转速为800~2000rpm的搅拌状态下进行。
步骤(3)中,所述反应的温度为40~60℃,优选为50℃;所述反应的时间为2~8h。
步骤(3)中,所述反应结束后,加水稀释后萃取反应液,干燥,过滤,滤液减压旋除溶剂,纯化得厚朴酚/糖基呋喃双生物基环氧树脂单体MF。
其中,上述过程中每个合成步骤后处理所用的干燥剂均为无水硫酸钠。
为了解决上述第三个技术问题,本发明公开了一种厚朴酚/糖基呋喃双生物基环氧树脂,由A与B构成的二元聚合物,或A与C构成的二元聚合物;
其中,A、B、C的结构单元分别为:
Figure PCTCN2022131060-appb-000003
其中,所述A与B构成的二元聚合物具有式I所示的重复结构单元,A与C构成的二元聚合物具有式Ⅱ所示的重复结构单元;
Figure PCTCN2022131060-appb-000004
Figure PCTCN2022131060-appb-000005
其中,m≥2,n≥2;m=2n。
其中,所述厚朴酚/糖基呋喃双生物基环氧树脂在氮气氛围下的起始分解温度为310~370℃,优选为314~363℃。其中,所述厚朴酚/糖基呋喃双生物基环氧树脂在氮气氛围下的最大分解温度为420~490℃,优选为420~480℃,优选为420~470℃,优选为420~460℃,优选为425~457℃。
其中,所述厚朴酚/糖基呋喃双生物基环氧树脂在空气氛围下的起始分解温度为280~330℃,优选为290~320℃,优选为293~316℃。
其中,所述厚朴酚/糖基呋喃双生物基环氧树脂在空气氛围下的最大分解温度为480~670℃,优选为480~650℃,优选为490~650℃,优选为490~645℃,优选为500~643℃。
其中,所述厚朴酚/糖基呋喃双生物基环氧树脂在空气氛围下,750℃下的残碳量为1%~11%,优选为2%~10%,优选为2.5%~9.5%。其中,所述厚朴酚/糖基呋喃双生物基环氧树脂的储能模量为3~9GPa,优选为3~6GPa,优选为3.5~5.5GPa,优选为3.96~5.04GPa。
其中,所述厚朴酚/糖基呋喃双生物基环氧树脂的相转变温度为200~250℃,优选为200~240℃,优选为200~230℃,优选为200~225℃,优选为202~223℃。
其中,所述厚朴酚/糖基呋喃双生物基环氧树脂的平均热释放速率值为50~100W/g,优选为55~95W/g,优选为60~95W/g,优选为64~93W/g。
为了解决上述第四个技术问题,本发明公开了上述厚朴酚/糖基呋喃双生物基环氧树脂的制备方法,将厚朴酚/糖基呋喃双生物基环氧树脂单体MF、芳砜类二胺固化剂混合,搅拌升温使完全熔融,均匀注模,惰性气体保护下再继续升温固化,即得厚朴酚/糖基呋喃双生物基环氧树脂。
其中,所述芳砜类二胺固化剂包括但不限于4,4'-二氨基二苯砜(44DDS)和/或3,3'-二氨基二苯砜(33DDS)。
Figure PCTCN2022131060-appb-000006
其中,所述厚朴酚/糖基呋喃双生物基环氧树脂单体MF中的环氧基团与芳砜类二胺固化剂中氨基的摩尔比为0.8~1.5:1,优选为0.8~1.2:1。
其中,所述熔融的温度为120~180℃;所述固化的温度为200~230℃;所述固化的时间为2~5h。
为了解决上述第五个技术问题,本发明公开了上述厚朴酚/糖基呋喃双生物基环氧树脂在作为或在制备耐热性材料中中的应用,其具有较高的Tg值,表明具有很高的温度工作。
有益效果:与现有技术相比,本发明具有如下优势:
(1)本发明中所提供了一种厚朴酚/糖基呋喃双生物基新型环氧树脂单体的结构及其制备方法,其制备过程绿色化程度高,属于一种新型双生物基复合型环氧单体材料。
(2)本发明中的厚朴酚与糖基5-羟甲基糠醛可以通过生物制备法,由厚朴树和玉米、小麦或秸秆等生物质转化或分离得到,因此单体的生物附加值很高。
(2)本发明中基于合成的新单体结构,构建新型结构的聚合物材料,它是由生物基原料合成的聚合物材料,不仅具有良好的热稳定性优异,而且拥有良好的生物安全性。
(4)本发明中的新型结构聚合物材料拥有较高的玻璃化转变温度,可应用温度范围广;其高储能模量(>3GPa)显示出该聚合物材料具有高刚度性质,相较于传统的石油基环氧树脂材料具有较大优势;其平均热释放速率值较低,表明该树脂具有很好的阻燃性质,燃烧热释放较少,可降低火灾的风险性。
附图说明
下面结合附图和具体实施方式对本发明做更进一步的具体说明,本发明的上述和/或其他方面的优点将会变得更加清楚。
图1为本发明的反应路径。
图2为环氧树脂单体MF的核磁共振氢谱。
图3为环氧树脂单体MF的核磁共振碳谱。
图4为环氧树脂单体MF的高分辨质谱。
图5为环氧树脂单体MF的傅里叶红外谱图。
图6为实施例5中环氧树脂聚合物的傅里叶红外谱图。
图7为实施例6中环氧树脂聚合物的傅里叶红外谱图。
图8为环氧树脂单体MF的TGA图。
图9为环氧树脂单体Meng-guan HF的TGA图。
图10为实施例5环氧树脂聚合物的氮气下TGA图。
图11为实施例5环氧树脂聚合物的空气下TGA图。
图12为实施例6环氧树脂聚合物的氮气下TGA图。
图13为实施例6环氧树脂聚合物的空气下TGA图。
图14为实施例5和实施例6环氧树脂聚合物的DMA(Tan-Delta)图。
图15为实施例5和实施例6环氧树脂聚合物的DMA(储能模数)图。
图16为实施例5和实施例6环氧树脂聚合物的DSC图。
图17为实施例5和实施例6环氧树脂聚合物的MCC图。
图18为Meng-gaun HF体系环氧树脂聚合物的MCC图。
具体实施方式
下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
下述实施例中所述Meng-guan HF的结构如下所示;
Figure PCTCN2022131060-appb-000007
实施例1 5-氯甲基-2-呋喃甲醛b的制备
在500mL圆底烧瓶中加入5-羟甲基糠醛(31.5g,250mmol),添加二氯甲烷(150mL),在强烈搅拌(1000rpm)下缓慢滴加12mol/L浓盐酸(40mL),滴加完毕后,室温下搅拌反应过夜,薄层色谱法监测反应进程;反应结束后,加入适量水稀释反应液,分开有机相与水相,水相用二氯甲烷(90mL)分3次萃取,合并有机相,无水硫酸钠干燥,过滤,减压蒸馏旋除溶剂,得到的粗品通过柱层析,用纯二氯甲烷作洗脱剂洗脱纯化,得到高纯度的5-氯甲基糠醛b(32.7g),产率90.8%。
1H NMR(400MHz,CDCl 3)δ9.63(s,1H),7.25(d,J=3.6Hz,1H),6.63(d,J=3.6Hz,1H),4.65(s,2H).
实施例2化合物c的制备
称取实施例1反应制得的5-氯甲基糠醛b(14.3g,100mmol)溶于60ml的乙腈装入恒压低液漏斗备用;在500mL圆底烧瓶中加入厚朴酚(11g,41.3mmol),加入50mL的乙腈使其完全溶解,常温下,搅拌(800rpm)条件下,加入碳酸钾(13.7g,100mmol),搅拌30min;后滴入前面所述的5-氯甲基糠醛乙腈溶液,添加碘化钠(0.5g,3.3mmol),将反应体系温度升至80℃,薄层色谱法监测反应进程;反应16h后,加入50mL蒸馏水稀释反应液,水相用乙酸乙酯萃取,合并有机相,用无水硫酸钠干燥后旋除溶剂,而得到的粗品用石油醚-乙酸乙酯(PE/EA:6/1—PE/EA:3/1)体系梯度洗脱经过柱层析纯化,得化合物c(15.1g,31.3mmol),产率76%,为乳黄色块状固体,可研磨成粉末,稍硬。
1H NMR(400MHz,CDCl 3)δ9.55(s,2H),7.15-7.08(m,6H),6.93(d,J=8.3Hz,2H),6.31(d,J=3.5Hz,2H),5.96(ddt,J=16.8,10.0,6.7Hz,2H),5.14-5.04(m,4H),5.02(s,4H),3.36(d,J=6.7Hz,4H).
实施例3化合物d的制备
在500mL圆底烧瓶中加入化合物c(15.1g,31.3mmol),加入200mL甲醇使其完全溶解,必要时超声下辅助溶解;在0℃下分四次加入硼氢化钠(2.4g,63.4mmol),搅拌反应过夜,薄层色谱法监测反应进程;反应完成后,加入50mL蒸馏水淬灭反应,反应液用乙酸乙酯(120mL)分三次萃取,用无水硫酸钠干燥后旋蒸除去溶剂,石油醚-乙酸乙酯(PE/EA:2/1—PE/EA:1/1)体系作洗脱剂洗脱纯化,得化合物d(12g,24.7mmol),产率78.8%,为白色固体粉末。
1H NMR(400MHz,CDCl 3)δ7.14-7.05(m,4H),6.96(d,J=8.5Hz,2H),6.14(dd,J=15.6,3.1Hz,4H),5.96(ddt,J=16.8,10.0,6.7Hz,2H),5.14-5.00(m,4H),4.86(s,4H),4.50(s,4H),3.35(d,J=6.7Hz,4H).
实施例4厚朴酚/糖基呋喃双生物基环氧树脂单体MF的制备
室温下,在500mL圆底烧瓶中加入环氧氯丙烷(45.7g,494mmol)、四丁基溴化铵(1.6g,4.96mmol)和含有NaOH(20g,0.5mol)的氢氧化钠水溶液(40%,30mL),快速搅拌混合;以100mL/min的流速通入N 2,缓慢滴加含有化合物d(12g,24.7mmol)的四氢呋喃溶液(50mL),完成后将反应体系温度升至50℃,搅拌反应4h。反应完成后,加适量蒸馏水稀释反应液,乙酸乙酯萃取,用无水硫酸钠干燥后旋除溶剂,以石油醚-乙酸乙酯(PE/EA:4/1—PE/EA:2/1)体系作洗脱剂洗脱纯化,精制得厚朴酚/糖基呋喃双生物基环氧树脂单体(9.51g,16mmol),产率64.4%,为淡黄色透明液体,较为粘稠。核磁质谱如图2~4所示,红外如图5所示,TGA测试如图8所示,该单体的起始分解温度(T d5)为296.3℃,而Meng-guan HF(图9)的起始分解温度(T d5)为260.5℃,表明MF单体具有更好的热稳定性。
1H NMR(400MHz,CDCl 3)δ7.08(d,J=7.1Hz,4H),6.96(d,J=8.9Hz,2H),6.22(d,J=3.1Hz,2H),6.13(d,J=3.1Hz,2H),5.95(ddt,J=16.8,10.0,6.7Hz,2H),5.05(dd,J=22.4,5.5Hz,4H),4.88(s,4H),4.44(q,J=12.9Hz,4H),3.79-3.63(m,2H),3.37(dd,J=9.6,4.0Hz,2H),3.34(d,J=6.7Hz,4H),3.10(qd,J=5.9,3.0Hz,2H),2.74(t,J=4.6Hz,2H),2.55(dd,J=5.0,2.7Hz,2H).
13C NMR(101MHz,CDCl 3)δ154.36,151.51,151.29,137.78,132.63,131.94,128.62,128.33,115.57,113.75,110.45,109.78,70.56,65.12,63.82,50.70,44.28,39.45.
HRMS(ESI-TOF)m/z Calcd for C 36H 38NaO 8[M+Na] +:621.2459,found:621.2459.
对比例1
反应瓶中称取和厚朴酚/糖基呋喃双生物基环氧树脂Meng-guan HF(8.0g),在氮气氛围下,25℃下计量加入固化剂4,4'-二氨基二苯砜(1.7g),升温至150℃同时快速搅拌30min确使物料充分熔融,混合均匀。移去氮气氛围,真空减压脱除混合物中气泡后静置;在金属模板上均匀浇注上述物料,移入氮气氛围的固化箱中,缓慢升温至220℃固化2h,氮气氛围下自然冷却,得到环氧树脂聚合物材料。
对比例2
反应瓶中称取和厚朴酚/糖基呋喃双生物基环氧树脂Meng-guan HF(8.0g),在氮气氛围下,25℃下计量加入固化剂3,3'-二氨基二苯砜(1.7g),升温至150℃同时快速搅拌30min确使物料充分溶解,混合均匀。移去氮气氛围,真空减压脱除混合物中气泡后静置;在金属模板上均匀浇注上述物料,移入氮气氛围的固化箱中,缓慢升温至220℃固化2h,氮气氛围下自然冷却,得到环氧树脂聚合物材料。
实施例5
反应瓶中称取厚朴酚/糖基呋喃双生物基环氧树脂MF(8.0g),在氮气氛围下,25℃下计量加入固化剂4,4'-二氨基二苯砜(1.7g),升温至150℃同时快速搅拌30min确使物料充分熔融,混合均匀。移去氮气氛围,真空减压脱除混合物中气泡后静置;在金属模板上均匀浇注上述物料,移入氮气氛围的固化箱中,缓慢升温至210℃固化2h,氮气氛围下自然冷却,得到环氧树脂聚合物材料。
通过对其红外数据的判断,如图6所示,原有环氧底物中环氧乙烷红外峰(855和928cm -1等强度伸缩振动)消逝,表明环氧树脂的环氧基团与胺基已完全聚合;并且原有环氧底物中烯烃中C=C双键红外峰(1637cm -1等强度伸缩振动)消逝,表明体系中的乙烯基已完全自聚合(m为8.05×10 21,n为4.025×10 21)。聚合物红外数据归属:1102cm -1醚键C-O-C中碳氧键振动;1401cm -1为C-N键特征峰;1636,1592,1508cm -1为苯环特征峰;3144cm -1左右峰为呋喃环上=C-H键的伸缩振动;3420cm -1处的宽吸收峰是环氧乙烷的开环导致OH基团的出现而形成的峰。
对其氮气下热重数据分析,如图10所示,起始分解温度为314℃,最大分解温度为457℃,所得材料具有良好的耐热性能。对其空气下热重数据分析,如图11所示,起始分解温度为293.6℃,最大分解温度为500.7/640.7℃,其750℃下残碳量为9.22%,所得材料具有良好的耐热性能。
通过动态热机械分析仪(DMA)对实施例5所得环氧树脂进行分析,如图14-15,该曲线数据显示该聚合物拥有较高的存储模量(E>3GPa),为3.96GPa(25℃),说明MF与4,4’-二氨基二苯砜的固化体系拥有高储存模量的聚合结构,其动态力学损耗数据的峰值在204.3℃处出现,显示其玻璃化转变温度较高,热学性能较好。通过该数据与同体系Meng-guan HF/44DDS样品数据的比较,该实施例样品25℃下的储能模数明显大于Meng-guan HF/44DDS的数据(对比例1,3.07GPa),具有一定优势。
采用差示扫描量热法(DSC)研究了实施例5所得环氧树脂的热固化行为。图16中表明,该聚合物具有较高的相转变温度,其Tg数据为202.3℃,表明该树脂很好的工作温度范围。
通过微尺度燃烧量热法(MCC)测试了实施例5所得环氧树脂的阻燃性。其热释放速率(HRR)与温度曲线如图17所示,该聚合物的平均热释放速率值为64.5W/g。相较于固化同体系下传统树脂DGEBA的498.8W/g,实施例5所得树脂的平均热释放速率值明显较低;而且,与同体系的Meng-gaun HF/44DDS的MCC数据(图18)比较,Meng-gaun HF/44DDS的平均热释放速率值为137.5W/g,表明该树脂具有很好的阻燃性质,燃烧热释放较少,可降低火灾的风险性。
实施例6
反应瓶中称取厚朴酚/糖基呋喃双生物基环氧树脂MF(8.0g),在氮气氛围下,25℃下计量加入固化剂3,3'-二氨基二苯砜(1.7g),升温至150℃同时快速搅拌30min确使物料充分溶解,混合均匀。移去氮气氛围,真空减压脱除混合物中气泡后静置;在金属模板上均匀浇注上述物料,移入氮气氛围的固化箱中,缓慢升温至210℃固化2h,氮气氛围下自然冷却,得到环氧树脂聚合物材料。
通过红外数据判断,如图7所示,原有环氧底物中环氧乙烷红外峰(855和928cm -1等强度伸缩振动)消逝,表明环氧树脂的环氧基团与胺基已完全聚合;并且原有环氧底物中烯烃中C=C双键红外峰(1637cm -1等强度伸缩振动)消逝,表明体系中的乙烯基已完全自聚合(m为8.05×10 21,n为4.025×10 21)。聚合物红外数据归属:1104cm -1醚键C-O-C中碳氧键振动;1403cm -1为C-N键特征峰;1597,1562,1494cm -1为苯环特征峰;2918cm -1左右峰为脂肪链上饱和C-H键的伸缩振动;3405cm -1处的宽吸收峰是环氧乙烷的开环导致OH基团的出现而形成的峰。
对其氮气下热重数据分析,如图12所示,起始分解温度为363℃,最大分解温度为425℃,所得材料具有良好的耐热性。对其空气下热重数据分析,如图13所示,起始分解温度为316℃,最大分解温度为565℃,其750℃下残碳量为2.59%,所得材料具有良好的耐热性能。
通过动态热机械分析仪(DMA)对实施例6所得环氧树脂进行分析,如图14-15,该曲线数据显示该聚合物相比较实施例5拥有更高的存储模量,为5.04GPa(25℃),说明MF与3,3’-二氨基二苯砜的固化体系拥有更高储存模量的聚合结构其动态力学损耗数据的峰值在218.6℃处出现,显示其玻璃化转变温度较高,热学性能较好。通过该数据与同体系Meng-guan HF/44DDS样品数据的比较,该实施例样品25℃下的储能模数明显大于Meng-guan HF/44DDS的数据(3.07GPa),具有一定优势。
采用差示扫描量热法(DSC)研究了实施例6所得环氧树脂的热固化行为。图16中表明,该聚合物具有很高的相转变温度,其Tg数据高达222.7℃,也表明该树脂具有的应用温度范围高。
通过微尺度燃烧量热法(MCC)测试了实施例6所得环氧树脂的阻燃性。其热释放速率(HRR)与温度曲线如图17所示,该聚合物的平均热释放速率值为92.6W/g。相较于固化同体系下传统树脂DGEBA的553W/g,实施例6所得树脂的平均热释放速率值明显较低,而且,与同体系的Meng-guan HF/33DDS的MCC数据(图18)比较,Meng-guan HF/33DDS的平均热释放速率值为117.5W/g, 表明该树脂具有很好的阻燃性质,燃烧热释放较少,可降低火灾的风险性。
本发明提供了一种厚朴酚/糖基呋喃双生物基环氧树脂单体及其制备方法与应用的思路及方法,具体实现该技术方案的方法和途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。

Claims (10)

  1. 一种厚朴酚/糖基呋喃双生物基环氧树脂单体MF;
    Figure PCTCN2022131060-appb-100001
  2. 权利要求1所述厚朴酚/糖基呋喃双生物基环氧树脂单体MF的制备方法,其特征在于,包括以下步骤:
    (1)在催化剂作用下,厚朴酚与5-氯甲基糠醛进行第一反应,制得化合物c;
    (2)所得化合物c与还原剂进行第二反应,制得化合物d;
    (3)所得化合物d、环氧氯丙烷、碱性溶液和相转移催化剂进行第三反应,制得厚朴酚/糖基呋喃双生物基环氧树脂单体MF;
    Figure PCTCN2022131060-appb-100002
  3. 一种厚朴酚/糖基呋喃双生物基环氧树脂,其特征在于,由A与B构成的二元聚合物,或A与C构成的二元聚合物;
    其中,A、B、C的结构单元分别为:
    Figure PCTCN2022131060-appb-100003
    其中,所述A与B构成的二元聚合物具有式I所示的重复结构单元,A与C构成的二元聚合物具有式Ⅱ所示的重复结构单元;
    Figure PCTCN2022131060-appb-100004
    其中,m≥2,n≥2。
  4. 根据权利要求3所述的厚朴酚/糖基呋喃双生物基环氧树脂,其特征在于,所述厚朴酚/糖基呋喃双生物基环氧树脂在氮气氛围下的起始分解温度为310~370℃,最大分解温度为420~490℃;所述厚朴酚/糖基呋喃双生物基环氧树脂在空气氛围下的起始分解温度为280~330℃,最大分解温度为480~670℃,750℃下的残碳量为1%~11%。
  5. 根据权利要求3所述的厚朴酚/糖基呋喃双生物基环氧树脂,其特征在于,所述厚朴酚/糖基呋喃双生物基环氧树脂的储能模量为3~9GPa。
  6. 根据权利要求3所述的厚朴酚/糖基呋喃双生物基环氧树脂,其特征在于,所述厚朴酚/糖基呋喃双生物基环氧树脂的相转变温度为200~250℃。
  7. 根据权利要求3所述的厚朴酚/糖基呋喃双生物基环氧树脂,其特征在于,所述厚朴酚/糖基呋喃双生物基环氧树脂的平均热释放速率值为50~100W/g。
  8. 权利要求3~7中任意一项所述厚朴酚/糖基呋喃双生物基环氧树脂的制备方法,其特征在于,将厚朴酚/糖基呋喃双生物基环氧树脂单体MF、芳砜类二胺固化剂混合,熔融,注模,固化,即得厚朴酚/糖基呋喃双生物基环氧树脂。
  9. 根据权利要求8所述制备方法,其特征在于,所述厚朴酚/糖基呋喃双生物基环氧树脂单体MF中的环氧基团与芳砜类二胺固化剂中氨基的摩尔比为0.8~1.5:1;所述熔融的温度为120~180℃;所述固化的温度为200~230℃。
  10. 权利要求3~7中任意一项所述厚朴酚/糖基呋喃双生物基环氧树脂在作为或在制备耐热性材料中的应用。
PCT/CN2022/131060 2022-11-02 2022-11-10 一种厚朴酚/糖基呋喃双生物基环氧树脂单体及其制备方法与应用 WO2024092864A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211360702.1A CN116178356A (zh) 2022-11-02 2022-11-02 一种厚朴酚/糖基呋喃双生物基环氧树脂单体及其制备方法与应用
CN202211360702.1 2022-11-02

Publications (1)

Publication Number Publication Date
WO2024092864A1 true WO2024092864A1 (zh) 2024-05-10

Family

ID=86449602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131060 WO2024092864A1 (zh) 2022-11-02 2022-11-10 一种厚朴酚/糖基呋喃双生物基环氧树脂单体及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN116178356A (zh)
WO (1) WO2024092864A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101742991A (zh) * 2007-05-03 2010-06-16 杰克·L·阿比瑟 和厚朴酚类似物及其在治疗癌症中的用途
CN112457472A (zh) * 2020-11-25 2021-03-09 广东工业大学 一种低黏度生物基厚朴酚环氧树脂及其制备方法
WO2022062370A1 (zh) * 2020-09-27 2022-03-31 南京工业大学 一种介电导热增强型生物基耐高温环氧树脂及其制备方法与应用
CN114315814A (zh) * 2021-12-29 2022-04-12 南京工业大学 一种和厚朴酚/糖基呋喃双生物基环氧树脂单体及其制备方法和应用
CN114395110A (zh) * 2022-01-30 2022-04-26 南京工业大学 一种全生物基氰基环氧树脂及其绿色制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101742991A (zh) * 2007-05-03 2010-06-16 杰克·L·阿比瑟 和厚朴酚类似物及其在治疗癌症中的用途
WO2022062370A1 (zh) * 2020-09-27 2022-03-31 南京工业大学 一种介电导热增强型生物基耐高温环氧树脂及其制备方法与应用
CN112457472A (zh) * 2020-11-25 2021-03-09 广东工业大学 一种低黏度生物基厚朴酚环氧树脂及其制备方法
CN114315814A (zh) * 2021-12-29 2022-04-12 南京工业大学 一种和厚朴酚/糖基呋喃双生物基环氧树脂单体及其制备方法和应用
CN114395110A (zh) * 2022-01-30 2022-04-26 南京工业大学 一种全生物基氰基环氧树脂及其绿色制备方法

Also Published As

Publication number Publication date
CN116178356A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
CN111100120B (zh) 一种生物基双苯并噁嗪单体及其制备方法
WO2021121426A1 (zh) 一种基于原儿茶酸的环氧树脂的合成和应用
CN114395110B (zh) 一种全生物基氰基环氧树脂及其绿色制备方法
Lu et al. Cure kinetics and properties of high performance cycloaliphatic epoxy resins cured with anhydride
CN112552482B (zh) 一种生物基磷杂菲联苯型环氧树脂及其制备方法和应用
CN101280056B (zh) 由桐酸甲酯制备c21二元羧酸聚酰胺环氧固化剂的方法
CN109734684A (zh) 一种基于天然酚类单体的生物基阻燃环氧树脂前驱体及其制备方法和应用
US10745515B2 (en) Biomass-based epoxy resin and preparation method thereof
CN113999191A (zh) 一种含活性酯侧基新型生物基环氧树脂及其制备方法
US11008423B2 (en) Modified bismaleimide resin and preparation method thereof
CN109825036A (zh) 一种改性环氧树脂及其制备方法
WO2024092864A1 (zh) 一种厚朴酚/糖基呋喃双生物基环氧树脂单体及其制备方法与应用
CN113292703A (zh) 一种热学和力学性能优异的无磷全生物基阻燃环氧树脂及其绿色制备方法
CN101962372A (zh) 一种含联苯复合型液晶环氧树脂及其制备方法
CN115386066B (zh) 一种高性能生物基热固性环氧树脂及其制备方法
CN114315814B (zh) 一种和厚朴酚/糖基呋喃双生物基环氧树脂单体及其制备方法和应用
CN101045781A (zh) 一种高纯电子级四酚基乙烷四缩水甘油醚环氧树脂的制备方法
CN106831677B (zh) 一种甲基六氢苯酐的制备方法
CN115449054B (zh) 一种基于丹皮酚的生物基环氧树脂及其制备方法和应用
CN111732519A (zh) 一种植物油基柔性胺固化剂及其制备方法和植物油基韧性环氧树脂
CN115197174B (zh) 一种联萘酚基环氧树脂单体及其制备方法与在制备全生物基环氧树脂中的应用
CN106589375B (zh) 一种改性双马来酰亚胺树脂及其制备方法
CN115449053B (zh) 一种通过化学反应制备木质素环氧树脂及增韧改性方法
CN110885286B (zh) α-异佛尔酮的制备方法
CN114805752B (zh) 一种导热液晶环氧树脂的制备方法