WO2024090334A1 - 投射型表示装置 - Google Patents

投射型表示装置 Download PDF

Info

Publication number
WO2024090334A1
WO2024090334A1 PCT/JP2023/037956 JP2023037956W WO2024090334A1 WO 2024090334 A1 WO2024090334 A1 WO 2024090334A1 JP 2023037956 W JP2023037956 W JP 2023037956W WO 2024090334 A1 WO2024090334 A1 WO 2024090334A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
reflective liquid
display element
length
Prior art date
Application number
PCT/JP2023/037956
Other languages
English (en)
French (fr)
Inventor
俊郎 河野
Original Assignee
株式会社Jvcケンウッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Jvcケンウッド filed Critical 株式会社Jvcケンウッド
Publication of WO2024090334A1 publication Critical patent/WO2024090334A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • This disclosure relates to a projection display device.
  • Projection display devices are becoming widespread, in which reflective liquid crystal display elements modulate illumination light in response to image signals and project the light onto a screen. It is not desirable for the reflective liquid crystal display elements to operate in a projection display device when the reflective liquid crystal display elements are at low temperatures, and it is also not desirable for the reflective liquid crystal display elements to become hot. For this reason, projection display devices are provided with a structure for heating the reflective liquid crystal display elements and a structure for cooling the reflective liquid crystal display elements (see Patent Documents 1 and 2).
  • the present invention aims to provide a projection display device that has both the heating function and the cooling function of a reflective liquid crystal display element, that can effectively heat a reflective liquid crystal display element with a heat source, without the heat source substantially reducing the cooling performance of the reflective liquid crystal display element.
  • a projection type display device that includes a heat sink having a plate-shaped base, a reflective liquid crystal display element fixed to a first surface of the base, a heat source fixed to a second surface of the base opposite the first surface, and a cooling fan that blows cooling air onto the heat sink, in which, in at least one of the longitudinal and lateral directions of the reflective liquid crystal display element, the reflective liquid crystal display element and the heat source face each other across the base such that the length L3 of the heat source is located within the length L1 of the reflective liquid crystal display element, where L3 is the length of the reflective liquid crystal display element, L3 is the length of the heat source, and t is the plate thickness of the base, and L3 is the length of the heat source.
  • the reflective liquid crystal display element can be effectively heated by a heat source, and the heat source hardly reduces the cooling performance of the reflective liquid crystal display element, so that the reflective liquid crystal display element can be operated at an optimal temperature.
  • FIG. 1 is a diagram illustrating a projection display device according to one or more embodiments.
  • FIG. 2 is a perspective view of a heat sink and heat source in a projection display device according to one or more embodiments.
  • FIG. 3 is a cross-sectional view taken along the line Y1-Y2 in FIG.
  • FIG. 4 is a characteristic diagram illustrating the relationship between the environmental temperature and the element temperature in a projection display device according to one or more embodiments of the present invention.
  • FIG. 5 is a characteristic diagram showing the relationship between the current value of the light source drive current and the element temperature in a projection display device according to one or more embodiments of the present invention.
  • a projection display device 100 according to one or more embodiments shown in FIG. 1 comprises a reflective liquid crystal display element 1, a heat sink 2, a heat source 3, a cooling fan 5, drive circuits 30a and 30b for the heat source 3, temperature sensors 41 and 42, and a drive circuit 50 for the cooling fan 5.
  • the reflective liquid crystal display element 1 is fixed to a first surface of the base 21 of the heat sink 2, and the heat source 3 is fixed to a second surface opposite the first surface of the base 21.
  • the cooling fan 5 is disposed behind the heat sink 2.
  • the projection display device 100 has three reflective liquid crystal display elements 1 that modulate red light (R light), green light (G light), and blue light (B light).
  • the projection display device 100 is preferably configured as shown in FIG. 1 for each of the reflective liquid crystal display elements 1 for R light, G light, and B light.
  • the projection display device 100 may also be configured as shown in FIG. 1 only for the reflective liquid crystal display element 1 for B light.
  • the illumination optical system that irradiates illumination light onto the reflective liquid crystal display element 1 the synthesis optical system that synthesizes the illumination light modulated by the reflective liquid crystal display elements 1 for R light, G light, and B light, and the projection optical system that projects the synthesized light synthesized by the synthesis optical system onto a screen are not different from conventional configurations, so these configurations are not shown in Figure 1.
  • the configurations of the illumination optical system, synthesis optical system, and projection optical system may be the configurations described in Patent Document 2.
  • a projection display device 100 that uses a blue laser light source that emits blue laser light as a light source for illumination light.
  • the heat sink 2 has a plate-shaped base 21 and a number of fins 22 integrally formed on the upper surface of the base 21.
  • the heat sink 2 is formed, for example, from aluminum or an aluminum alloy.
  • the heat source 3 is fixed to the upper surface of the base 21 in the fin-free portion 23.
  • a ceramic heater as the heat source 3.
  • the ceramic on the surface of the ceramic heater has a relatively high thermal conductivity of about 150 W/m ⁇ K. Therefore, when a ceramic heater is used as the heat source 3, the heat generated by the reflective liquid crystal display element 1 is transferred to the heat sink 2 and then to the ceramic heater on the non-fin portion 23, and the heat can be efficiently dissipated into the air.
  • a silicon rubber heater is used as the heat source 3
  • the rubber on the surface of the silicon rubber heater has a low thermal conductivity of 1.4 to 8 W/m ⁇ K. Therefore, although the heat generated by the reflective liquid crystal display element 1 is transferred to the heat sink 2, it is difficult to transfer to the silicon rubber heater on the non-fin portion 23, and the heat cannot be efficiently dissipated into the air.
  • FIG. 2 The X direction in FIG. 2 is the longitudinal direction of the reflective liquid crystal display element 1, and the Y direction is the lateral direction of the reflective liquid crystal display element 1.
  • FIG. 3 is a cross-sectional view taken along the Y1-Y2 line in FIG. 2.
  • the reflective liquid crystal display element 1 and heat sink 2 in FIG. 1 are shown as viewed from the side along the X direction of the heat sink 2.
  • temperature sensors 41 and 42 are attached to the reflective liquid crystal display element 1 and the heat sink 2, respectively.
  • the output of the temperature sensor 41 is supplied to the drive circuit 30a, and the output of the temperature sensor 42 is supplied to the drive circuit 30b.
  • the drive circuit 30a may be configured using a microprocessor, and the drive circuit 30b may be a simple circuit that does not use a microprocessor.
  • the temperature sensor 41 may be configured as a circuit within the reflective liquid crystal display element 1. In this case, the temperature sensor 42 may be used when no power is supplied to the reflective liquid crystal display element 1, and the temperature sensor 41 may be used when power is supplied to the reflective liquid crystal display element 1.
  • the temperature sensor 42 attached to the heat sink 2 may be a thermistor whose resistance value changes depending on the temperature.
  • the drive circuit 30a drives the heat source 3 in response to the temperature detected by the temperature sensor 41.
  • the drive circuit 30b drives the heat source 3 in response to the temperature detected by the temperature sensor 42.
  • the drive circuit 30a drives the heat source 3 so that the heat source 3 generates heat when the temperature detected by the temperature sensor 41 is equal to or lower than a predetermined temperature.
  • the drive circuit 30a is configured using a microprocessor, the drive circuit 30a can control the temperature of the reflective liquid crystal display element 1 with high precision.
  • the drive circuit 30b drives the heat source 3 so that the heat source 3 generates heat. If a thermistor is used as the temperature sensor 42, the temperature of the heat sink 2 can be detected by simply passing a small current through the temperature sensor 42. Furthermore, if the drive circuit 30b is a simple circuit, it does not require a large amount of power to operate the drive circuit 30b, and the heat source 3 can be driven according to the temperature detected by the temperature sensor 42.
  • the heat source 3 can be appropriately driven when the projection display device 100 is not operating and when it is operating. Even if the projection display device 100 is not operating and is exposed to a low environmental temperature for a long period of time, the drive circuit 30b can drive the heat source 3 to keep the temperature of the reflective liquid crystal display element 1 elevated. Therefore, after the power supply of the projection display device 100 is turned on and the projection display device 100 starts operating, the reflective liquid crystal display element 1 can be brought to the desired temperature in a short time, and the start-up time of the projection display device 100 can be shortened.
  • the drive circuit 5 drives the cooling fan 5 to blow cooling air onto the heat sink 2.
  • the heat source 3 when the heat source 3 generates heat, the heat is transferred to the reflective LCD element 1 via the base 21 of the heat sink 2, and the temperature of the reflective LCD element 1 rises.
  • the heat source 3 is not generating heat and the reflective LCD element 1 generates heat, the heat is transferred to the fins 22 via the base 21 of the heat sink 2.
  • the heat sink 2 dissipates heat and the temperature of the reflective LCD element 1 drops.
  • the reflective liquid crystal display element 1 cannot be heated effectively.
  • the heat dissipation performance (cooling performance) of the heat sink 2 may be deteriorated.
  • the reflective liquid crystal display element 1 and the heat source 3 face each other across the base 21 so that the length L3 of the heat source 3 is within the length L1 of the reflective liquid crystal display element 1. It is preferable that the reflective liquid crystal display element 1 and the heat source 3 are positioned so that their centers in the longitudinal direction coincide.
  • the heat generated by the heat source 3 is efficiently transferred in the region between 3hcR and 3hcL at an angle of approximately 45 degrees, as indicated by the dashed double-dashed arrow line, in a direction perpendicular to the surface of the base 21. Therefore, it is preferable that the length L3 of the heat source 3 satisfies the formula (1) using the length L1 of the reflective liquid crystal display element 1 and the plate thickness t of the base 21. If the formula (1) is satisfied, the heat generated by the heat source 3 can be transferred efficiently to the reflective liquid crystal display element 1 via the heat sink 2 (base 21). L3 ⁇ L1-2t ... (1)
  • the heat generated by the reflective liquid crystal display element 1 is efficiently transferred in the region between 1hcR and 1hcL at approximately 45 degrees as indicated by the dashed double-dashed arrow in the direction perpendicular to the surface of the base 21. Therefore, in order to improve the cooling efficiency of the heat sink 2, it is preferable that the length L2 of the heat sink 2 (base 21) satisfies formula (2) using the length L1 of the reflective liquid crystal display element 1 and the plate thickness t of the base 21. L2 ⁇ L1 + 2t ... (2)
  • the length L1 of the reflective liquid crystal display element 1, the length L2 of the heat sink 2, and the length L3 of the heat source 3 in FIG. 1 described above indicate the length in the X direction, which is the longitudinal direction of the reflective liquid crystal display element 1.
  • the projection display device 100 preferably satisfies formula (1), and more preferably satisfies both formulas (1) and (2).
  • formula (1) be satisfied, and more preferably that both formulas (1) and (2) be satisfied.
  • the projection display device 100 may satisfy formula (1) in only one of the lengths in the X direction and the Y direction, or may satisfy both formulas (1) and (2) in only one of the lengths. As compared to a case in which formula (1) (or formulas (1) and (2)) is not satisfied in both the length in the X direction and the length in the Y direction, a predetermined effect can be obtained if formula (1) (or formulas (1) and (2)) is satisfied in only one of the lengths.
  • the projection display device 100 satisfies formula (1) for both the length in the X direction and the length in the Y direction. It is even more preferable that the projection display device 100 satisfies both formulas (1) and (2) for both the length in the X direction and the length in the Y direction.
  • the projection display device 100 satisfies formula (1) in at least one of the length in the X direction and the length in the Y direction. It is preferable that the projection display device 100 satisfies both formulas (1) and (2) in at least one of the length in the X direction and the length in the Y direction.
  • Figure 4 shows the temperature (element temperature) of the reflective LCD element 1 when the environmental temperature changes.
  • the dashed dotted line shows the temperature characteristics when the heat source 3 and cooling fan 5 are not operating, and the solid line shows the temperature characteristics when the heat source 3 and cooling fan 5 are operating.
  • Figure 4 shows the temperature characteristics when both the X-direction length and the Y-direction length satisfy both equations (1) and (2).
  • the heat source 3 When the ambient temperature is low and the temperature of the reflective liquid crystal display element 1 is low, the heat source 3 is operated, thereby allowing the reflective liquid crystal display element 1 to operate at the optimum element temperature.
  • the cooling fan 5 When the ambient temperature is high and the temperature of the reflective liquid crystal display element 1 is high, the cooling fan 5 is operated, thereby allowing the reflective liquid crystal display element 1 to operate at the optimum element temperature.
  • the projection display device 100 can maintain the element temperature at the optimum element temperature, regardless of whether the ambient temperature is high or low.
  • Figure 5 shows the element temperature of the reflective liquid crystal display element 1 when the current value of the light source drive current changes.
  • the dashed dotted line shows the temperature characteristics when the heat source 3 and cooling fan 5 are not operating, and the solid line shows the temperature characteristics when the heat source 3 and cooling fan 5 are operating.
  • Figure 5 shows the temperature characteristics when both the X-direction length and the Y-direction length satisfy both equations (1) and (2).
  • the heat source 3 When the current value of the light source drive current is small and the temperature of the reflective liquid crystal display element 1 is low, the heat source 3 is operated, thereby allowing the reflective liquid crystal display element 1 to operate at the optimum element temperature.
  • the cooling fan 5 When the current value of the light source drive current is large and the temperature of the reflective liquid crystal display element 1 is high, the cooling fan 5 is operated, thereby allowing the reflective liquid crystal display element 1 to operate at the optimum element temperature.
  • the projection display device 100 can maintain the element temperature at the optimum element temperature regardless of the current value of the light source drive current.
  • the projection display device 100 When a blue laser light source is used as the light source for illumination light, if the element temperature is low or high and deviates from the optimal element temperature, interference fringes are likely to occur, especially in images of B light. According to one or more embodiments of the projection display device 100, it is possible to reduce interference fringes. Of course, according to one or more embodiments of the projection display device 100, it is possible to display high-quality images even if the light source for illumination light is something other than a blue laser light source.
  • the three reflective liquid crystal display elements 1 that modulate the R light, G light, and B light are designated as the first to third reflective liquid crystal display elements, respectively.
  • the light source of the blue light is a blue laser light source, it is sufficient to obtain the effect of reducing interference fringes by making only the third reflective liquid crystal display element of the first to third reflective liquid crystal display elements the reflective liquid crystal display element 1 in FIG. 1.
  • the first and second reflective liquid crystal display elements may be attached to a normal heat sink to which no heat source 3 is attached.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Projection Apparatus (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

投射型表示装置(100)は、反射型液晶表示素子(1)、ヒートシンク(2)、発熱源(3)、冷却ファン(5)を備える。反射型液晶表示素子(1)の長手方向または短手方向の少なくとも一方の方向において、反射型液晶表示素子(1)の長さをL1、発熱源(3)の長さをL3、ヒートシンク(2)のベース(21)の板厚をtとする。発熱源(3)の長さL3が反射型液晶表示素子(1)の長さL1内に位置するように、反射型液晶表示素子(1)と発熱源(3)とがベース(21)を挟んで対向する。発熱源(3)の長さL3はL3≧L1-2tを満たす。

Description

投射型表示装置
 本開示は、投射型表示装置に関する。
 反射型液晶表示素子によって照明光を画像信号に応じて光変調して、スクリーンに投射する投射型表示装置が普及している。投射型表示装置を反射型液晶表示素子が低温の状態で動作させることは好ましくなく、反射型液晶表示素子が高温となることも好ましくない。そこで、投射型表示装置は、反射型液晶表示素子を加熱する構成を備えたり、反射型液晶表示素子を冷却する構成を備えたりする(特許文献1及び2参照)。
特開2012-145689号公報 特開2018-49207号公報
 発熱源によって反射型液晶表示素子を効果的に加熱することができ、発熱源が、反射型液晶表示素子を冷却する冷却性能をほとんど低減させることのない投射型表示装置とすることが望まれる。本発明は、発熱源によって反射型液晶表示素子を効果的に加熱することができ、かつ、発熱源が、反射型液晶表示素子を冷却する冷却性能をほとんど低減させることのない、反射型液晶表示素子の加熱機能及び冷却機能の双方を備える投射型表示装置を提供することを目的とする。
 1またはそれ以上の実施形態の一態様は、板状のベースを有するヒートシンクと、前記ベースの第1の面に固着されている反射型液晶表示素子と、前記ベースの前記第1の面と対向する第2の面に固着されている発熱源と、前記ヒートシンクに冷却風を当てる冷却ファンとを備え、前記反射型液晶表示素子の長手方向または短手方向の少なくとも一方の方向において、前記反射型液晶表示素子の長さをL1、前記発熱源の長さをL3、前記ベースの板厚をtとすると、前記発熱源の長さL3が前記反射型液晶表示素子の長さL1内に位置するように、前記反射型液晶表示素子と前記発熱源とが前記ベースを挟んで対向し、前記発熱源の長さL3はL3≧L1-2tを満たす投射型表示装置を提供する。
 1またはそれ以上の実施形態に係る投射型表示装置によれば、発熱源によって反射型液晶表示素子を効果的に加熱することができ、かつ、発熱源が、反射型液晶表示素子を冷却する冷却性能をほとんど低減させることがないから、反射型液晶表示素子を最適な温度で動作させることができる。
図1は、1またはそれ以上の実施形態に係る投射型表示装置を示す図である。 図2は、1またはそれ以上の実施形態に係る投射型表示装置におけるヒートシンク及び発熱源を示す斜視図である。 図3は、図2におけるY1-Y2断面図である。 図4は、1またはそれ以上の実施形態に係る投射型表示装置における環境温度と素子温度との関係を示す特性図である。 図5は、1またはそれ以上の実施形態に係る投射型表示装置における光源駆動電流の電流値と素子温度との関係を示す特性図である。
 以下、1またはそれ以上の実施形態に係る投射型表示装置について、添付図面を参照して説明する。図1に示す1またはそれ以上の実施形態に係る投射型表示装置100は、反射型液晶表示素子1、ヒートシンク2、発熱源3、冷却ファン5、発熱源3の駆動回路30a及び30b、温度センサ41及び42、冷却ファン5の駆動回路50を備える。反射型液晶表示素子1はヒートシンク2のベース21の第1の面に固着されており、発熱源3はベース21の第1の面と対向する第2の面に固着されている。冷却ファン5は、ヒートシンク2の後方に配置されている。
 投射型表示装置100は、赤色光(R光)、緑色光(G光)、青色光(B光)を変調する3つの反射型液晶表示素子1を備える。投射型表示装置100は、R光用、G光用、B光用それぞれの反射型液晶表示素子1に対して、図1に示すように構成されていることが好ましい。投射型表示装置100は、B光用の反射型液晶表示素子1に対してのみ、図1に示すように構成されていてもよい。
 投射型表示装置100における、反射型液晶表示素子1に照明光を照射する照明光学系、R光用、G光用、B光用それぞれの反射型液晶表示素子1で変調された照明光を合成する合成光学系、合成光学系で合成された合成光をスクリーンに投射する投射光学系は従来の構成と相違しないので、図1においてはそれらの構成の図示を省略している。照明光学系、合成光学系、投射光学系の構成は、特許文献2に記載されている構成でよい。
 但し、照明光の光源として青色レーザ光を射出する青色レーザ光源を用いる投射型表示装置100において、特に1またはそれ以上の実施形態による効果を発揮する。
 図2に示すように、ヒートシンク2は、板状のベース21と、ベース21の上面に一体的に形成された複数のフィン22とを有する。ヒートシンク2は、例えばアルミニウムまたはアルミニウム合金によって形成されている。ヒートシンク2の中央部には、フィン22が形成されておらず、ベース21の上面が所定の面積で露出したフィン非形成部23が設けられている。フィン非形成部23のベース21の上面には、発熱源3が固着されている。
 発熱源3として、セラミックヒータを用いることが好ましい。セラミックヒータ表面のセラミックは熱伝導率が150W/m・K程度で、熱伝導率が比較的高い。よって、発熱源3としてセラミックヒータを用いると、反射型液晶表示素子1で発生した熱はヒートシンク2に伝わり、さらにフィン非形成部23上のセラミックヒータに伝わって、熱を効率よく空気中へ放熱することができる。一方、発熱源3としてシリコンラバーヒータを用いるとすると、シリコンラバーヒータ表面のゴムの熱伝導率は1.4~8W/m・Kで、熱伝導率が低い。よって、反射型液晶表示素子1で発生した熱はヒートシンク2に伝わるものの、フィン非形成部23上のシリコンラバーヒータには伝わりにくく、熱を効率よく空気中へ放熱することができない。
 図2におけるX方向は反射型液晶表示素子1の長手方向であり、Y方向は反射型液晶表示素子1の短手方向である。図3は、図2のY1-Y2断面図である。図1における反射型液晶表示素子1及びヒートシンク2は、反射型液晶表示素子1及びヒートシンク2をヒートシンク2のX方向に沿った側面から見た状態を示している。
 図1において、反射型液晶表示素子1及びヒートシンク2には、それぞれ温度センサ41及び42が取り付けられている。温度センサ41の出力は駆動回路30aに供給され、温度センサ42の出力は駆動回路30bに供給される。例えば、駆動回路30aをマイクロプロセッサを用いた構成とし、駆動回路30bをマイクロプロセッサを用いない簡易の回路としてもよい。温度センサ41は、反射型液晶表示素子1内の回路として構成されていてもよい。この場合、反射型液晶表示素子1に電力が供給されていない状態では、温度センサ42が用いられ、反射型液晶表示素子1に電力が供給されている状態では温度センサ41が用いられてもよい。ヒートシンク2に取り付けられている温度センサ42として、温度によって抵抗値が変化するサーミスタを用いることができる。
 駆動回路30aは、温度センサ41が検出した温度に応じて発熱源3を駆動する。駆動回路30bは、温度センサ42が検出した温度に応じて発熱源3を駆動する。
 駆動回路30aは、投射型表示装置100が動作して反射型液晶表示素子1が駆動されている状態で、温度センサ41が検出した温度が所定の温度以下であるとき、発熱源3が発熱するよう発熱源3を駆動する。このとき、駆動回路30aをマイクロプロセッサを用いた構成とすれば、駆動回路30aは高精度に反射型液晶表示素子1の温度を制御することができる。
 駆動回路30bは、投射型表示装置100が動作せず反射型液晶表示素子1が駆動されていない状態で、温度センサ42が検出した温度が所定の温度以下であるとき、発熱源3が発熱するよう発熱源3を駆動する。このとき、温度センサ42としてサーミスタを用いれば、温度センサ42にわずかな電流を流すのみでヒートシンク2の温度を検出することができる。また、駆動回路30bを簡易の回路とすれば、駆動回路30bを動作させるのに大きな電力を必要せず、温度センサ42が検出した温度に応じて発熱源3を駆動することができる。
 このように、投射型表示装置100が、温度センサ41及び42と駆動回路30a及び30bを備えれば、投射型表示装置100が動作していない状態及び動作している状態のそれぞれで適切に発熱源3を駆動することができる。投射型表示装置100が動作していない状態で環境温度が低い状態に長時間さらされていたとしても、駆動回路30bが発熱源3を駆動して反射型液晶表示素子1の温度を上昇させておくことができる。よって、投射型表示装置100の電源が投入されて投射型表示装置100が動作を開始した後、短時間で反射型液晶表示素子1を所望の温度とすることができ、投射型表示装置100の起動時間を短くすることができる。
 駆動回路50は、温度センサ41または42が検出した温度が高温の所定の温度以上であるとき、冷却ファン5による冷却風をヒートシンク2に当てるよう冷却ファン5駆動する。
 このように、発熱源3が発熱すれば、熱はヒートシンク2のベース21を介して反射型液晶表示素子1に伝達し、反射型液晶表示素子1の温度が上昇する。発熱源3が発熱していない状態で、反射型液晶表示素子1が発熱すれば、熱はヒートシンク2のベース21を介してフィン22に伝達する。冷却ファン5による冷却風がヒートシンク2に当てられるので、ヒートシンク2は放熱して反射型液晶表示素子1の温度が低下する。
 以上のように構成される投射型表示装置100において、ヒートシンク2のベース21と接触する発熱源3の面積が小さければ、反射型液晶表示素子1を効果的に加熱することができない。一方で、ヒートシンク2のベース21と接触する発熱源3の面積が大きければ、ヒートシンク2による放熱性能(冷却性能)を悪化させるおそれがある。
 そこで、発熱源3によって反射型液晶表示素子1を効果的に加熱することができ、発熱源3が、反射型液晶表示素子1を冷却する冷却性能をほとんど低減させないようにすることが必要である。即ち、発熱源3による加熱機能とヒートシンク2による冷却機能とを効果的に両立させることが求められる。
 図1に示すように、発熱源3の長さL3は、反射型液晶表示素子1の長さL1内に位置するように、反射型液晶表示素子1と発熱源3とがベース21を挟んで対向している。反射型液晶表示素子1と発熱源3とは、長さ方向の中央が一致するように配置されていることが好ましい。
 図1において、発熱源3で発生した熱は、ベース21の面と直交する方向で、二点鎖線の矢印線で示すおおよそ45度の角度の3hcRと3hcLとの間の領域において効率よく伝達していく。従って、発熱源3の長さL3は、反射型液晶表示素子1の長さL1と、ベース21の板厚tとを用いて、式(1)を満たすことが好ましい。式(1)を満たせば、発熱源3で発生した熱を、ヒートシンク2(ベース21)を介して反射型液晶表示素子1に無駄なく伝達させることができる。
 L3≧L1-2t  …(1)
 発熱源3が発熱していない状態で、反射型液晶表示素子1で発生した熱は、ベース21の面と直交する方向で、二点鎖線の矢印線で示すおおよそ45度の1hcRと1hcLとの間の領域において効率よく伝達していく。従って、ヒートシンク2による冷却効率をよくするには、ヒートシンク2(ベース21)の長さL2は、反射型液晶表示素子1の長さL1と、ベース21の板厚tとを用いて、式(2)を満たすことが好ましい。
 L2≧L1+2t  …(2)
 以上説明した図1における反射型液晶表示素子1の長さL1、ヒートシンク2の長さL2、発熱源3の長さL3は、反射型液晶表示素子1の長手方向であるX方向の長さを示している。投射型表示装置100は、X方向において、式(1)を満たすことが好ましく、式(1)及び式(2)の双方を満たすことがさらに好ましい。図3に示すY方向の長さにおいても、式(1)を満たすことが好ましく、式(1)及び式(2)の双方を満たすことがさらに好ましい。
 投射型表示装置100は、X方向の長さとY方向の長さのいずれか一方の方向の長さのみ式(1)を満たしてもよいし、いずれか一方の方向の長さのみ式(1)及び式(2)の双方を満たしてもよい。X方向の長さとY方向の長さの双方において式(1)(または式(1)及び式(2))を満たさない場合と比較して、一方の方向の長さのみでも式(1)(または式(1)及び式(2))を満たせば、所定の効果が得られる。
 投射型表示装置100は、X方向の長さとY方向の長さの双方で式(1)を満たすことが好ましい。投射型表示装置100は、X方向の長さとY方向の長さの双方で式(1)及び式(2)の双方を満たすことがさらに好ましい。
 このように、投射型表示装置100は、X方向の長さとY方向の長さの少なくとも一方で式(1)を満たせばよい。投射型表示装置100は、X方向の長さとY方向の長さの少なくとも一方で式(1)及び式(2)の双方を満たすことが好ましい。
 発熱源3による加熱とヒートシンク2による冷却とのバランスを考えると、式(3)としたときバランスが最もよくなる。従って、式(3)を満たすことが好ましい。
 L3=L1―2t  …(3)
 図4は、環境温度が変化したときの反射型液晶表示素子1の温度(素子温度)を示している。一点鎖線は発熱源3及び冷却ファン5を動作させない場合の温度特性を示し、実線は発熱源3及び冷却ファン5を動作させた場合の温度特性を示している。図4は、X方向の長さとY方向の長さの双方で式(1)及び式(2)の双方を満たす場合の温度特性を示している。
 環境温度が低く反射型液晶表示素子1の温度が低いとき発熱源3を動作させることにより、反射型液晶表示素子1を最適な素子温度で動作させることができる。環境温度が高く反射型液晶表示素子1の温度が高いとき冷却ファン5を動作させることにより、反射型液晶表示素子1を最適な素子温度で動作させることができる。投射型表示装置100は、環境温度の高低にかかわらず、素子温度を最適な素子温度に維持することができる。
 図5は、光源駆動電流の電流値が変化したときの反射型液晶表示素子1の素子温度を示している。一点鎖線は発熱源3及び冷却ファン5を動作させない場合の温度特性を示し、実線は発熱源3及び冷却ファン5を動作させた場合の温度特性を示している。図5は、X方向の長さとY方向の長さの双方で式(1)及び式(2)の双方を満たす場合の温度特性を示している。
 光源駆動電流の電流値が小さく反射型液晶表示素子1の温度が低いとき発熱源3を動作させることにより、反射型液晶表示素子1を最適な素子温度で動作させることができる。光源駆動電流の電流値が大きく反射型液晶表示素子1の温度が高いとき冷却ファン5を動作させることにより、反射型液晶表示素子1を最適な素子温度で動作させることができる。投射型表示装置100は、光源駆動電流の電流値の大小にかかわらず、素子温度を最適な素子温度に維持することができる。
 照明光の光源として青色レーザ光源を用い、素子温度が低かったり高かったりして最適な素子温度からずれると、特にB光の画像に干渉縞が発生しやすい。1またはそれ以上の実施形態の投射型表示装置100によれば、干渉縞を低減させることができる。勿論、1またはそれ以上の実施形態の投射型表示装置100によれば、照明光の光源が青色レーザ光源以外であっても、高画質の画像を表示することが可能である。
 R光、G光、B光を変調する3つの反射型液晶表示素子1をそれぞれ第1~第3の反射型液晶表示素子とする。青色光の光源が青色レーザ光源であるとき、第1~第3の反射型液晶表示素子のうちの第3の反射型液晶表示素子のみを、図1における反射型液晶表示素子1とすれば、干渉縞を低減させる効果を得る上で十分である。第1及び第2の反射型液晶表示素子は、発熱源3を固着していない通常のヒートシンクに固着されていればよい。
 本発明は以上説明した1またはそれ以上の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更可能である。
 本願は、2022年10月27日に日本国特許庁に出願された特願2022-171944号に基づく優先権を主張するものであり、その全ての開示内容は引用によりここに援用される。

Claims (5)

  1.  板状のベースを有するヒートシンクと、
     前記ベースの第1の面に固着されている反射型液晶表示素子と、
     前記ベースの前記第1の面と対向する第2の面に固着されている発熱源と、
     前記ヒートシンクに冷却風を当てる冷却ファンと、
     を備え、
     前記反射型液晶表示素子の長手方向または短手方向の少なくとも一方の方向において、前記反射型液晶表示素子の長さをL1、前記発熱源の長さをL3、前記ベースの板厚をtとすると、
     前記発熱源の長さL3が前記反射型液晶表示素子の長さL1内に位置するように、前記反射型液晶表示素子と前記発熱源とが前記ベースを挟んで対向し、
     前記発熱源の長さL3はL3≧L1-2tを満たす
     投射型表示装置。
  2.  前記反射型液晶表示素子の長手方向または短手方向の少なくとも一方の方向において、前記ベースの長さをL2とすると、前記ベースの長さL2はL2≧L1+2tを満たす請求項1に記載の投射型表示装置。
  3.  前記ヒートシンクは、
     前記ベースの前記第2の面に一体的に形成された複数のフィンを有し、
     前記第2の面には、前記フィンが形成されていない前記第2の面が露出したフィン非形成部が設けられており、
     前記発熱源は前記フィン非形成部に固着されている
     請求項1または2に記載の投射型表示装置。
  4.  前記発熱源はセラミックヒータである請求項1または2に記載の投射型表示装置。
  5.  赤色光を変調する第1の反射型液晶表示素子、緑色光を変調する第2の反射型液晶表示素子、青色光を変調する第3の反射型液晶表示素子を備え、
     前記青色光の光源は青色レーザ光源であり、
     前記第1~第3の反射型液晶表示素子のうちの前記第3の反射型液晶表示素子のみを前記反射型液晶表示素子としている
     請求項1または2に記載の投射型表示装置。
PCT/JP2023/037956 2022-10-27 2023-10-20 投射型表示装置 WO2024090334A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-171944 2022-10-27
JP2022171944A JP2024063833A (ja) 2022-10-27 2022-10-27 投射型表示装置

Publications (1)

Publication Number Publication Date
WO2024090334A1 true WO2024090334A1 (ja) 2024-05-02

Family

ID=90830809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037956 WO2024090334A1 (ja) 2022-10-27 2023-10-20 投射型表示装置

Country Status (2)

Country Link
JP (1) JP2024063833A (ja)
WO (1) WO2024090334A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004157396A (ja) * 2002-11-07 2004-06-03 Fuji Photo Optical Co Ltd 投写型画像表示装置
JP2008170762A (ja) * 2007-01-12 2008-07-24 Seiko Epson Corp 画像表示装置
JP2009048043A (ja) * 2007-08-22 2009-03-05 Sony Corp 液晶表示装置およびその冷却方法
JP2014006369A (ja) * 2012-06-25 2014-01-16 Sony Corp 映像表示装置および冷却システム
JP2014211549A (ja) * 2013-04-19 2014-11-13 ソニー株式会社 画像表示装置、冷却ユニット、及び冷却方法
WO2018008246A1 (ja) * 2016-07-07 2018-01-11 ソニー株式会社 プロジェクタ装置、制御方法
WO2021157452A1 (ja) * 2020-02-05 2021-08-12 マクセル株式会社 光源装置および投射型映像表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004157396A (ja) * 2002-11-07 2004-06-03 Fuji Photo Optical Co Ltd 投写型画像表示装置
JP2008170762A (ja) * 2007-01-12 2008-07-24 Seiko Epson Corp 画像表示装置
JP2009048043A (ja) * 2007-08-22 2009-03-05 Sony Corp 液晶表示装置およびその冷却方法
JP2014006369A (ja) * 2012-06-25 2014-01-16 Sony Corp 映像表示装置および冷却システム
JP2014211549A (ja) * 2013-04-19 2014-11-13 ソニー株式会社 画像表示装置、冷却ユニット、及び冷却方法
WO2018008246A1 (ja) * 2016-07-07 2018-01-11 ソニー株式会社 プロジェクタ装置、制御方法
WO2021157452A1 (ja) * 2020-02-05 2021-08-12 マクセル株式会社 光源装置および投射型映像表示装置

Also Published As

Publication number Publication date
JP2024063833A (ja) 2024-05-14

Similar Documents

Publication Publication Date Title
JP4227969B2 (ja) 投写型表示装置
JP5311838B2 (ja) 映像表示装置
TW591322B (en) Liquid crystal projector
US20050117077A1 (en) Liquid crystal projector apparatus using heat exchanger and method of cooling liquid crystal projector apparatus
KR20100131125A (ko) 프로젝터
JP2011165760A (ja) レーザ光源装置及びプロジェクタ装置
JP2000347296A (ja) 反射型プロジェクター
JP2010014809A (ja) 液晶表示素子及びプロジェクタ
WO2024090334A1 (ja) 投射型表示装置
JP2006251149A (ja) 照明装置及び投写型画像表示装置。
JPH03288187A (ja) 投写型表示装置
JP5609675B2 (ja) 投射型表示装置
JP2010249945A (ja) 冷却システムおよび投写型映像表示装置
JP5423547B2 (ja) 電気光学装置および電子機器
JP2015031769A (ja) 電気光学装置および投写型映像表示装置
JP2012145689A (ja) 投射型表示装置
JP6547127B2 (ja) プリズム冷却装置、及び投写型映像表示装置
JP7392479B2 (ja) 表示デバイス及び投射型表示装置
JP4891453B1 (ja) 画像表示装置
JP2010032945A (ja) Dmd素子の放熱装置
JP2023107102A (ja) 冷却装置、光源装置、画像投射装置および波長変換装置
JP7154917B2 (ja) 投射型表示装置
JP2005250249A (ja) 液晶表示装置
JP2012212067A (ja) 投写型映像表示装置
JP2004157396A (ja) 投写型画像表示装置