WO2024088271A1 - 一种多层环形孔洞镍钴铝前驱体、该前驱体的制备方法及正极材料 - Google Patents

一种多层环形孔洞镍钴铝前驱体、该前驱体的制备方法及正极材料 Download PDF

Info

Publication number
WO2024088271A1
WO2024088271A1 PCT/CN2023/126291 CN2023126291W WO2024088271A1 WO 2024088271 A1 WO2024088271 A1 WO 2024088271A1 CN 2023126291 W CN2023126291 W CN 2023126291W WO 2024088271 A1 WO2024088271 A1 WO 2024088271A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
cobalt
nickel
aluminum
solution
Prior art date
Application number
PCT/CN2023/126291
Other languages
English (en)
French (fr)
Inventor
赵晓瑾
程迪
徐云军
左高峰
郝智敏
汪文
文万超
尹正中
Original Assignee
河南科隆新能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南科隆新能源股份有限公司 filed Critical 河南科隆新能源股份有限公司
Priority to KR1020247001615A priority Critical patent/KR20240060586A/ko
Publication of WO2024088271A1 publication Critical patent/WO2024088271A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention belongs to the technical field of lithium battery positive electrode materials, and specifically relates to a multi-layer annular hole nickel-cobalt-aluminum precursor and a preparation method thereof and a positive electrode material.
  • Positive electrode materials are the core key materials of power lithium batteries.
  • the energy density of positive electrode materials is closely related to the cruising range of electric vehicles, and their cost accounts for about 1/3 of the cost of lithium battery cells. Therefore, the development of high energy density, long life, high safety, and low cost positive electrode materials is crucial for the large-scale commercial use of power lithium batteries and electric vehicles.
  • NCA material combines the advantages of LiNiO2 and LiCoO2 . It not only has high reversible specific capacity and low material cost, but also enhances the structural stability and safety of the material after aluminum doping, thereby improving the material's cycle stability. Therefore, NCA material is one of the most popular materials currently studied in commercial positive electrode materials.
  • the technical solution disclosed in the patent with announcement number CN113697870B provides a precursor with a dual-core twin structure to improve the lithium ion diffusion channel and the lithium ion diffusion rate. From the cross-sectional electron microscope provided, the internal structure of the precursor is dense, which is not conducive to mixed sintering with lithium salts to form multiple lithium ion diffusion channels, and is not conducive to the coated modified elements entering the primary particle surface. This solution also fails to highlight the advantages of the improved precursor.
  • the present inventors discovered during the research on nickel-cobalt-aluminum precursors that the difference in solubility product constants between elements can be utilized during the preparation process, and the pH and aluminum solution concentration in each reaction stage can be strictly controlled to directly improve the primary particle morphology and porosity in the internal structure of the precursor particles.
  • This method has simple process, low cost, can be industrially produced, and the obtained product has good performance after sintering.
  • the present invention provides a multi-layer annular hole nickel-cobalt-aluminum precursor, characterized in that: the chemical formula of the precursor is Ni M Co N Al 1-MN (OH) 2 , 0.8 ⁇ M ⁇ 0.97, 0.02 ⁇ N ⁇ 0.09, 0.01 ⁇ 1-MN ⁇ 0.055, wherein D50 is 8-20 ⁇ m,
  • the secondary spherical particle structure of the precursor has multiple layers of annular holes, and the average porosity value of a single secondary spherical particle or a plurality of secondary spherical particles in the cross section is 6-14%.
  • the present invention also provides a method for preparing the above-mentioned precursor, comprising the following steps:
  • the materials obtained by the reaction are subjected to solid-liquid separation, washing, drying, mixing, screening, and demagnetization processes to obtain a nickel-cobalt-aluminum precursor.
  • the total metal ion concentration of the nickel-cobalt mixed salt solution in step S1 is 1.0-2.0 mol/L.
  • the aluminum salt is sodium aluminate
  • the Al 3+ concentration in the alkali aluminum solution is 0.1-0.5 mol/L
  • the molar concentration of the sodium hydroxide solution is 5-10 mol/L.
  • the concentration of the complexing agent is 10-15 mol/L, and the complexing agent is at least one of EDTA, ammonia water, ammonium carbonate, and ammonium bicarbonate.
  • step S3 the coprecipitation reaction is carried out in four stages: the first stage is from nucleation to growth to D 1 50, 25% of the target value ⁇ D 1 50 ⁇ 40% of the target value; the second stage is the growth of secondary spherical particles to D 2 50, 40% of the target value ⁇ D 2 50 ⁇ 60% of the target value; the third stage is the growth of secondary spherical particles to D 3 50, 60% of the target value ⁇ D 3 50 ⁇ 90% of the target value; the fourth stage is the growth of secondary spherical particles to the target value, and the growth reaction is stopped immediately.
  • the flow rate of the nickel-cobalt mixed salt solution is 1-3.5L/h
  • the flow rate of the alkali aluminum solution is 1-2L/h
  • the flow rate of the complexing agent is 0.5-1.5L/h
  • the pH is controlled at 10-12
  • the reaction temperature of each stage is controlled at 55-70°C
  • the stirring speed of each stage is 500-1000rpm.
  • the washing is specifically as follows: the material obtained by the reaction is first washed with an alkali solution, and then washed with 25-80°C deionized water, and the resistivity of the washing water after washing is less than 0.02cm/ ⁇ s; the alkali solution is at least one of a sodium carbonate solution and a sodium hydroxide solution, and the molar concentration of the alkali solution is 4.0-5.0mol/L.
  • the present invention provides a method for preparing a positive electrode material for a lithium ion battery.
  • the method is used to obtain a nickel-cobalt-aluminum precursor, and then the precursor is uniformly mixed with a lithium source and an additive, and the positive electrode material is obtained by sintering, crushing, pulverizing, washing, drying, coating, and sintering and screening for a second time.
  • the lithium source is at least one of lithium hydroxide, lithium nitrate, and lithium chloride
  • the additive is one or more of Zr, Sr, Ti, W, Mg, Y, La, B, and F
  • the coating agent used during coating is one or more of an oxide containing element D and a lithium compound containing element D
  • element D is one or more of Co, Li, B, W, Ti, Ce, and Zr
  • the molar ratio of Ni+CO+Al:Li is 1:1.01-1.05
  • the mass ratio of the additive used to the mass of the precursor and the lithium salt is 0.1%-2%.
  • calcination is performed in an oxygen atmosphere furnace at a calcination temperature of 650-800°C, a calcination time of 10-15h, and an oxygen content in the atmosphere furnace of 85% to 95%, to obtain a first sintered matrix.
  • the obtained first sintered matrix is crushed and washed with deionized water, wherein the mass ratio of the first sintered matrix to water is 1:1-3, and the temperature of the deionized water is 20-30°C, and centrifuged.
  • the obtained dried matrix is uniformly mixed with the coating agent, wherein the mass ratio of the coating agent to the dried matrix is 0.01-5%.
  • the secondary sintering is then performed, and the cathode material is obtained by calcining in an oxygen atmosphere furnace at a calcination temperature of 500-700°C for 6-10 hours and an oxygen content of 90% to 95% in the atmosphere furnace.
  • the present invention also provides a lithium ion battery positive electrode material obtained by the above preparation method.
  • NCA cathode materials have higher energy density.
  • Al 3+ and Co 3+ have the same valence state and similar ionic radius (the ionic radius of Al 3+ is The ionic radius of Co 3+ is ).
  • the Al-O covalent bond energy is stronger, so doping Al can reduce the mixing of lithium and nickel, which is beneficial to stabilizing the structure of the material; at the same time, the doping of Al 3+ is not only beneficial to conduct the heat generated by the decomposition of the electrolyte, but also reduces the material's oxidation ability to the electrolyte, and improves the thermal stability of the material.
  • the NCA precursor preparation process is technically difficult.
  • the precipitation pH values of Ni, Co, and Al elements vary greatly . Their solubility product constants are 10-16 for nickel hydroxide, 10-14.9 for cobalt hydroxide, and 10-33 for aluminum hydroxide.
  • Al(OH) 3 is an amphoteric hydroxide, which is easy to precipitate at a lower pH value and easily decomposed into AlO 2-1 at a higher pH value.
  • the present invention strictly controls the pH value and coprecipitation time of the three elements at each stage, and can prepare a nickel-cobalt-aluminum precursor with multilayer annular holes.
  • the preparation method is simple in process, low in cost, and can be industrialized.
  • the secondary spherical structure of the precursor has a larger internal space between the primary particles.
  • the positive electrode material will inherit the morphology, structure and physical properties of the precursor to a large extent.
  • the positive electrode material prepared by the present invention has doped and coated elements not only on the surface of the secondary spherical particles, but also can penetrate into the annular holes to protect the primary particles that make up the secondary spherical particles.
  • the electrolyte can be immersed in the multi-layer annular holes in the positive electrode material to expand the contact area between the positive electrode material and the electrolyte, shorten the Li+ diffusion path, and accelerate the rate of lithium ion insertion and extraction, so that the battery not only has a higher initial discharge specific capacity but also a smaller battery internal resistance, thereby improving the output performance.
  • the volume change of the positive electrode material during the charge and discharge process is buffered, which plays a role in stabilizing the structure and improving the cycle performance.
  • FIG1 is a cross-sectional SEM image of the precursor of Example 1;
  • FIG2 is a cross-sectional SEM image of the precursor of Example 2.
  • FIG3 is a cross-sectional SEM image of the precursor of Comparative Example 1;
  • FIG4 is a cross-sectional SEM image of the precursor of Comparative Example 2.
  • FIG5 is a comparison chart of the rate performance of the positive electrode materials prepared in Examples 1, 2, 3, 4 and Comparative Examples 1, 2, 3, 4;
  • FIG6 is a comparison chart of the cycle performance of the positive electrode materials prepared in Examples 1, 2, 3, 4 and Comparative Examples 1, 2, 3, 4;
  • Table 1 is a comparison chart of the precursor porosity, positive electrode material discharge capacity, and DCR performance prepared in Examples 1, 2, 3, 4 and Comparative Examples 1, 2, 3, 4.
  • a method for preparing a multilayer annular hole nickel-cobalt-aluminum precursor positive electrode material comprises the following steps:
  • the particles D50 in the reactor grow to 4-6 ⁇ m.
  • a nickel-cobalt mixed salt solution with a flow rate of 2.45L/h, an alkali-aluminum solution with a flow rate of 1.5L/h, and a complexing agent solution with a flow rate of 0.5-1.5L/h are pumped into the reactor.
  • the pH value is controlled at 11.62 ⁇ 0.1, and the stirring speed is 550rpm.
  • the particles D50 in the reactor grow to 6-9 ⁇ m.
  • a nickel-cobalt mixed salt solution with a flow rate of 2.55 L/h, an alkali-aluminum solution with a flow rate of 1.65 L/h, and a complexing agent solution with a flow rate of 0.5-1.5 L/h are pumped into the reactor, the pH value is controlled at 11.45 ⁇ 0.1, the stirring speed is 650 rpm, and the particles in the reactor grow to 9-13 ⁇ m;
  • a nickel-cobalt mixed salt solution with a flow rate of 2.55 L/h, an alkali-aluminum solution with a flow rate of 1.65 L/h, and a complexing agent solution with a flow rate of 0.5-1.5 L/h are pumped into the reactor, the pH value is controlled at 11.65 ⁇ 0.1, and the stirring speed is 500 rpm; the reaction kettle stops when the D50 value of the particles grows to 15 ⁇ 1 ⁇ m.
  • the obtained primary sintered matrix is crushed and washed with deionized water, wherein the mass ratio of the primary sintered matrix to water is 1:1.5, the temperature of the deionized water is 25°C, centrifuged, and dried to obtain a dried matrix.
  • the obtained dried matrix is uniformly mixed with the coating material cerium oxide, and the mass ratio of cerium oxide to the dried matrix is 0.1%.
  • Ni 0.875 Co 0.09 Al 0.035 (OH) 2 nickel-cobalt-aluminum precursor obtained by S4 was cut using an argon ion profiler, and the cross-sectional morphology was observed using a field emission scanning electron microscope. The test results are shown in Figure 1.
  • Image J was used to analyze the particle porosity of the precursor cross-section.
  • the calculation of the particle cross-section porosity is mainly based on the proportion of holes in the particles.
  • Image J needs to copy the original image, and the original image is used to extract the hole area.
  • the copy layer is used to extract the particle area after the hole is filled.
  • the ratio of the two is the porosity of the particle cross-section.
  • Table 1 The test results are shown in Table 1.
  • the assembled all-electric 18650 was used to test the electrical properties of the positive electrode material in Example 1, which included positive electrode materials (96.5%), Super P (1.2%), CNT (0.5%), and PVDF (1.8%).
  • Graphite was used as the negative electrode, which included graphite (94.8%), CMC (1.7%), SBR (2%), and Super P (1.5%).
  • the capacity ratio of the positive electrode to the negative electrode in the full battery design was 1/1.2.
  • Rate performance test After the assembled 18650 cylindrical batteries were formed and divided into different capacities, the formed batteries were subjected to different rate discharge tests at room temperature 25°C and within the voltage range of 2.75-4.2V. The charge rate was 0.5C, and the discharge rates were 0.5C, 1C, 2C, and 3C, respectively. The discharge capacity retention rates at different rates were calculated. The results are shown in Table 1.
  • DCR performance test After the assembled 18650 cylindrical battery is subjected to conventional formation and capacity division, a room temperature DCR test is performed.
  • Ni:Co molar ratio 0.92:0.03.
  • the total molar concentration of metal ions in the nickel-cobalt mixed salt solution is 2.0 mol/L.
  • a nickel-cobalt mixed salt solution with a flow rate of 2.43L/h, an alkali-aluminum solution with a flow rate of 1.45L/h, and a complexing agent solution with a flow rate of 0.5-1.5L/h are pumped into the reactor.
  • the pH value is controlled at 11.65 ⁇ 0.1, the stirring speed is 550rpm, and the D50 of the particles in the reactor grows to 6-9 ⁇ m;
  • a nickel-cobalt mixed salt solution with a flow rate of 2.5L/h, an alkali aluminum solution with a flow rate of 1.65L/h, and a complexing agent solution with a flow rate of 0.5-1.5L/h are pumped into the reactor, the pH value is controlled at 11.48 ⁇ 0.1, the stirring speed is 650rpm, and the particles in the reactor grow to 9-13 ⁇ m;
  • a flow rate of 2.5L/h is pumped into the reactor
  • a nickel-cobalt mixed salt solution with a flow rate of 1.6 L/h of alkaline aluminum solution and a flow rate of 0.5-1.5 L/h of complexing agent solution were added.
  • the pH value was controlled at 11.54 ⁇ 0.1 and the stirring speed was 500 rpm.
  • the reaction kettle was stopped when the D50 value of the particles grew to 15 ⁇ 1 ⁇ m.
  • the obtained primary sintered matrix is crushed and washed with deionized water, wherein the mass ratio of the primary sintered matrix to water is 1:1.5, the temperature of the deionized water is 25°C, centrifuged, and dried to obtain a dried matrix.
  • the obtained dried matrix is uniformly mixed with the coating material cerium oxide, and the mass ratio of cerium fluoride to the dried matrix is 0.2%. Afterwards, it was calcined in an oxygen atmosphere furnace at a calcination temperature of 650° C. for 8 hours, with an oxygen content in the atmosphere furnace of 90% to 95%, to obtain Li 1.03 Ni 0.92 Co 0.03 Al 0.05 Zr 0.003 O 2 @CeF 4 positive electrode material.
  • Ni 0.92 Co 0.03 Al 0.05 (OH) 2 nickel-cobalt-aluminum precursor obtained by S4 was cut using an argon ion profiler, and the cross-sectional morphology was observed using a field emission scanning electron microscope. The test results are shown in Figure 2.
  • the porosity test method of the precursor cross-section is the same as that of Example 1, and the results are shown in Table 1.
  • the obtained primary sintered matrix is crushed and washed with deionized water, wherein the ratio of the primary sintered matrix to water is 1:1.5, the temperature of the deionized water is 25°C, centrifuged, and dried to obtain a dried matrix.
  • the obtained dried matrix is uniformly mixed with the coating material zirconium oxide, and the mass ratio of zirconium oxide to the dried matrix is 0.1%.
  • it was calcined in an oxygen atmosphere furnace at a calcination temperature of 600°C and a calcination time of 8 hours.
  • the oxygen content in the atmosphere furnace was 90% to 95%, and a positive electrode material of Li 1.03 Ni 0.875 Co 0.09 Al 0.035 B 0.0015 O 2 @ZrO 2 was obtained.
  • the porosity test method of the precursor cross-section is the same as that of Example 1, and the results are shown in Table 1.
  • a nickel-cobalt-aluminum precursor Ni 0.92 Co 0.03 Al 0.05 (OH) 2 with D50 14.792, a porosity of 9.465 and a multi-layer annular pore morphology can be obtained.
  • the obtained primary sintered matrix is crushed and washed with deionized water, wherein the mass ratio of the primary sintered matrix to water is 1:1.5, the temperature of the deionized water is 25°C, centrifuged, and dried to obtain a dried matrix.
  • the mass ratio of boric acid to the dried matrix is 0.05%.
  • it was calcined in an oxygen atmosphere furnace at a calcination temperature of 350° C. for 5 hours, and an oxygen content in the atmosphere furnace of 80% to 95%, to obtain Li 1.03 Ni 0.92 Co 0.03 Al 0.05 B 0.001 O 2 @Li 3 BO 3 positive electrode material.
  • the porosity test method of the precursor cross-section is the same as that of Example 1, and the results are shown in Table 1.
  • a conventional morphology nickel-cobalt-aluminum precursor preparation method and positive electrode material sintering method comprises the following steps:
  • Ni:Co molar ratio 0.875:0.09.
  • the total molar concentration of metal ions in the nickel-cobalt mixed salt solution is 2.0 mol/L.
  • the primary sintered matrix obtained is crushed and washed with deionized water, wherein the mass ratio of the primary sintered matrix to water is 1:1.5, the temperature of the deionized water is 25°C, centrifuged, and dried to obtain a dried matrix.
  • the obtained dried matrix is evenly mixed with the coating material cerium oxide, and the mass ratio of cerium oxide to the dried matrix is 0.1%.
  • the calcination temperature is 650°C
  • the calcination time is 8h
  • the oxygen content in the atmosphere furnace is 90% to 95%
  • a positive electrode material of Li 1.03 Ni 0.875 Co 0.09 Al 0.035 Zr 0.003 O 2 @CeO 2 is obtained.
  • Ni 0.875 Co 0.09 Al 0.035 (OH) 2 nickel-cobalt-aluminum precursor obtained by S4 was cut using an argon ion profiler, and the cross-sectional morphology was observed using a field emission scanning electron microscope. The test results are shown in Figure 3.
  • the porosity test method of the precursor cross-section is the same as that of Example 1, and the results are shown in Table 1.
  • Ni:Co molar ratio 0.92:0.03.
  • the total molar concentration of metal ions in the nickel-cobalt mixed salt solution is 2.0 mol/L.
  • the obtained primary sintered matrix is crushed and washed with deionized water, wherein the mass ratio of the primary sintered matrix to water is 1:1.5, the temperature of the deionized water is 25°C, centrifuged, and dried to obtain a dried matrix.
  • the mass ratio of cerium fluoride to the dried matrix is 0.2%.
  • Ni 0.92 Co 0.03 Al 0.05 (OH) 2 nickel-cobalt-aluminum precursor obtained by S4 was cut using an argon ion profiler, and the cross-sectional morphology was observed using a field emission scanning electron microscope. The test results are shown in Figure 4.
  • the porosity test method of the precursor cross-section is the same as that of Example 1. The results are shown in Table 1.
  • the obtained primary sintered matrix is crushed and washed with deionized water, wherein the mass ratio of the primary sintered matrix to water is 1:1.5, the temperature of the deionized water is 25°C, centrifuged, and dried to obtain a dried matrix.
  • the obtained dried matrix is uniformly mixed with the coating material zirconium oxide, and the mass ratio of zirconium oxide to the dried matrix is 0.1%.
  • it was calcined in an oxygen atmosphere furnace at a calcination temperature of 600°C and a calcination time of 8 hours.
  • the oxygen content in the atmosphere furnace was 90% to 95%, and a positive electrode material of Li 1.03 Ni 0.875 Co 0.09 Al 0.035 B 0.0015 O 2 @ZrO 2 was obtained.
  • the porosity test method of the precursor cross-section is the same as that of Example 1, and the results are shown in Table 1.
  • the obtained primary sintered matrix is crushed and washed with deionized water, wherein the mass ratio of the primary sintered matrix to water is 1:1.5, the temperature of the deionized water is 25°C, centrifuged, and dried to obtain a dried matrix.
  • the mass ratio of boric acid to the dried matrix is 0.05%.
  • it was calcined in an oxygen atmosphere furnace at a calcination temperature of 350° C. for 5 hours, and an oxygen content in the atmosphere furnace of 80% to 95%, to obtain Li 1.03 Ni 0.92 Co 0.03 Al 0.05 B 0.001 O 2 @Li 3 BO 3 positive electrode material.
  • the porosity test method of the precursor cross-section is the same as that of Example 1, and the results are shown in Table 1.
  • Example 1 and Comparative Example 1 The experimental data are divided into two groups: Example 1 and Comparative Example 1; Example 2 and Comparative Example 2. It can be seen from the experimental data that the precursor coprecipitation reaction process is strictly controlled in stages by controlling the pH value, rotation speed, and flow rate of the solution in the reaction, and a precursor with multilayer annular holes can be obtained. In the comparative example, the precursor with this morphology cannot be obtained if the reaction stage is not adjusted or adjusted according to this method. This morphology has a great influence on the porosity index.
  • the positive electrode material with the same nickel-cobalt-aluminum ratio has a relatively large porosity value and a high initial discharge capacity.
  • the positive electrode material inherits the internal space structure of the precursor, which enables more electrolyte to penetrate, provides more lithium ion diffusion channels, and accelerates the insertion and extraction rate of lithium ions. Therefore, Examples 1 and 2 have higher initial discharge specific capacity and lower internal resistance than Comparative Examples 1 and 2. Comparing these two groups of data, Example 3 and Comparative Example 3; Example 4 and Comparative Example 4, it can be seen that doping and coating different elements improve the electrical properties of the positive electrode material, but still cannot improve the advantages inherited from the precursor structure itself.
  • the positive electrode inherits the porous structure between the primary particles from the precursor. After the precursor is lithium-sintered and sintered, there are more gaps between the primary particles. The elements coated by the secondary sintering can also penetrate into the surface of the primary particles to protect the positive electrode material and improve the side reactions caused by the electrolyte to the positive electrode material. It is well known that morphological changes have a profound impact on the cycle stability of nickel-rich NCA positive electrodes. Due to the phase change near the end of charging, the positive electrode will experience lattice shrinkage. The appropriate gaps between the primary particles make the internal strain generated by the phase change evenly distributed and safely dissipate the strain force, thereby improving the cycle performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Composite Materials (AREA)

Abstract

一种多层环形孔洞镍钴铝前驱体、该前驱体的制备方法及正极材料,该前驱体的D50为8-20μm,且该前驱体的二次球颗粒结构中有多层环形孔洞,且单个二次球颗粒或多个二次球颗粒剖面的孔隙率值为6-14%。该前驱体的制备方法包括:将镍钴混合盐溶液、碱铝溶液、络合剂同时泵入反应釜中,分阶段进行共沉淀反应,反应结束后进行固液分离、洗涤、烘干、混匀、筛分、除磁工序制得具有多层环形孔洞的镍钴铝前驱体。

Description

一种多层环形孔洞镍钴铝前驱体和制备方法及其正极材料
本申请是以CN申请号为202211319408.6,申请日为2022年10月26日的中国申请为基础,并主张其优先权,该CN申请的公开内容再次作为整体引入本申请中。
技术领域
本发明属于锂电池正极材料技术领域,具体涉及一种多层环形孔洞镍钴铝前驱体和制备方法及其正极材料。
背景技术
现阶段由于动力电池续航能力不足、充电速度慢、成本偏高等问题制约了电动汽车普及发展,动力锂电的性价比在很大程度上影响了电动汽车的市场普及程度。正极材料是动力锂电的核心关键材料,正极材料的能量密度高低与电动汽车的续航里程息息相关,而且其成本约占锂电池电芯成本的1/3,所以开发出高能量密度、长寿命、高安全、低成本的正极材料对动力锂电、电动汽车的规模化商用至关重要。
NCA材料综合了LiNiO2和LiCoO2的优点,不仅可逆比容量高,材料成本较低,同时掺铝后增强了材料的结构稳定性和安全性,进而提高了材料的循环稳定性,因此NCA材料是目前商业化正极材料中研究最热门的材料之一。
公告号为CN113651372A的专利公开的技术方案采用间断法制备出了高球形度无孪生颗粒的前驱体,此方案只改善了前驱体表面的形貌,没有提及前驱体内部空间结构,不能更有效说明前驱体到正极材料烧结后的益处。
公告号为CN113697870B的专利公开的技术方案提供了一种双核孪生结构的前驱体,用来改善锂离子扩散通道和锂离子扩散速率,从所提供的剖面电镜看,该前驱体内部结构密实,不利于与锂盐混合烧结,形成多锂离子扩散通道,且不利于包覆改性的元素进入到一次颗粒表面,该方案也不能突出前驱体改善后的优点。
发明内容
基于以上问题,本发明在对镍钴铝前驱体的研究过程中发现,在制备过程中可利用元素之间溶度积常数的不同,严格控制每反应阶段中的pH和铝的溶液浓度来直接改善前驱体颗粒内部结构中的一次颗粒形貌和孔隙率,该方法工艺简单,成本低廉,可工业化生产,且得到的产物烧结后具有良好的性能。
本发明提供了一种多层环形孔洞镍钴铝前驱体,其特征在于:所述前驱体的化学式为NiMCoNAl1-M-N(OH)2,0.8≤M≤0.97、0.02≤N≤0.09、0.01≤1-M-N≤0.055,其中D50为8-20μm, 且所述前驱体的二次球颗粒结构中有多层环形孔洞,单个二次球颗粒或多个二次球颗粒剖面均值的孔隙率值为6-14%。
本发明还提供了上述前驱体的制备方法,包括以下步骤:
S1,称取硫酸镍,硫酸钴粉末溶于纯水,配置镍钴混合盐溶液;
S2,称取铝盐,加入到氢氧化钠溶液中,配置碱铝溶液;
S3,将S1所述镍钴混合盐溶液、S2所述碱铝溶液、络合剂同时泵入反应釜中,分阶段进行共沉淀反应;
S4,反应结束后,将反应所得物料进行固液分离、洗涤、烘干、混匀、筛分、除磁工序,得到镍钴铝前驱体。
进一步,步骤S1中所述镍钴混合盐溶液总金属离子浓度是1.0-2.0mol/L。
进一步,步骤S2中所述铝盐为偏铝酸钠;所述碱铝溶液中Al3+浓度为0.1-0.5mol/L;所述氢氧化钠溶液的摩尔浓度为5-10mol/L。
进一步,步骤S3中所述络合剂浓度为10-15mol/L,所述络合剂为EDTA、氨水、碳酸铵、碳酸氢铵中的至少一种。
进一步,在步骤S3中分四个阶段进行共沉淀反应:第一阶段成核到生长至D150,目标值的25%≤D150<目标值的40%;第二阶段二次球颗粒生长至D250,目标值的40%≤D250<目标值的60%;第三阶段二次球颗粒生长至D350,目标值的60%≤D350<目标值的90%;第四阶段二次球颗粒生长至目标值,立即停止生长反应。每阶段中所述镍钴混合盐溶液的流量为1-3.5L/h,碱铝溶液的流量为1-2L/h,络合剂的流量为0.5-1.5L/h,pH控制在10-12,每阶段的反应温度控制在55-70℃,每阶段的搅拌速度为500-1000rpm。
进一步,在步骤S4中,所述洗涤具体为:将反应所得物料先用碱液洗涤,再用25-80℃去离子水洗涤,洗涤后洗涤水的电阻率小于0.02cm/μs;所述碱液为碳酸钠溶液、氢氧化钠溶液中的至少一种,且碱液摩尔浓度为4.0-5.0mol/L。
本发明提供了一种锂离子电池正极材料的制备方法,采用上述制备方法得到镍钴铝前驱体,然后将得到的所述前驱体与锂源、添加剂均匀混合,一次烧结、破碎、粉碎、水洗烘干、包覆、二次烧结过筛得到正极材料。
进一步,所述锂源为氢氧化锂、硝酸锂、氯化锂中的至少一种,所述添加剂为Zr、Sr、Ti、W、Mg、Y、La、B、F元素中的一种或多种,包覆时所使用的包覆剂为含有D元素的氧化物、含有D元素的锂化合物中的一种或多种,D元素为Co、Li、B、W、Ti、Ce、Zr中一种或多种;Ni+CO+Al∶Li的摩尔比为1∶1.01-1.05,所用添加剂与前驱体和锂盐的质量和的质量比为0.1%-2%。一次烧结时,在氧气气氛炉中煅烧,煅烧温度为650-800℃,煅烧时间为10-15h,气氛炉中的氧含量为85%~95%,得到一次烧结基体。将得到的一次烧结基体粉碎,并用去离子水洗涤,其中一次烧结基体与水的质量比为1∶1-3,去离子水温度为20-30℃,离心, 烘干,得到烘干基体。得到的烘干基体、与包覆剂均匀混合,其中包覆剂与烘干基体的质量比为0.01-5%。之后二次烧结,在氧气气氛炉中煅烧,煅烧温度为500-700℃,煅烧时间6-10h,气氛炉中的氧含量为90%~95%,得到所述正极材料。
本发明还提供了上述制备方法得到的锂离子电池正极材料。
本发明的有益效果:
1、与传统的正极材料LiNiO2和LiCoO2相比NCA正极材料的能量密度更高,Al3+与Co3+具有相同的价态,相似的离子半径(Al3+的离子半径为Co3+的离子半径为)。但Al-O共价键键能更强,所以掺杂Al可以减少锂镍混排,有利于稳定材料的结构;同时Al3+的掺杂不仅有利于传导分解电解液所产生的热量,而且降低了材料对电解液的氧化能力,提高了材料的热稳定性。但NCA前驱体制备工艺技术难度高。Ni、Co、Al元素沉降pH值差异较大,其溶度积常数氢氧化镍10-16、氢氧化钴10-14.9、氢氧化铝10-33,Al(OH)3为两性氢氧化物,在较低pH值下易发生沉淀,在较高的pH值下易分解为AlO2 -1,本发明严格控制三种元素各阶段共沉淀的pH值、共沉淀的时间,可制备出有多层环形孔洞镍钴铝前驱体,该制备方法工艺简单,成本低廉,可工业化生产。
2、相较于传统的前驱体,该前驱体的二次球结构中一次颗粒之间具有较大的内部空间,正极材料在很大程度上会继承前驱体的形貌结构和物性指标,本发明制备的正极材料,掺杂和包覆的元素不仅在二次球颗粒表面,还可以渗透到环形孔洞处,对组成二次球颗粒的一次颗粒进行保护。电解液可以浸入正极材料中多层环形孔洞扩大正极材料与电解液的接触面积,缩短Li+扩散路径,加快锂离子嵌入和脱出速率,使得电池不仅具有较高的初始放电比容量还有较小电池内阻,提高了输出性能。此外,由于多层环形孔洞的存在,缓冲了正极材料在充放电过程中的体积变化,起到稳定结构、改善循环性能的作用。
附图说明
图1为实施例1前驱体的剖面扫描电镜图;
图2为实施例2前驱体的剖面扫描电镜图;
图3为对比例1前驱体的剖面扫描电镜图;
图4为对比例2前驱体的剖面扫描电镜图;
图5为实施例1、2、3、4和对比例1、2、3、4制备的正极材料的倍率性能对比图;
图6为实施例1、2、3、4和对比例1、2、3、4制备的正极材料的循环性能对比图;
表1为实施例1、2、3、4和对比例1、2、3、4制备的前驱体孔隙率、正极材料放电容量、DCR性能对比图。
具体实施方式
以下将结合实施例对本申请的构思、具体结构及产生的技术效果进行清楚、完整地描述。
实施例1
1.一种多层环形孔洞镍钴铝前驱体的制备方法正极材料包括以下步骤:
S1,称取硫酸镍、硫酸钴粉末溶于纯水,根据Ni∶Co摩尔比为0.875∶0.09配置镍、钴混合盐溶液,镍、钴的混合盐溶液中总的金属离子的摩尔浓度为2.0mol/L。
S2,称取偏铝酸钠,加入到氢氧化钠溶液中,配置Al3+摩尔浓度为0.1mol/L的碱铝溶液。
S3,将S1所述镍钴混合盐溶液、S2所述碱铝溶液、12mol/L的氨水络合剂同时泵入反应釜中边搅拌边进行共沉淀反应。共沉淀反应分为四个阶段,温度全部控制在55℃。第一阶段,往反应釜中泵入流量为2.52L/h的镍钴混合盐溶液,流量为1.8L/h的碱铝溶液,流量为0.5-1.5L/h的络合剂溶液,pH值控制在11.89±0.1,搅拌速度为850rpm,待反应釜内颗粒D50生长至4-6μm,第二阶段,往反应釜中泵入流量2.45L/h的镍钴混合盐溶液,流量为1.5L/h的碱铝溶液,流量为0.5-1.5L/h的络合剂溶液,pH值控制在11.62±0.1,搅拌速度为550rpm,待反应釜内颗粒D50生长至6-9μm;第三阶段,往反应釜中泵入流量2.55L/h的镍钴混合盐溶液,流量为1.65L/h的碱铝溶液,流量为0.5-1.5L/h的络合剂溶液,pH值控制在11.45±0.1,搅拌速度为650rpm,待反应釜内颗粒生长至9-13μm;第四阶段,往反应釜中泵入流量2.55L/h的镍钴混合盐溶液,流量为1.65L/h的碱铝溶液,流量为0.5-1.5L/h的络合剂溶液,pH值控制在11.65±0.1,搅拌速度为500rpm;待反应釜内颗粒D50值生长为15±1μm停止。
S4,收集、浓缩S3中反应釜溢流液,将反应所得物料先用氢氧化钠溶液洗涤,再用25℃去离子水洗涤,洗涤后洗涤水的电阻率小于0.02cm/μs;所述碱液摩尔浓度为4.0-5.0mol/L。烘干温度为105℃,水分控制在0.5wt%以下;所述前驱体中磁性异物含量要控制在100ppb以下。
该制备方法可得到D50=15.097,孔隙率为8.348,具有多层环形孔洞形貌的镍钴铝前驱体Ni0.875Co0.09Al0.035(OH)2
S5,用S4得到的镍钴铝前驱体和锂盐、添加剂均匀混合,S5中所用锂盐为氢氧化锂,所用添加剂为ZrO2,(Ni+CO+Al)∶Li的摩尔比为1∶1.03,ZrO2与前驱体和锂盐总质量和的质量比为0.3%。在氧气气氛炉中煅烧,煅烧温度为720℃,煅烧时间为10h,气氛炉中的氧含量为90%~95%,得到一次烧结基体。得到的一次烧结基体粉碎,并用去离子水洗涤,其中一次烧结基体与水的质量比为1∶1.5,去离子水温度为25℃,离心,烘干,得到烘干基体。得到的烘干基体与包覆材料氧化铈均匀混合,氧化铈与烘干基体的质量比为0.1%。之后在氧气气氛炉中煅烧,煅烧温度为650℃,煅烧时间8h,气氛炉中的氧含量为90%~95%,得到Li1.03Ni0.875Co0.09Al0.035Zr0.003O2@CeO2的正极材料。
采用氩离子剖面仪对S4所得到的Ni0.875Co0.09Al0.035(OH)2镍钴铝前驱体进行切割,用场发射扫描电镜观察剖面形貌,测试结果见图1。
使用Image J对前驱体剖面图进行颗粒孔隙率分析,颗粒剖面孔隙率的计算,主要基于孔洞占颗粒的比例。Image J需要将原图复制出一张后,原图用于提取孔洞面积,复制图层用于提取孔洞填充后的颗粒面积,二者比例即为颗粒剖面的孔隙率。测试结果见表1。
2.电性能测试
组装全电18650用于测试实施例1中的正极材料的电性能,正极材料(96.5%)、Super P(1.2%)、CNT(0.5%)、PVDF(1.8%);将石墨作为负极,石墨(94.8%)、CMC(1.7%)、SBR(2%)和Super P(1.5%),全电池设计中正极/负极的容量比为1/1.2。
1)克容量测试:组装成18650圆柱电池,然后进行化成和分容,化成电压2.75-4.2V,分别计算首次效率(首次效率%=0.2C放电容量/首次充电容量)、0.2C放电克容量,结果见表1。
2)倍率性能测试:将组装的18650圆柱电池进行化成和分容后,将化成后的电池在室温25℃下,2.75-4.2V的电压范围内,进行不同倍率放电测试,充电倍率均为0.5C,放电倍率分别为0.5C、1C、2C、3C,计算不同倍率放电容量保持率,结果见表1。
3)循环性能测试:将组装的18650圆柱电池进行常规化成和分容后,将化成后的电池在室温25℃下,2.75-4.2V的电压范围内,以0.5C倍率进行充电1C倍率放电,容量保持率,结果见图6。
4)DCR性能测试:将组装的18650圆柱电池进行常规化成和分容后,进行常温DCR测试。常温DCR测试工步为:将化成后的电池在室温25℃下,2.75-4.2V的电压范围内,以1C倍率充满,静置,后以1C倍率分别放电至50%SOC和10%SOC,静置,后1C脉冲10s,记录脉冲前后电压变化,并根据计算公式DCR=(静置结束电压-脉冲放电后电压)/脉冲电流,获得常温50%SOC和10%SOC下的DCR数据,结果见表1。
实施例2
S1,称取硫酸镍、硫酸钴粉末溶于纯水,根据Ni∶Co摩尔比为0.92∶0.03配置镍、钴混合盐溶液镍、钴的混合盐溶液中总的金属离子的摩尔浓度为2.0mol/L。
S2,称取偏铝酸钠,加入到氢氧化钠溶液中,配置Al3+摩尔浓度为0.5mol/L的碱铝溶液。
S3,将S1所述镍钴混合盐溶液、S2所述碱铝溶液、12mol/L的氨水络合剂同时泵入反应釜中边搅拌边进行共沉淀反应。共沉淀反应分为四个阶段,温度全部控制在55℃。第一阶段,往反应釜中泵入流量为2.55L/h的镍钴混合盐溶液,流量为1.85L/h的碱铝溶液,流量为0.5-1.5L/h的络合剂溶液,pH值控制在11.92±0.1,搅拌速度为850rpm,待反应釜内颗粒D50生长至4-6μm,第二阶段,往反应釜中泵入流量2.43L/h的镍钴混合盐溶液,流量为1.45L/h的碱铝溶液,流量为0.5-1.5L/h的络合剂溶液,pH值控制在11.65±0.1,搅拌速度为550rpm,待反应釜内颗粒D50生长至6-9μm;第三阶段,往反应釜中泵入流量2.5L/h的镍钴混合盐溶液,流量为1.65L/h的碱铝溶液,流量为0.5-1.5L/h的络合剂溶液,pH值控制在11.48±0.1,搅拌速度为650rpm,待反应釜内颗粒生长至9-13μm;第四阶段,往反应釜中泵入流量2.5L/h 的镍钴混合盐溶液,流量为1.6L/h的碱铝溶液,流量为0.5-1.5L/h的络合剂溶液,pH值控制在11.54±0.1,搅拌速度为500rpm;待反应釜内颗粒D50值生长为15±1μm停止。
S4,收集、浓缩S3中反应釜溢流液,将反应所得物料先用氢氧化钠溶液洗涤,再用25℃去离子水洗涤,洗涤后洗涤水的电阻率小于0.02cm/μs;所述碱液摩尔浓度为4.0-5.0mol/L。烘干温度为105℃,水分控制在0.5wt%以下;所述前驱体中磁性异物含量要控制在100ppb以下。
该制备方法可得到D50=14.792,孔隙率为9.465,具有多层环形孔洞形貌的镍钴铝前驱体Ni0.92Co0.03Al0.05(OH)2
S5,用S4得到的镍钴铝前驱体和锂盐、添加剂均匀混合,S5中所用锂盐为氢氧化锂,所用添加剂为ZrO2,(Ni+CO+Al)∶Li的摩尔比为1∶1.03,ZrO2与前驱体和锂盐总质量和的质量比为0.3%。在氧气气氛炉中煅烧,煅烧温度为700℃,煅烧时间为10h,气氛炉中的氧含量为90%~95%,得到一次烧结基体。得到的一次烧结基体粉碎,并用去离子水洗涤,其中一次烧结基体与水的质量比为1∶1.5,去离子水温度为25℃,离心,烘干,得到烘干基体。得到的烘干基体与包覆材料氧化铈均匀混合,氟化铈与烘干基体的质量比为0.2%。之后在氧气气氛炉中煅烧,煅烧温度为650℃,煅烧时间8h,气氛炉中的氧含量为90%~95%,得到Li1.03Ni0.92Co0.03Al0.05Zr0.003O2@CeF4正极材料。
采用氩离子剖面仪对S4所得到的Ni0.92Co0.03Al0.05(OH)2镍钴铝前驱体进行切割,用场发射扫描电镜观察剖面形貌,测试结果见图2。
前驱体剖面图孔隙率方法测试与实施例1相同,结果见表1。
18650圆柱型电池的制作过程与实施例1相同,并在相同的测试条件下测试电性能。结果见表1,图5和图6。
实施例3
参考实施例1中S1-S4可得到D50=15.097,孔隙率为8.348,具有多层环形孔洞形貌的镍钴铝前驱体Ni0.875Co0.09Al0.035(OH)2
S5,用S4得到的镍钴铝前驱体和锂盐、添加剂均匀混合,S5中所用锂盐为氢氧化锂,所用添加剂为B2O3,(Ni+CO+Al)∶Li的摩尔比为1∶1.03,B2O3与前驱体和锂盐总质量和的质量比为0.15%。在氧气气氛炉中煅烧,煅烧温度为720℃,煅烧时间为10h,气氛炉中的氧含量为90%~95%,得到一次烧结基体。得到的一次烧结基体粉碎,并用去离子水洗涤,其中一次烧结基体与水的比例为1∶1.5,去离子水温度为25℃,离心,烘干,得到烘干基体。得到的烘干基体与包覆材料氧化锆均匀混合,氧化锆与烘干基体的质量比为0.1%。之后在氧气气氛炉中煅烧,煅烧温度为600℃,煅烧时间8h,气氛炉中的氧含量为90%~95%,得到Li1.03Ni0.875Co0.09Al0.035B0.0015O2@ZrO2的正极材料。
前驱体剖面图孔隙率方法测试与实施例1相同,结果见表1。
18650圆柱型电池的制作过程与实施例1相同,并在相同的测试条件下测试电性能。结果见表1,图5和图6。
实施例4
参考实施例2中S1-S4可得到D50=14.792,孔隙率为9.465,具有多层环形孔洞形貌的镍钴铝前驱体Ni0.92Co0.03Al0.05(OH)2
S5,用S4得到的镍钴铝前驱体和锂盐、添加剂均匀混合,S5中所用锂盐为氢氧化锂,所用添加剂为B2O3,(Ni+CO+Al)∶Li的摩尔比为1∶1.03,B2O3与前驱体和锂盐总质量和的质量比为0.1%。在氧气气氛炉中煅烧,煅烧温度为700℃,煅烧时间为10h,气氛炉中的氧含量为90%~95%,得到一次烧结基体。得到的一次烧结基体粉碎,并用去离子水洗涤,其中一次烧结基体与水的质量比为1∶1.5,去离子水温度为25℃,离心,烘干,得到烘干基体。硼酸与烘干基体的质量比为0.05%。之后在氧气气氛炉中煅烧,煅烧温度为350℃,煅烧时间5h,气氛炉中的氧含量为80%~95%,得到Li1.03Ni0.92Co0.03Al0.05B0.001O2@Li3BO3正极材料。
前驱体剖面图孔隙率方法测试与实施例1相同,结果见表1。
18650圆柱型电池的制作过程与实施例1相同,并在相同的测试条件下测试电性能。结果见表1,图5和图6。
对比例1
1.一种常规形貌镍钴铝前驱体制备方法和正极材料烧结包括以下步骤:
S1,称取硫酸镍、硫酸钴粉末溶于纯水,根据Ni∶Co摩尔比为0.875∶0.09配置镍、钴混合盐溶液镍、钴的混合盐溶液中总的金属离子的摩尔浓度为2.0mol/L。
S2,称取偏铝酸钠,加入到氢氧化钠溶液中,配置Al3+摩尔浓度为0.1mol/L的碱铝溶液。
S3,将S1所述镍钴混合盐溶液、S2所述碱铝溶液、12mol/L的氨水络合剂同时泵入反应釜中边搅拌边进行共沉淀反应。在前驱体D50生长过程中不进行阶段工艺调整,反应釜内温度整体控制在55℃,整个反应的pH值维持在11.2-12.2之间,搅拌速度为600±100rpm。待反应釜内颗粒D50生长至15±1μm,停止反应。
S4,收集、浓缩S3中反应釜溢流液,将反应所得物料先用氢氧化钠溶液洗涤,再用25℃去离子水洗涤,洗涤后洗涤水的电阻率小于0.02cm/μs;所述碱液摩尔浓度为4.0-5.0mol/L。烘干温度为105℃,水分控制在0.5wt%以下;所述前驱体中磁性异物含量要控制在100ppb以下。
该制备方法可得到D50=14.837,孔隙率为2.12,具有常规密实形貌的Ni0.875Co0.09Al0.035(OH)2镍钴铝前驱体。
S5,用S4得到的镍钴铝前驱体和锂盐、添加剂均匀混合,S5中所用锂盐为氢氧化锂,所用添加剂为ZrO2,(Ni+CO+Al)∶Li的摩尔比为1.01-1.05∶1,ZrO2与前驱体和锂盐总质量和的质量比为0.3%。在氧气气氛炉中煅烧,煅烧温度为720℃,煅烧时间为10h,气氛炉中的氧 含量为90%~95%,得到一次烧结基体。得到的一次烧结基体粉碎,并用去离子水洗涤,其中一次烧结基体与水的质量比为1∶1.5,去离子水温度为25℃,离心,烘干,得到烘干基体。得到的烘干基体与包覆材料氧化铈均匀混合,氧化铈与烘干基体的质量比为0.1%。之后在氧气气氛炉中煅烧,煅烧温度为650℃,煅烧时间8h,气氛炉中的氧含量为90%~95%,得到Li1.03Ni0.875Co0.09Al0.035Zr0.003O2@CeO2的正极材料。
采用氩离子剖面仪对S4所得到的Ni0.875Co0.09Al0.035(OH)2镍钴铝前驱体进行切割,用场发射扫描电镜观察剖面形貌,测试结果见图3。
前驱体剖面图孔隙率方法测试与实施例1相同,结果见表1。
18650圆柱型电池的制作过程与实施例1相同,并在相同的测试条件下测试电性能。结果见表1,图5和图6。
对比例2
S1,称取硫酸镍、硫酸钴粉末溶于纯水,根据Ni∶Co摩尔比为0.92∶0.03配置镍、钴混合盐溶液镍、钴的混合盐溶液中总的金属离子的摩尔浓度为2.0mol/L。
S2,称取偏铝酸钠,加入到氢氧化钠溶液中,配置Al3+摩尔浓度为0.5mol/L的碱铝溶液。
S3,将S1所述镍钴混合盐溶液、S2所述碱铝溶液、12mol/L的氨水络合剂同时泵入反应釜中边搅拌边进行共沉淀反应。
在前驱体D50生长过程中不进行阶段工艺调整,反应釜内温度整体控制在55℃,整个反应的pH值维持在11.2-12.2之间,搅拌速度为600±100rpm。待反应釜内颗粒D50生长至15±1μm,停止反应。
S4,收集、浓缩S3中反应釜溢流液,将反应所得物料先用氢氧化钠溶液洗涤,再用25℃去离子水洗涤,洗涤后洗涤水的电阻率小于0.02cm/μs;所述碱液摩尔浓度为4.0-5.0mol/L。烘干温度为105℃,水分控制在0.5wt%以下;所述前驱体中磁性异物含量要控制在100ppb以下。
该制备方法可得到D50=15.167,孔隙率为1.95,具有常规密实形貌的Ni0.92Co0.03Al0.05(OH)2镍钴铝前驱体。
S5,用S4得到的镍钴铝前驱体和锂盐、添加剂均匀混合,S5中所用锂盐为氢氧化锂,所用添加剂为ZrO2,(Ni+CO+Al)∶Li的摩尔比为1.01-1.05∶1,ZrO2与前驱体和锂盐总质量和的质量比为0.3%。在氧气气氛炉中煅烧,煅烧温度为700℃,煅烧时间为10h,气氛炉中的氧含量为90%~95%,得到一次烧结基体。得到的一次烧结基体粉碎,并用去离子水洗涤,其中一次烧结基体与水的质量比为1∶1.5,去离子水温度为25℃,离心,烘干,得到烘干基体。氟化铈与烘干基体的质量比为0.2%。之后在氧气气氛炉中煅烧,煅烧温度为650℃,煅烧时间8h,气氛炉中的氧含量为90%~95%,得到Li1.03Ni0.92Co0.03Al0.05Zr0.003O2@CeF4正极材料。
采用氩离子剖面仪对S4所得到的Ni0.92Co0.03Al0.05(OH)2镍钴铝前驱体进行切割,用场发射扫描电镜观察剖面形貌,测试结果见图4。
前驱体剖面图孔隙率方法测试与实施例1相同,结果见表1
18650圆柱型电池的制作过程与实施例1相同,并在相同的测试条件下测试电性能。结果见表1,图5和图6。
对比例3
参考对比例1中S1-S4可得到D50=14.837,孔隙率为2.12,具有常规密实形貌的Ni0.875Co0.09Al0.035(OH)2镍钴铝前驱体。
S5,用S4得到的镍钴铝前驱体和锂盐、添加剂均匀混合,S5中所用锂盐为氢氧化锂,所用添加剂为B2O3,(Ni+CO+Al)∶Li的摩尔比为1.03∶1,B2O3与前驱体和锂盐总质量和的质量比为0.15%。在氧气气氛炉中煅烧,煅烧温度为720℃,煅烧时间为10h,气氛炉中的氧含量为90%~95%,得到一次烧结基体。得到的一次烧结基体粉碎,并用去离子水洗涤,其中一次烧结基体与水的质量比为1∶1.5,去离子水温度为25℃,离心,烘干,得到烘干基体。得到的烘干基体与包覆材料氧化锆均匀混合,氧化锆与烘干基体的质量比为0.1%。之后在氧气气氛炉中煅烧,煅烧温度为600℃,煅烧时间8h,气氛炉中的氧含量为90%~95%,得到Li1.03Ni0.875Co0.09Al0.035B0.0015O2@ZrO2的正极材料。
前驱体剖面图孔隙率方法测试与实施例1相同,结果见表1。
18650圆柱型电池的制作过程与实施例1相同,并在相同的测试条件下测试电性能。结果见表1,图5和图6。
对比例4
参考对比例2中S1-S4可得到D50=15.167,孔隙率为3.34,具有常规密实形貌的Ni0.92Co0.03Al0.05(OH)2镍钴铝前驱体。
S5,用S4得到的镍钴铝前驱体和锂盐、添加剂均匀混合,S5中所用锂盐为氢氧化锂,所用添加剂为B2O3,(Ni+CO+Al)∶Li的摩尔比为1.03∶1,B2O3与前驱体和锂盐总质量和的质量比为0.1%。在氧气气氛炉中煅烧,煅烧温度为700℃,煅烧时间为10h,气氛炉中的氧含量为90%~95%,得到一次烧结基体。得到的一次烧结基体粉碎,并用去离子水洗涤,其中一次烧结基体与水的质量比为1∶1.5,去离子水温度为25℃,离心,烘干,得到烘干基体。硼酸与烘干基体的质量比为0.05%。之后在氧气气氛炉中煅烧,煅烧温度为350℃,煅烧时间5h,气氛炉中的氧含量为80%~95%,得到Li1.03Ni0.92Co0.03Al0.05B0.001O2@Li3BO3正极材料。
前驱体剖面图孔隙率方法测试与实施例1相同,结果见表1。
18650圆柱型电池的制作过程与实施例1相同,并在相同的测试条件下测试电性能。结果见表1,图5和图6。
表1
实验数据分为两组实施例1、对比例1;实施例2、对比例2,从实验数据结果可以看出,对前驱体共沉淀反应过程进行严格分阶段控制反应中PH值,转速,以及溶液的流量,可得到多层环形孔洞的前驱体,对比例中对反应阶段不调整或不按本方法调整都不能得到该形貌的前驱体。该形貌对孔隙率指标影响较大。相同镍钴铝比例的正极材料,孔隙率值相对大的,初始放电克容量高。正极材料继承了前驱体内部空间结构,能够使更多的电解液渗入,提供更多的锂离子扩散通道,加快锂离子嵌入和脱出速率,因此实施例1、2比对比例1、2具有较高的初始放电比容量,较低的内阻。再对比这两组数据实施例3、对比例3;实施例4、对比例4,可以看出,掺杂、包覆不同的元素对正极材料的电性能有所改善,但仍不能改善从前驱体结构本身所继承的优势。
从实验数据结果还可以看出,相同镍钴铝比例正极材料,孔隙率值相对大的,循环性能较优,正极从前驱体继承了一次颗粒之间的多孔隙结构,前驱体锂化烧结后,一次颗粒之间具有较多空隙,二烧包覆的元素也可以渗入到一次颗粒表面,对正极材料进行保护,改善电解液对正极材料所引起的副反应。众所周知形态变化对富镍NCA正极的循环稳定性有深远的影响,由于充电结束附近的相变,正极会发生晶格收缩。一次颗粒之间适当的空隙使相变产生的内部应变均匀分布,并安全地消散应变力,从而改善循环性能。

Claims (10)

  1. 一种多层环形孔洞镍钴铝前驱体,其特征在于:所述前驱体的化学式为NiMCoNAl1-M-N(OH)2,0.8≤M≤0.97、0.02≤N≤0.09、0.01≤1-M-N≤0.055,其中D50为8-20μm,且所述前驱体的二次球颗粒结构中有多层环形孔洞,单个二次球颗粒或多个二次球颗粒剖面均值的孔隙率值为6-14%。
  2. 如权利要求1所述的一种多层环形孔洞镍钴铝前驱体的制备方法,其特征在于,包括以下步骤:
    S1,称取硫酸镍,硫酸钴粉末溶于纯水,配置镍钴混合盐溶液;
    S2,称取铝盐,加入到氢氧化钠溶液中,配置碱铝溶液;
    S3,将S1所述镍钴混合盐溶液、S2所述碱铝溶液、络合剂同时泵入反应釜中,分阶段进行共沉淀反应;
    S4,反应结束后,将反应所得物料进行固液分离、洗涤、烘干、混匀、筛分、除磁工序,得到镍钴铝前驱体。
  3. 如权利要求2所述的一种多层环形孔洞镍钴铝前驱体的制备方法,其特征在于,步骤S1中所述镍钴混合盐溶液总金属离子浓度是1.0-2.0mol/L。
  4. 如权利要求2所述的一种多层环形孔洞镍钴铝前驱体的制备方法,其特征在于,步骤S2中所述铝盐为偏铝酸钠;所述碱铝溶液中Al3+浓度为0.1-0.5mol/L;所述氢氧化钠溶液的摩尔浓度为5-10mol/L。
  5. 如权利要求2所述的一种多层环形孔洞镍钴铝前驱体的制备方法,其特征在于,步骤S3中所述络合剂浓度为10-15mol/L,所述络合剂为EDTA、氨水、碳酸铵、碳酸氢铵中的至少一种。
  6. 如权利要求2所述的一种多层环形孔洞镍钴铝前驱体的制备方法,其特征在于,在步骤S3中分四个阶段进行共沉淀反应:第一阶段成核到生长至D150,目标值的25%≤D150<目标值的40%;第二阶段反应釜内二次球颗粒生长至D250,目标值的40%≤D250<目标值的60%;第三阶段反应釜内二次球颗粒生长至D350,目标值的60%≤D350<目标值的90%;第四阶段反应釜内二次球颗粒生长至目标值,立即停止生长反应;
    每阶段中所述镍钴混合盐溶液的流量为1-3.5L/h,碱铝溶液的流量为1-2L/h,络合剂的流量为0.5-1.5L/h,pH控制在10-12,每阶段的反应温度控制在55-70℃,每阶段的搅拌速度为500-1000rpm。
  7. 如权利要求2所述的一种多层环形孔洞镍钴铝前驱体的制备方法,其特征在于,在步骤S4中,所述洗涤具体为:将反应所得物料先用碱液洗涤,再用25-80℃去离子水洗涤,洗涤后洗涤水的电阻率小于0.02cm/μs;所述碱液为碳酸钠溶液、氢氧化钠溶液中的至少一种,且碱液摩尔浓度为4.0-5.0mol/L。
  8. 一种锂离子电池正极材料的制备方法,其特征在于,采用权利要求2的制备方法得到镍钴铝前驱体,然后将得到的所述前驱体与锂源、添加剂均匀混合,一次烧结、破碎、粉碎、水洗烘干、包覆、二次烧结过筛得到正极材料。
  9. 如权利要求8所述的一种锂离子电池正极材料的制备方法,其特征在于,所述锂源为氢氧化锂、硝酸锂、氯化锂中的至少一种,所述添加剂为Zr、Sr、Ti、W、Mg、Y、La、B、F元素中的一种或多种,包覆时所使用的包覆剂为含有D元素的氧化物、含有D元素的锂化合物中的一种或多种,D元素为Co、Li、B、W、Ti、Ce、Zr中一种或多种;Ni+CO+Al∶Li的摩尔比为1∶1.01-1.05,所用添加剂与前驱体和锂盐的质量和的质量比为0.1%-2%;一次烧结时,在氧气气氛炉中煅烧,煅烧温度为650-800℃,煅烧时间为10-15h,气氛炉中的氧含量为85%~95%,得到一次烧结基体;将得到的一次烧结基体粉碎,并用去离子水洗涤,其中一次烧结基体与水的质量比为1∶1-3,去离子水温度为20-30℃,离心,烘干,得到烘干基体;得到的烘干基体、与包覆剂均匀混合,其中包覆剂与烘干基体的质量比为0.01-5%;
    之后二次烧结,在氧气气氛炉中煅烧,煅烧温度为500-700℃,煅烧时间6-10h,气氛炉中的氧含量为90%~95%,得到所述正极材料。
  10. 一种锂离子电池正极材料,采用权利要求8或9的制备方法制备得到。
PCT/CN2023/126291 2022-10-26 2023-10-24 一种多层环形孔洞镍钴铝前驱体、该前驱体的制备方法及正极材料 WO2024088271A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247001615A KR20240060586A (ko) 2022-10-26 2023-10-24 다층 환상 홀 니켈-코발트-알루미늄 전구체와 제조 방법 및 그의 양극 재료

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211319408.6 2022-10-26
CN202211319408.6A CN115367815B (zh) 2022-10-26 2022-10-26 一种多层环形孔洞镍钴铝前驱体和制备方法及其正极材料

Publications (1)

Publication Number Publication Date
WO2024088271A1 true WO2024088271A1 (zh) 2024-05-02

Family

ID=84074031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/126291 WO2024088271A1 (zh) 2022-10-26 2023-10-24 一种多层环形孔洞镍钴铝前驱体、该前驱体的制备方法及正极材料

Country Status (3)

Country Link
KR (1) KR20240060586A (zh)
CN (1) CN115367815B (zh)
WO (1) WO2024088271A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115367815B (zh) * 2022-10-26 2023-01-24 河南科隆新能源股份有限公司 一种多层环形孔洞镍钴铝前驱体和制备方法及其正极材料
CN116093296B (zh) * 2023-03-10 2023-06-23 宜宾锂宝新材料有限公司 一种单晶型富镍阴极材料及制备方法和锂电池
CN116199278B (zh) * 2023-05-05 2023-08-04 四川新能源汽车创新中心有限公司 锂电池三元正极材料制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019021423A (ja) * 2017-07-12 2019-02-07 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
CN109473667A (zh) * 2017-10-23 2019-03-15 北京当升材料科技股份有限公司 锂离子电池用前驱体、正极材料及其制备方法
CN110050366A (zh) * 2016-12-02 2019-07-23 三星Sdi株式会社 用于锂二次电池的镍活性物质前驱体、用于制备镍活性物质前驱体的方法、通过方法制备的用于锂二次电池的镍活性物质以及具有包含镍活性物质的正极的锂二次电池
CN113582255A (zh) * 2021-08-11 2021-11-02 荆门市格林美新材料有限公司 一种镍钴铝三元正极材料前驱体的制备方法
CN113651372A (zh) 2021-10-19 2021-11-16 金驰能源材料有限公司 高球形度无孪生颗粒的前驱体的间断法生长制备方法
CN113697870B (zh) 2021-10-28 2022-02-08 金驰能源材料有限公司 一种氢氧化镍钴锰前驱体及其制备方法
CN114933338A (zh) * 2022-07-04 2022-08-23 宁波容百新能源科技股份有限公司 一种镍钴铝正极材料前驱体及其制备方法
CN115043440A (zh) * 2022-06-27 2022-09-13 北京当升材料科技股份有限公司 锂离子电池正极材料前驱体及其制备方法和应用、锂离子电池正极材料及其制备方法和应用
CN115231625A (zh) * 2022-06-30 2022-10-25 北京当升材料科技股份有限公司 三元前驱体材料、三元正极材料及其制备方法和锂离子电池
CN115367815A (zh) * 2022-10-26 2022-11-22 河南科隆新能源股份有限公司 一种多层环形孔洞镍钴铝前驱体和制备方法及其正极材料

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103359795A (zh) * 2012-04-06 2013-10-23 协鑫动力新材料(盐城)有限公司 钴包覆的锂离子电池正极材料前驱体及制备方法和应用
CN104319386A (zh) * 2014-09-19 2015-01-28 青岛乾运高科新材料股份有限公司 一种锂离子电池正极多元复合材料及制备方法
CN104409716A (zh) * 2014-10-30 2015-03-11 中国科学院过程工程研究所 一种具有浓度梯度的镍锂离子电池正极材料及其制备方法
CN105552363B (zh) * 2015-12-30 2018-05-25 荆门市格林美新材料有限公司 一种镍钴铝氧化物前驱体、镍钴铝氧化物及其制备方法
CN106935845A (zh) * 2015-12-31 2017-07-07 河南科隆新能源股份有限公司 掺杂型小粒径镍钴锰酸锂正极材料与其前驱体及两者的制备方法
JP7379856B2 (ja) * 2019-04-22 2023-11-15 住友金属鉱山株式会社 ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムニッケルマンガンコバルト含有複合酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
CN112652751B (zh) * 2020-12-23 2022-01-11 荆门市格林美新材料有限公司 双层结构的锂离子电池用前驱体、正极材料及制备方法
CN113651373A (zh) * 2021-10-19 2021-11-16 河南科隆新能源股份有限公司 一种均匀多孔结构的正极材料及其制备方法
CN114188527A (zh) * 2021-11-26 2022-03-15 南通金通储能动力新材料有限公司 一种具有核壳结构的ncma正极材料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110050366A (zh) * 2016-12-02 2019-07-23 三星Sdi株式会社 用于锂二次电池的镍活性物质前驱体、用于制备镍活性物质前驱体的方法、通过方法制备的用于锂二次电池的镍活性物质以及具有包含镍活性物质的正极的锂二次电池
JP2019021423A (ja) * 2017-07-12 2019-02-07 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
CN109473667A (zh) * 2017-10-23 2019-03-15 北京当升材料科技股份有限公司 锂离子电池用前驱体、正极材料及其制备方法
CN113582255A (zh) * 2021-08-11 2021-11-02 荆门市格林美新材料有限公司 一种镍钴铝三元正极材料前驱体的制备方法
CN113651372A (zh) 2021-10-19 2021-11-16 金驰能源材料有限公司 高球形度无孪生颗粒的前驱体的间断法生长制备方法
CN113697870B (zh) 2021-10-28 2022-02-08 金驰能源材料有限公司 一种氢氧化镍钴锰前驱体及其制备方法
CN115043440A (zh) * 2022-06-27 2022-09-13 北京当升材料科技股份有限公司 锂离子电池正极材料前驱体及其制备方法和应用、锂离子电池正极材料及其制备方法和应用
CN115231625A (zh) * 2022-06-30 2022-10-25 北京当升材料科技股份有限公司 三元前驱体材料、三元正极材料及其制备方法和锂离子电池
CN114933338A (zh) * 2022-07-04 2022-08-23 宁波容百新能源科技股份有限公司 一种镍钴铝正极材料前驱体及其制备方法
CN115367815A (zh) * 2022-10-26 2022-11-22 河南科隆新能源股份有限公司 一种多层环形孔洞镍钴铝前驱体和制备方法及其正极材料

Also Published As

Publication number Publication date
CN115367815B (zh) 2023-01-24
CN115367815A (zh) 2022-11-22
KR20240060586A (ko) 2024-05-08

Similar Documents

Publication Publication Date Title
CN110380024B (zh) P3结构的钠过渡金属氧化物及其制备方法和钠离子电池
WO2024088271A1 (zh) 一种多层环形孔洞镍钴铝前驱体、该前驱体的制备方法及正极材料
WO2021189997A1 (zh) 正极材料及其制备方法,正极、锂离子电池和车辆
CN109616664B (zh) 镍钴锰前驱体、镍钴锰三元材料的制备方法及锂离子电池
CN113955809A (zh) 一种壳核壳结构的镍钴锰铝酸锂正极材料及其制备方法
CN111689528B (zh) 一种三元材料前驱体及其制备方法和用途
CN112018335B (zh) 复合型锂离子电池正极材料及锂离子电池正极以及锂电池、电池模组、电池包和车
CN111916687A (zh) 一种正极材料及其制备方法和锂离子电池
CN113130901B (zh) 一种钛掺杂高镍三元锂离子电池正极材料及其制备方法
CN112234176B (zh) 富锂锰基前驱体及其制备方法、富锂锰基正极材料及其制备方法、锂离子电池
CN112952085B (zh) 梯度高镍单晶三元材料及其制备方法和使用该材料的电池
CN112635735A (zh) 一种具有包覆结构的镍钴锰酸锂前驱体、其制备方法及用途
CN101704681B (zh) 一种尖晶石结构钛酸锂的制备方法
CN112928253A (zh) 一种镍锰钛复合材料及其制备方法和应用
CN114843469B (zh) 一种MgFe2O4改性的P2/O3型镍基层状钠离子电池正极材料及其制备方法
CN113562780A (zh) 一种梯度富锂锰基正极材料及其制备方法以及应用
CN113845152A (zh) 镍锰酸锂正极材料、其制备方法和锂离子电池
CN112670475A (zh) 磷酸铁锂复合材料及制备方法和使用该复合材料的锂电池、电池动力车
CN115548333A (zh) 一种高容量高镍三元正极材料及其制备方法
CN112952056B (zh) 一种富锂锰基复合正极材料及其制备方法和应用
CN114655999A (zh) 一种对富锂层状氧化物正极材料进行原位表面结构调控的方法
CN108598463B (zh) 一种纳米片状富锂锰基正极材料的制备方法
CN111740097B (zh) 一种六方棱柱形铌酸钛负极材料及其制备方法
CN114005977B (zh) 一种高能量密度超导锂离子电池正极材料及其制备方法
CN108539192A (zh) 一种不同形貌锂离子电池高压正极材料的制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023836335

Country of ref document: EP

Effective date: 20240115