WO2024088261A1 - 各向异性正极铝集流体及其制备方法、电化学装置 - Google Patents

各向异性正极铝集流体及其制备方法、电化学装置 Download PDF

Info

Publication number
WO2024088261A1
WO2024088261A1 PCT/CN2023/126240 CN2023126240W WO2024088261A1 WO 2024088261 A1 WO2024088261 A1 WO 2024088261A1 CN 2023126240 W CN2023126240 W CN 2023126240W WO 2024088261 A1 WO2024088261 A1 WO 2024088261A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
aluminum current
anisotropic
anisotropic positive
aluminum
Prior art date
Application number
PCT/CN2023/126240
Other languages
English (en)
French (fr)
Inventor
王成豪
李学法
张国平
Original Assignee
扬州纳力新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2022/127104 external-priority patent/WO2024086986A1/zh
Application filed by 扬州纳力新材料科技有限公司 filed Critical 扬州纳力新材料科技有限公司
Publication of WO2024088261A1 publication Critical patent/WO2024088261A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials

Definitions

  • the present application relates to the field of battery technology, and in particular to an anisotropic positive aluminum current collector and a preparation method thereof, and an electrochemical device.
  • high-purity aluminum foil is usually used as the positive electrode current collector of electrochemical devices (such as batteries).
  • electrochemical devices such as batteries.
  • the thermal conductivity of aluminum foil prepared by traditional processes is almost the same in all directions. This characteristic causes the battery body to generate heat in all directions after the aluminum foil is used inside the battery, resulting in the heat inside the battery being unable to be discharged in time, increasing the safety risk of the battery.
  • an electrochemical device including an anisotropic positive aluminum current collector.
  • At least one embodiment of the present application provides a method for preparing an anisotropic positive aluminum current collector, comprising the following steps:
  • the element components of the melt include: Si, Fe, Cu, Mn, Ti, Ni, Cr and Al;
  • the anisotropic positive aluminum current collector in the processing direction, is provided with a first heat transfer body.
  • a second heat transfer body is provided in the anisotropic positive aluminum current collector, and a heat insulator is also provided in the anisotropic positive aluminum current collector, and the heat insulator is perpendicular to both the first heat transfer body and the second heat transfer body.
  • the mass percentages of the elemental components of the melt are: Si: 0.1% to 0.15%, Fe: 0.45% to 0.5%, Cu: 0.1% to 0.15%, Mn: 1.1% to 1.2%, Ti: 0.02% to 0.04%, Ni: 0.02% to 0.04%, Cr: 0.02% to 0.04%, and the balance is Al.
  • the preparation method further comprises the following steps:
  • the second intermediate is rolled to a predetermined thickness to obtain the anisotropic positive electrode aluminum current collector.
  • the preparation method comprises at least one of the following (1) to (4):
  • the temperature of the homogenization annealing is 440° C. to 490° C.
  • the homogenization annealing time is 20h to 30h;
  • the temperature of the recrystallization annealing is 270° C. to 330° C.
  • the recrystallization annealing time is 12h to 19h.
  • the preparation method further includes the following steps:
  • the aluminum liquid in the static furnace is fed into a launder, and aluminum-titanium-boron wire is added in reverse to refine the grains;
  • the degassed aluminum liquid is filtered and purified.
  • At least one embodiment of the present application provides an anisotropic positive aluminum current collector, wherein the anisotropic positive aluminum current collector contains nickel metal and chromium metal, wherein in a processing direction, a first heat transfer body is provided in the anisotropic positive aluminum current collector, and in a lateral direction perpendicular to the processing direction, a second heat transfer body is provided in the anisotropic positive aluminum current collector, and the anisotropic positive aluminum current collector is also provided with a heat insulator, wherein the heat insulator is perpendicular to both the first heat transfer body and the second heat transfer body.
  • the anisotropic positive aluminum current collector further contains at least one of Fe, Cu, Mn, and Ti. In some embodiments, the anisotropic positive aluminum current collector further contains Ni and Cr.
  • the difference between the thermal conductivity coefficients of the anisotropic positive aluminum current collector in various directions is greater than 0.5%, preferably greater than 0.8%, and most preferably greater than 1.0%.
  • the total mass fraction of the nickel metal and the chromium metal is less than 1%, preferably less than 0.8%, and most preferably less than 0.5%.
  • the total mass fraction of the nickel metal and the chromium metal is greater than 0.05%.
  • the anisotropic positive aluminum current collector includes at least one of the following (1) to (2):
  • the thickness of the anisotropic positive aluminum current collector is 4 ⁇ m to 20 ⁇ m;
  • the surface dyne value of the anisotropic positive electrode aluminum current collector is greater than 20.
  • the anisotropic positive aluminum current collector includes at least one of the following (1) to (5):
  • the puncture strength of the anisotropic positive aluminum current collector is ⁇ 50 gf;
  • the tensile strength of the anisotropic positive aluminum current collector is ⁇ 100 MPa
  • the tensile strength of the anisotropic positive electrode aluminum current collector is ⁇ 100 MPa
  • the elongation of the anisotropic positive aluminum current collector is ⁇ 1%
  • the elongation of the anisotropic positive electrode aluminum current collector is ⁇ 1%.
  • At least one embodiment of the present application provides an electrochemical device, including the anisotropic positive aluminum current collector prepared by the preparation method or including the anisotropic positive aluminum current collector.
  • the present invention dopes a certain amount of nickel and chromium into aluminum metal to change the lattice arrangement direction of aluminum metal during the rolling process, so that the aluminum crystals are arranged in the machining direction (MD). and transverse direction (TD) to respectively establish the first heat transfer body and the second heat transfer body, and establish the heat insulator perpendicular to the first heat transfer body and the second heat transfer body.
  • MD machining direction
  • TD transverse direction
  • the anisotropic positive aluminum current collector can not only reduce the heat conductivity at the pole ear position, but also can conduct the heat generated inside the battery through the first heat transfer body and the second heat transfer body, thereby avoiding the internal temperature of the electrochemical device from being too high, thereby improving the safety of the electrochemical device.
  • FIG1 is a flow chart of the preparation of an anisotropic positive aluminum current collector provided in the present application.
  • At least one embodiment of the present application provides a method for preparing an anisotropic positive aluminum current collector, comprising the following steps:
  • Step S11 providing an electrolytic aluminum solution, and adding aluminum ingots into the electrolytic aluminum solution to obtain a melt.
  • an electrolytic aluminum melt is provided, the electrolytic aluminum solution is sent to a smelting furnace, and aluminum ingots accounting for 20%-40% of the total weight of the electrolytic aluminum melt are added to the smelting furnace to obtain a melt, and the temperature of the melt is controlled to be 750°C to 780°C.
  • the elements of the melt include Si, Fe, Cu, Mn, Ti, Ni, Cr and Al.
  • the mass percentages of the elements of the melt are: Si: 0.1% to 0.15%, Fe: 0.45% to 0.5%, Cu: 0.1% to 0.15%, Mn: 1.1% to 1.2%, Ti: 0.02% to 0.04%, Ni: 0.02% to 0.04%, Cr: 0.02% to 0.04%, and the balance is Al.
  • Step S12 adding a refining agent into the melt for refining to obtain aluminum liquid.
  • pure nitrogen or pure argon is used to spray a refining agent into the melt for refining, and the melt is fully stirred for 8 minutes to 10 minutes to obtain aluminum liquid, which is then allowed to stand for 15 minutes to 25 minutes to remove scum on the surface of the aluminum liquid, and the aluminum liquid after removing the scum is poured into a standing furnace, and the temperature in the standing furnace is controlled to be 750°C to 760°C; the aluminum liquid in the standing furnace is sent to a flow trough, and aluminum-titanium-boron wire is added in reverse to refine the grains, and then the aluminum liquid in the flow trough is degassed with pure nitrogen or pure argon in a degassing box, and after degassing, the aluminum liquid is filtered and purified with a foam ceramic filter.
  • Step S13 using a casting and rolling machine to cast the aluminum liquid to obtain a billet.
  • the purified aluminum liquid is sent to a casting and rolling mill for casting and rolling to produce billets with a thickness of 5.0 mm to 10.0 mm.
  • Step S14 cold rolling the blank and then performing homogenization annealing to obtain a first intermediate.
  • the billet with a thickness of 5.0 mm to 10.0 mm is cold rolled to a thickness of 3.0 mm to 5.0 mm, and the cold rolled billet is subjected to homogenization annealing.
  • the temperature of the homogenization annealing may be 440° C. to 490° C. In one embodiment, the time of the homogenization annealing may be 20 h to 30 h.
  • Step S15 performing recrystallization annealing on the first intermediate to obtain a second intermediate.
  • the first intermediate before the first intermediate is subjected to recrystallization annealing, the first intermediate may be cold rolled.
  • the first intermediate is cold-rolled to have a thickness from 3.0 mm to 5.0 mm to 0.2 mm to 0.6 mm.
  • the temperature of the recrystallization annealing may be 270° C. to 330° C. In one embodiment, the time of the recrystallization annealing may be 12 h to 19 h.
  • Step S16 rolling the second intermediate to a predetermined thickness to obtain an anisotropic positive electrode aluminum current collector.
  • the predetermined thickness can be set according to actual needs.
  • the predetermined thickness can be 4 ⁇ m to 20 ⁇ m. That is, the thickness of the anisotropic positive aluminum current collector can be 4 ⁇ m to 20 ⁇ m.
  • the anisotropic positive aluminum current collector in the processing direction (MD), is provided with a first heat transfer body, in the transverse direction (TD) perpendicular to the processing direction (MD), the anisotropic positive aluminum current collector is provided with a second heat transfer body, and the anisotropic positive aluminum current collector is also provided with a heat insulator, and the heat insulator is perpendicular to both the first heat transfer body and the second heat transfer body.
  • the doping of nickel metal and chromium metal changes the lattice structure and grain boundary characteristics of aluminum metal. This change will cause the movement and activity of the grain boundary, making the position of nickel metal and chromium metal the core area of the grain boundary.
  • the aluminum metal will flow locally, so that the nickel metal and chromium metal will first gather to form a layer interface.
  • the doping of nickel metal and chromium metal will change the grain boundary structure and lattice distortion of the aluminum crystal, thereby affecting its plastic behavior, when the aluminum metal is deformed during the processing, the layer interface where the nickel metal and chromium metal are located will form a high strain area.
  • the slip activity of the aluminum metal crystal is enhanced, causing the lattice to stretch along the MD and TD directions, that is, the aluminum crystal grows along the MD and TD directions respectively.
  • the aluminum crystal changes from the previous growth in the thickness direction to the growth in the MD and TD directions, forming the first heat transfer body and the second heat transfer body respectively.
  • the first heat transfer body refers to a layer or region with stronger thermal conductivity in the TD direction.
  • the second heat transfer body refers to a layer or region with stronger heat conductivity in the MD direction
  • the heat insulation body refers to a layer or region perpendicular to both the TD direction and the MD direction.
  • the difference in thermal conductivity of the anisotropic positive aluminum current collector in various directions is greater than 0.5%.
  • the total mass fraction of the nickel metal and the chromium metal is less than 1%.
  • the surface dyne value of the anisotropic positive electrode aluminum current collector is greater than 20.
  • the puncture strength of the anisotropic positive aluminum current collector is ⁇ 50 gf.
  • the tensile strength of the anisotropic positive aluminum current collector is ⁇ 100 MPa. In one embodiment, in the transverse direction (TD) perpendicular to the machine direction (MD), the tensile strength of the anisotropic positive aluminum current collector is ⁇ 100 MPa.
  • the elongation of the anisotropic positive aluminum current collector in the machine direction (MD), is ⁇ 1%. In one embodiment, in the transverse direction (TD) perpendicular to the machine direction (MD), the elongation of the anisotropic positive aluminum current collector is ⁇ 1%.
  • At least one embodiment of the present application provides an anisotropic positive aluminum current collector prepared by the above-mentioned preparation method, and the element components of the anisotropic positive aluminum current collector include: Si, Fe, Cu, Mn, Ti, Ni, Cr and Al.
  • the mass percentages of the elemental components of the anisotropic positive aluminum current collector are: Si: 0.1% to 0.15%, Fe: 0.45% to 0.5%, Cu: 0.1% to 0.15%, Mn: 1.1% to 1.2%, Ti: 0.02% to 0.04%, Ni: 0.02% to 0.04%, Cr: 0.02% to 0.04%, and the balance is Al.
  • the anisotropic positive aluminum current collector in the processing direction (MD), is provided with a first heat transfer body, in the transverse direction (TD) perpendicular to the processing direction (MD), the anisotropic positive aluminum current collector is provided with a second heat transfer body, and the anisotropic positive aluminum current collector is also provided with a heat insulator, and the heat insulator is perpendicular to both the first heat transfer body and the second heat transfer body.
  • Ni and Cr can not only realize the manufacture of anisotropic positive aluminum current collector, but also improve its processing performance, strength, hardness, corrosion resistance, high temperature mechanical properties and stability.
  • the content of Ni and Cr is low or high, it is difficult to realize the manufacture of anisotropic positive aluminum current collector, and it will affect Mechanical and mechanical properties of current collectors.
  • the anisotropic positive aluminum current collector is tested in accordance with GB/T 22588-2008 using a TC3000E portable thermal conductivity meter produced by Xi'an Xiaxi Electronic Technology Co., Ltd.
  • the difference in thermal conductivity between the first heat transfer body and the heat insulation body of the anisotropic positive aluminum current collector is greater than 0.5%; and/or the difference in thermal conductivity between the second heat transfer body and the heat insulation body is greater than 0.5%; and/or the difference in thermal conductivity between the first heat transfer body and the second heat transfer body is greater than 0.5%.
  • the total mass fraction of the nickel metal and the chromium metal is less than 1%.
  • the thickness of the anisotropic positive aluminum current collector is 4 ⁇ m to 20 ⁇ m.
  • the surface dyne value of the anisotropic positive electrode aluminum current collector is greater than 20.
  • the anisotropic positive aluminum current collector was placed in an oven at 80°C for 5 minutes, and then different dyne pens representing different dyne values were used to draw lines on the surface of the measurement sample. The surface dyne value was finally determined by observing whether the drawn lines shrank.
  • the puncture strength of the anisotropic positive aluminum current collector is ⁇ 50 gf.
  • the tensile strength of the anisotropic positive aluminum current collector is ⁇ 100 MPa. In one embodiment, in the transverse direction (TD) perpendicular to the machine direction (MD), the tensile strength of the anisotropic positive aluminum current collector is ⁇ 100 MPa.
  • the elongation of the anisotropic positive aluminum current collector in the machine direction (MD), is ⁇ 1%. In one embodiment, in the transverse direction (TD) perpendicular to the machine direction (MD), the elongation of the anisotropic positive aluminum current collector is ⁇ 1%.
  • At least one embodiment of the present application provides an electrochemical device, the electrochemical device comprising the anisotropic positive aluminum current collector prepared by the above preparation method or comprising the above anisotropic positive aluminum current collector.
  • the electrochemical device may be a battery.
  • the battery may be a secondary battery. More specifically, the secondary battery may be a non-aqueous secondary battery.
  • the present invention involves doping a certain amount of nickel and chromium metals in aluminum metal.
  • the metal is used to change the lattice arrangement direction of the aluminum metal during the rolling process, so that the aluminum crystals are elongated in the machining direction (MD) and the transverse direction (TD), so as to respectively establish the first heat transfer body and the second heat transfer body, and establish the heat insulator perpendicular to the first heat transfer body and the second heat transfer body.
  • the anisotropic positive aluminum current collector can not only reduce the heat conductivity at the pole ear position, but also can conduct the heat generated inside the battery through the first heat transfer body and the second heat transfer body, thereby avoiding excessive temperature inside the electrochemical device, thereby improving the safety of the electrochemical device.
  • the role of nickel metal and chromium metal in the present application is as follows: during the rolling process of aluminum metal, the nickel metal and chromium metal inside the aluminum metal are compressed to form a layer interface in the thickness direction of the aluminum metal in advance, and then the aluminum crystals grow in the MD and TD directions instead of the previous growth in the thickness direction, forming the first heat transfer body and the second heat transfer body respectively.
  • the current collector of the anisotropic positive aluminum current collector is connected to the pole ear in the electrochemical device, the heat generated inside the electrochemical device will diffuse to the outside along the first heat transfer body and the second heat transfer body.
  • the operating temperature of the battery prepared with the anisotropic positive aluminum current collector in the present application is 5°C to 10°C lower than the operating temperature of the battery prepared with traditional aluminum foil, which shows that the battery prepared with the anisotropic positive aluminum current collector in the present application has better safety and cycle life than the battery prepared with traditional aluminum foil.
  • the electrolytic aluminum melt is sent to a smelting furnace, and aluminum ingots accounting for 30% of the total weight of the electrolytic aluminum melt are added.
  • the melt temperature is controlled to be 770°C, and the mass percentages of the elements in the melt are adjusted to Si: 0.13%, Fe: 0.45%, Cu: 0.14%, Mn: 1.1%, Ti: 0.025%, Ni: 0.027%, Cr: 0.021%, and the balance is Al.
  • the aluminum liquid in the static furnace is sent into a flow trough, and aluminum titanium boron wire is added in reverse to refine the grains. Then, the aluminum liquid is degassed with pure nitrogen or pure argon in a degassing box. After degassing, the aluminum liquid is filtered and purified with a foam ceramic filter.
  • the purified aluminum liquid is sent to a casting and rolling mill to cast and roll out a billet with a thickness of 8.0 mm.
  • the 4.0 mm thick blank in (5) is subjected to homogenization annealing, wherein the homogenization annealing temperature is 470° C. and the homogenization annealing time is 25 h.
  • the annealed billet is cold rolled to a thickness of 0.5 mm, and then subjected to recrystallization annealing, wherein the temperature of the recrystallization annealing is 300° C. and the recrystallization annealing time is 15 h.
  • the thickness of the billet after recrystallization annealing is rolled to 12 ⁇ m to obtain an anisotropic positive electrode aluminum current collector.
  • the electrolytic aluminum melt is sent to a smelting furnace, and aluminum ingots accounting for 30% of the total weight of the electrolytic aluminum melt are added.
  • the melt temperature is controlled to be 770°C, and the mass percentages of the elements in the melt are adjusted to Si: 0.15%, Fe: 0.48%, Cu: 0.13%, Mn: 1.3%, Ti: 0.03%, and the balance is Al.
  • the aluminum liquid in the static furnace is sent into a flow trough, and aluminum titanium boron wire is added in reverse to refine the grains. Then, the aluminum liquid is degassed with pure nitrogen or pure argon in a degassing box. After degassing, the aluminum liquid is filtered and purified with a foam ceramic filter.
  • the purified aluminum liquid is sent to a casting and rolling mill to cast and roll out a billet with a thickness of 8.0 mm.
  • the 4.0 mm thick blank in (5) is subjected to homogenization annealing, wherein the homogenization annealing temperature is 470° C. and the homogenization annealing time is 25 h.
  • the annealed billet is cold rolled to a thickness of 0.5 mm, and then subjected to recrystallization annealing, wherein the temperature of the recrystallization annealing is 300° C. and the recrystallization annealing time is 15 h.
  • the thickness of the billet after recrystallization annealing is rolled to 12 ⁇ m to obtain a positive electrode aluminum foil current collector.
  • the anisotropic positive aluminum current collector prepared in Example 1 and the positive aluminum foil current collector prepared in Comparative Example 1 were respectively prepared into ternary lithium batteries with a capacity of 100AH, and the cycle life and operating temperature of the ternary lithium batteries were tested respectively.
  • the test results are shown in Table 1 below.
  • the ternary lithium battery prepared by the anisotropic positive aluminum current collector in Example 1 has a higher cycle life and a lower operating temperature than the ternary lithium battery prepared by the positive aluminum foil current collector in Comparative Example 1. This shows that compared with the ternary lithium battery prepared by the positive aluminum foil current collector in Comparative Example 1, the ternary lithium battery prepared by the anisotropic positive aluminum current collector in Example 1 has a better heat dissipation effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

提供一种各向异性正极铝集流体的制备方法,包括以下步骤:提供电解铝溶液,并向所述电解铝溶液中加入铝锭,得到熔体,其中,所述熔体的各元素成分包括:Si、Fe、Cu、Mn、Ti、Ni、Cr和Al;将精炼剂加入到所述熔体中进行精炼,得到铝液;使用铸轧机铸轧所述铝液,得到坯料;冷轧所述坯料后进行均匀化退火,得到第一中间体;以及对所述第一中间体进行再结晶退火,得到各向异性正极铝集流体;其中,在加工方向上,所述各向异性正极铝集流体中设有第一传热体,在与所述加工方向垂直的横向方向上,所述各向异性正极铝集流体中设有第二传热体,所述各向异性正极铝集流体中还设有隔热体,所述隔热体与所述第一传热体以及所述第二传热体均垂直。制备的各向异性正极铝集流体具有较高的安全性。还提供一种各向异性正极铝集流体以及一种电化学装置。

Description

各向异性正极铝集流体及其制备方法、电化学装置 技术领域
本申请涉及电池技术领域,特别是涉及一种各向异性正极铝集流体及其制备方法、电化学装置。
背景技术
目前,通常使用高纯铝箔作为电化学装置(如电池)的正极集流体。然而,传统工艺制备的铝箔的各个方向上导热系数几乎一致,而这种特性使得铝箔用在电池内部之后,导致电池的本体在各个方向上均会产热,从而导致电池内部的热量无法及时导出,增加电池的安全风险。
发明内容
基于此,有必要提供一种能够提高安全性的各向异性正极铝集流体的制备方法。
另,还有必要提供一种各向异性正极铝集流体。
另,还有必要提供一种包括各向异性正极铝集流体的电化学装置。
本申请至少一实施例提供了一种各向异性正极铝集流体的制备方法,包括以下步骤:
提供电解铝溶液,并向所述电解铝溶液中加入铝锭,得到熔体,其中,所述熔体的各元素成分包括:Si、Fe、Cu、Mn、Ti、Ni、Cr和Al;
将精炼剂加入到所述熔体中进行精炼,得到铝液;
使用铸轧机铸轧所述铝液,得到坯料;
冷轧所述坯料后进行均匀化退火,得到第一中间体;以及
对所述第一中间体进行再结晶退火,得到各向异性正极铝集流体;
其中,在加工方向上,所述各向异性正极铝集流体中设有第一传热体,在 与所述加工方向垂直的横向方向上,所述各向异性正极铝集流体中设有第二传热体,所述各向异性正极铝集流体中还设有隔热体,所述隔热体与所述第一传热体以及所述第二传热体均垂直。
在其中一些实施例中,所述熔体的各元素成分的质量百分比为:Si:0.1%~0.15%、Fe:0.45%~0.5%、Cu:0.1%~0.15%、Mn:1.1%~1.2%、Ti:0.02%~0.04%、Ni:0.02%~0.04%、Cr:0.02%~0.04%,余量为Al。
在其中一些实施例中,对所述第一中间体进行再结晶退火之后,得到第二中间体,所述制备方法还包括以下步骤:
将所述第二中间体的厚度轧至预定厚度,得到所述各向异性正极铝集流体。
在其中一些实施例中,所述制备方法包括以下(1)~(4)中的至少一项:
(1)所述均匀化退火的温度为440℃~490℃;
(2)所述均匀化退火的时间为20h~30h;
(3)所述再结晶退火的温度为270℃~330℃;
(4)所述再结晶退火的时间为12h~19h。
在其中一些实施例中,在得到所述铝液之后,且在使用铸轧机铸轧所述铝液之前,所述制备方法还包括以下步骤:
将所述铝液倒入静置炉内,并控制所述静置炉内的温度为750℃~760℃;
将所述静置炉中的所述铝液送入流槽中,逆向加入铝钛硼丝进行晶粒细化;
在除气箱内用纯氮气或纯氩气对所述流槽内的所述铝液进行除气处理;以及
对除气后的所述铝液进行过滤净化处理。
本申请至少一实施例提供了一种各向异性正极铝集流体,所述各向异性正极铝集流体中含有镍金属和铬金属,在加工方向上,所述各向异性正极铝集流体中设有第一传热体,在与所述加工方向垂直的横向方向上,所述各向异性正极铝集流体中设有第二传热体,所述各向异性正极铝集流体中还设有隔热体,所述隔热体与所述第一传热体以及所述第二传热体均垂直。
在其中一些实施例中,所述各向异性正极铝集流体中还含有Fe、Cu、Mn、和Ti元素中至少一种元素。在其中一些实施例中,所述各向异性正极铝集流体中还含有Ni和Cr元素。
在其中一些实施例中,所述各向异性正极铝集流体在各个方向的导热系数之间的差异>0.5%,优选>0.8%,最优选>1.0%。
在其中一些实施例中,在所述各向异性正极铝集流体中,所述镍金属和所述铬金属的总质量分数小于1%,优选小于0.8%,最优选小于0.5%。
其中一些实施例中,在所述各向异性正极铝集流体中,所述镍金属和所述铬金属的总质量分数大于0.05%。
在其中一些实施例中,所述各向异性正极铝集流体包括以下(1)~(2)中的至少一项:
(1)所述各向异性正极铝集流体的厚度为4μm~20μm;
(2)所述各向异性正极铝集流体的表面达因值>20。
在其中一些实施例中,所述各向异性正极铝集流体包括以下(1)~(5)中的至少一项:
(1)所述各向异性正极铝集流体的穿刺强度≥50gf;
(2)在加工方向上,所述各向异性正极铝集流体的拉伸强度≥100MPa;
(3)在与加工方向垂直的横向方向上,所述各向异性正极铝集流体的拉伸强度≥100MPa;
(4)在加工方向上,所述各向异性正极铝集流体的延伸率≥1%;
(5)在与加工方向垂直的横向方向上,所述各向异性正极铝集流体的延伸率≥1%。
本申请至少一实施例提供了一种电化学装置,包括所述制备方法制备的各向异性正极铝集流体或包括所述各向异性正极铝集流体。
本申请通过在铝金属内部掺杂一定量的镍金属和铬金属,通过镍金属和铬金属来改变铝金属在压延过程中的晶格排列方向,使铝晶体在加工方向(MD) 和横向方向(TD)上进行拉长,以分别建立所述第一传热体和所述第二传热体,并建立与所述第一传热体和所述第二传热体均垂直的所述隔热体,当所述各向异性正极铝集流体的集流体与电化学装置中的极耳连接后,所述各向异性正极铝集流体不仅能降低极耳位置处的导热量,还可以将电池内部产生的热量通过所述第一传热体和所述第二传热体导出,从而避免电化学装置内部温度过高,进而提高了电化学装置的安全性。
附图说明
为了更好地描述和说明本申请的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的申请、目前描述的实施例和/或示例以及目前理解的这些申请的最佳模式中的任何一者的范围的限制。
图1为本申请提供的各向异性正极铝集流体的制备流程图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。实施例中物理量的测定可以依据一般技术人员知道的常规方法。
请参阅图1,本申请至少一实施例提供一种各向异性正极铝集流体的制备方法,包括以下步骤:
步骤S11、提供电解铝溶液,并向所述电解铝溶液中加入铝锭,得到熔体。
具体地,提供电解铝熔液,将所述电解铝溶液送至熔炼炉,并向所述熔炼炉中加入占所述电解铝熔液总重量20%-40%的铝锭,得到熔体,并控制所述熔体的温度为750℃~780℃。
其中,所述熔体的各元素成分包括:Si、Fe、Cu、Mn、Ti、Ni、Cr和Al。在一实施例中,所述熔体的各元素成分的质量百分比为:Si:0.1%~0.15%、Fe:0.45%~0.5%、Cu:0.1%~0.15%、Mn:1.1%~1.2%、Ti:0.02%~0.04%、Ni:0.02%~0.04%、Cr:0.02%~0.04%,余量为Al。
步骤S12、将精炼剂加入到所述熔体中进行精炼,得到铝液。
具体地,采用纯氮气或纯氩气向所述熔体中喷精炼剂进行精炼,充分搅拌均匀,精炼时间为8min~10min,得到铝液,然后静置15min~25mim,除去所述铝液表面的浮渣,并将去除浮渣后的所述铝液倒入静置炉内,并控制所述静置炉内的温度为750℃~760℃;将所述静置炉中的所述铝液送入流槽中,逆向加入铝钛硼丝进行晶粒细化,然后在除气箱内用纯氮气或纯氩气对所述流槽内的所述铝液进行除气处理,除气后采用泡沫陶瓷过滤片对所述铝液进行过滤净化处理。
步骤S13、使用铸轧机铸轧所述铝液,得到坯料。
具体地,将上述净化后的铝液送至铸轧机铸轧,铸轧出厚度为5.0mm~10.0mm的坯料。
步骤S14、冷轧所述坯料后进行均匀化退火,得到第一中间体。
具体地,将上述厚度为5.0mm~10.0mm的坯料冷轧至3.0mm~5.0mm的厚度,并对冷轧后的坯料进行均匀化退火。
在一实施例中,所述均匀化退火的温度可为440℃~490℃。在一实施例中,所述均匀化退火的时间可为20h~30h。
步骤S15、对所述第一中间体进行再结晶退火,得到第二中间体。
在一实施例中,在对所述第一中间体进行再结晶退火之前,还可冷轧所述 第一中间体,使所述第一中间体的厚度由3.0mm~5.0mm冷轧至0.2mm~0.6mm。
在一实施例中,所述再结晶退火的温度可为270℃~330℃。在一实施例中,所述再结晶退火的时间可为12h~19h。
步骤S16、将所述第二中间体的厚度轧至预定厚度,得到各向异性正极铝集流体。
其中,所述预定厚度可根据实际需要进行设定。在一实施例中,所述预定厚度可为4μm~20μm。即所述各向异性正极铝集流体的厚度可为4μm~20μm。
其中,在加工方向(MD)上,所述各向异性正极铝集流体中设有第一传热体,在与所述加工方向(MD)垂直的横向方向(TD)上,所述各向异性正极铝集流体中设有第二传热体,所述各向异性正极铝集流体中还设有隔热体,所述隔热体与所述第一传热体以及所述第二传热体均垂直。
其中,铝金属在轧制过程中,镍金属和铬金属的掺杂改变了铝金属的晶格结构和晶界特性。这种改变会引起晶界的运动和活动,使得镍金属和铬金属所处的位置成为晶界的核心区域。在压延过程中,由于晶界的活动性增强,铝金属会发生局部流动,从而使得镍金属和铬金属首先集聚形成层界面。其次,由于掺杂镍金属和铬金属会改变铝晶体的晶界结构和晶格畸变,从而影响其塑性行为,当铝金属在加工过程中发生形变时,镍金属和铬金属所处的层界面会形成高应变区域。在这些高应变区域,铝金属晶体的滑移活动得到增强,导致晶格沿着MD和TD方向发生拉伸,即铝晶体分别沿着MD和TD方向生长。最终使得铝晶体由先前的在厚度方向的生长转而向MD和TD两个方向上进行生长,分别形成所述第一传热体和所述第二传热体。其中第一传热体指的是在TD方向上具备更强导热性能的层或者区域。而与第二传热体则指的是在MD方向上具有更强导热性能的层或者区域。而隔热体则为与TD方向、MD方向均垂直的层或者区域。
当所述各向异性正极铝集流体的集流体与电化学装置中的极耳连接后,所述电化学装置内部产生的热量就会沿着所述第一传热体和所述第二传热体扩散 到外界。
在一实施例中,所述各向异性正极铝集流体在各个方向的导热系数之间的差异>0.5%。
在一实施例中,在所述各向异性正极铝集流体中,所述镍金属和所述铬金属的总质量分数小于1%。
在一实施例中,所述各向异性正极铝集流体的表面达因值>20。
在一实施例中,所述各向异性正极铝集流体的穿刺强度≥50gf。
在一实施例中,在加工方向(MD)上,所述各向异性正极铝集流体的拉伸强度≥100MPa。在一实施例中,在与加工方向(MD)垂直的横向方向(TD)上,所述各向异性正极铝集流体的拉伸强度≥100MPa。
在一实施例中,在加工方向(MD)上,所述各向异性正极铝集流体的延伸率≥1%。在一实施例中,在与加工方向(MD)垂直的横向方向(TD)上,所述各向异性正极铝集流体的延伸率≥1%。
本申请至少一实施例提供一种上述制备方法制备的各向异性正极铝集流体,所述各向异性正极铝集流体的各元素成分包括:Si、Fe、Cu、Mn、Ti、Ni、Cr和Al。
在一实施例中,所述各向异性正极铝集流体的各元素成分的质量百分比为:Si:0.1%~0.15%、Fe:0.45%~0.5%、Cu:0.1%~0.15%、Mn:1.1%~1.2%、Ti:0.02%~0.04%、Ni:0.02%~0.04%、Cr:0.02%~0.04%,余量为Al。
其中,在加工方向(MD)上,所述各向异性正极铝集流体中设有第一传热体,在与所述加工方向(MD)垂直的横向方向(TD)上,所述各向异性正极铝集流体中设有第二传热体,所述各向异性正极铝集流体中还设有隔热体,所述隔热体与所述第一传热体以及所述第二传热体均垂直。
适当添加Ni和Cr不仅可以实现各向异性正极铝集流体的制造,而且可以提高其加工性能,强度、硬度、耐腐蚀性能、高温力学性及稳定性等性能。当Ni和Cr含量较低或较高时,难以实现各向异性正极铝集流体的制造,并会影响 集流体的机械性能和力学性能。
在一实施例中,使用西安夏溪电子科技有限公司生产的TC3000E便携式导热系数仪,依照GB/T 22588-2008对各向异性正极铝集流体进行测试。所述各向异性正极铝集流体在第一传热体所在方向与隔热体所在方向的导热系数之间的差异>0.5%;和/或在第二传热体所在方向与隔热体所在方向的导热系数之间的差异>0.5%;和/或在第一传热体所在方向与第二传热体所在方向的导热系数之间的差异>0.5%。
在一实施例中,在所述各向异性正极铝集流体中,所述镍金属和所述铬金属的总质量分数小于1%。
在一实施例中,所述各向异性正极铝集流体的厚度为4μm~20μm。
在一实施例中,所述各向异性正极铝集流体的表面达因值>20。
将各向异性正极铝集流体在80℃烘箱中放置5min,再使用不同代表不同达英值的达因笔在测量试样表面划线,通过观察划线是否收缩,最终确定表面达英值。
在一实施例中,所述各向异性正极铝集流体的穿刺强度≥50gf。
在一实施例中,在加工方向(MD)上,所述各向异性正极铝集流体的拉伸强度≥100MPa。在一实施例中,在与加工方向(MD)垂直的横向方向(TD)上,所述各向异性正极铝集流体的拉伸强度≥100MPa。
在一实施例中,在加工方向(MD)上,所述各向异性正极铝集流体的延伸率≥1%。在一实施例中,在与加工方向(MD)垂直的横向方向(TD)上,所述各向异性正极铝集流体的延伸率≥1%。
本申请至少一实施例提供一种电化学装置,所述电化学装置包括上述制备方法制备的各向异性正极铝集流体或包括上述的各向异性正极铝集流体。在一实施例中,所述电化学装置可为电池。具体地,所述电池可为二次电池。更具体地,所述二次电池可为非水性二次电池。
本申请通过在铝金属内部掺杂一定量的镍金属和铬金属,通过镍金属和铬 金属来改变铝金属在压延过程中的晶格排列方向,使铝晶体在加工方向(MD)和横向方向(TD)上进行拉长,以分别建立所述第一传热体和所述第二传热体,并建立与所述第一传热体和所述第二传热体均垂直的所述隔热体,当所述各向异性正极铝集流体的集流体与电化学装置中的极耳连接后,所述各向异性正极铝集流体不仅能降低极耳位置处的导热量,还可以将电池内部产生的热量通过所述第一传热体和所述第二传热体导出,从而避免电化学装置内部温度过高,进而提高了电化学装置的安全性。
具体地,本申请中的镍金属和铬金属的作用如下:铝金属在轧制过程中,铝金属内部的镍金属和铬金属受压后提前在铝金属厚度方向上形成层界面,进而铝晶体由先前的在厚度方向的生长转而向MD和TD两个方向上进行生长,分别形成所述第一传热体和所述第二传热体。当所述各向异性正极铝集流体的集流体与电化学装置中的极耳连接后,所述电化学装置内部产生的热量就会沿着所述第一传热体和所述第二传热体扩散到外界。
另外,由本申请中的各向异性正极铝集流体制备的电池的运行温度相比由传统铝箔制备的电池的运行温度低了5℃~10℃,这说明了相比由传统铝箔制备的电池,由本申请中的各向异性正极铝集流体制备的电池具有更好的安全性和循环寿命。
以下通过具体实施例和对比例对本申请作进一步说明。
实施例1
(1)将电解铝熔液送至熔炼炉,加入占电解铝熔液总重量30%的铝锭,控制熔体温度为770℃,调整熔体中各元素成分的质量百分比为Si:0.13%、Fe:0.45%、Cu:0.14%、Mn:1.1%、Ti:0.025%、Ni:0.027%、Cr:0.021%,余量为Al。
(2)采用纯氮气或纯氩气向熔体中喷精炼剂进行精炼,充分搅拌均匀,精炼时间为9分钟,然后静置20分钟,除去铝液表面的浮渣,倒入静置炉内,控制静置炉内温度为755℃。
(3)将上述静置炉中的铝液送入流槽中,逆向加入铝钛硼丝进行晶粒细化,然后在除气箱内用纯氮气或纯氩气对铝液进行除气处理,除气后采用泡沫陶瓷过滤片对铝液进行过滤净化处理。
(4)将上述净化后的铝液送铸轧机铸轧,铸轧出厚度为8.0mm的坯料。
(5)冷轧上述厚度为8.0mm的坯料,得到厚度为4.0mm的坯料。
(6)对(5)中厚度为4.0mm坯料进行均匀化退火。其中,均匀化退火温度为470℃,均匀化退火时间为25h。
(7)将退火后坯料的厚度冷轧至0.5mm,然后进行再结晶退火。其中,再结晶退火的温度为300℃,再结晶退火时间为15h。
(8)将再结晶退火后坯料的厚度轧至12μm,得到各向异性正极铝集流体。
对比例1
(1)将电解铝熔液送至熔炼炉,加入占电解铝熔液总重量30%的铝锭,控制熔体温度为770℃,调整熔体中各元素成分的质量百分比为Si:0.15%、Fe:0.48%、Cu:0.13%、Mn:1.3%、Ti:0.03%,余量为Al。
(2)采用纯氮气或纯氩气向熔体中喷精炼剂进行精炼,充分搅拌均匀,精炼时间为9分钟,然后静置20分钟,除去铝液表面的浮渣,倒入静置炉内,控制静置炉内温度为755℃。
(3)将上述静置炉中的铝液送入流槽中,逆向加入铝钛硼丝进行晶粒细化,然后在除气箱内用纯氮气或纯氩气对铝液进行除气处理,除气后采用泡沫陶瓷过滤片对铝液进行过滤净化处理。
(4)将上述净化后的铝液送铸轧机铸轧,铸轧出厚度为8.0mm的坯料。
(5)冷轧上述厚度为8.0mm的坯料,得到厚度为4.0mm的坯料。
(6)对(5)中厚度为4.0mm坯料进行均匀化退火。其中,均匀化退火温度为470℃,均匀化退火时间为25h。
(7)将退火后坯料的厚度冷轧至0.5mm,然后进行再结晶退火。其中,再结晶退火的温度为300℃,再结晶退火时间为15h。
(8)将再结晶退火后坯料的厚度轧至12μm,得到正极铝箔集流体。
将实施例1制备的各向异性正极铝集流体和对比例1制备的正极铝箔集流体分别制备成容量为100AH的三元锂电池,并分别测试三元锂电池的循环寿命和运行温度,测试结果如下表1所示。
表1
从上表1可知,由实施例1中的各向异性正极铝集流体制备的三元锂电池相比由对比例1中的正极铝箔集流体制备的三元锂电池具有更高的循环寿命和更低的运行温度。这表明:相比由对比例1中的正极铝箔集流体制备的三元锂电池,由实施例1中的各向异性正极铝集流体制备的三元锂电池具有更好的散热效果。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种各向异性正极铝集流体的制备方法,其特征在于,包括以下步骤:
    提供电解铝溶液,并向所述电解铝溶液中加入铝锭,得到熔体,其中,所述熔体的各元素成分包括:Si、Fe、Cu、Mn、Ti、Ni、Cr和Al;
    将精炼剂加入到所述熔体中进行精炼,得到铝液;
    使用铸轧机铸轧所述铝液,得到坯料;
    冷轧所述坯料后进行均匀化退火,得到第一中间体;以及
    对所述第一中间体进行再结晶退火,得到各向异性正极铝集流体;
    其中,在加工方向上,所述各向异性正极铝集流体中设有第一传热体,在与所述加工方向垂直的横向方向上,所述各向异性正极铝集流体中设有第二传热体,所述各向异性正极铝集流体中还设有隔热体,所述隔热体与所述第一传热体以及所述第二传热体均垂直。
  2. 如权利要求1所述的各向异性正极铝集流体的制备方法,其特征在于,所述熔体的各元素成分的质量百分比为:Si:0.1%~0.15%、Fe:0.45%~0.5%、Cu:0.1%~0.15%、Mn:1.1%~1.2%、Ti:0.02%~0.04%、Ni:0.02%~0.04%、Cr:0.02%~0.04%,余量为Al。
  3. 如权利要求1至2中任一项所述的各向异性正极铝集流体的制备方法,其特征在于,对所述第一中间体进行再结晶退火之后,得到第二中间体,所述制备方法还包括以下步骤:
    将所述第二中间体的厚度轧至预定厚度,得到所述各向异性正极铝集流体。
  4. 如权利要求1至2中任一项所述的各向异性正极铝集流体的制备方法,其特征在于,所述制备方法包括以下(1)~(4)中的至少一项:
    (1)所述均匀化退火的温度为440℃~490℃;
    (2)所述均匀化退火的时间为20h~30h;
    (3)所述再结晶退火的温度为270℃~330℃;
    (4)所述再结晶退火的时间为12h~19h。
  5. 如权利要求1至2中任一项所述的各向异性正极铝集流体的制备方法,其特征在于,在得到所述铝液之后,且在使用铸轧机铸轧所述铝液之前,所述制备方法还包括以下步骤:
    将所述铝液倒入静置炉内,并控制所述静置炉内的温度为750℃~760℃;
    将所述静置炉中的所述铝液送入流槽中,逆向加入铝钛硼丝进行晶粒细化;
    在除气箱内用纯氮气或纯氩气对所述流槽内的所述铝液进行除气处理;以及
    对除气后的所述铝液进行过滤净化处理。
  6. 一种各向异性正极铝集流体,其特征在于,所述各向异性正极铝集流体中含有镍金属和铬金属,在加工方向上,所述各向异性正极铝集流体中设有第一传热体,在与所述加工方向垂直的横向方向上,所述各向异性正极铝集流体中设有第二传热体,所述各向异性正极铝集流体中还设有隔热体,所述隔热体与所述第一传热体以及所述第二传热体均垂直。
  7. 如权利要求6所述的各向异性正极铝集流体,其特征在于,所述各向异性正极铝集流体中还含有Fe、Cu、Mn、Ti和Al元素。
  8. 如权利要求6所述的各向异性正极铝集流体,其特征在于,所述各向异性正极铝集流体在第一传热体所在方向与隔热体所在方向的导热系数之间的差异>0.5%;和/或在第二传热体所在方向与隔热体所在方向的导热系数之间的差异>0.5%;和/或在第一传热体所在方向与第二传热体所在方向的导热系数之间的差异>0.5%。
  9. 如权利要求6所述的各向异性正极铝集流体,其特征在于,在所述各向异性正极铝集流体中,所述镍金属和所述铬金属的总质量分数小于1%。
  10. 如权利要求6至9中任一项所述的各向异性正极铝集流体,其特征在于,所述各向异性正极铝集流体包括以下(1)~(2)中的至少一项:
    (1)所述各向异性正极铝集流体的厚度为4μm~20μm;
    (2)所述各向异性正极铝集流体的表面达因值>20。
  11. 如权利要求6至9中任一项所述的各向异性正极铝集流体,其特征在于,所述各向异性正极铝集流体包括以下(1)~(5)中的至少一项:
    (1)所述各向异性正极铝集流体的穿刺强度≥50gf;
    (2)在加工方向上,所述各向异性正极铝集流体的拉伸强度≥100MPa;
    (3)在与加工方向垂直的横向方向上,所述各向异性正极铝集流体的拉伸强度≥100MPa;
    (4)在加工方向上,所述各向异性正极铝集流体的延伸率≥1%;
    (5)在与加工方向垂直的横向方向上,所述各向异性正极铝集流体的延伸率≥1%。
  12. 一种电化学装置,其特征在于,包括如权利要求1至5中任一项所述的制备方法制备的各向异性正极铝集流体或包括如权利要求6至11中任一项所述的各向异性正极铝集流体。
PCT/CN2023/126240 2022-10-24 2023-10-24 各向异性正极铝集流体及其制备方法、电化学装置 WO2024088261A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211304072.6 2022-10-24
PCT/CN2022/127104 WO2024086986A1 (zh) 2022-10-24 2022-10-24 各向异性正极铝集流体及其制备方法、电化学装置
CN202211304072 2022-10-24
CNPCT/CN2022/127104 2022-10-24

Publications (1)

Publication Number Publication Date
WO2024088261A1 true WO2024088261A1 (zh) 2024-05-02

Family

ID=90830038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/126240 WO2024088261A1 (zh) 2022-10-24 2023-10-24 各向异性正极铝集流体及其制备方法、电化学装置

Country Status (1)

Country Link
WO (1) WO2024088261A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197032A (ja) * 1997-09-18 1999-04-09 Nippon Foil Mfg Co Ltd 二次電池用アルミニウム箔製集電体
CN101841040A (zh) * 2010-05-20 2010-09-22 东莞新能源科技有限公司 锂离子电池及其正极集流体
CN102978483A (zh) * 2012-11-30 2013-03-20 苏州有色金属研究院有限公司 锂离子正极集流体用铝合金箔及其制造方法
CN105018799A (zh) * 2015-07-15 2015-11-04 浙江中金铝业有限公司 一种锂电池用铝箔
US20200365906A1 (en) * 2017-09-28 2020-11-19 Uacj Corporation Aluminum-alloy foil for current collector and method for manufacturing thereof
CN112553507A (zh) * 2019-09-10 2021-03-26 山东南山铝业股份有限公司 高力学性能锂离子电池正极集流体用铝箔及加工方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197032A (ja) * 1997-09-18 1999-04-09 Nippon Foil Mfg Co Ltd 二次電池用アルミニウム箔製集電体
CN101841040A (zh) * 2010-05-20 2010-09-22 东莞新能源科技有限公司 锂离子电池及其正极集流体
CN102978483A (zh) * 2012-11-30 2013-03-20 苏州有色金属研究院有限公司 锂离子正极集流体用铝合金箔及其制造方法
CN105018799A (zh) * 2015-07-15 2015-11-04 浙江中金铝业有限公司 一种锂电池用铝箔
US20200365906A1 (en) * 2017-09-28 2020-11-19 Uacj Corporation Aluminum-alloy foil for current collector and method for manufacturing thereof
CN112553507A (zh) * 2019-09-10 2021-03-26 山东南山铝业股份有限公司 高力学性能锂离子电池正极集流体用铝箔及加工方法

Similar Documents

Publication Publication Date Title
JP5639398B2 (ja) 電池集電体用アルミニウム硬質箔
TWI623133B (zh) Aluminum alloy foil for electrode current collector and method of producing the same
JP5690183B2 (ja) 電池集電体用純アルミニウム硬質箔
TWI460914B (zh) Aluminum alloy foil for electrode current collector and method of manufacturing the same
JP5927614B2 (ja) 電池集電体用アルミニウム硬質箔
KR101912767B1 (ko) 전극 집전체용 알루미늄 합금호일 및 제조 방법
EP2658017B1 (en) Aluminum alloy foil for electrode current collectors and manufacturing method thereof
WO2007015549A1 (ja) 電子部品用高強度銅合金及び電子部品
JP5495649B2 (ja) リチウムイオン二次電池用アルミニウム合金箔及びその製造方法
JP2012224927A (ja) リチウムイオン電池正極集電体用アルミニウム合金箔及びその製造方法
JP2009081110A (ja) 集電体用アルミニウム合金箔
JP5448929B2 (ja) 耐折り曲げ性に優れたアルミニウム合金硬質箔およびその製造方法
WO2012026488A1 (ja) 電子材料用Cu-Co-Si系合金
WO2013125565A1 (ja) 電極集電体用アルミニウム合金箔及びその製造方法
WO2013018165A1 (ja) 電極集電体用アルミニウム合金箔及びその製造方法
WO2024088261A1 (zh) 各向异性正极铝集流体及其制备方法、电化学装置
JP3729454B2 (ja) 銅合金およびその製造方法
WO2024086986A1 (zh) 各向异性正极铝集流体及其制备方法、电化学装置
JP2012177171A (ja) リチウムイオン電池電極集電体用アルミニウム合金箔およびその製造方法
CN112170484B (zh) 一种用于汽车继电器的铜镁合金带材的制备方法
WO2021037062A1 (zh) 一种无取向电工钢板及其制造方法
JP3941308B2 (ja) 熱間加工性に優れた銅合金
WO2024017345A1 (zh) 一种无取向电工钢板及其制造方法
JP7042961B1 (ja) 二次電池用圧延銅箔、並びにそれを用いた二次電池負極及び二次電池
JP6860450B2 (ja) 電池封口材用アルミニウム合金板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881839

Country of ref document: EP

Kind code of ref document: A1