WO2021037062A1 - 一种无取向电工钢板及其制造方法 - Google Patents

一种无取向电工钢板及其制造方法 Download PDF

Info

Publication number
WO2021037062A1
WO2021037062A1 PCT/CN2020/111403 CN2020111403W WO2021037062A1 WO 2021037062 A1 WO2021037062 A1 WO 2021037062A1 CN 2020111403 W CN2020111403 W CN 2020111403W WO 2021037062 A1 WO2021037062 A1 WO 2021037062A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
oriented electrical
electrical steel
manufacturing
temperature
Prior art date
Application number
PCT/CN2020/111403
Other languages
English (en)
French (fr)
Inventor
储双杰
李国保
张峰
王志成
沈侃毅
刘宝军
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to US17/636,804 priority Critical patent/US20230416883A1/en
Priority to JP2022511336A priority patent/JP2022545889A/ja
Priority to BR112022003356A priority patent/BR112022003356A2/pt
Priority to EP20859469.7A priority patent/EP4001448A4/en
Priority to CA3151686A priority patent/CA3151686A1/en
Priority to MX2022001808A priority patent/MX2022001808A/es
Publication of WO2021037062A1 publication Critical patent/WO2021037062A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the invention relates to a steel plate and a manufacturing method thereof, in particular to a non-oriented electrical steel plate and a manufacturing method thereof.
  • the publication number is JP-A 11-61257
  • the publication date is March 5, 1999
  • the name is "Low iron loss and all-directional
  • the Japanese Patent "Non-oriented electrical steel with small anisotropy and its manufacturing method” discloses an electrical steel and its manufacturing method.
  • the continuous casting slab is subjected to low-temperature heating treatment in the range of 950 to 1150°C, and the intermediate slab is heat-retained after the hot-rolled rough rolling, requiring a temperature drop before finishing rolling It is controlled within 40°C, the finishing temperature of finishing rolling is limited to Ar1 transformation point +20°C, and the coiling temperature is limited to 640 ⁇ 750°C.
  • this control method a non-oriented electrical steel sheet with small magnetic anisotropy can be obtained.
  • the publication number is CN1326009A, and the publication date is December 12, 2001.
  • the Chinese patent document entitled "Non-oriented electrical steel sheet with excellent processing performance and low iron loss and its preparation method” discloses an excellent processing performance Low iron loss non-oriented electrical steel sheet.
  • the weight of Si+Mn+Al in the steel is limited to about 5%, and 0.0005% or more of Mg treatment, or (and) Ca, or (and ) REM treatment method, but the total amount of the three cannot exceed 0.02%, which is used to remove non-metallic inclusions in steel.
  • the Al element is required to deep deoxidize the molten steel, and the S content in the steel needs to be limited to 0.01%.
  • the target thickness of the hot-rolled steel strip is 2.3mm, which can be cold-rolled by one cold rolling or two cold rolling followed by intermediate annealing. Then, the final annealing of the cold-rolled steel strip is completed at 700 ⁇ 1100°C. .
  • the publication number is CN101821418A, and the publication date is September 1, 2010.
  • the Chinese patent document entitled "Non-directional electrical steel sheet with low high-frequency iron loss and its manufacturing method" discloses a non-directional low-frequency iron loss Magnetic steel sheet.
  • the entire steel plate contains C: 0.005% or less, Si: 2.0%-4.0%, Mn: 1% or less, and Al: 0.1%-8.0% by mass%,
  • the remaining part includes Fe and unavoidable impurities
  • the Al concentration in the thickness direction of the plate is required to satisfy the following formula 0.1 ⁇ (Xs-Xc) ⁇ 100.
  • One of the objects of the present invention is to provide a thin-gauge non-oriented electrical steel sheet which has excellent magnetic properties.
  • the present invention proposes a thin-gauge non-oriented electrical steel sheet whose chemical element mass percentage is:
  • C In the thin-gauge non-oriented electrical steel sheet of the present invention, C strongly hinders the grain growth of the finished steel sheet, and easily combines with Nb, V, Ti, etc. to form fine precipitates, thereby causing increased loss and magnetic aging. Therefore, in the thin-gauge non-oriented electrical steel sheet of the present invention, the mass percentage of C is controlled to be 0 ⁇ C ⁇ 0.003%.
  • Si increases the resistivity of the material and can effectively reduce the iron loss of the steel. However, if the mass percentage of Si is higher than 3.4%, it will significantly reduce the magnetic induction of the steel and significantly reduce the cold-rollability; while the mass percentage of Si is less than 1.6%, it will not effectively reduce the iron loss. Based on this, the mass percentage of Si in the thin-gauge non-oriented electrical steel sheet of the present invention is controlled to be 1.6-3.4%.
  • Mn In the thin-gauge non-oriented electrical steel sheet of the present invention, Mn combines with S to form MnS, which can reduce the damage to the magnetic properties. However, when the mass percentage of Mn is less than 0.1%, the sulfur fixation effect is poor, and when the mass percentage of Mn is higher than 1.2%, the recrystallization effect of the steel is inhibited. Based on this, the mass percentage of Mn in the thin-gauge non-oriented electrical steel sheet of the present invention is controlled to be 0.1-1.2%.
  • the mass percentage S of S is controlled to be less than or equal to 0.003%.
  • Al In the thin-gauge non-oriented electrical steel sheet of the present invention, Al increases the resistivity of the material and can effectively reduce the iron loss of the steel. When the mass percentage of Al is higher than 3.0%, it will significantly reduce the magnetic induction of the steel and significantly reduce the cold rolling rollability; when the mass percentage of Al is less than 0.1%, it will not effectively reduce the iron loss. Based on this, the mass percentage of Al in the thin-gauge non-oriented electrical steel sheet of the present invention is controlled to be 0.1-3.0%.
  • the mass percentage of Sn In the thin-gauge non-oriented electrical steel sheet of the present invention, when the mass percentage of Sn is less than 0.005%, it cannot improve the texture of the steel and increase the magnetic induction of the steel, and when the mass percentage of Sn is high At 0.2%, it will result in grain refinement and deterioration of the magnetic properties of the steel. Based on this, the mass percentage of Sn in the thin-gauge non-oriented electrical steel sheet of the present invention is controlled to be 0.005 to 0.2%.
  • the mass percentage of Ca In the thin-gauge non-oriented electrical steel sheet of the present invention, when the mass percentage of Ca is less than 0.0005%, it cannot remove oxygen and sulfide inclusions, and when the mass percentage of Ca is higher than 0.01% , easily lead to grain refinement and reduce cold rolling rollability. Based on this, the mass percentage of Ca in the thin-gauge non-oriented electrical steel sheet of the present invention is controlled to be 0.0005 to 0.01%.
  • the mass percentage of O In the thin-gauge non-oriented electrical steel sheet of the present invention, when the mass percentage of O is higher than 0.003%, the number of oxide inclusions will be greatly increased, resulting in grain refinement and deterioration of the magnetic properties of the steel. Based on this, the mass percentage of O in the thin-gauge non-oriented electrical steel sheet of the present invention is controlled to be O ⁇ 0.003%.
  • N In the thin-gauge non-oriented electrical steel sheet of the present invention, when the mass percentage of N exceeds 0.003%, the Nb, V, Ti, Al and other precipitates of N will be greatly increased, which will strongly hinder the growth of crystal grains. Deteriorating the magnetic properties of steel. Based on this, the mass percentage of N in the thin-gauge non-oriented electrical steel sheet of the present invention is controlled to be N ⁇ 0.003%.
  • the thin-gauge non-oriented electrical steel sheet according to the present invention its chemical elements also satisfy: 33 ⁇ O/16+S/32 ⁇ 12 ⁇ Ca/40.
  • Al oxide will inhibit the precipitation of sulfide inclusions, delay their precipitation time, and cause their size reduction and quantity increase, thereby deteriorating the electromagnetic properties of the finished steel sheet.
  • calcium treatment can be used to combine the oxides of Ca with the oxides of Al to form 12CaO ⁇ 7Al 2 O 3 with a lower melting point and a relatively large size to facilitate floating and removal.
  • the relationship between Ca and O and S needs to be defined.
  • sulfide inclusions are mainly MnS and Cu 2 S, and their size gradually decreases, their number gradually increases, and the harm gradually increases.
  • the thin-gauge non-oriented electrical steel sheet of the present invention also contains at least one of Nb, V and Ti elements, and its mass percentage meets:
  • harmful inclusions are mainly inclusions formed by C, S, O, and N elements, and C and N elements are mainly combined with Nb, V, and Ti elements to form an optimization
  • the inclusions are mainly TiC, TiN, Ti(CN), NbC, NbN, Nb(CN), VC, VN, V(CN).
  • This type of inclusion has a low melting point and a low precipitation temperature. Rolling and subsequent intermediate annealing and continuous annealing are prone to repeated solid solution and precipitation. Therefore, the size is small and the number is large. It is easy to form wedge-shaped domains and has a strong effect on grain pinning. It is harmful to the magnetic induction and iron loss of the finished steel plate.
  • Nb, V, and Ti are all trace residual elements, they have wide sources and are difficult to remove. Therefore, a more feasible method is to consciously adjust the content ratio during the smelting process to ensure that the harmful inclusions formed are fully analyzed and precipitated in advance In this way, it is convenient for the inclusions to grow up sufficiently and minimize the harm of the inclusions.
  • the composition requirement for precipitation saturation is Nb/93+V/51+Ti/48 ⁇ C/12+N/14. Therefore, control Nb/93+V/51+Ti/48 ⁇ C/12+N/14; and Nb+V+Ti ⁇ 0.01% to reduce the harm of inclusions to the finished steel plate and improve the magnetic properties of the finished steel plate.
  • the thickness thereof is 0.1-0.3 mm.
  • the cold rolling reduction rate is moderate, for example, 75% to 90%, so that the crystal recovery can be effectively suppressed in the subsequent continuous annealing process.
  • the cold rolling reduction rate will increase the remaining deformation storage energy before recrystallization, increase the driving force for nucleation, and reduce the strength of the ⁇ 111>//ND recrystallization texture component, which is beneficial to the improvement and improvement of electromagnetic properties, so that thin gauges can be finally obtained.
  • the overall temperature of the hot-rolled steel sheet during the hot-rolling process can be increased, and the temperature difference between the center of the hot-rolled steel sheet and the upper and lower surfaces can be reduced to promote its full recrystallization and grain size. It can increase the favorable ratio of ⁇ 100 ⁇ plane texture and ⁇ 110 ⁇ plane texture in the steel.
  • the cold rolling reduction rate is reduced, the number of dislocations in the cold-rolled steel sheet is reduced. It is easy to produce a large amount of lattice distortion and maintain a low energy storage.
  • the crystal recovery can be effectively inhibited, and the remaining deformation storage energy before recrystallization will be increased. Therefore, the nucleation drive
  • the strength of the ⁇ 111>//ND recrystallized texture component decreases, which is conducive to the improvement and enhancement of electromagnetic properties.
  • the measurement method of the surface texture is based on the measurement of the quantitative pole figure of the metal material (YB/T 5360-2006), and the SmartLab X-ray diffractometer is used for the measurement.
  • the ⁇ 100 ⁇ plane texture ratio is not less than 15%.
  • the iron loss P 10/400 ⁇ 12W/kg, and the magnetic induction B 50 ⁇ 1.68T is based on the Epstein square circle method (GB 10129-1988), and the German Brockhaus magnetic measurement equipment is used for measurement.
  • P 10/400 represents the iron loss value tested under the conditions of 1.0T and 400Hz
  • B 50 represents the magnetic induction value tested under the conditions of 5000A/m.
  • another object of the present invention is to provide a method for manufacturing the aforementioned thin-gauge non-oriented electrical steel sheet, by which a thin-gauge non-oriented electrical steel sheet with excellent magnetic properties can be obtained.
  • the present invention proposes a method for manufacturing the above-mentioned thin-gauge non-oriented electrical steel sheet, which includes the steps:
  • Insulation coating to obtain finished non-oriented electrical steel sheet.
  • the heating method can be, for example, energization heating or electromagnetic induction heating.
  • the first speed can be controlled at 50-400°C/s.
  • the holding time of the first speed can be controlled within 1 to 180s, preferably 5 to 30s, which has been greatly reduced compared to the existing normalized soaking time.
  • the mass percentages of chemical elements of the steel plate are: 0.0022% C, 1.67% Si, 1.2% Mn, 0.0012% S, 1.52% Al, 0.2% Sn, 0.0008% O, 0.003% N, 0.0017% Nb, 0.0006% V, 0.0008% Ti, 0.0063% Ca, the first speed is 400°C/s, and k is 450s; as in Example A12, the mass percentage of chemical elements in the steel plate is: 0.0011% C, 2.98% Si, 0.55% Mn, 0.0008% S, 0.94% Al, 0.14% Sn, 0.001% O, 0.0015% N, 0.0015% Nb, 0.0021% V, 0.0014% Ti, 0.0075% Ca, the first speed is 300°C/s, and k is 300s. Generally, the higher the content of the chemical components Si, Mn, and Al, the greater the first speed, the greater the k value, and the value range is 100-450°C 2 /s.
  • energization heating or electromagnetic induction heating can also be used for heating. Rapid heating from the starting temperature T start is heated to the crystallization end temperature T crystallization end, to further control the release of stored energy in the cold rolled steel sheets and surface texture of different kinds of proportional control. This rapid heating process continues until the recrystallization of the cold-rolled steel sheet is finished, because at this time, the nucleation is sufficient and there is no fibrous structure.
  • the conventional heating rate for example, the heating rate is 1-30°C/s
  • rapid heating for example, the heating rate of 100-5000°C/s
  • the second speed is 100-5000°C/s, and preferably can be controlled to 100-600°C/s.
  • the second speed is too slow, and the stored energy released by cold rolling deformation is too fast, which is not conducive to the subsequent favorable texture Control; if the second speed is too fast, the requirements for equipment capacity are too high, the cost is expensive, and the residence time of the cold-rolled steel sheet in the high temperature stage is too long, and the uniformity of the grain structure is poor.
  • the first speed is 50-400° C./s.
  • the second speed is 100-600° C./s.
  • the starting temperature T start rapid heating from room temperature to a temperature between the Curie temperature, rapid heating starting temperature higher than the Curie temperature T start, It is not conducive to obtaining favorable textures and reducing the generation of harmful textures;
  • the cold-rolled steel sheet in the continuous annealing step, is continuously heated at a rate of 1-30° C./s to the soaking temperature T soaking .
  • T soaking T end of crystallization +(50-130)°C. If the soaking temperature is too low, the grain size after the completion of crystallization will not be able to grow sufficiently; if the soaking temperature is too high, it will not be conducive to obtaining a favorable texture, and the manufacturing cost will increase.
  • the thickness of the steel sheet after the hot rolling step is 0.8-2.0 mm.
  • one cold rolling is used to roll the steel sheet to the thickness of the finished product, so as to reduce the production burden and reduce the manufacturing cost.
  • the thin-gauge non-oriented electrical steel sheet and the manufacturing method thereof according to the present invention have the following advantages and beneficial effects:
  • the thin-gauge non-oriented electrical steel sheet of the present invention has the characteristics of excellent magnetic properties, its iron loss P 10/400 ⁇ 12W/kg, and magnetic induction B 50 ⁇ 1.68T.
  • the manufacturing method of the present invention also has the above-mentioned advantages and beneficial effects.
  • Fig. 1 is a schematic diagram of annealing process curves of the present technical solution and the existing conventional process respectively using different annealing processes.
  • Fig. 2 is a SEM electron micrograph of the thin-gauge non-oriented electrical steel sheet of Example A9.
  • Figure 3 is a SEM electron micrograph of a conventional steel plate of Comparative Example A2.
  • Figure 4 schematically shows the effect of different cold rolling reduction rates on the magnetic induction.
  • Figure 5 schematically shows the effect of different Ca mass percentages on iron loss.
  • Fig. 6 is a texture view of a thin-gauge non-oriented electrical steel sheet of Example A15.
  • Fig. 7 is a texture diagram of a conventional steel plate of Comparative Example A3.
  • the thin-gauge non-oriented electrical steel sheet and the manufacturing method of the thin-gauge non-oriented electrical steel sheet of the present invention will be further explained and described with reference to the drawings and specific embodiments of the present invention. However, the explanation and description do not improperly limit the technical solution of the present invention.
  • the thin-gauge non-oriented electrical steel sheets of Examples A8-A17 and the conventional steel sheets of Comparative Examples A1-A7 were prepared by the following steps:
  • the molten iron and steel scrap are matched according to the composition ratio shown in Table 1. After being smelted in a converter, decarburization, deoxidation, and alloying are carried out in RH refining, and the molten steel is cast by continuous casting to obtain a continuous casting billet.
  • Hot rolling Control the thickness of the steel plate after hot rolling to be 0.8-2.0mm.
  • T holding temperature T Curie temperature + 100k/v, where v is the first speed, k is the recrystallization effect index of the hot-rolled steel sheet, and its value range is 100 ⁇ 450°C 2 /s;
  • Table 1 lists the mass percentage ratios of the chemical elements of the thin-gauge non-oriented electrical steel sheets of Examples A8-A18 and the conventional steel sheets of Comparative Examples A1-A7.
  • Table 2 lists the specific process parameters of the thin-gauge non-oriented electrical steel plates of Examples A8-A18 and the conventional steel plates of Comparative Examples A1-A7.
  • Table 3 lists the performance values of the thin-gauge non-oriented electrical steel sheets of Examples A8-A18 and the conventional steel sheets of Comparative Examples A1-A7.
  • the thin-gauge non-oriented electrical steel sheets of the examples of this case are thin and have excellent magnetic properties, with iron loss P 10/400 ⁇ 12W/kg, and magnetic induction B 50 ⁇ 1.68T.
  • Figure 1 is a schematic diagram of the process using different annealing processes.
  • the manufacturing method adopted in this case is different from the conventional heating annealing process due to the rapid heating and annealing process.
  • This case does not apply to hot rolling and cold rolling.
  • the normalization treatment is set in the middle, but the intermediate annealing process is used to perform rapid and short-term heating and heat preservation treatment on the hot-rolled steel sheet.
  • the heating method can be, for example, energization heating or electromagnetic induction heating. When heating at the first speed, the higher the heating rate, the more beneficial it is to inhibit the growth of the harmful ⁇ 111 ⁇ plane texture and promote the morphological control of the equiaxed crystal ratio.
  • the first speed can be controlled at 50-400°C/s.
  • the holding time of the first speed can be controlled within 1 ⁇ 180s, which has been greatly reduced compared with the normalized soaking time of the conventional heating annealing process.
  • One speed Generally, the higher the content of the chemical components Si, Mn, and Al, the greater the first speed, the greater the k value, and the value range is 100-450°C 2 /s.
  • energization heating or electromagnetic induction heating can also be used for heating. Rapid heating from the starting temperature T start is heated to the crystallization end temperature T crystallization end, to further control the release of stored energy in the cold rolled steel sheets and surface texture of different kinds of proportional control. This rapid heating process continues until the recrystallization of the cold-rolled steel sheet is finished, because at this time, the nucleation is sufficient and there is no fibrous structure.
  • the conventional heating rate for example, the heating rate is 1-30°C/s
  • rapid heating for example, the heating rate of 100-5000°C/s
  • the grain size can fully grow, so as to obtain excellent magnetic properties.
  • whether to adopt rapid heating annealing is mainly considered from the perspective of manufacturing cost. Although it is helpful to production efficiency and electromagnetic performance, it does not need to be restrictive.
  • the second speed is 100 ⁇ 5000°C/s, this is because: the second speed is too slow, the energy storage of cold rolling deformation is released too fast, which is not conducive to the subsequent control of favorable texture; the second speed is too fast, it will affect the equipment capacity The requirement is too high, the cost is expensive, and it will cause the cold-rolled steel plate to stay too long in the high temperature stage, and the uniformity of the grain structure is poor.
  • Fig. 2 is a SEM electron micrograph of the thin-gauge non-oriented electrical steel sheet of Example A9.
  • Figure 3 is a SEM electron micrograph of a conventional steel plate of Comparative Example A2.
  • Figure 4 schematically shows the effect of different cold rolling reduction rates on the magnetic induction.
  • Figure 5 schematically shows the effect of different Ca mass percentages on iron loss.
  • the mass percentage of Ca is controlled to be 0.0005 to 0.01% to obtain a thin-gauge non-oriented electrical steel sheet with iron loss P 10/400 ⁇ 12 W/kg.
  • Fig. 6 is a texture view of a thin-gauge non-oriented electrical steel sheet of Example A15.
  • Fig. 7 is a texture diagram of a conventional steel plate of Comparative Example A3.
  • the thin-gauge non-oriented electrical steel sheet of the present invention has the characteristics of excellent magnetic properties, its iron loss P 10/400 ⁇ 12W/kg, and magnetic induction B 50 ⁇ 1.68T.
  • the manufacturing method of the present invention also has the above-mentioned advantages and beneficial effects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开了一种无取向电工钢板,其化学元素质量百分比为:0<C≤0.003%;Si:1.6-3.4%;Mn:0.1-1.2%;S≤0.003%;Al:0.1-3.0%;Sn:0.005~0.2%;Ca:0.0005~0.01%;O≤0.003%;N≤0.003%;余量为Fe及其他不可避免的杂质。此外,本发明还公开了一种上述的无取向电工钢板的制造方法,其包括步骤:冶炼和铸造;热轧;中间退火;冷轧;连续退火;绝缘涂层,以得到成品无取向电工钢板。该无取向电工钢板磁性能优良。

Description

一种无取向电工钢板及其制造方法 技术领域
本发明涉及一种钢板及其制造方法,尤其涉及一种无取向电工钢板及其制造方法。
背景技术
近年来,随着石油、煤炭等资源的逐渐枯竭,人们对风力、潮汐、太阳等清洁能源的使用需求越来越迫切。一方面,人们在千方百计的将这些物理、光热能源转化为可以使用的电力资源,以尽可能的替代传统的石油、煤炭资源;另一方面,人们在日常能源的使用上,也越来越注重效率的提高和能源使用的节约。例如,目前使用越来越广泛的电动车,其驱动电机正逐渐向小型化、精密化、高效率化方向发展,相应的,要求对应的无取向电工钢板要具有高磁感、低铁损和高强度的特点,更重要的是薄规格化,一般以0.1~0.3mm为主。因为,薄规格化可以大大降低成品带钢的高频铁损,但不足之处在于,其磁感也会同步劣化,机械强度降低,这样,对其后续的生产、加工和使用带来了新的问题。
为了缓解这种厚度减薄、高机械性能、优良电磁性能三者之间的矛盾,公开号为特开平11-61257,公开日为1999年3月5日,名称为“低铁损且各向异性小的无取向电工钢及其制造方法”的日本专利公开了一种电工钢及其制造方法。在该专利文献所公开的技术方案中,其在950~1150℃范围内,对连铸坯进行低温加热处理,并且在热轧粗轧之后对中间坯进行保温处理,要求精轧之前的温降控制在40℃之内,精轧终轧温度限制在Ar1相变点+20℃以上,卷取温度限制在640~750℃。通过该控制方法,可以获得磁各向异性小的无取向电工钢板。
公开号为CN1326009A,公开日为2001年12月12日,名称为“加工性能极好的低铁损的非取向电工钢薄板及其制备方法”的中国专利文献公开了一种加工性能极好的低铁损非取向电工钢板。在该专利文献所公开的技术方案中, 限定钢中的Si+Mn+Al三者重量为5%左右,在冶炼过程中采用0.0005%或以上的Mg处理,或(和)Ca,或(和)REM处理的方式,但三者总量不能超过0.02%,用于去除钢中的非金属夹杂物。为了改善这种控制效果,在RH精炼过程中,要求采用Al元素对钢水进行深脱氧,且需要把钢中的S含量限定在0.01%以内。热轧带钢的目标厚度为2.3mm,可以采用一次冷轧,或者采用二次冷轧加以中间退火的方式进行冷轧生产,然后,在700~1100℃温度下完成冷轧带钢的最终退火。
公开号为CN101821418A,公开日为2010年9月1日,名称为“高频铁损低的无方向性电磁钢板及其制造方法”的中国专利文献公开了一种高频铁损低的无方向性电磁钢板。在该专利文献所公开的技术方案中,其要求作为整个钢板,以质量%计含有C:0.005%以下、Si:2.0%-4.0%、Mn:1%以下以及Al:0.1%-8.0%,剩余部分包括Fe和不可避免的杂质,要求在板厚方向的Al浓度满足下式0.1<(Xs-Xc)<100。为了提高成品带钢的电磁性能,还需要向钢中加入5%以下的Cu、1%以下的Nb、1%以下的Ti、5%以下的Ni、15%以下的Cr中的一种或几种,以及0.5%以下的Mo、W、Sn、Mg、Ce等的一种或几种。热轧之后,采用蒸镀法或者热浸法的方式,对热轧带钢表面涂覆含Al涂层,然后进行冷轧至0.1~0.3mm;最后,在1000℃以下,完成1小时或以上的最终退火。
发明内容
本发明的目的之一在于提供一种薄规格无取向电工钢板,该薄规格无取向电工钢板的磁性优良。
为了实现上述目的,本发明提出了一种薄规格无取向电工钢板,其化学元素质量百分比为:
0<C≤0.003%;Si:1.6-3.4%;Mn:0.1-1.2%;S≤0.003%;Al:0.1-3.0%;Sn:0.005~0.2%;Ca:0.0005~0.01%;O≤0.003%;N≤0.003%;余量为Fe及其他不可避免的杂质。
在本发明所述的薄规格无取向电工钢板中,各化学元素的设计原理如下所述:
C:在本发明所述的薄规格无取向电工钢板中,C会强烈阻碍成品钢板晶 粒长大,容易与Nb、V、Ti等结合形成细小析出物,从而引起损耗增加并产生磁时效。因此,在本发明所述的薄规格无取向电工钢板中,控制C的质量百分比为0<C≤0.003%。
Si:在本发明所述的薄规格无取向电工钢板中,Si提高材料的电阻率,能有效降低钢的铁损。但若Si的质量百分比高于3.4%时,会显著降低钢的磁感,显著降低冷轧可轧性;而Si的质量百分比低于1.6%时,又起不到有效降低铁损的作用。基于此,在本发明所述的薄规格无取向电工钢板中控制Si的质量百分比为1.6-3.4%。
Mn:在本发明所述的薄规格无取向电工钢板中,Mn与S结合生成MnS,可以减少对磁性能的危害。但是当Mn的质量百分比低于0.1%时,固硫效果差,而当Mn的质量百分比高于1.2%以上时,会抑制钢的再结晶效果。基于此,在本发明所述的薄规格无取向电工钢板中控制Mn的质量百分比为0.1-1.2%。
S:在本发明所述的薄规格无取向电工钢板中,S的质量百分比超过0.003%时,将使有害夹杂物例如MnS、Cu 2S的数量大大增加,强烈阻碍晶粒长大,恶化钢的磁性。基于此,在本发明所述的薄规格无取向电工钢板中控制S的质量百分比S≤0.003%。
Al:在本发明所述的薄规格无取向电工钢板中,Al提高材料的电阻率,能有效降低钢的铁损。当Al的质量百分比高于3.0%时,会显著降低钢的磁感,显著降低冷轧可轧性;而当Al的质量百分比低于0.1%时,又起不到有效降低铁损的作用。基于此,在本发明所述的薄规格无取向电工钢板中控制Al的质量百分比为0.1~3.0%。
Sn:在本发明所述的薄规格无取向电工钢板中,当Sn的质量百分比低于0.005%时,起不到改善钢的织构、提高钢的磁感作用,而当Sn的质量百分比高于0.2%时,会导致晶粒细化,劣化钢的磁性。基于此,在本发明所述的薄规格无取向电工钢板中控制Sn的质量百分比为0.005~0.2%。
Ca:在本发明所述的薄规格无取向电工钢板中,Ca的质量百分比低于0.0005%时,起不到去除氧、硫化物夹杂物的作用,而当Ca的质量百分比高于0.01%时,容易导致晶粒细化,降低冷轧可轧性。基于此,在本发明所述的薄规格无取向电工钢板中控制Ca的质量百分比为0.0005~0.01%。
O:在本发明所述的薄规格无取向电工钢板中,当O的质量百分比高于 0.003%时,会使氧化物夹杂物数量大大增加,导致晶粒细化,恶化钢的磁性。基于此,在本发明所述的薄规格无取向电工钢板中控制O的质量百分比为O≤0.003%。
N:在本发明所述的薄规格无取向电工钢板中,当N的质量百分比超过0.003%时,将使N的Nb、V、Ti、Al等析出物大大增加,强烈阻碍晶粒长大,恶化钢的磁性。基于此,在本发明所述的薄规格无取向电工钢板中控制N的质量百分比为N≤0.003%。
进一步地,在本发明所述的薄规格无取向电工钢板中,其化学元素还满足:33×O/16+S/32≤12×Ca/40。
上述方案中,考虑到当钢质洁净度越高,成品钢板的晶粒越容易长大,有利的{100}面织构比例越高,因此,通过控制化学元素的质量百分比满足:33×O/16+S/32≤12×Ca/40,控制有害夹杂物的充分析出或是提前析出,以便于减少有害夹杂物的危害。钢中的氧、硫化物夹杂物,其形成时期早,大部分属于脱氧产物,尺寸大,比较容易上浮,但对于二次脱氧生成的氧化物夹杂物,因为其尺寸小,则难以上浮去除,这部分氧化物因为硫容量不同,会对后续硫化物夹杂物的析出具有选择性。通常认为,Al的氧化物会抑制硫化物夹杂物的析出,推迟其析出时间,并导致其尺寸降低、数量增加,进而劣化成品钢板的电磁性能。为了减少这种危害,可以采用钙处理的方法,通过Ca的氧化物与Al的氧化物结合,并形成熔点较低、尺寸相对较大的12CaO·7Al 2O 3,以便于上浮去除,这样就需要限定Ca与O、S之间的关系。此外,在不进行钙处理的条件下,硫化物夹杂物主要以MnS、Cu 2S为主,尺寸逐渐变小、数量逐渐增多,危害逐渐增大,而在采用钙处理之后,由于Ca与S的亲和力,远远大于Mn、Cu与S的亲和力,因此,会有限生成尺寸大、熔点高的CaS,比较容易自行上浮去除,或者与上述尺寸较大的氧化物夹杂物碰撞、聚合,一起上浮、去除。为了达到这种效果,需要确保氧、硫化物夹杂物与Ca充分结合,因此,优选地可以将各化学元素控制在满足:33×O/16+S/32≤12×Ca/40。
进一步地,在本发明所述的薄规格无取向电工钢板中,其还含有Nb、V和Ti元素的至少其中之一,其质量百分比满足:
Nb/93+V/51+Ti/48≤C/12+N/14;以及
Nb+V+Ti≤0.01%。
上述方案中,考虑到对于无取向电工钢板而言,有害夹杂物以C、S、O、N元素形成的夹杂物为主,C、N元素主要与Nb、V、Ti元素结合,形成的优化夹杂物以TiC、TiN、Ti(CN)、NbC、NbN、Nb(CN)、VC、VN、V(CN)为主,这类夹杂物熔点低、析出温度低,且在连铸浇铸、热轧以及后续的中间退火、连续退火过程中容易反复固溶、析出,因此,尺寸细小、数量众多,容易形成楔形畴且对晶粒钉扎效果强,对成品钢板的磁感、铁损危害都很大。由于Nb、V、Ti均属于微量残余元素,来源广、去除难,因此,比较可行的办法是在冶炼过程中,有意识的调整其含量配比,确保其形成的有害夹杂物充分析出、提前析出,这样就便于夹杂物充分长大,尽量减少夹杂物的危害。按照稳态夹杂物形成的热力学进行计算,达到析出饱和的成分要求为Nb/93+V/51+Ti/48≤C/12+N/14。因此,控制Nb/93+V/51+Ti/48≤C/12+N/14;以及Nb+V+Ti≤0.01%,以减少夹杂物对成品钢板的危害,提升成品钢板磁性能。
进一步地,在本发明所述的薄规格无取向电工钢板中,其厚度为0.1-0.3mm。
上述方案中,通过调整热轧钢板厚度例如在0.8~2.0mm,从而使得冷轧轧制的压下率适中例如在75%~90%,以便在后续的连续退火过程中,能有效抑制晶体回复,并会增加再结晶之前的剩余形变储能,形核驱动力增加,<111>//ND再结晶织构组分强度降低,有利于电磁性能的改善和提高,从而最终可以获得薄规格无取向电工钢板。
需要说明的是,通过热轧钢板厚度的减薄,一方面可以提高热轧过程中,热轧钢板的整体温度,并减少热轧钢板中心、上下表温差,促进其充分再结晶和晶粒尺寸长大,从而可以提高钢中的有利的{100}面织构和{110}面织构比例;另一方面是,冷轧压下率降低之后,冷轧钢板中的位错数量减少,不容易产生大量的晶格畸变,并保持了较低的储能,因此,在后续的连续退火过程中,能有效抑制晶体回复,并会增加再结晶之前的剩余形变储能,因而,形核驱动力增加,<111>//ND再结晶织构组分强度降低,有利于电磁性能的改善和提高。这里面织构的测量方法是,基于金属材料定量极图的测定(YB/T 5360-2006),并且采用了SmartLab X射线衍射仪进行测量。
进一步地,在本发明所述的薄规格无取向电工钢板中,{100}面织构比例不低于15%。
进一步地,在本发明所述的薄规格无取向电工钢板中,其铁损P 10/400≤12W/kg,磁感B 50≥1.68T。这里,电磁性能的测量方法是,基于爱波斯坦方圈法(GB 10129-1988),并且采用了德国Brockhaus磁性测量设备进行测量。其中,P 10/400代表在1.0T、400Hz条件下测试的铁损值,B 50代表在5000A/m条件下测试的磁感值。
相应地,本发明的另一目的还在于提供一种上述的薄规格无取向电工钢板的制造方法,通过该制造方法可以获得磁性能优良的薄规格无取向电工钢板。
为了达到上述发明目的,本发明提出了一种上述的薄规格无取向电工钢板的制造方法,其包括步骤:
冶炼和铸造;
热轧;
中间退火:将热轧钢板以50~2000℃/s的第一速度快速加热升温到T 保温温 ,保温1~180s;其中T 保温温度=T 居里温度+100k/v,其中v为第一速度,k为热轧钢板的再结晶效果指数,其取值范围为100~450℃ 2/s;
冷轧;
连续退火:以第二速度将冷轧钢板从快速加热起始温度T 加热至结晶结束温度T 结晶结束,T 即为第二速度加热的起始温度;然后再将冷轧钢板继续加热升温至均热温度T 均热,以进行均热保温,其中第二速度为100~5000℃/s;
绝缘涂层,以得到成品无取向电工钢板。
在本发明所述的制造方法中,为了缩减设备投资,提高生产效率和降低能源介质消耗,本案并没有在热轧与冷轧之间设置常化处理,而是利用中间退火工艺,对热轧钢板进行快速、短时加热升温、保温处理,其加热方式可以采用例如通电加热或者电磁感应加热方式。第一速度进行加热时,其升温速率越高,越有利于抑制有害的{111}面织构的生长,和促进等轴晶率的形态控制,对成品钢板的电磁性能越有利,但升温速率过高对设备能力和设备投资要求也会较高,因此,在一些优选的实施方式中,可以控制第一速度控制在50~400℃/s。并且,在本发明所述的技术方案中,第一速度的保温时间可以控制在1~180s,优选地可以控制为5~30s,相对现有的常化均热时间已经大大降低。同时,对保温温度控制在:T 保温温度=T 居里温度+100k/v,其中v为第一速度,k为热轧钢板的再结晶效果指数,其赋值取决于钢的化学成分设计和第一速度。如实施 例A8,钢板化学元素质量百分比为:0.0022%的C,1.67%的Si,1.2%的Mn,0.0012%的S,1.52%的Al,0.2%的Sn,0.0008%的O,0.003%的N,0.0017%的Nb,0.0006%的V,0.0008%的Ti,0.0063%的Ca,第一速度为400℃/s,k为450s;如实施例A12,钢板化学元素质量百分比为:0.0011%的C,2.98%的Si,0.55%的Mn,0.0008%的S,0.94%的Al,0.14%的Sn,0.001%的O,0.0015%的N,0.0015%的Nb,0.0021%的V,0.0014%的Ti,0.0075%的Ca,第一速度为300℃/s,k为300s。通常,化学成分Si、Mn、Al含量越高,第一速度越大,k值就越大,其取值范围为100~450℃ 2/s。
而在随后的连续退火过程中,也可以采用通电加热或者电磁感应加热方式进行加热。从快速加热起始温度T 加热至结晶结束温度T 结晶结束,以进一步控制冷轧钢板中的储能释放和不同种类的面织构比例控制。这一快速加热过程持续到冷轧钢板再结晶结束即可,因为,这时已经形核充分、无纤维状组织。然后,再采用常规的加热升温速率(例如升温速率为1~30℃/s),或者继续采用快速加热(例如升温速率为100~5000℃/s)方式,将冷轧钢板升温至T 均热并进行均热保温,以使晶粒尺寸充分长大、从而获得优良的磁性能。这里,主要从制造成本的角度考虑是否采用快速加热退火,虽然其对生产效率、电磁性能有帮助,但可以不做限制性要求。第二速度为100~5000℃/s,优选地可以控制为100~600℃/s,这是因为:第二速度太慢,冷轧变形的储能释放太快,不利于后续有利织构的控制;第二速度太快,则对设备能力的要求太高,造价昂贵,并且会导致冷轧钢板在高温阶段的停留时间过长,晶粒组织均匀性差。
进一步地,在本发明所述的制造方法中,在中间退火步骤中,第一速度为50~400℃/s。
进一步地,在本发明所述的制造方法中,在连续退火步骤中,第二速度为100~600℃/s。
进一步地,在本发明所述的制造方法中,在连续退火步骤中,快速加热起始温度T 为室温至居里温度之间的温度,快速加热起始温度T 高于居里温度,则不利于获得有利织构,和减少有害织构的生成;
进一步地,在本发明所述的制造方法中,在连续退火步骤中,将冷轧钢板以1~30℃/s的速度继续加热升温至均热温度T 均热
进一步地,在本发明所述的制造方法中,T 均热=T 结晶结束+(50~130)℃。 均热温度太低,则完成结晶之后的晶粒尺寸来不及充分长大;均热温度太高,则不利于获得有利的织构,且制造成本增加。
进一步地,在本发明所述的制造方法中,钢板经过热轧步骤后的厚度为0.8-2.0mm。
进一步地,在本发明所述的制造方法中,在冷轧步骤中,采用一次冷轧将钢板轧至成品厚度,以减轻生产负担和降低制造成本。
本发明所述的薄规格无取向电工钢板及其制造方法相较于现有技术具有如下所述的优点以及有益效果:
本发明所述的薄规格无取向电工钢板具有磁性能优良的特点,其铁损P 10/400≤12W/kg,磁感B 50≥1.68T。
此外,本发明所述的制造方法也同样具有上述的优点以及有益效果。
附图说明
图1为分别采用了不同退火工艺的本技术方案和现有常规工艺的退火工艺曲线示意图。
图2为实施例A9的薄规格无取向电工钢板的SEM电镜图。
图3为对比例A2的常规钢板的SEM电镜图。
图4示意性地显示了不同的冷轧压下率对磁感的影响。
图5示意性地显示了不同的Ca的质量百分比对铁损的影响。
图6为实施例A15的薄规格无取向电工钢板的织构图。
图7为对比例A3的常规钢板的织构图。
具体实施方式
下面将结合说明书附图和具体的实施例对本发明所述的薄规格无取向电工钢板及其制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
实施例A8-A17以及对比例A1-A7
实施例A8-A17的薄规格无取向电工钢板以及对比例A1-A7的常规钢板采用以下步骤制得:
(1)铁水、废钢按照表1所示的组分配比进行搭配,经转炉冶炼之后, 在RH精炼进行脱碳、脱氧、合金化后,钢液经连铸浇铸后,得到连铸坯。
(2)热轧:控制钢板经过热轧后的厚度为0.8-2.0mm。
(3))中间退火:将热轧钢板以50~2000℃/s的第一速度快速加热升温到T 保温温度,保温1~180s;其中T 保温温度=T 居里温度+100k/v,其中v为第一速度,k为热轧钢板的再结晶效果指数,其取值范围为100~450℃ 2/s;
(4)冷轧:采用一次冷轧将钢板轧至成品厚度,厚度为0.1-0.3mm。
(5)连续退火:以第二速度将冷轧钢板从快速加热起始温度T 加热至结晶结束温度T 结晶结束;然后再将冷轧钢板继续加热升温至均热温度T 均热,以进行均热保温,其中第二速度为100~5000℃/s,快速加热起始温度T 为室温至居里温度之间的温度,T 均热=T 结晶结束+(50~130)℃。
(6)绝缘涂层,以得到成品无取向电工钢板。
表1列出了实施例A8-A18的薄规格无取向电工钢板以及对比例A1-A7的常规钢板的各化学元素的质量百分配比。
表1.(%,余量为Fe和和其他不可避免的杂质)
Figure PCTCN2020111403-appb-000001
Figure PCTCN2020111403-appb-000002
注:表1中A表示是否满足Nb/93+V/51+Ti/48≤C/12+N/14,B表示是否满足33×O/16+S/32≤12×Ca/40,C表示是否满足Nb+V+Ti≤0.01%。
表2列出了实施例A8-A18的薄规格无取向电工钢板以及对比例A1-A7的常规钢板的具体工艺参数。
表2.
Figure PCTCN2020111403-appb-000003
Figure PCTCN2020111403-appb-000004
表3列出了实施例实施例A8-A18的薄规格无取向电工钢板以及对比例A1-A7的常规钢板的各项性能数值。
表3.
Figure PCTCN2020111403-appb-000005
Figure PCTCN2020111403-appb-000006
结合表1至表3可以看出,本案各实施例的薄规格无取向电工钢板厚度薄,磁性能优良,其铁损P 10/400≤12W/kg,磁感B 50≥1.68T。
图1为采用了不同退火工艺的工艺示意图。
如图1所示,本案所采用的制造方法由于采用快速加热退火,其不同于常规加热退火工艺,为了缩减设备投资,提高生产效率和降低能源介质消耗,本案并没有在热轧与冷轧之间设置常化处理,而是利用中间退火工艺,对热轧钢板进行快速、短时加热升温、保温处理,其加热方式可以采用例如通电加热或者电磁感应加热方式。第一速度进行加热时,其升温速率越高,越有利于抑制有害的{111}面织构的生长,和促进等轴晶率的形态控制,对成品钢板的电磁性能越有利,但升温速率过高对设备能力和设备投资要求也会较高,因此,在一些优选的实施方式中,可以控制第一速度控制在50~400℃/s。并且第一速度的保温时间可以控制在1~180s,相对常规加热退火工艺的常化均热时间已经大大降低。同时,对保温温度控制在:T 保温温度=T 居里温度+100k/v,其中v为第一速度,k为热轧钢板的再结晶效果指数,其赋值取决于钢的化学成分设计和第一速度。通常,化学成分Si、Mn、Al含量越高,第一速度越大,k值就越大,其取值范围为100~450℃ 2/s。
而在随后的连续退火过程中,也可以采用通电加热或者电磁感应加热方式进行加热。从快速加热起始温度T 加热至结晶结束温度T 结晶结束,以进一步控制冷轧钢板中的储能释放和不同种类的面织构比例控制。这一快速加热过程持续到冷轧钢板再结晶结束即可,因为,这时已经形核充分、无纤维状组织。然 后,再采用常规的加热升温速率(例如升温速率为1~30℃/s),或者继续采用快速加热(例如升温速率为100~5000℃/s)方式,将冷轧钢板升温至T 均热并进行均热保温,以使晶粒尺寸充分长大、从而获得优良的磁性能。这里,主要从制造成本的角度考虑是否采用快速加热退火,虽然其对生产效率、电磁性能有帮助,但可以不做限制性要求。第二速度为100~5000℃/s,这是因为:第二速度太慢,冷轧变形的储能释放太快,不利于后续有利织构的控制;第二速度太快,则对设备能力的要求太高,造价昂贵,并且会导致冷轧钢板在高温阶段的停留时间过长,晶粒组织均匀性差。
采用本案的制造方法所获得的的薄规格无取向电工钢板的铁损P 10/400≤12W/kg,磁感B 50≥1.68T。
图2为实施例A9的薄规格无取向电工钢板的SEM电镜图。图3为对比例A2的常规钢板的SEM电镜图。
由图2可以看出,实施例A9的薄规格无取向电工钢板的S晶粒形状规则,尺寸均匀且分布适中,反观图3中的对比例A2的常规钢板,其有细晶存在,晶粒形状不规则,尺寸偏大且存在偏聚现象。
图4示意性地显示了不同的冷轧压下率对磁感的影响。
如图4所示,当冷轧压下率控制在75%~90%,可以获得磁感B 50≥1.68T的磁性能优良的薄规格无取向电工钢板,这是因为:当冷轧压下率控制在75%~90%时,有利于在后续的连续退火过程中,能有效抑制晶体回复,并会增加再结晶之前的剩余形变储能,形核驱动力增加,<111>//ND再结晶织构组分强度降低,有利于电磁性能的改善和提高,从而最终可以获得薄规格无取向电工钢板。
图5示意性地显示了不同的Ca的质量百分比对铁损的影响。
如图5所示,当Ca的质量百分比低于0.0005%时,起不到去除氧、硫化物夹杂物的作用,而当Ca的质量百分比高于0.01%时,容易导致晶粒细化,降低冷轧可轧性。基于此,控制Ca的质量百分比为0.0005~0.01%,以获得铁损P 10/400≤12W/kg的薄规格无取向电工钢板。
图6为实施例A15的薄规格无取向电工钢板的织构图。图7为对比例A3的常规钢板的织构图。
结合图6和图7可以看出,相较于对比例A3而言,本案实施例A15的薄 规格无取向电工钢板的{100}面织构比例不低于15%。
综上所述可以看出,本发明所述的薄规格无取向电工钢板具有磁性能优良的特点,其铁损P 10/400≤12W/kg,磁感B 50≥1.68T。
此外,本发明所述的制造方法也同样具有上述的优点以及有益效果。
需要说明的是,本发明的保护范围中现有技术部分并不局限于本申请文件所给出的实施例,所有不与本发明的方案相矛盾的现有技术,包括但不局限于在先专利文献、在先公开出版物,在先公开使用等等,都可纳入本发明的保护范围。
此外,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
还需要注意的是,以上所列举的实施例仅为本发明的具体实施例。显然本发明不局限于以上实施例,随之做出的类似变化或变形是本领域技术人员能从本发明公开的内容直接得出或者很容易便联想到的,均应属于本发明的保护范围。

Claims (14)

  1. 一种无取向电工钢板,其特征在于,所述无取向电工钢板的化学元素质量百分比为:
    0<C≤0.003%;Si:1.6-3.4%;Mn:0.1-1.2%;S≤0.003%;Al:0.1-3.0%;Sn:0.005~0.2%;Ca:0.0005~0.01%;O≤0.003%;N≤0.003%;余量为Fe及其他不可避免的杂质。
  2. 如权利要求1所述的无取向电工钢板,其特征在于,所述无取向电工钢板的化学元素还满足:33×O/16+S/32≤12×Ca/40。
  3. 如权利要求1所述的无取向电工钢板,其特征在于,所述无取向电工钢板还含有Nb、V和Ti元素的至少其中之一,所述Nb、V、Ti元素的质量百分比满足:
    Nb/93+V/51+Ti/48≤C/12+N/14;以及
    Nb+V+Ti≤0.01%。
  4. 如权利要求1所述的无取向电工钢板,其特征在于,所述无取向电工钢板的厚度为0.1-0.3mm。
  5. 如权利要求1所述的无取向电工钢板,其特征在于,所述无取向电工钢板的{100}面织构比例不低于15%。
  6. 如权利要求1所述的无取向电工钢板,其特征在于,所述无取向电工钢板铁损P 10/400≤12W/kg,磁感B 50≥1.68T。
  7. 一种如权利要求1-6中任意一项所述的无取向电工钢板的制造方法,包括步骤:
    冶炼和铸造;
    热轧;
    中间退火:将热轧钢板以50~2000℃/s的第一速度快速加热升温到T 保温温度,保温1~180s;T 保温温度=T 居里温度+100k/v,v为第一速度,v的单位为℃/s,k为热轧带钢钢板的再结晶效果指数,k的取值范围为100~450℃ 2/s,K的单位为℃ 2/s;
    冷轧;
    连续退火:以第二速度将冷轧钢板从快速加热起始温度T 加热至结 晶结束温度T 结晶结束;然后再将冷轧钢板继续加热升温至均热温度T 均热,以进行均热保温,所述第二速度为100~5000℃/s;
    绝缘涂层,以得到成品无取向电工钢板。
  8. 如权利要求7所述的制造方法,其特征在于,在所述中间退火步骤中,第一速度为50~400℃/s。
  9. 如权利要求7所述的制造方法,其特征在于,在所述连续退火步骤中,第二速度为100~600℃/s。
  10. 如权利要求7所述的制造方法,其特征在于,在所述连续退火步骤中,所述快速加热起始温度T 为室温至居里温度之间的温度。
  11. 如权利要求7所述的制造方法,其特征在于,在所述连续退火步骤中,将冷轧钢板以1~30℃/s的速度继续加热升温至均热温度T 均热
  12. 如权利要求7所述的制造方法,其特征在于,T 均热=T 结晶结束+(50~130)℃。
  13. 如权利要求7所述的制造方法,其特征在于,钢板经过所述热轧步骤后的厚度为0.8-2.0mm。
  14. 如权利要求7所述的制造方法,其特征在于,在所述冷轧步骤中,采用一次冷轧将钢板轧至成品厚度。
PCT/CN2020/111403 2019-08-26 2020-08-26 一种无取向电工钢板及其制造方法 WO2021037062A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/636,804 US20230416883A1 (en) 2019-08-26 2020-08-26 Non-oriented electrical steel plate and manufacturing method therefor
JP2022511336A JP2022545889A (ja) 2019-08-26 2020-08-26 無方向性電磁鋼板およびその製造方法
BR112022003356A BR112022003356A2 (pt) 2019-08-26 2020-08-26 Placa de aço elétrico não orientado e método de fabricação desta
EP20859469.7A EP4001448A4 (en) 2019-08-26 2020-08-26 NON-ORIENTED ELECTRICAL STEEL SHEET AND METHOD OF MANUFACTURING THEREOF
CA3151686A CA3151686A1 (en) 2019-08-26 2020-08-26 Non-oriented electrical steel plate and manufacturing method therefor
MX2022001808A MX2022001808A (es) 2019-08-26 2020-08-26 Placa de acero electrico no orientado y metodo de fabricacion de la misma.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910791165.8 2019-08-26
CN201910791165.8A CN112430778A (zh) 2019-08-26 2019-08-26 一种薄规格无取向电工钢板及其制造方法

Publications (1)

Publication Number Publication Date
WO2021037062A1 true WO2021037062A1 (zh) 2021-03-04

Family

ID=74684525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111403 WO2021037062A1 (zh) 2019-08-26 2020-08-26 一种无取向电工钢板及其制造方法

Country Status (8)

Country Link
US (1) US20230416883A1 (zh)
EP (1) EP4001448A4 (zh)
JP (1) JP2022545889A (zh)
CN (1) CN112430778A (zh)
BR (1) BR112022003356A2 (zh)
CA (1) CA3151686A1 (zh)
MX (1) MX2022001808A (zh)
WO (1) WO2021037062A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4273279A4 (en) * 2021-03-31 2024-07-03 Nippon Steel Corp NON-ORIENTED ELECTROMAGNETIC STEEL SHEET, MOTOR CORE, MANUFACTURING METHOD FOR NON-ORIENTED ELECTROMAGNETIC STEEL SHEET AND MANUFACTURING METHOD FOR MOTOR CORE

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974257A (ja) * 1982-10-20 1984-04-26 Kawasaki Steel Corp 鉄損の少ない無方向性珪素鋼板
JPH1161257A (ja) 1997-08-08 1999-03-05 Nkk Corp 鉄損が低く且つ磁気異方性の小さい無方向性電磁鋼板の製造方法
CN1326009A (zh) 2000-04-07 2001-12-12 新日本制铁株式会社 加工性能极好的低铁损的非取向电工钢薄板及其制备方法
CN101821418A (zh) 2007-12-03 2010-09-01 新日本制铁株式会社 高频铁损低的无方向性电磁钢板及其制造方法
CN103305659A (zh) * 2012-03-08 2013-09-18 宝山钢铁股份有限公司 磁性优良的无取向电工钢板及其钙处理方法
JP2015206092A (ja) * 2014-04-22 2015-11-19 Jfeスチール株式会社 積層電磁鋼板およびその製造方法
CN107541582A (zh) * 2016-06-23 2018-01-05 上海梅山钢铁股份有限公司 一种磁性优良的无取向电工钢钙处理方法
CN108368561A (zh) * 2015-12-09 2018-08-03 杰富意钢铁株式会社 无取向性电磁钢板的制造方法
WO2019132426A1 (ko) * 2017-12-26 2019-07-04 주식회사 포스코 자기적 특성 및 형상이 우수한 박물 무방향성 전기강판 및 그 제조방법

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151215A (en) * 1975-06-21 1976-12-25 Kawasaki Steel Corp Process for manufacturing non-oriented silicon steel plate with low co re loss and high magnetic flux density
DD299102A7 (de) * 1989-12-06 1992-04-02 ������@����������@��������@��������@��@��������k�� Verfahren zur herstellung von nichtorientiertem elektroblech
JPH11293426A (ja) * 1998-02-13 1999-10-26 Nkk Corp 疲労特性に優れた無方向性電磁鋼板
JP2001271147A (ja) * 2000-03-27 2001-10-02 Kawasaki Steel Corp 磁気特性に優れた無方向性電磁鋼板
JP4599843B2 (ja) * 2004-01-19 2010-12-15 住友金属工業株式会社 無方向性電磁鋼板の製造方法
JP4648910B2 (ja) * 2006-10-23 2011-03-09 新日本製鐵株式会社 磁気特性の優れた無方向性電磁鋼板の製造方法
JP5167824B2 (ja) * 2008-01-17 2013-03-21 Jfeスチール株式会社 エッチング加工用無方向性電磁鋼板とモータコアの製造方法
CN101684514A (zh) * 2008-09-27 2010-03-31 鞍钢股份有限公司 一种高效冷轧电工钢产品的制造方法
JP5447167B2 (ja) * 2010-05-13 2014-03-19 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
JP5402846B2 (ja) * 2010-06-17 2014-01-29 新日鐵住金株式会社 無方向性電磁鋼板の製造方法
JP2012036459A (ja) * 2010-08-09 2012-02-23 Sumitomo Metal Ind Ltd 無方向性電磁鋼板およびその製造方法
JP5671869B2 (ja) * 2010-08-09 2015-02-18 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
JP5716315B2 (ja) * 2010-08-10 2015-05-13 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
BR112013020657B1 (pt) * 2011-02-24 2019-07-09 Jfe Steel Corporation Chapa de aço elétrico não orientado e método para produção da mesma
CN102758150A (zh) * 2011-04-28 2012-10-31 宝山钢铁股份有限公司 高屈服强度的无取向电工钢板及其制造方法
JP5712863B2 (ja) * 2011-08-23 2015-05-07 新日鐵住金株式会社 無方向性電磁鋼板の製造方法
JP5892327B2 (ja) * 2012-03-15 2016-03-23 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
CN102634729B (zh) * 2012-04-01 2013-07-17 首钢总公司 一种低铁损高磁感高牌号无取向硅钢的制备方法
WO2014020369A1 (en) * 2012-07-31 2014-02-06 Arcelormittal Investigación Y Desarrollo Sl Method of production of grain-oriented silicon steel sheet grain oriented electrical steel sheet and use thereof
JP5794396B2 (ja) * 2012-10-19 2015-10-14 新日鐵住金株式会社 疲労特性に優れる高周波焼入れ用鋼
CN102925816B (zh) * 2012-11-21 2015-05-20 武汉钢铁(集团)公司 电驱动电机用无取向硅钢及其生产方法
CN103834858B (zh) * 2012-11-23 2016-10-05 宝山钢铁股份有限公司 一种低铁损无取向硅钢的制造方法
JP5975076B2 (ja) * 2014-08-27 2016-08-23 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
JP6210182B1 (ja) * 2015-12-28 2017-10-11 Jfeスチール株式会社 無方向性電磁鋼板および無方向性電磁鋼板の製造方法
CN105925884B (zh) * 2016-05-30 2018-03-09 宝山钢铁股份有限公司 一种高磁感、低铁损无取向硅钢片及其制造方法
KR102225229B1 (ko) * 2016-10-27 2021-03-08 제이에프이 스틸 가부시키가이샤 무방향성 전자 강판 및 그의 제조 방법
CN108004463A (zh) * 2016-10-28 2018-05-08 宝山钢铁股份有限公司 一种磁性能优良的无取向电工钢及其制造方法
KR102265091B1 (ko) * 2017-03-07 2021-06-15 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판 및 무방향성 전자 강판의 제조 방법
JP6903996B2 (ja) * 2017-03-28 2021-07-14 日本製鉄株式会社 無方向性電磁鋼板
JP7352057B2 (ja) * 2018-03-30 2023-09-28 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法、並びにモータコアおよびその製造方法
CN108754326A (zh) * 2018-06-14 2018-11-06 马鞍山钢铁股份有限公司 一种无取向电工钢薄带及其生产方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974257A (ja) * 1982-10-20 1984-04-26 Kawasaki Steel Corp 鉄損の少ない無方向性珪素鋼板
JPH1161257A (ja) 1997-08-08 1999-03-05 Nkk Corp 鉄損が低く且つ磁気異方性の小さい無方向性電磁鋼板の製造方法
CN1326009A (zh) 2000-04-07 2001-12-12 新日本制铁株式会社 加工性能极好的低铁损的非取向电工钢薄板及其制备方法
CN101821418A (zh) 2007-12-03 2010-09-01 新日本制铁株式会社 高频铁损低的无方向性电磁钢板及其制造方法
CN103305659A (zh) * 2012-03-08 2013-09-18 宝山钢铁股份有限公司 磁性优良的无取向电工钢板及其钙处理方法
JP2015206092A (ja) * 2014-04-22 2015-11-19 Jfeスチール株式会社 積層電磁鋼板およびその製造方法
CN108368561A (zh) * 2015-12-09 2018-08-03 杰富意钢铁株式会社 无取向性电磁钢板的制造方法
CN107541582A (zh) * 2016-06-23 2018-01-05 上海梅山钢铁股份有限公司 一种磁性优良的无取向电工钢钙处理方法
WO2019132426A1 (ko) * 2017-12-26 2019-07-04 주식회사 포스코 자기적 특성 및 형상이 우수한 박물 무방향성 전기강판 및 그 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4273279A4 (en) * 2021-03-31 2024-07-03 Nippon Steel Corp NON-ORIENTED ELECTROMAGNETIC STEEL SHEET, MOTOR CORE, MANUFACTURING METHOD FOR NON-ORIENTED ELECTROMAGNETIC STEEL SHEET AND MANUFACTURING METHOD FOR MOTOR CORE

Also Published As

Publication number Publication date
BR112022003356A2 (pt) 2022-05-17
JP2022545889A (ja) 2022-11-01
EP4001448A4 (en) 2022-07-27
MX2022001808A (es) 2022-03-11
CA3151686A1 (en) 2021-03-04
US20230416883A1 (en) 2023-12-28
CN112430778A (zh) 2021-03-02
EP4001448A1 (en) 2022-05-25

Similar Documents

Publication Publication Date Title
WO2022127104A1 (zh) 高牌号无取向硅钢及其生产方法
JP6596016B2 (ja) 無方向性電磁鋼板およびその製造方法
JP5675950B2 (ja) 優れた磁気特性を有する高効率無方向性珪素鋼の製造方法
JP4126479B2 (ja) 無方向性電磁鋼板の製造方法
JP7454646B2 (ja) 高磁気誘導方向性ケイ素鋼およびその製造方法
WO2021037061A1 (zh) 一种600MPa级无取向电工钢板及其制造方法
JP7159311B2 (ja) 磁気特性に優れる無方向性電磁鋼板およびその製造方法
CN112143964A (zh) 一种极低铁损的无取向电工钢板及其连续退火工艺
WO2021037064A1 (zh) 一种含Cu无取向电工钢板及其制造方法
JP7378585B2 (ja) 無方向性電磁鋼板及びその製造方法
WO2021037062A1 (zh) 一种无取向电工钢板及其制造方法
CN110640104B (zh) 一种磁性能优良的无取向电工钢板及其制造方法
CN113981307A (zh) 一种高磁感、低铁损的无取向电工钢板及其制造方法
CN110643891B (zh) 一种磁性能优良的无取向电工钢板及其制造方法
CN114293100A (zh) 一种超低铁损无取向硅钢薄带及其制备方法
CN112430779A (zh) 一种高频铁损优良的无取向电工钢板及其制造方法
RU2790231C1 (ru) Лист из cu-содержащей нетекстурированной электротехнической стали и способ его изготовления
RU2788424C1 (ru) Лист из нетекстурированной электротехнической стали и способ его изготовления
WO2023131223A1 (zh) 一种磁性能优良的无取向电工钢板及其制造方法
WO2024017345A1 (zh) 一种无取向电工钢板及其制造方法
CN112430777A (zh) 一种超高磁感无取向电工钢板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859469

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3151686

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 17636804

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2020859469

Country of ref document: EP

Effective date: 20220215

ENP Entry into the national phase

Ref document number: 2022511336

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022003356

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022003356

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220222