WO2024085087A1 - セルロース粒子 - Google Patents

セルロース粒子 Download PDF

Info

Publication number
WO2024085087A1
WO2024085087A1 PCT/JP2023/037219 JP2023037219W WO2024085087A1 WO 2024085087 A1 WO2024085087 A1 WO 2024085087A1 JP 2023037219 W JP2023037219 W JP 2023037219W WO 2024085087 A1 WO2024085087 A1 WO 2024085087A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
particles
particle
cellulose particles
less
Prior art date
Application number
PCT/JP2023/037219
Other languages
English (en)
French (fr)
Inventor
雄貴 宮川
佳奈 山本
里久 濱田
誠 正岡
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Publication of WO2024085087A1 publication Critical patent/WO2024085087A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations

Definitions

  • the present invention relates to cellulose particles.
  • Microparticles are used in a wide range of fields.
  • cosmetics contain fine particles of various materials and shapes, primarily for the purpose of improving the texture or imparting optical properties.
  • spherical fine particles made of plastic materials are widely used.
  • Patent Document 1 discloses spherical silicone fine particles.
  • Patent Document 2 discloses silicone fine particles having a network structure on the surface.
  • Patent Document 3 listed below discloses silicone microparticles that have polygonal recesses on their surface and are further coated with finer microparticles.
  • Patent Document 4 discloses silicone microparticles having minute protrusions on the surface.
  • microparticles of various materials and shapes, such as acrylic, urethane, and polyolefin are used for a variety of purposes.
  • Patent Documents 1 to 4 have the problem of not being biodegradable. In fields where non-biodegradable plastic-based microparticles have traditionally been used, there is a movement to replace them with microparticles made of natural products and inorganic mineral materials, or microparticles made of biodegradable materials.
  • Patent Document 5 discloses spherical silica microparticles and a method for producing the same. Although silica microparticles have excellent squeaky and slippery properties, when used in cosmetics, they can have problems with a unique crispy or slippery feel and poor moldability.
  • Patent Document 6 discloses spherical cellulose microparticles.
  • Patent Document 7 discloses cellulose microparticles with a wrinkled surface structure.
  • Patent Document 8 discloses cellulose microparticles with an irregular, smooth outer shape.
  • Cellulose microparticles have characteristics such as rapid marine biodegradability and a soft feel, but when used in cosmetics, their unique squeaky feel can be a problem.
  • Patent Document 9 discloses spherical cellulose acetate microparticles.
  • Patent Document 10 discloses cross-linked carboxymethyl cellulose microparticles with crater-like depressions on the surface.
  • cellulose acetate microparticles and other biodegradable materials have the problem that they are slow to biodegrade in the ocean and may remain in the environment for long periods of time.
  • microparticles As described above, no microparticles have yet been proposed that have good marine biodegradability and exhibit physical properties comparable to or superior to the non-biodegradable plastic microparticles that have been widely used in the past, and new microparticle materials are needed. In addition, it cannot be said that sufficient research has been done to improve the physical properties of microparticles made of materials with good marine biodegradability, focusing on the surface morphology of the microparticles.
  • the problem that the present invention aims to solve is to provide microparticles that have excellent biodegradability, particularly marine biodegradability, and can exhibit physical properties comparable to or superior to plastic microparticles, for example, microparticles that have a good feel, especially little squeaky feeling, and that can further have adjustable moistness and slipperiness, excellent optical properties, and excellent moldability.
  • the present invention is as follows.
  • [1] A cellulose particle having, over the entire surface of the particle, ridges (R) of a predetermined width (W) arranged in a mesh pattern, and crater-like depressions (C) surrounded by the ridges (R) and separated from each other by the ridges (R).
  • [2] The cellulose particles described in [1], wherein the number of depressions (C) separated from each other by the ridges (R) is 20 to 200 per 100 ⁇ m2 of the surface of the cellulose particles.
  • Dv50 volume average particle diameter
  • a cellulose powder which is an aggregate of cellulose particles according to any one of [1] to [11] above, wherein the ratio of particles having a predetermined width (W) to a particle diameter (D) of 0.15 or less (W/D) is 50% or more.
  • a cosmetic composition containing the cellulose particles according to any one of [1] to [11] above, or the cellulose powder according to [12] or [13] above.
  • the cellulose particles according to the present invention have a good feel, particularly a small squeaky feeling, and can be adjusted to have a moist feeling and a smooth feeling, and have excellent optical properties, excellent moldability, and excellent biodegradability. Therefore, the cellulose particles according to the present invention can be suitably used as an alternative material to existing non-biodegradable plastic microparticles or as a new material with better properties than conventional materials in various fields such as cosmetic raw materials, feel improvers, light scattering agents, resin additives, various fillers, release agents, coating agents, paints, scrubbing agents, and cleansing agents.
  • FIG. 2 is an explanatory diagram of the surface structure of a cellulose particle according to the present embodiment.
  • 4 is an example of the optical property measurement results of the cellulose particles of the present embodiment.
  • 1 is a surface SEM image of the cellulose particles of Example 4.
  • 1 is a SEM image of the cellulose particles of Example 7.
  • 1A is a SEM image of the cellulose particles of Comparative Example 4 at a magnification of 10,000 times
  • FIG. 1B is a SEM image of the cellulose particles of Comparative Example 4 at a magnification of 30,000 times.
  • 1 is a cross-sectional SEM image of the cellulose particles of Example 7. 1 shows the results of measuring the optical properties of the cellulose particles of Example 11.
  • 1 is a surface SEM image of the cellulose particles of Example 12.
  • the cellulose particles of this embodiment have an uneven structure on their surface.
  • This uneven structure (hereinafter also referred to as the specific uneven structure) is constituted by ridges (R) of a predetermined width (W) arranged in a net shape and crater-like depressions (C) surrounded by the ridges (R) and separated from each other by the ridges (R), which are arranged over the entire surface of the particle, as shown in FIG.
  • ridges (R) In places on the ridge (R), there are branching points (B) in three or more directions.
  • the ridge (R) exists in a form that surrounds the depression (C) and is clearly distinguishable from the depression (C) at a certain height.
  • the ridge line (RL) is defined as the line that divides the width of the ridge (R) in half.
  • the closed curve drawn by the ridge line (RL) to surround one depression (C) is defined as the contour line of the depression (C), and the figure enclosed by the contour line is defined as the contour shape of the depression (C).
  • the specified width (W) of the ridge portion (R) is defined as the average value of the width of the ridge portion (R) at a point which divides the length of the ridge line (RL) connecting two adjacent branch points (B) in half for one particle.
  • the term "crater-shaped depression (C)” refers to a depression that is surrounded by ridges (R) of a predetermined width (W) arranged in a net pattern and is separated from one another by the ridges (R), and that is depressed from the surface of a roughly spherical particle.
  • the ridges (R) surrounding the crater-shaped depression (C) are preferably formed in a ridge-like shape, and are preferably formed continuously.
  • the ridges (R) surrounding the crater-shaped depression (C) are formed integrally (continuously) in a continuous manner on the circumference surrounding the crater-shaped depression (C).
  • the depression (C) is formed by being depressed from the surface of the roughly spherical particle, and as a result, the part that was originally the surface of the roughly spherical particle remains as the ridges (R), and the ridges (R) are formed.
  • the multiple protrusions formed on the surface of the roughly spherical particles are not formed by overlapping each other, and that they do not have the amorphous uneven structure (groove-like streaks) seen in petal-shaped particles.
  • the three-dimensional shape of the crater-like depression (C) may be, but is not limited to, a hemisphere, a mortar, a cylinder, a cone, a truncated cone, an elliptical cylinder, an elliptical cone, a truncated elliptical cone, a polygonal column, a polygonal pyramid, a polygonal pyramid, a groove, etc.
  • the contour shape of the crater-like depression (C) may be circular, elliptical, concave, irregular, striated, etc., and is not particularly limited. From the viewpoint of obtaining a good feel and optical properties, the contour shape is preferably circular, elliptical, star-shaped, concave, or irregular, and more preferably concave. This also includes polygonal concave shapes. Furthermore, it is preferable that the circularity of the contour shape is 0.80 or less.
  • the concave contour shape refers to a shape in which the contour line of the depression (C) has a recessed portion on the inside.
  • the concave contour shape may be a shape having one recess, or a complicated shape having two or more recesses.
  • a concave contour shape is defined as a shape in which the ratio S2/S3 of the area (S2) of the contour shape to the area (S3) of the convex hull of the contour shape is 0.95 or less. From the viewpoint of obtaining good optical characteristics, it is preferred that the contour shape of at least one of the depressions (C) present in one particle is a concave shape.
  • the proportion of the depressions (C) present in one particle that have a concave contour shape is preferably 10% or more, more preferably 20% or more, and even more preferably 25% or more. Furthermore, when viewed as a powder that is an aggregate of cellulose particles, the proportion of particles having a specific uneven structure that include particles with a concave contour shape of the depressed portion (C) is preferably 20% or more, and more preferably 50% or more.
  • the "circularity of the contour shape of the depressed portion (C)" and “S2/S3” can be measured and calculated according to the following procedures. 1. Using a scanning electron microscope (SEM), an image is taken at a magnification such that the depression (C) to be measured and its surrounding ridge (R) fit within the field of view. 2. When an area is specified by tracing the contour line of the target depressed area (C) in freehand line mode using the image analysis software ImageJ, among the values calculated as Shape Descriptors, Circ. is the circularity of the contour shape, and Solidity is S2/S3.
  • SEM scanning electron microscope
  • the "number ratio of particles having a depressed portion (C) with a concave contour shape” can be measured and calculated according to the following procedure. 1. Using a scanning electron microscope (SEM), an image is taken so that the entire particle having the specific uneven structure to be measured is included in the field of view. 2. Using the image analysis software ImageJ, calculate the solidity of the contour shape for all depressions visible in the SEM image using the same procedure as above. 3. Measurements using the same procedure are carried out on a total of 10 randomly selected particles. 4. Among the measured particles, the percentage of particles having one or more contour shapes with a solidity of 0.95 or less is calculated.
  • SEM scanning electron microscope
  • the feeling of use of the particle can be improved. More specifically, the particle in a dry state provided with the specific uneven structure has a reduced squeaky feeling and changes in the feeling of moistness, friction, softness, etc., compared to a particle having a smooth surface without unevenness.
  • the reason why the feeling of use of the particle in a dry state changes when the specific uneven structure is provided is not clear, but it is considered that the behavior of the contact area, contact state, adhesion force (liquid bridging force, van der Waals force, electrostatic interaction, hydrophilic interaction), friction, fluidity, compression deformation property, etc.
  • the contact points between each individual particle and the surface and/or the contact points between each individual particle and particle is different from that of a particle having a smooth surface.
  • the particle provided with the specific uneven structure is moistened with a liquid such as water or oil, the liquid can be held in the depressed portion (C), so that the effect of suppressing the feeling of stickiness and making the makeup last longer can be exhibited compared to a particle having a smooth surface without unevenness.
  • Another effect of providing the above-mentioned specific uneven structure on the surface of the particles is, for example, improved moldability.
  • the bulk density of the powder layer is low when no compressive stress is applied, but when compressive stress is applied, the ridges (R) are easily deformed, so that the powder layer is densely packed, and a molded body with high compression and high strength can be produced.
  • Another effect of providing the above-mentioned specific uneven structure on the surface of the particles is, for example, improved optical properties. If the scale of the specific uneven structure is about the wavelength of light, the light scattering rate is improved. At the same time, if the scale of the particle diameter is sufficiently larger than the wavelength of light, the light transmittance is improved. Since the specific uneven structure and the particle diameter can be controlled independently, it is possible to adjust the light scattering property and the light transmittance to an optimal balance according to the purpose. For example, when used as a cosmetic raw material, it is expected to achieve both soft focus property and natural bare skin feeling by visible light scattering, improvement of UV cut performance (SPF value and PA value) by ultraviolet light scattering, and reduction of skin damage by infrared scattering.
  • SPF value and PA value UV cut performance
  • Another effect of providing the above-mentioned specific uneven structure on the surface of the particles is that the external specific surface area is increased compared to particles with a smooth surface, and the external specific surface area can be arbitrarily controlled, so that, for example, when the cellulose particles of this embodiment are used as an adsorbent or column packing, effects such as a high adsorption amount and a high adsorption speed can be achieved by supporting a large amount of an antibody or a functional agent having an adsorption ability on the particle surface.
  • the cellulose particles of this embodiment have good moldability, they are also suitable for use as excipients in which a large amount of a drug component or active ingredient is supported and coated on the particle surface and then compressed and molded.
  • the specific uneven structure of the cellulose particles of this embodiment may be composed of a smooth curved surface, or may be composed of a rough curved surface with fine unevenness. If the specific uneven structure is composed of a smooth curved surface, it is likely to have less roughness and a moist feel. If the specific uneven structure is composed of a rough curved surface with fine unevenness, it is likely to have a soft and light feel and a strong light scattering effect. However, if the fine unevenness includes a needle-like or fibrous structure, this is not preferable as it may deteriorate the feel.
  • the number of depressions (C) separated from each other by ridges (R) is preferably 20 to 200 per 100 ⁇ m 2 of the particle surface. If the number of depressions (C) separated from each other by ridges (R) is less than 20 per 100 ⁇ m 2 , the particles will become flat, red blood cell-like or disk-like, and the particles will be more likely to be caught in the depressions, which will deteriorate the feeling of use, and the relative structural size of the depressions to the wavelength of light will increase, resulting in a noticeable tendency to deteriorate the light scattering properties, which is not preferred.
  • each depression is small, so the majority of the particle surface will be composed of ridges (R), and as a result, the surface structure will not be significantly different from that of a particle with a smooth surface that does not have a specific uneven structure, which will significantly increase the sense of squeaking and deteriorate the light scattering properties, which is not preferred.
  • the "number of depressions (C) separated from each other by ridges (R)" can be measured and calculated according to the following procedure. 1. Using a scanning electron microscope (SEM), an image is taken so that the entire particle to be measured fits within the field of view. 2. Count the number of depressed portions (C) that can be identified in the SEM image in one particle (i.e., the number of depressed portions (C) present on one hemisphere of a roughly spherical particle), and call this number N (number). 3. Using the image analysis software ImageJ, the area of the region designated by tracing the contour line of the particle in freehand selection mode is calculated, and this is regarded as the two-dimensional projected area A ( ⁇ m 2 ) of the particle. 4.
  • SEM scanning electron microscope
  • the average value of the "number of depressions (C) separated from each other by ridges (R)" of a total of 10 particles having an arbitrarily selected specific uneven structure is 20 to 200 per 100 ⁇ m2.
  • the predetermined width (W) of the ridge portion (R) is 0.1 ⁇ m or more and 2.0 ⁇ m or less, and the ratio W/D of the predetermined width (W) of the ridge portion (R) to the particle diameter (D) is 0.25 or less.
  • the predetermined width (W) of the ridge portion (R) is 0.1 ⁇ m or more, the mechanical strength of the ridge portion (R) is sufficient, and the specific uneven structure is unlikely to be irreversibly deformed or collapsed or the light scattering property is unlikely to decrease during use, which is preferable.
  • the predetermined width (W) of the ridge portion (R) is preferably 0.1 ⁇ m or more, and more preferably 0.2 ⁇ m or more.
  • the predetermined width (W) of the ridge portion (R) is 2.0 ⁇ m or less, the contact of the ridge portion (R) with other surfaces or other particles becomes dot-like or linear from planar, and the effect of having the specific uneven structure is exerted, which is preferable because the creaking feeling is reduced.
  • the predetermined width (W) of the ridge portion (R) is preferably 2.0 ⁇ m or less, more preferably 1.5 ⁇ m or less, and even more preferably 1.3 ⁇ m or less.
  • the ratio W/D of the predetermined width (W) of the ridge portion (R) to the particle diameter (D) is 0.25 or less, the area ratio of the depressed portions to the particle surface is sufficiently large, which is preferable since it reduces the creaking sensation and provides the effect of scattering light.
  • W/D is preferably 0.25 or less, more preferably 0.20 or less, and even more preferably 0.15 or less.
  • the "predetermined width (W) of the ridge portion (R)" can be measured and calculated according to the following procedure. 1. Obtain an image at 5000x magnification using a scanning electron microscope (SEM). 2. Select one particle from among the particles within the field of view and identify one branch point (B). 3. Using the image analysis software ImageJ, in freehand line mode, draw a ridge line (RL) connecting the branch point (B) specified in 2 and any adjacent branch point (B) and measure its length. 4. Identify the midpoint (the point that divides the length in half) of the edge line (RL) drawn in 3 and define this as M. 5. Measure the width of the ridge (R) passing through M and perpendicular to the ridge line (RL) at M. 6.
  • the average value of the "predetermined width (W) of the ridge portion (R)" of a total of 10 particles having an arbitrarily selected specific uneven structure is 0.1 ⁇ m or more and 2.0 ⁇ m or less.
  • the "ratio W/D of a given width (W) of a ridge portion (R) to a particle diameter (D)" can be measured and calculated according to the following procedure. 1. Obtain an image at 5000x magnification using a scanning electron microscope (SEM). 2. One particle is selected from the particles within the field of view, and the predetermined width (W) of the ridge portion (R) is calculated in the same manner as above. 3. If the entire particle to be measured does not fit within the field of view of the SEM image acquired in 1 above, capture the image at a magnification such that the entire particle to be measured fits within the field of view. 4.
  • the Feret diameter of the specified area is determined by tracing the contour of the selected particle (the longest distance among the straight lines connecting any two points on the outer boundary of the selected area), and this is regarded as the particle diameter (D). 5.
  • the average value of the "ratio W/D of the given width (W) of the ridge portion (R) to the particle diameter (D)" of a total of 10 particles having an arbitrarily selected specific uneven structure is preferably 0.25 or less, more preferably 0.20 or less, and even more preferably 0.15 or less.
  • the number ratio of particles having a specific uneven structure with a ratio W/D of the given width (W) to the particle diameter (D) of 0.15 or less is preferably 50% or more.
  • the area (S2) of the outline shape i.e., the shape of a single crater-shaped depression (C) surrounded by a ridge line (RL), is preferably within a certain range in order to obtain good tactile feel and optical properties.
  • the area (S2) of the region surrounded by the ridge line (RL) around the depression (C) is 1 ⁇ m2 or more.
  • the ratio S2/S1 of the area (S2) of the region surrounded by the ridge line (RL) around the depression (C) to the area (S1) of the entire particle when projected two-dimensionally is 0.05 or more.
  • the ratio S2/S1 of the area (S2) of the region surrounded by the ridge line (RL) and the area (S1) of the entire particle when projected two-dimensionally is preferably 0.50 or less, more preferably 0.25 or less, more preferably 0.20 or less, and even more preferably 0.15 or less.
  • the cellulose particles of this embodiment preferably have an average value of "the area (S2) of the region surrounded by the ridge line (RL) around the depressed portion (C)" for a total of 10 particles having an arbitrarily selected specific uneven structure of 1 ⁇ m 2 or more.
  • the cellulose particles of this embodiment preferably have an average value of "the ratio S2/S1 of the area (S2) of the region surrounded by the ridge line (RL) around the depressed portion (C) to the area (S1) when the entire particle is two-dimensionally projected” for a total of 10 particles having an arbitrarily selected specific uneven structure of 0.05 to 0.50, more preferably 0.05 to 0.25, more preferably 0.05 to 0.20, and even more preferably 0.05 to 0.15.
  • the "area (S1) of the entire particle when projected two-dimensionally” can be measured and calculated according to the following procedure. 1. Using a scanning electron microscope (SEM), an image is taken at a magnification such that the entire particle to be measured fits within the field of view. 2. Using the image analysis software ImageJ, the area of a region designated by tracing the contour line of a particle in freehand line mode is determined, and this is designated as S1.
  • SEM scanning electron microscope
  • the "area (S2) of the region surrounded by the ridge line (RL) around the depression (C)” can be measured and calculated according to the following procedure. 1. Using a scanning electron microscope (SEM), an image is taken at a magnification such that the depression (C) to be measured and its surrounding ridge (R) fit within the field of view. 2. Using the image analysis software ImageJ, in freehand line mode, the area of a region designated by tracing the contour line of the target depression (C), i.e., the ridge line (RL) surrounding the depression (C), is calculated and designated as S2.
  • the cellulose particles of the present embodiment have a roughly spherical shape, preferably a roughly spherical shape.
  • the rough shape of the particles is determined from a two-dimensionally projected image of the particles according to the following formula: ⁇ wherein ⁇ is the circular constant, A is the two-dimensional projected area of the particle, and P is the perimeter of the particle when projected two-dimensionally. ⁇ The closer the circularity is to 1, the closer the shape is to a perfect sphere.
  • the circularity of the cellulose particles of this embodiment is preferably 0.8 or more, more preferably 0.85 or more.
  • the average circularity of 10,000 arbitrarily selected particles is preferably 0.8 or more, more preferably 0.85 or more.
  • the volume average particle diameter (Dv50) of the cellulose particles of this embodiment is preferably 1 ⁇ m or more and 50 ⁇ m or less.
  • the volume average particle diameter (Dv50) refers to the value of the particles in a dry state.
  • the volume average particle diameter (Dv50) is preferably 1 ⁇ m or more.
  • the volume average particle diameter (Dv50) is preferably 50 ⁇ m or less.
  • the particle size (particle diameter) distribution of the cellulose particles of this embodiment There are no particular limitations on the particle size (particle diameter) distribution of the cellulose particles of this embodiment. After the cellulose particles of this embodiment are produced, they may be classified or crushed under conditions that do not destroy the specific uneven structure, and used with any particle size distribution. From the viewpoint of obtaining a good usability, the volume fraction of particles with a particle diameter of 75 ⁇ m or more is preferably 5% or less, and more preferably 1% or less.
  • the primary particles are of a certain size or more, and specifically, the volume fraction of particles with a particle diameter of less than 1 ⁇ m is preferably 20% or less, more preferably 10% or less, and even more preferably 5% or less.
  • the inside of the cellulose particles of this embodiment may be a solid structure, a hollow structure, or a porous structure.
  • the cellulose particles are solid.
  • the cellulose particles are hollow or porous.
  • the cellulose particles are solid, and when strong light scattering properties are required, it is preferable that the cellulose particles are hollow or porous.
  • the cellulose constituting the cellulose particles of this embodiment may be natural cellulose such as cotton, hemp, pulp, etc., regenerated cellulose such as viscose rayon, cuprammonium regenerated cellulose (cupra), lyocell, cellulose acetate, etc., obtained by saponifying esterified cellulose, or bacterial cellulose produced by bacteria, or may be chemically modified cellulose obtained by modifying these celluloses using hydroxyl groups.
  • cellulose that has not been chemically modified and chemically modified cellulose may be mixed, and polysaccharides other than cellulose, derivatives thereof, and polymer compounds may be contained. From the viewpoint of rapid marine biodegradation, the weight fraction of cellulose that has not been chemically modified is preferably 80 wt% or more, more preferably 90 wt% or more, and even more preferably 95 wt% or more.
  • the crystallinity of the cellulose constituting the cellulose particles of this embodiment is preferably less than 70%. From the viewpoint of obtaining a soft feel and rapid marine biodegradability, the crystallinity is preferably less than 70%, more preferably less than 60%, and even more preferably less than 50%.
  • the cellulose constituting the cellulose particles of this embodiment is preferably regenerated cellulose having a crystal structure type II.
  • cellulose crystal structures are known as type I (natural cellulose) and type II (most regenerated cellulose).
  • type I cellulose include cellulose nanofibers (CNF) and crystalline cellulose.
  • Type I cellulose crystals have a higher elastic modulus and rigidity than type II cellulose crystals, so particles made of type I cellulose tend to have a hard feel.
  • particles made of type I cellulose are granulated after mechanical and/or chemical crushing without dissolving the raw material type I cellulose, but rigid fibrous materials and coarse crystals remain in the crushing process, and these are exposed to the particle surface to form a rough surface, so they tend to produce a strong squeaky feeling or a rough feel.
  • type II cellulose has a lower elastic modulus and rigidity than type I cellulose crystals, so particles made of type II cellulose tend to have a soft and moist feel.
  • type II cellulose is granulated after completely dissolving the raw cellulose once, so the surface of the granulated product can be made smooth without fibrous materials or coarse crystals, and the squeaky feeling and rough feel can be reduced.
  • the cellulose constituting the cellulose particles of the present embodiment is preferably regenerated cellulose having a crystal structure type II.
  • Examples of regenerated cellulose with crystal structure type II include cellulose obtained by saponifying esterified cellulose such as viscose rayon, cuprammonium regenerated cellulose (cupra), lyocell, and cellulose acetate, cellulose regenerated from a specific concentration of acid or alkali solution, cellulose regenerated from an aqueous solution of an inorganic salt such as zinc chloride, and cellulose regenerated from various ionic liquid solutions.
  • Cuprammonium regenerated cellulose is the most preferable because it is easy to make the crystallinity of the cellulose particles less than 70% and it is also easy to impart micropores due to the phase separation structure, and these effects result in a soft feel when used and a faster marine biodegradation rate.
  • the degree of polymerization of cellulose is not particularly limited. A low degree of polymerization is preferable when softness and moldability are required, and a high degree of polymerization is preferable when hardness and robustness of the particle structure are required.
  • the method for producing the cellulose particles of this embodiment is not particularly limited as long as it is a method that can produce a specific uneven structure on the surface of the microparticles.
  • a preferred method is to (i) first convert a raw material liquid containing cellulose into droplets, (ii) then solidify only the surface layer of the droplets to form a film and create a liquid or gel-like state with a low solid content inside the droplets, and (iii) then use the volume shrinkage that occurs during the process of concentrating and solidifying the inside of the droplets as a driving force to form crater-like depressions (C) on the surface of the microparticles, thereby producing the specific uneven structure.
  • Methods for turning the raw material liquid into droplets include, for example, spraying, suspending, emulsifying, etc.
  • Methods for solidifying the surface layer of the droplets and forming a film include, for example, drying, solidification, derivatization, etc.
  • Methods for shrinking the volume of the droplets include, for example, drying, dehydration, desolvation, derivatization, etc.
  • the methods (i) to (iii) may be arbitrarily combined depending on the purpose, but the spray drying (SD) method is particularly preferred from the viewpoints of productivity, cost, and the ability to use commonly used equipment.
  • the raw material solution for the SD method can be selected from a dispersion of fine cellulose, a cellulose solution in which cellulose is completely dissolved, a solution in which a cellulose derivative is completely dissolved, and the like, and is not particularly limited.
  • a cellulose solution or a cellulose derivative solution is preferred because the outermost surface of the film formed is smooth, and the viscosity of the raw material solution can be kept low even at a high concentration, making it easy to spray droplets.
  • an aqueous cuprammonium cellulose solution is particularly preferred because it contains two solvents, ammonia and water, which have different vapor pressures, and therefore the film formation process can be independently controlled by the rapid evaporation of ammonia at the beginning of drying, and the volume shrinkage process can be independently controlled by the delayed evaporation of water, resulting in easy control of a specific uneven structure.
  • the optimal spray drying conditions cannot be generalized because they vary depending on the type of raw material liquid used, but the present inventors have found that, for example, when a cuprammonium cellulose aqueous solution is used, the following conditions are appropriate.
  • the cellulose concentration of the cuprammonium cellulose aqueous solution which is the raw material liquid, is not particularly limited, but is preferably 1.5 wt% or more and 15.0 wt% or less. If the cellulose concentration is low, the specified width (W) of the ridge portion (R) may become small or disappear, which is not preferable. In order to obtain particles with a specified width (W) of the ridge portion (R) of 0.1 ⁇ m or more, the cellulose concentration is preferably 1.5 wt% or more, more preferably 2.0 wt% or more, and even more preferably 2.5 wt% or more.
  • the cellulose concentration is preferably 15.0 wt% or less, and more preferably 10.0 wt% or less.
  • the ammonia concentration of the cuprammonium cellulose aqueous solution which is the raw material liquid, is not particularly limited as long as it is within a range in which cellulose can be dissolved, but is preferably 2.5 wt% or more and 15.0 wt% or less. If the ammonia concentration is low, the dissolution stability of cellulose decreases and precipitates may occur, which is not preferable. From the viewpoint of the dissolution stability of cellulose, the ammonia concentration is preferably 2.5 wt% or more, more preferably 3.0 wt% or more, and even more preferably 4.0 wt% or more.
  • the ammonia concentration is preferably 15.0 wt% or less, more preferably 10.0 wt% or less, even more preferably 7.5 wt% or less, and most preferably 6.0 wt% or less.
  • the copper concentration of the cuprammonium cellulose aqueous solution which is the raw material liquid, is not particularly limited as long as it is within a range in which cellulose can be dissolved. However, if there is an excessive amount of copper greater than the theoretical amount required to dissolve cellulose, this is not preferable as it may affect the dissolution stability of the solution and the granulation stability (nozzle clogging) in the SD method.
  • the viscosity of the cuprammonium cellulose aqueous solution which is the raw material liquid, is not particularly limited as long as it can be sprayed and turned into droplets by a spray nozzle, and may be, for example, from 0.1 mPa ⁇ s to 300 mPa ⁇ s.
  • the spraying method is not particularly limited as long as it is a method capable of turning the cuprammonium cellulose aqueous solution into droplets.
  • the atomizer for example, one-fluid nozzle, two-fluid nozzle, four-fluid nozzle, disk atomizer, etc. can be selected according to the purpose, but is not limited thereto.
  • the operating conditions of the spray dryer cannot be generally defined because the optimum condition ranges vary depending on the composition of the cuprammonium cellulose aqueous solution and the specifications and structure of the spray dryer used.
  • the inlet temperature is set between 80 and 300°C
  • the outlet temperature is set between 0 and 150°C, and the amount of liquid sent and the amount of hot air supplied are adjusted so that the set inlet and outlet temperatures are stably maintained.
  • the set value of the inlet temperature is not particularly limited, but if the inlet temperature is too low, the drying speed will be slow, which may hinder film formation and prevent the formation of the desired uneven structure, the drying speed will be low, and the yield may be reduced due to adhesion loss of undried material, etc., and the inlet temperature is preferably 80° C.
  • the inlet temperature is preferably 300° C. or lower, more preferably 250° C. or lower, and even more preferably 200° C. or lower.
  • the outlet temperature is not particularly limited as long as it is in a range lower than the inlet temperature, but if the outlet temperature is too low, it is not preferable from the viewpoints that adhesion loss of undried material may occur, resulting in a decrease in yield, and that condensation may occur in the cyclone recovery section, leading to aggregation of product particles, etc., and the outlet temperature is preferably 40°C or higher, more preferably 50°C or higher, and even more preferably 60°C or higher.
  • the outlet temperature is preferably 150°C or lower, and more preferably 100°C or lower.
  • the outlet temperature is preferably 60°C or lower.
  • the difference between the inlet temperature and the outlet temperature ( ⁇ T) is not particularly limited as long as it is within a range in which the sprayed droplets can be dried, but if ⁇ T is too small, the ammonia vapor concentration and humidity in the drying tank of the spray dryer will decrease, the drying speed will increase, making it difficult to control the specified uneven structure, and productivity will deteriorate, which is not preferable, so ⁇ T is preferably 10°C or more, and more preferably 30°C or more.
  • ⁇ T is preferably 100°C or less.
  • the method of spray-drying the cuprammonium cellulose aqueous solution is selected as the method of producing cellulose particles of this embodiment, a blue powder containing copper and cellulose is obtained first.
  • the fine particles may be used as they are with copper remaining, but depending on the application, the inclusion of copper may not be permitted. In that case, copper can be removed by acid treatment.
  • the method of acid treatment is not particularly limited, but for example, the fine particles may be immersed in sulfuric acid and then solid-liquid separation may be performed by suction filtration, centrifugation, or the like.
  • any method for removing the acid may be selected, but for example, the fine particles after acid treatment may be immersed in pure water and then solid-liquid separation may be performed by suction filtration, centrifugation, or the like.
  • the fine particles that have been decoppered and deoxidized are in a water-containing state, but may be used as they are or may be dried before use.
  • the drying method is not particularly limited, and known drying methods and drying equipment may be used. From the viewpoint of suppressing particle aggregation during drying, methods such as freeze drying, spray drying, and paddle stirring drying are preferred.
  • a process of crushing the particle aggregates may be provided within a range that does not affect the specific uneven structure.
  • the cellulose particles of the present embodiment preferably have a small amount of residual copper and residual sulfuric acid. If these contents are high, there is a possibility that the particles may aggregate, discolor, or carbonize during drying, lose strength or deteriorate in physical properties during storage, decrease in biodegradability, or cause skin irritation.
  • the cellulose particles of this embodiment can be further classified to remove fine powder, coarse powder, and particles that do not have the specific uneven structure.
  • the cellulose particles of this embodiment may be subjected to any surface treatment, derivatization, or modification for the purpose of improving or adjusting the feeling of use and other physical properties.
  • Surface treatment agents may be used that are generally used for surface treatment of pigments, etc., such as metal soaps, fatty acids, amino acids, oils, surfactants, silicones, silane coupling agents, solid particles, etc., but are not limited thereto.
  • surface treatment agents containing nitrogen atoms, such as cationic surfactants and amino acids are preferred.
  • silane coupling agents are preferred.
  • the cellulose particles obtained by the present invention are biodegradable in compost, soil, and the ocean.
  • the cellulose is not surface-treated, derivatized, or modified.
  • the cellulose is not surface-treated, derivatized, or modified.
  • the cellulose particles of this embodiment may have various functional substances or active ingredients supported or compounded inside or on the surface of the particles.
  • functional substances and active ingredients include, but are not limited to, organic substances, inorganic substances, polymeric compounds, dyes, pigments, lakes, oils, and surfactants.
  • inorganic substances include, but are not limited to, titanium oxide, zinc oxide, barium sulfate, talc, mica, platinum, gold, Prussian blue and its analogs, iron oxide, red iron oxide, and the like.
  • the cellulose particles of this embodiment may be supported or composited with light-scattering solid particles in the interior and/or surface layer of the particles.
  • the scattering properties of the cellulose particles having the specific uneven structure for any or all of ultraviolet, visible, and infrared rays can be improved.
  • the light-scattering effect of the solid particles can be enhanced by the specific uneven structure. Even if the light-scattering solid particles alone have a poor feel, the feel can be improved by composited with the cellulose particles having the specific uneven structure. Due to the above characteristics, the cellulose particles composited with the light-scattering solid particles can be suitably used in any composition that requires enhanced light-scattering properties and feel characteristics.
  • light-scattering solid particles include, but are not limited to, titanium oxide, zinc oxide, aluminum oxide, magnesium oxide, zirconium oxide, tin oxide, cerium oxide, barium sulfate, silica, mica, sericite, talc, kaolin, mica, titanium mica, bismuth oxychloride, and boron nitride.
  • the state in which the light-scattering solid particles are supported and compounded is not particularly limited, but from the viewpoint of improving the feel and optical properties, it is preferable that the light-scattering solid particles are supported and compounded in a dispersed state without agglomeration inside and/or on the surface of the particles.
  • the method for supporting and compositing the light-scattering solid particles is not particularly limited, but from the viewpoint of dispersing the light-scattering solid particles and imparting a specific uneven structure, a method in which the light-scattering solid particles are added and dispersed in a cuprammonium cellulose aqueous solution, which is a raw material liquid, and then granulated by a spray drying method is preferred.
  • the content of the light-scattering solid particles can be adjusted as desired depending on the desired physical properties.
  • the cellulose particles of this embodiment may be in a dry state, a wet state, or dispersed in any liquid or medium.
  • the spray dryer used was an L-8i manufactured by Okawara Kakoki (disk atomizer: MC-50 manufactured by Okawara Kakoki, two-fluid nozzle: RJ-5 manufactured by Okawara Kakoki) or a Palvis Mini Spray GB210-A manufactured by Yamato Scientific (two-fluid nozzle: 1A).
  • the filter paper used for suction filtration was ASFIL qualitative filter paper manufactured by AS ONE (product number: 2-872-02, diameter: 9 mm, material: cellulose, maximum pore size: 10 to 15 ⁇ m).
  • volume average particle size (Dv50) The volume average particle size (Dv50) of the particles in a dry state was measured using a laser diffraction particle size measurement device (Malvern Mastersizer 3000E). As a pretreatment for the measurement, a dispersion treatment was performed using Aero M at a dispersion pressure of 4 bar.
  • Cellulose particles were added to the degassed resin mixture and thoroughly stirred, and then the mixture was placed in a vacuum dryer again and degassed under reduced pressure for 10 minutes or more.
  • a commercially available cover glass (approximately 18 x 18 x 0.2 mm in size) was divided into eight rectangular pieces, and a resin mixture containing an appropriate amount of cellulose particles was dropped onto the cover glass.
  • Another cover glass divided into eight pieces was placed on top of the resin mixture and left to stand, waiting for the resin mixture to spread between the cover glasses. After the resin mixture had spread sufficiently, the cover glass was heated at 60°C for 24 hours.
  • the resin-embedded cellulose particles were cross-sectionally processed using a BIB processing device (IM4000+, Hitachi) under the following conditions. Acceleration voltage: 2.5 kV Ion beam current: 20 ⁇ A Argon flow rate: 0.35 cm 3 /min Stage mode: C6 Processing time: 6 hours Temperature: Room temperature
  • the cut surface of the resin containing the processed cellulose particles was observed under the following conditions using a scanning electron microscope (Regulus 8220, Hitachi) to obtain an SEM image. Magnification: 1,000 to 1,500 times Electron detector: Secondary electron detector (SE(U), SE(L), LM or a combination of these) Acceleration voltage: 1 kV Emission current: 10 ⁇ A Condenser lens: 5 to 13 Probe current: Normal Working distance (WD): 8 ⁇ 0.2mm Scanning method for image acquisition: Rapid
  • the crystallinity of cellulose was measured and calculated by the transmission WAXS method and the Isogai method.
  • the particles were sealed in a cell made of double-sided tape and a polyetherimide film, and the sample was used for the measurement with a thickness of 1 mm.
  • the measurement was carried out under the following conditions.
  • the one-dimensional profile calculated by formula (1) includes scattering from the sample as well as scattering from the window material, air, and other sources other than the sample.
  • the scattering intensity depends on the instrument and the thickness of the sample.
  • formula (2) Empty cell scattering and absolute intensity corrections were performed using the method.
  • each term in the formula (2) is as follows.
  • I(2 ⁇ ) empty cell scattering, absolute intensity corrected scattering intensity
  • I obs (2 ⁇ ) uncorrected scattering intensity (a one-dimensional scattering profile obtained by the formula (1), in which the terms with the subscript sample are the measured values of a particle sample, and the terms with the subscript empty are the measured values of an empty cell
  • I 0 X-ray transmitted light intensity (cps) ⁇ exposure time when I obs (2 ⁇ ) is measured (measured with an attenuation plate inserted in the same detector as I(2 ⁇ ))
  • t sample thickness
  • R attenuation rate of the attenuation plate used in the I0 measurement
  • S detector pixel area
  • A Classical radius of the electron.
  • the crystallinity was measured according to the Isogai method using the following formula (3): The calculation was made as follows.
  • I (1-10) is the peak intensity derived from the (1-10) plane
  • I (1-10)B is the background intensity at the position of the peak derived from the (1-10) plane.
  • I (1-10) and I (1-10)B in formula (3) were calculated by the following procedure.
  • I (1-10)B a + b (2 ⁇ *) was calculated using the intercept a and slope b of the linear background obtained by fitting.
  • Example 1 Spray-dried copper/ammonium particles Granulation: A cuprammonium cellulose aqueous solution was prepared containing 3.5 wt% cellulose, 4.0 wt% ammonia, 1.3 wt% copper, and 91.2 wt% water. This solution was spray-dried in an RJ-5 under the conditions of a spray pressure of 0.3 MPa, a liquid supply rate of 1.3 kg/h, an inlet temperature of 130°C, and an outlet temperature of 65°C, and a blue powder was collected in the cyclone section.
  • Acid washing 50 g of the blue powder obtained in Example 1 was dispersed in 1000 g of 7.5 wt % sulfuric acid, stirred for 10 minutes with a magnetic stirrer, and the slurry was suction filtered to obtain a wet cake. The wet cake was then redispersed in 1000 g of fresh 7.5 wt % sulfuric acid, stirred for 10 minutes with a magnetic stirrer, and the slurry was suction filtered to obtain a wet cake. The same acid washing and suction filtration operations were repeated until the wet cake was sufficiently decopperized and turned white.
  • Water washing (deacidification): The wet cake was dispersed in 1000 g of pure water and stirred for 10 minutes with a magnetic stirrer, and the slurry was suction filtered to obtain a wet cake. The same water washing and suction filtration procedures were repeated until the pH of the filtrate became neutral. Drying: The wet cake was loosened with a medicine spoon, spread on a stainless steel tray, and dried in a thermostatic dryer at 80° C. When the material to be dried became a loose powder or a flake-like aggregate of powder and had a moisture content of 10 wt % or less, the drying was terminated and the material was removed from the thermostatic dryer.
  • the above sample was thoroughly ground using a mortar and pestle, and then sieved through a 75 ⁇ m mesh to remove coarse particles, obtaining cellulose particles.
  • the volume average particle diameter (Dv50) was 6.4 ⁇ m.
  • the particle surface had a specific uneven structure, and the outermost surface layer was smooth without any fibrous or needle-like structures.
  • Examples 2 to 10 Cupric ammonium spray-dried particles
  • Cellulose particles were obtained in the same manner as in Example 1, except that the granulation conditions were changed as shown in Table 1 below.
  • FIG. 3 shows a surface SEM image of the particles obtained in Example 4. The particle surface had a specific uneven structure, and the outermost surface layer was smooth without any fibrous or needle-like structures.
  • FIG. 4 shows a surface SEM image of the particles obtained in Example 7. The particle surface had a specific uneven structure, and the outermost surface layer was smooth without any fibrous or needle-like structures.
  • FIG. 6 shows a cross-sectional SEM image of the particles obtained in Example 7.
  • the inside of the particle was solid (however, this does not deny the presence of microscopic pores on a scale that cannot be observed with SEM).
  • the cross-sectional contour line had a shape in which U-shaped depressions/nipple-like protrusions were alternately connected over the entire circumference due to the specific uneven structure.
  • Example 11 Spray-dried copper ammonium particles carrying a light-scattering solid Cellulose particles were obtained in the same manner as in Example 1, except that a solution of 3.9 wt % cellulose, 5.7 wt % ammonia, 1.4 wt % copper, 3.9 wt % titanium oxide, and 85.1 wt % water was used, which was prepared by mixing a slurry of titanium oxide particles (TA-300D, manufactured by Fuji Titanium Industrial Co., Ltd.) dispersed in water with an aqueous cuprammonium cellulose solution, and that the granulation conditions were changed as shown in Table 1 below.
  • TA-300D manufactured by Fuji Titanium Industrial Co., Ltd.
  • Example 12 Spray-dried copper/ammonium particles
  • Cellulose particles were obtained in the same manner as in Example 1, except that the granulation conditions were changed as shown in the following Table 1.
  • a surface SEM image of the particles obtained in Example 12 is shown in Figure 8.
  • a specific uneven structure was observed on the surface of the particles obtained in Example 12, and the specific uneven structure was composed of a rough curved surface with fine unevenness.
  • Comparative Example 16 Crosslinked Carboxymethyl Cellulose Particles
  • Crosslinked carboxymethyl cellulose particles were obtained in the same manner as in Comparative Example 15, except that the granulation conditions were changed to an inlet temperature of 120°C and an outlet temperature of 60°C.
  • An inclined gutter was provided at a position facing the two-fluid nozzle, and a 10 wt% NaOH aqueous solution was poured from the top of the gutter so that the liquid level was constantly renewed, and the cellulose was solidified by receiving the mist droplets discharged from the two-fluid nozzle here, and the slurry was collected at the bottom of the gutter.
  • the obtained slurry was suction filtered, and the wet cake was thoroughly washed with pure water. Thereafter, acid washing, water washing, drying, pulverization, and classification were performed in the same manner as in Example 1 to obtain cellulose particles.
  • the volume average particle size (Dv50) was 11.0 ⁇ m. Observation of the surface structure by SEM revealed that the particles were approximately spherical particles with a smooth surface, with no ridges (R) or depressions (C) observed.
  • This mixture was emulsified by stirring at 8500 rpm for 5 minutes or more using a homogenizer (ULTRA TURRAX T25 easy clean, shaft generator: S25N-18G, manufactured by IKA). While continuing stirring with the homogenizer, 10 mL of acetone (manufactured by Kanto Chemical Co., Ltd., special grade reagent) was added, and stirring with the homogenizer was continued for another 5 minutes to coagulate the cellulose. The obtained slurry was filtered by suction, and then acid-washed, washed with water, dried, pulverized, and classified in the same manner as in Example 1 to obtain cellulose particles. The volume average particle diameter (Dv50) was 4.2 ⁇ m. As a result of observing the surface structure with an SEM, the particles were approximately spherical particles with a smooth surface, and no ridges (R) or depressions (C) were observed.
  • a homogenizer ULTRA TURRAX T25 easy clean, shaft generator: S25
  • silica particles Commercially available silica particles (Cosme Silica CQ10, manufactured by Fuji Silysia Chemical Co., Ltd.) were obtained.
  • the cellulose particles of Examples 1 to 12 were scored on the positive side for squeaking sensation (weak squeaking sensation), whereas the particles of Comparative Examples 1 to 7 were scored on the negative side for squeaking sensation (strong squeaking sensation), indicating that the cellulose particles of this embodiment have an improved squeaking sensation. It is also apparent that the cellulose particles of this embodiment can adjust the moist feeling and slippery feeling by controlling the specific uneven structure.
  • a double-sided tape (Nichiban NicTack NW-40) was attached to black drawing paper (Maruai PI-N46D), and the fine particle sample was sprinkled on the double-sided tape, and then evenly applied with a makeup brush. The excess powder that did not adhere to the double-sided tape was brushed off to prepare a sample for optical property evaluation.
  • a barium sulfate white plate (Murakami Shikisai Kogyo, 50 mm x 50 mm) was used as a standard sample.
  • the visible light reflection intensity of the barium sulfate white plate was measured with a variable angle photometer (Murakami Shikisai Kogyo GP-5) at an incident angle of -45°, and the reflected light intensity in the 0° direction was normalized to 90 (reference), and the relative reflected light intensity of each sample was measured.
  • Five samples for measuring light scattering properties were prepared for each type of fine particle sample, and the average value of the relative reflected light intensity of the five samples was calculated, and the average value of the relative reflected light intensity at each reflection angle was plotted.
  • Example 1 The results for the particles of Example 1 and Comparative Examples 5, 6, 8, and 11 are shown in Figure 2.
  • the cellulose particles of Example 1 scatter the incident light evenly in all directions and have a moderate reflected light intensity, i.e., have a certain degree of light transmittance, and from these results it can be said to have good optical properties.
  • the particles of this embodiment can achieve both soft focus properties and a natural bare skin feel.
  • Example 11 The results for the particles of Example 11 are shown in Figure 7.
  • Cellulose particles have strong retroreflective properties, and when used as a cosmetic ingredient, for example, they can favorably exhibit optical properties such as a matte finish, soft focus, and UV protection.
  • Stress at 10% deformation A compression test was carried out on one cellulose particle using a microparticle crushing force measuring device (NS-A300 manufactured by Nanoseeds Co., Ltd.). A small amount of the microparticle sample was scattered on the lower pressure plate, and particles with a particle diameter of about 10 ⁇ m were selected under a microscope and the stress at 10% deformation was measured. Measurements were carried out on 10 particles per sample, and the average value of the stress at 10% deformation was calculated.
  • a powder bed shear force measurement was performed using a powder bed shear force measuring device (NS-S500 manufactured by Nano Seeds Co., Ltd.) to obtain various physical properties related to moldability.
  • the particle sample was filled into a shear cell, the top surface of the powder bed was flattened, and then a shear test was performed with the indentation target load as the indentation control condition.
  • the measurement conditions were as follows: Sample filling amount: 2.5g Sampling frequency: 10Hz Powder bed inner diameter: 15 mm Push-in speed: 0.20 mm/sec Push-in control conditions: Push-in load: 50 N, 100 N, or 150 N Shear rate: 10 ⁇ m/sec Shear start delay: 100 seconds (after the push control condition is established) The load measured when the target indentation load was reached and indentation was stopped was recorded as the instantaneous maximum vertical load.
  • the stress transmission rate was calculated by the following equation: It should be noted that a larger stress transmission rate means a smaller friction between the powder layer and the inner wall of the packed cells, which is preferable for carrying out compression molding.
  • the compression ratio was calculated from the powder bed height at the time of initial filling of the particle sample into the shear cell and the powder bed height immediately before the start of shearing.
  • the maximum principal stress means the pressure at the time when the cylinder is destroyed by applying pressure from above and below with hydrostatic pressure applied to the side of the powder bed compressed into a cylindrical shape.
  • the uniaxial collapse stress means the pressure at the time when the cylinder is destroyed by applying load to the top of the cylinder with the side wall removed for the powder bed compressed into a cylindrical shape. Both the maximum principal stress and the uniaxial collapse stress are one index that indicates the strength of the molded body, and it can be judged that the powder has better moldability when the maximum principal stress and the uniaxial collapse stress are larger when the same load is applied.
  • the cellulose particles of this embodiment can exhibit large maximum principal stress and uniaxial collapse stress, especially large uniaxial collapse stress, when compressed and molded under the same target load, and can exhibit good moldability.
  • the cellulose particles of Examples 1 to 12 had rapid marine biodegradability.
  • Cosmetic composition 1 Sun care composition Various particles were added to a commercially available suncare product (Atopita Moisturizing UV Cream 29, manufactured by Tanpei Pharmaceutical Co., Ltd.) in the weight ratios shown in Table 7 and mixed thoroughly to obtain Cosmetic Composition 1. The UV protection performance and feel upon application of Cosmetic Composition 1 were evaluated. For the evaluation of UV protection performance, a sunscreen analyzer (UV-2000S, manufactured by Labsphere Co., Ltd.) was used, and a PMMA plate (HELIOPLATE SB6, manufactured by Helioscreen Co., Ltd.) was used as the application substrate to measure the SPF value and PA value. The evaluation results of Cosmetic Composition 1 are shown in Table 7 below.
  • Cosmetic compositions 1-1 and 1-2 which contain cellulose particles with a specific uneven structure, had improved SPF and PA values compared to commercially available sun care products, and had a good feel when applied.
  • Cosmetic composition 1-3 which contains cellulose particles without a specific uneven structure, did not show an improved SPF value.
  • Cosmetic composition 1-4 which contains fine titanium dioxide particles, had improved UV protection performance, but had poor spreadability and a squeaky feel when applied to the skin.
  • Cosmetic composition 2 solid foundation composition
  • Various ingredients conventionally used as raw materials for cosmetics were mixed to produce Cosmetic Composition 2. Specifically, each powder was blended in the weight ratio shown in Table 8 and mixed in a blender, and then a binder was added in the weight ratio shown in Table 8 below and mixed.
  • cosmetic compositions 2-1, 2-2, and 2-3 were good with little squeaky feeling, while cosmetic composition 2-4 was poor with a squeaky feeling.
  • cosmetic composition 2-1 had good soft focus properties with fine wrinkles on the skin not being noticeable, and cosmetic composition 2-2 was confirmed to have improved concealment in addition to soft focus properties.
  • cosmetic compositions 2-3 and 2-4 made fine wrinkles on the skin noticeable and had insufficient concealment and soft focus properties.
  • Cosmetic Composition 3 was produced by mixing various components conventionally used as raw materials for cosmetics. Specifically, bentonite, propylene glycol, and purified water were mixed in the weight ratios shown in Table 9 below and treated with a homomixer at 70°C, after which the remaining aqueous phase components were added and thoroughly stirred. To this, the thoroughly mixed powder portion was added with stirring and further treated with a homomixer at 70°C. Next, the oil phase that had been heated and dissolved at 70-80°C was gradually added and further treated with a homomixer at 70°C. The resulting mixture was cooled to room temperature with stirring and deaerated to obtain Cosmetic Composition 3.
  • a sensory evaluation was conducted on the feel of the coating film after cosmetic composition 3 was applied to the skin and dried. As a result, a squeaky feeling was felt with cosmetic compositions 3-1 and 3-2, but the squeaky feeling was reduced with cosmetic composition 3-3, and the squeaky feeling was further reduced with cosmetic composition 3-4. In addition, as a result of visually evaluating the soft focus properties, cosmetic compositions 3-3 and 3-4 were confirmed to have good soft focus properties, with fine wrinkles on the skin being less noticeable compared to cosmetic compositions 3-1 and 3-2.
  • Cosmetic composition 4 W/O emulsion foundation composition
  • Various components conventionally used as raw materials for cosmetics were mixed to produce Cosmetic Composition 4. Specifically, after stirring the aqueous phase in the weight ratios shown in Table 10 below, the thoroughly mixed powder portion was added and treated with a homomixer, and the dissolved oil phase was further added and treated with a homomixer, followed by deaeration to obtain Cosmetic Composition 4.
  • cosmetic composition 4 when applied to the skin were visually evaluated. As a result, cosmetic compositions 4-1 and 4-2 had good soft focus properties and did not make fine wrinkles on the skin stand out. However, cosmetic compositions 4-3 and 4-4 showed insufficient soft focus properties and made fine wrinkles on the skin stand out.
  • the cellulose particles according to the present invention are cellulose particles that have low squeaking sensation, adjustable moistness and slipperiness, excellent optical properties, excellent moldability, and excellent biodegradability. Therefore, the cellulose particles according to the present invention can be suitably used in various fields such as cosmetic raw materials, texture improvers, visible light scattering agents, infrared scattering agents, resin additives, various fillers, release agents, coating agents, paints, scrubbing agents, cleansing agents, adsorbent carriers, filter media, filtration aids, column packing materials, excipients, etc.
  • R Ridge C: Crater-like depression
  • B Branch point of ridge (R)
  • RL Ridge (RL) connecting the branch points (B) so as to bisect the width of the ridge (R) S1 Area of the whole particle when projected two-dimensionally S2 Area of the figure (contour shape) drawn by surrounding one crater-shaped depression (C) with a ridge line (RL) S3 Area of the convex hull of the contour shape W Predetermined width of the ridge (R) D Particle diameter

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)

Abstract

優れた生分解性、特に海洋生分解性を有しつつ、プラスチック系微粒子に匹敵するか又はこれを凌駕する物性を発現し得る、例えば、感触が良好で特にきしみ感が小さく、さらにしっとり感やすべり感を調整可能で、光学特性に優れ、成形性に優れる、微粒子を提供する。本発明は、セルロース粒子であって、該粒子の表面全体に、網状に配された所定幅(W)の畦部(R)と、該畦部(R)により取り囲まれ、該畦部(R)により互いに隔てられたクレーター状の陥没部(C)とを、有する、セルロース粒子に関する。

Description

セルロース粒子
 本発明は、セルロース粒子に関する。
 微粒子は、幅広い分野で使用されている。
 例えば、化粧料には、感触改良や光学特性の付与を主目的として、様々な素材・形態の微粒子が配合されている。
 一般には、プラスチック系素材の球状微粒子が多く使用されている。例えば、以下の特許文献1には、球状シリコーン微粒子が開示されている。
 感触・光学特性の更なる向上を目的として、特殊な粒子表面形状を有する微粒子が使用される場合もある。例えば、以下の特許文献2には、表面に網目状構造を有するシリコーン微粒子が開示されている。
 以下の特許文献3には、表面に多角形状の凹部を有し、さらに細かな微粒子で表面が被覆されたシリコーン微粒子が開示されている。
 以下の特許文献4には、表面に微小突起を設けたシリコーン微粒子が開示されている。
 その他、アクリル系、ウレタン系、ポリオレフィン系など様々な素材・形態の微粒子が、様々な用途で使用されている。
 ところで近年、環境保護の観点から生分解性を有さないプラスチック系微粒子の使用は忌避・規制されつつある。以下の特許文献1~4に示した粒子は、生分解性を有さないという問題点がある。従来、生分解性を有さないプラスチック系微粒子が使用されていた分野では、天然物・無機鉱物系の素材からなる微粒子や、生分解性を有する素材からなる微粒子等に代替する動きがある。
 天然物・無機鉱物系の素材として、例えば、以下の特許文献5には、球状シリカ微粒子及びその製法が開示されている。シリカ微粒子はきしみ感・すべり性に優れるものの、化粧料用途においては独特のシャリ感やうわすべり感、低い成形性が問題となることがある。
 生分解性を有する素材においては、特に廃棄物が最終的に流れ込み蓄積される海洋における迅速な生分解性が重要視される場面が増えている。例えば、以下の特許文献6には、球状セルロース微粒子が開示されている。また、以下の特許文献7には、表面にしわ状構造を有するセルロース微粒子が開示されている。また、以下の特許文献8には、不定形な平滑な外形を有するセルロース微粒子が開示されている。セルロース微粒子は迅速な海洋生分解性を有し、柔らかな感触を有するなどの特徴がある一方で、化粧料用途においては独特のきしみ感が問題となる場合がある。
 セルロース以外の生分解性を有する素材としては、例えば、以下の特許文献9には、球状酢酸セルロース微粒子が開示されている。また、以下の特許文献10には、表面にクレーター状の凹部を有する架橋カルボキシメチルセルロース微粒子が開示されている。しかし、酢酸セルロース微粒子やその他の生分解性を有する素材は、海洋生分解速度が遅く、環境中に長期間残留する場合があるという問題点がある。
特許第4860214号公報 特許第5522859号公報 特許第5859478号公報 特許第6125276号公報 特開昭62-128916号公報 特許第6872068号公報 国際公開第2019/151486号 特開平4-348131号公報 特許第6609726号公報 特開2022-135891号公報
 上述のように、良好な海洋生分解性を有しつつ、従来広く使用されてきた非生分解性プラスチック系微粒子に匹敵あるいは凌駕するほどの良好な物性を示す微粒子は未だ提案されておらず、新たな微粒子材料が求められている。また、良好な海洋生分解性を有する素材からなる微粒子について、微粒子の表面形態に着目した物性改善検討は十分になされているとは言い難い。以上のような背景から、本発明が解決しようとする課題は、優れた生分解性、特に海洋生分解性を有しつつ、プラスチック系微粒子に匹敵するか又はこれを凌駕する物性を発現し得る、例えば、感触が良好で特にきしみ感が小さく、さらにしっとり感やすべり感を調整可能で、光学特性に優れ、成形性に優れる、微粒子を提供することである。
 発明者らは、前記した課題を解決すべく鋭意検討し実験を重ねた結果、セルロース微粒子の表面に特定の凹凸構造を付与することで、所望の効果を発揮しうることを、予想外に見出し、本発明を完成するに至ったものである。
 すなわち、本発明は以下のとおりのものである。
 [1]セルロース粒子であって、該粒子の表面全体に、網状に配された所定幅(W)の畦部(R)と、該畦部(R)により取り囲まれ、該畦部(R)により互いに隔てられたクレーター状の陥没部(C)とを、有するセルロース粒子。
 [2]前記畦部(R)により互いに隔てられた陥没部(C)の個数が、前記セルロース粒子の表面100μmあたり20個以上200個以下である、前記[1]に記載のセルロース粒子。
 [3]前記畦部(R)の所定幅(W)が、0.1μm以上2.0μm以下であり、かつ所定幅(W)の粒子径(D)に対する比W/Dが0.25以下である、前記[1]又は[2]に記載のセルロース粒子。
 [4]円形度が0.8以上である、前記[1]~[3]のいずれかに記載のセルロース粒子。
 [5]前記セルロース粒子を構成するセルロースの結晶化度が70%未満である、前記[1]~[4]のいずれかに記載のセルロース粒子。
 [6]前記セルロース粒子を構成するセルロースが、結晶構造II型の再生セルロースである、前記[1]~[5]のいずれかに記載のセルロース粒子。
 [7]前記結晶構造II型の再生セルロースが、銅アンモニア法再生セルロース(キュプラ)である、前記[6]に記載のセルロース粒子。
 [8]前記畦部(R)により互いに隔てられた陥没部(C)の輪郭形状のうち、凹形状であるものを少なくとも1個含む、前記[1]~[7]のいずれかに記載のセルロース粒子。
 [9]前記畦部(R)により互いに隔てられた陥没部(C)の輪郭形状のうち、凹形状であるものの個数割合が10%以上である、前記[1]~[8]のいずれかに記載のセルロース粒子。
 [10]前記セルロース粒子の内部又は表層に、光散乱性固体粒子が担持されている、前記[1]~[9]のいずれかに記載のセルロース粒子。
 [11]前記光散乱性固体粒子が、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、酸化スズ、酸化セリウム、硫酸バリウム、シリカ、マイカ、セリサイト、タルク、カオリン、雲母、雲母チタン、オキシ塩化ビスマス、窒化ホウ素、のいずれか又はそれらの組み合わせである、前記[1]~[10]のいずれかに記載のセルロース粒子。
 [12]前記[1]~[11]のいずれかに記載のセルロース粒子の集合体であるセルロース粉体であって、セルロース粒子の体積平均粒子径(Dv50)が、1μm以上50μm以下であるセルロース粉体。
 [13]前記[1]~[11]のいずれかに記載のセルロース粒子の集合体であるセルロース粉体であって、所定幅(W)の粒子径(D)に対する比W/Dが0.15以下である粒子の個数割合が50%以上である、セルロース粉体。
 [14]前記[1]~[11]のいずれかに記載のセルロース粒子、又は前記[12]又は[13]に記載のセルロース粉体を配合した化粧品組成物。
 本発明に係るセルロース粒子は、感触が良好で特にきしみ感が小さく、さらにしっとり感やすべり感を調整可能で、光学特性に優れ、成形性に優れ、かつ、生分解性に優れるセルロース粒子である。したがって、本発明に係るセルロース粒子は、化粧品原料、感触改良剤、光散乱剤、樹脂添加剤、各種フィラー、離型剤、コーティング剤、塗料、スクラブ剤、クレンジング剤等の様々な分野で、既存の非生分解性プラスチック微粒子の代替材料として、あるいは従来よりも優れた特性を有する新規材料として、好適に利用可能である。
本実施形態のセルロース粒子の表面構造の説明図である。 本実施形態のセルロース粒子の光学特性測定結果の一例である。 実施例4のセルロース粒子の表面SEM画像である。 実施例7のセルロース粒子のSEM画像である。 比較例4のセルロース粒子の、(a)倍率10000倍、(b)倍率30000倍のSEM画像である。 実施例7のセルロース粒子の断面SEM画像である。 実施例11のセルロース粒子の光学特性測定結果である。 実施例12のセルロース粒子の表面SEM画像である。
 以下、本発明の実施形態を詳細に説明する。
[表面構造]
 本実施形態のセルロース粒子は、その表面に凹凸構造を有する。かかる凹凸構造(以下、特定凹凸構造ともいう。)は、図1に例示するように、網状に配された所定幅(W)の畦部(R)と、該畦部(R)により取り囲まれ、該畦部(R)により互いに隔てられたクレーター状の陥没部(C)とが、粒子の表面全体に配されることにより構成されるものである。
 畦部(R)の所々には、3方向以上への分岐点(B)が存在する。畔部(R)は陥没部(C)を取り囲むように、ある高さをもって陥没部(C)とは明瞭に区別できる形で存在する。畔部(R)の幅を2等分する線として稜線(RL)を定義する。稜線(RL)で1個の陥没部(C)を取り囲むようにして描かれる閉じた曲線を陥没部(C)の輪郭線と定義し、輪郭線によって囲まれてできる図形を陥没部(C)の輪郭形状と定義する。
 畦部(R)の所定幅(W)は、隣接する2つの分岐点(B)を結ぶ稜線(RL)の長さを2等分する点における畦部(R)の幅の、1個粒子における平均値として定義される。
 本明細書中、用語「クレーター状の陥没部(C)」とは、網状に配された所定幅(W)の畦部(R)により取り囲まれ、該畦部(R)により互いに隔てられた部分であり、略球体の粒子の表面から陥没している陥没部をいう。すなわち、クレーター状の陥没部(C)を取り囲む畦部(R)は、稜線状に形成されるものが好ましく、連続的に形成されるのが好ましい。クレーター状の陥没部(C)を取り囲む畦部(R)は、クレーター状の陥没部(C)を取り囲む周上で、一体的に(連続的に)連なって形成されており、言い換えれば、略球体の粒子の表面から陥没部(C)が陥没して形成されたことで、結果的に元の略球体の粒子の表面であった部分が畦部(R)として残り、畦部(R)が形成されるような形状であることが好ましい。その意味で、略球体の粒子の表面に形成された複数の凸部が互いにより重なって形成されるものではないことが好ましく、花弁状粒子に見られる不定形の凹凸構造(溝状の筋目)ではないことが好ましい。
 クレーター状の陥没部(C)の立体形状は、半球状、すり鉢状、円柱状、円錐状、円錐台状、楕円柱状、楕円錐状、楕円錐台状、多角柱状、多角錘状、多角錘台状、溝状、などであってもよく特に限定されない。
 クレーター状の陥没部(C)の輪郭形状は、円形状、楕円状、凹形状、不定形状、筋目状、などであってもよく特に限定されない。良好な感触と光学特性を得られるという観点からは、輪郭形状が円形状、楕円状、星形状、凹形状、不定形状であることが好ましく、凹形状であることがより好ましい。ここには、凹形状である多角形も含まれる。さらに輪郭形状の円形度が0.80以下であることが好ましい。
 凹形状の輪郭形状とは、陥没部(C)の輪郭線が、内側に凹んだ部分を有するような形状を指す。凹形状の輪郭形状としては、1か所の凹部を有する形状であってもよく、2か所以上の凹部を有する入り組んだ形状であってもよい。なお本明細書中では、輪郭形状の面積(S2)の、輪郭形状の凸包の面積(S3)に対する比S2/S3が0.95以下であるものを、凹形状の輪郭形状と呼ぶ。
 良好な光学特性を得られるという観点からは、1個の粒子に存在する陥没部(C)のうち、少なくとも1個の輪郭形状が凹形状であることが好ましい。
 また、1個の粒子に存在する陥没部(C)のうち、輪郭形状が凹形状であるものの個数割合が10%以上であることが好ましく、20%以上であることがさらに好ましく、25%以上であることがさらに好ましい。
 また、セルロース粒子の集合体である粉体としてみたときに、特定凹凸構造を有する粒子のうち、陥没部(C)の輪郭形状として凹形状のものを含む粒子の個数割合が、20%以上であることが好ましく、50%以上であることがさらに好ましい。
 「陥没部(C)の輪郭形状の円形度」、および「S2/S3」は、以下に示す手順にしたがって測定及び算出することができる。
 1.走査型電子顕微鏡(SEM)で、測定対象とする陥没部(C)とその周縁の畔部(R)が視野に収まるような倍率で画像を撮影する。
 2.画像解析ソフトウェアImageJを用いて、Freehand lineモードで対象とする陥没部(C)の輪郭線をなぞるように領域を指定したときに、Shape Descriptorsとして算出される数値のうち、Circ.が輪郭形状の円形度、SolidityがS2/S3である。
 「陥没部(C)の輪郭形状として凹形状のものを含む粒子の個数割合」は、以下に示す手順にしたがって測定および算出することができる。
 1.走査型電子顕微鏡(SEM)で、測定対象とする特定凹凸構造を有する粒子1個全体が視野に収まるように画像を撮影する。
 2.画像解析ソフトウェアImageJを用いて、SEM画像中で視認できるすべての陥没部について、上記と同様の手順にて輪郭形状のSolidityを算出する。
 3.同様の手順での測定を、ランダムに選択した計10個の粒子に対して実施する。
 4.測定した粒子のうち、Solidityが0.95以下となる輪郭形状を1個以上有する粒子の個数割合を算出する。
 粒子の表面に上述の特定凹凸構造を設けることの効果として、例えば、粒子の使用感が改善され得る。より具体的には、特定凹凸構造を設けた乾燥状態の粒子は、凹凸がなく平滑な表面を有する粒子と比較して、きしみ感が低減され、しっとり感・摩擦感・やわらかさなどの感触も変化する。特定凹凸構造を設けることで乾燥状態の粒子の使用感が変化する理由は定かではないが、各個粒子-面間の接点、及び/又は各個粒子-粒子間の接点における接触面積・接触状態・付着力(液架橋力・ファンデルワールス力・静電相互作用・親水性相互作用)・摩擦性・流動性・圧縮変形性などの挙動が、平滑表面を有する粒子とは異なることで発現すると考えられる。また、特定凹凸構造を設けた粒子を水分・油分等の液体によって湿潤させた場合、陥没部(C)に液体を保持することができるので、凹凸がなく平滑な表面を有する粒子と比較して、べたつき感の抑制や化粧持ちのよさ等の効果を発現し得る。
 粒子の表面に上述の特定凹凸構造を設けることの別の効果として、例えば、成形性が向上し得る。陥没部(C)を有するため、圧縮応力を印加しない状態では粉体層のかさ密度が低いが、圧縮応力の印加時には畦部(R)が変形しやすいため粉体層が密に充填され、高圧縮度・高強度の成形体が製造され得る。
 粒子の表面に上述の特定凹凸構造を設けることの別の効果として、例えば、光学特性が改善され得る。特定凹凸構造のスケールを光の波長程度とすれば光散乱率が向上する。同時に粒子径のスケールを光の波長よりも十分に大きくすれば光透過率が向上する。特定凹凸構造と粒子径は独立に制御できるので、光散乱性と光透過性を目的に応じて最適なバランスに調整することが可能である。例えば、化粧料原料として用いた場合には、可視光散乱によるソフトフォーカス性と自然な素肌感の両立、紫外線散乱によるUVカット性能(SPF値・PA値)の向上、赤外線散乱による肌ダメージの低減などが期待される。
 粒子の表面に上述の特定凹凸構造を設けることの別の効果として、表面が平滑な粒子に対して外比表面積が増大し、かつ、外比表面積を任意に制御できることから、例えば、吸着剤やカラム充填剤として本実施形態のセルロース粒子を用いた場合、粒子表面に抗体や吸着能を有する機能剤を多量に担持することで高吸着量・高吸着速度などの効果を発現し得る。また、本実施形態のセルロース粒子は成形性が良好であるから、粒子表面に薬剤成分や有効成分を多量に担持・コーティングさせた後圧縮成形するような賦形剤用途にも好適である。
 本実施形態のセルロース粒子の特定凹凸構造は、滑らかな曲面で構成されていてもよく、微細な凹凸がある粗い曲面で構成されていてもよい。特定凹凸構造が滑らかな曲面で構成されていると、ザラツキが小さくしっとりとした感触が得られやすい。特定凹凸構造が、微細な凹凸がある粗い曲面で構成されていると、やわらかく軽い感触や、強い光散乱効果が得られやすい。ただし、微細な凹凸として針状・繊維状の構造がある場合、感触が悪化する場合があり好ましくない。
 本実施形態のセルロース粒子では、畦部(R)により互いに隔てられた陥没部(C)の個数は、該粒子の表面100μmあたり20個以上200個以下であることが好ましい。畦部(R)により互いに隔てられた陥没部(C)の個数が100μmあたり20個を下回ると、赤血球状・円盤状の扁平な粒子となる、また、陥没部に粒子同士が噛み込む状態が発生しやすくなることで使用感が悪化したり、光の波長に対する陥没部の相対的な構造サイズが大きくなって光散乱性が悪化したりする傾向が顕著になるため、好ましくない。他方、畦部(R)により互いに隔てられた陥没部(C)の個数が100μmあたり200個を超えると、1個1個の陥没部が小さいため粒子表面の大半が畦部(R)で構成されるようになり、結果として表面構造が特定凹凸構造を有さない平滑表面の粒子と大差なくなるため、きしみ感の増大や光散乱性の悪化傾向が顕著になって好ましくない。
 「畦部(R)により互いに隔てられた陥没部(C)の個数」は、以下に示す手順にしたがって測定及び算出することができる。
 1.走査型電子顕微鏡(SEM)で、測定対象とする粒子1個全体が視野に収まるように画像を撮影する。
 2.1個の粒子中で、SEM像から確認できる陥没部(C)の個数(すなわち、略球状である粒子の片半球側に存在する陥没部(C)の個数)を数え、これをN(個)とする。
 3.画像解析ソフトウェアImageJを用いて、Freehand Selectionモードで粒子の輪郭線をなぞるように指定した領域内の面積を計算し、これを粒子の二次元投影面積A(μm)とする。
 4.下式に基づいて陥没部(C)の個数密度を算出する。
   陥没部(C)の個数密度(個/100μm)=N/A×100
 尚、本実施形態のセルロース粒子では、任意に選択した特定凹凸構造を有する計10個の粒子の「畦部(R)により互いに隔てられた陥没部(C)の個数」の平均値が、100μmあたり20個以上200個以下であることが好ましい。
 本実施形態のセルロース粒子では、畦部(R)の所定幅(W)が、0.1μm以上2.0μm以下であり、かつ畦部(R)の所定幅(W)の粒子径(D)に対する比W/Dが0.25以下であることが好ましい。畦部(R)の所定幅(W)が0.1μm以上であると、畦部(R)の機械的強度が十分で、使用時に特定凹凸構造が不可逆的に変形・崩壊したり、光散乱性が低下したりすることが起きにくく好ましい。畦部(R)の所定幅(W)は0.1μm以上であることが好ましく、0.2μm以上であることがさらに好ましい。他方、畦部(R)の所定幅(W)が2.0μm以下であると、畦部(R)の他の面あるいは他の粒子に対する接触が面状から点状・線状となり、特定凹凸構造を有する効果が発揮されるため、きしみ感が減少して好ましい。畦部(R)の所定幅(W)は2.0μm以下であることが好ましく、1.5μm以下であることがより好ましく、1.3μm以下であることがさらに好ましい。
 また、本実施形態のセルロース粒子では、畦部(R)の所定幅(W)の粒子径(D)に対する比W/Dが0.25以下であると、粒子表面に占める陥没部の面積割合が十分に大きいため、きしみ感の低減や光散乱の効果が得られて好ましい。W/Dは0.25以下であることが好ましく、0.20以下であることがさらに好ましく、0.15以下であることがさらに好ましい。
 「畦部(R)の所定幅(W)」は以下に示す手順にしたがって測定及び算出することができる。
 1.走査型電子顕微鏡(SEM)で倍率5000倍の画像を取得する。
 2.視野内にある粒子のうち1個の粒子を選択し、分岐点(B)を1カ所特定する。
 3.画像解析ソフトウェアImageJを用いて、Freehand lineモードで、2で特定した分岐点(B)と、それに隣接する任意の分岐点(B)を結ぶ稜線(RL)を描画し、その長さを計測する。
 4.3で描画した稜線(RL)の中点(長さを2等分する点)を特定し、これをMとする。
 5.Mを通り、かつMにおいて稜線(RL)に直交する形で、畦部(R)の幅を計測する。
 6.同様の手順で、1個の粒子内で測定可能な畦部(R)の幅をすべて計測し、それらの結果を平均した数値が、畦部(R)の所定幅(W)である。
 尚、本実施形態のセルロース粒子は、任意に選択した特定凹凸構造を有する計10個の粒子の「畦部(R)の所定幅(W)」の平均値が、0.1μm以上2.0μm以下であることが好ましい。
「畦部(R)の所定幅(W)の粒子径(D)に対する比W/D」は以下に示す手順にしたがって測定及び算出することができる。
 1.走査型電子顕微鏡(SEM)で倍率5000倍の画像を取得する。
 2.視野内にある粒子のうち1個の粒子を選択し、上記と同様の手順で畦部(R)の所定幅(W)を算出する。
 3.前記1で取得したSEM像の視野に、測定対象とする粒子1個全体が収まっていない場合は、測定対象とする粒子1個全体が視野に収まるような倍率で画像を撮影する。
 4.画像解析ソフトウェアImageJを用いて、Freehand Selectionモードで、選択した粒子の輪郭線をなぞるように指定した領域のフェレ―径(選択範囲の外周の境界線上にある任意の2点を結ぶ直線のうち、もっとも長いものの距離)を求め、これを粒子径(D)とする。
 5.畦部(R)の所定幅(W)の粒子径(D)に対する比W/Dを算出する。
  尚、本実施形態のセルロース粒子は、任意に選択した特定凹凸構造を有する計10個の粒子の「畦部(R)の所定幅(W)の粒子径(D)に対する比W/D」の平均値が、0.25以下であることが好ましく、0.20以下であることがさらに好ましく、0.15以下であることがさらに好ましい。また、セルロース粒子の集合体である粉体としてみたときに、特定凹凸構造を有する粒子のうち、所定幅(W)の粒子径(D)に対する比W/Dが0.15以下である粒子の個数割合は、50%以上であることが好ましい。
 1個のクレーター状の陥没部(C)を、稜線(RL)で取り囲むようにして描いた図形、すなわち、輪郭形状の面積(S2)は、良好な感触と光学特性を得るためにある一定範囲にあることが好ましい。S2が大きいほど、畦部(R)が広い間隔を開けて配されるので良好な感触が得られる。例えば、稜線(RL)で陥没部(C)を囲んだ領域の面積(S2)が1μm以上であると好ましい。あるいは、稜線(RL)で陥没部(C)を囲んだ領域の面積(S2)と、前記粒子全体を二次元投影したときの面積(S1)の比S2/S1が0.05以上であると好ましい。他方、粒子径に対してS2が相対的に大きいと、粒子の転がりが悪くなって感触を損なう場合があるため、稜線(RL)で陥没部(C)を囲んだ領域の面積(S2)と、前記粒子全体を二次元投影したときの面積(S1)の比S2/S1は0.50以下であることが好ましく、0.25以下であることがより好ましく、0.20以下であることがより好ましく、0.15以下であることがより好ましい。
 尚、本実施形態のセルロース粒子は、任意に選択した特定凹凸構造を有する計10個の粒子の、「稜線(RL)で陥没部(C)を囲んだ領域の面積(S2)」の平均値が1μm以上であると好ましい。また、本実施形態のセルロース粒子は、任意に選択した特定凹凸構造を有する計10個の粒子の、「稜線(RL)で陥没部(C)を囲んだ領域の面積(S2)と、前記粒子全体を二次元投影したときの面積(S1)の比S2/S1」の平均値が、0.05以上0.50以下であることが好ましく、0.05以上0.25以下であるとより好ましく、0.05以上0.20以下であるとより好ましく、0.05以上0.15以下であるとより好ましい。
 「粒子全体を二次元投影したときの面積(S1)」は以下に示す手順にしたがって測定及び算出することができる。
 1.走査型電子顕微鏡(SEM)で、測定対象とする粒子1個全体が視野に収まるような倍率で画像を撮影する。
 2.画像解析ソフトウェアImageJを用いて、Freehand lineモードで、粒子の輪郭線をなぞるように指定した領域の面積を求め、これをS1とする。
 「稜線(RL)で陥没部(C)を囲んだ領域の面積(S2)」は以下に示す手順にしたがって測定及び算出することができる。
 1.走査型電子顕微鏡(SEM)で、測定対象とする陥没部(C)とその周縁の畔部(R)が視野に収まるような倍率で画像を撮影する。
 2.画像解析ソフトウェアImageJを用いて、Freehand lineモードで、対象とする陥没部(C)の輪郭線、すなわち陥没部(C)を取り囲む稜線(RL)をなぞるように指定した領域の面積を求め、これをS2とする。
[円形度]
 本実施形態のセルロース粒子は、略球状、好ましくは球状の概形を有する。形状が球状又は略球状であると、粒子が転がりやすく感触が良好となるほか、光散乱性も向上する。粒子の概形は、粒子を2次元投影した画像から以下の式:
{式中、π:円周率、A:粒子の2次元投影面積、P:粒子の2次元投影時の周囲長である。}により算出される円形度によって定量化され、円形度が1に近いほど真球に近い形状となる。
本実施形態のセルロース粒子の円形度は、0.8以上が好ましく、より好ましくは0.85以上である。尚、本実施形態のセルロース粒子は、任意に選択した計10000個の粒子の円形度の平均値は0.8以上が好ましく、より好ましくは0.85以上である。
[粒子径・粒度分布]
 本実施形態のセルロース粒子の体積平均粒子径(Dv50)は、1μm以上50μm以下であることが好ましい。尚、本明細書中で体積平均粒子径(Dv50)は乾燥状態の粒子における値を指す。凝集体の発生を防いで良好な感触と光学特性を得るために、体積平均粒子径(Dv50)は1μm以上であることが好ましい。他方、ザラツキ感・粒感を低減して滑らかな使用感を得るため、及び十分な光散乱性を得るために、体積平均粒子径(Dv50)は50μm以下であることが好ましい。
 本実施形態のセルロース粒子の粒度(粒径)分布には特に制限はない。本実施形態のセルロース粒子を製造した後、特定の凹凸構造が破壊されないような条件で、分級処理や粉砕処理を施し、任意の粒度分布として用いても構わない。良好な使用感を得る観点から、粒子径75μm以上の粒子は体積分率にして5%以下であることが好ましく、1%以下であるとさらに好ましい。また、凝集体を生じて使用感その他の物性を変化・悪化させることを防ぐ観点から、一次粒子は一定以上の大きさであることが好ましく、具体的には粒子径1μm未満の粒子は体積分率にして20%以下が好ましく、10%以下がより好ましく、5%以下がより好ましい。
[内部構造]
 本実施形態のセルロース粒子の内部は、中実構造であっても、中空構造または多孔質構造であってもよい。本実施形態のセルロース粒子を使用する過程で、荷重がかかった際にも粒子が変形しづらく物性を維持しやすいという観点からは、セルロース粒子は中実であるほうが好ましい。やわらかさや成形性、吸液量の多さが重要とされる用途においては、セルロース粒子は中空または多孔質であるほうが好ましい。また、光透過性・透明感を求める場合にはセルロース粒子は中実であるほうが好ましく、強い光散乱性を求める場合にはセルロース粒子は中空または多孔質であることが好ましい。
[セルロース]
 本実施形態のセルロース粒子を構成するセルロースとしては、綿・麻・パルプ等の天然セルロース、ビスコースレーヨン、銅アンモニア法再生セルロース(キュプラ)、リヨセル、酢酸セルロース等のエステル化セルロースをケン化して得たセルロース、などの再生セルロース、あるいはバクテリアが生産するバクテリアセルロースなどであってもよく、これらのセルロースに対して水酸基を利用して変性を施した化学修飾セルロースであってもよい。また、化学修飾を施さないセルロースと化学修飾セルロースが混合されていてもよく、さらにセルロース以外の多糖類やその誘導体、高分子化合物が含有されていてもよい。海洋生分解速度が迅速であるという観点から、化学修飾を施さないセルロースの重量分率は80wt%以上が好ましく、90wt%以上がより好ましく、95wt%以上が更に好ましい。
 本実施形態のセルロース粒子を構成するセルロースの結晶化度は、好ましくは70%未満である。やわらかい使用感や迅速な海洋生分解性が得られるといった観点から、結晶化度は70%未満が好ましく、60%未満がより好ましく、50%未満がさらに好ましい。
 本実施形態のセルロース粒子を構成するセルロースは、好ましくは、結晶構造II型の再生セルロースである。
 セルロースの結晶構造としては一般にI型(天然セルロース)、II型(ほとんどの再生セルロース)などが知られている。I型セルロースとしてはセルロースナノファイバー(CNF)や結晶セルロース等があげられる。I型セルロース結晶はII型セルロース結晶と比較すると弾性率・剛性が高いことから、I型セルロースからなる粒子は硬い感触となりやすい。また、I型セルロースからなる粒子は、原料のI型セルロースを溶解させずに、機械的及び/又は化学的な解砕処理を施してから造粒されるが、解砕処理の過程で剛直な繊維状物や粗大な結晶が残留し、これらが粒子表面に露出して粗い表面を形成するため、強いきしみ感やざらついた感触を生じやすい。他方、II型セルロースは、I型セルロース結晶と比較すると弾性率・剛性が低いことから、II型セルロースからなる粒子はやわらかくしっとりとした感触になりやすい。またII型セルロースは一度原料セルロースを完全に溶解してから造粒するので、造粒物の表面を繊維状物・粗大結晶のない滑らかなものとすることができ、きしみ感やざらついた感触を低減できる。以上の理由から、本実施形態のセルロース粒子を構成するセルロースは、結晶構造II型の再生セルロースであることが好ましい。
 結晶構造II型の再生セルロースとしては、ビスコースレーヨン、銅アンモニア法再生セルロース(キュプラ)、リヨセル、酢酸セルロース等のエステル化セルロースをケン化して得たセルロース、特定濃度の酸やアルカリ溶液から再生させたセルロース、塩化亜鉛などの無機塩水溶液から再生させたセルロース、各種のイオン液体溶液から再生させたセルロース、などが挙げられる。セルロース粒子の結晶化度を70%未満としやすく、さらに相分離構造に由来する微多孔を付与することが容易であって、これらの効果としてやわらかい使用感やより迅速な海洋生分解速度が得られるといった観点から、銅アンモニア法再生セルロースが最も好ましい。尚、セルロースの重合度は特に限定されない。柔らかさや成形性を求める場合には重合度が低いことが好ましく、硬ささや粒子構造の堅牢性を求める場合には重合度が高いことが好ましい。
[セルロース粒子の製造方法]
 本実施形態のセルロース粒子を製造する方法としては、微粒子表面に特定凹凸構造を生じさせ得る方法であれば特に限定されないが、例えば、(i)まず、セルロースを含有する原料液を液滴化させ、(ii)続いて、液滴表層のみを固化させて皮膜形成させ、かつ液滴内部は低固形分濃度の液状、ゲル状であるような状態を形成させ、(iii)続いて、液滴内部を濃縮・固化させる過程で発生する体積収縮を駆動力として微粒子表面にクレーター状の陥没部(C)を形成させて、特定凹凸構造を生じさせるような方法が好ましい。
 (i)原料液を液滴化させる方法としては、例えば、スプレー・懸濁・乳化などが挙げられる。(ii)液滴表層を固化・皮膜形成させる方法としては、例えば、乾燥・凝固・誘導体化等が挙げられる。そして(iii)液滴を体積収縮させる方法としては、例えば、乾燥・脱水・脱溶媒・誘導体化等が挙げられる。
 本実施形態のセルロース粒子を製造するためには、(i)~(iii)の方法を、目的に応じて任意に組み合わせればよいが、特に、生産性、コスト、一般に普及している設備を使用可能であるといった観点からスプレードライ(SD)法が好ましい。SD法の原料液としては、微細化セルロースの分散液、セルロースが完全に溶解したセルロース溶液、セルロース誘導体が完全に溶解した溶液などから選択でき特に限定されないが、形成される皮膜の最表面が滑らかになること、高濃度であっても原料液の粘度を低く抑えることが可能で噴霧液滴化しやすいことから、セルロース溶液またはセルロース誘導体溶液が望ましい。特に、蒸気圧が異なるアンモニアと水の2種の溶媒を含むため、乾燥初期のアンモニアの速やかな揮発によって皮膜形成過程を、それに遅延する水の蒸発によって体積収縮過程を、それぞれ独立して制御することが可能で、結果として特定凹凸構造を制御しやすいことから、銅アンモニアセルロース水溶液が特に好ましい。
 かかるスプレードライ法で得られる粉体において、特定凹凸構造を有するセルロース粒子の個数割合が、好ましくは50%以上、より好ましくは70%以上、さらに好ましくは90%以上となるように、スプレードライ法の条件を設定することが肝要である。最適なスプレードライ条件は、用いる原料液の種類によって異なるため一概にはいえないが、例えば、銅アンモニアセルロース水溶液を用いる場合、以下の条件が適切であることを本願発明者らは見出した。
 原料液である銅アンモニアセルロース水溶液のセルロース濃度は特に限定されないが、1.5wt%以上15.0wt%以下であることが好ましい。セルロース濃度が低い場合、畦部(R)の所定幅(W)が小さくなる、あるいは消失する場合があり好ましくない。畦部(R)の所定幅(W)が0.1μm以上の粒子を得るためには、セルロース濃度を1.5wt%以上とすることが好ましく、2.0wt%以上とすることがより好ましく、2.5wt%以上とすることがさらに好ましい。他方、セルロース濃度が高い場合、SD法での造粒中にノズルの閉塞が起きやすく安定的な運転に支障をきたすため好ましくない。SD法で安定的に造粒するためには、セルロース濃度を15.0wt%以下とすることが好ましく、10.0wt%以下とすることがより好ましい。
 原料液である銅アンモニアセルロース水溶液のアンモニア濃度は、セルロースを溶解し得る範囲であれば特に限定されないが、2.5wt%以上15.0wt%以下であることが好ましい。アンモニア濃度が低い場合、セルロースの溶解安定性が下がり析出物を生じる場合があり好ましくない。セルロースの溶解安定性の観点から、アンモニア濃度は2.5wt%以上が好ましく、3.0wt%以上がより好ましく、4.0wt%以上が更に好ましい。他方、アンモニア濃度が高い場合、スプレードライヤーの乾燥缶体内におけるアンモニア蒸気濃度が高くなり、噴霧液滴の皮膜形成が阻害されて畦部(R)が消失する、あるいは構造が乱れる場合があり好ましくない。特定凹凸構造を付与する観点から、アンモニア濃度は15.0wt%以下が好ましく、10.0wt%以下がより好ましく、7.5wt%以下がさらに好ましく、6.0wt%以下が最も好ましい。
 原料液である銅アンモニアセルロース水溶液の銅濃度は、セルロースを溶解し得る範囲であれば特に限定されない。但し、セルロースの溶解に必要な理論量よりも大過剰量の銅が存在すると、溶液の溶解安定性及びSD法での造粒安定性(ノズル閉塞)に影響を及ぼす可能性があり好ましくない。
 原料液である銅アンモニアセルロース水溶液の粘度は、スプレーノズルによって噴霧・液滴化が可能である限り特に限定されず、例えば、0.1mPa・s以上300mPa・s以下であればよい。
 噴霧方法は、銅アンモニアセルロース水溶液を液滴化し得る方法である限り特に限定されない。アトマイザとしては、例えば一流体ノズル、二流体ノズル、四流体ノズル、ディスクアトマイザ等を目的に応じて選択でき、これらに限定されるものではない。
 スプレードライヤーの運転条件は、銅アンモニアセルロース水溶液の組成や使用するスプレードライヤーの仕様・構造によって最適条件範囲が異なるため一概にいえないが、例えば、入口温度は80~300℃の間、出口温度は0~150℃の間で設定され、設定された入口温度と出口温度が安定的に維持されるように送液量と熱風供給量が調節される。
 入口温度の設定値は特に限定されないが、入口温度が低すぎると、乾燥速度が遅いため皮膜形成に支障をきたし所定凹凸構造が形成されない場合があること、乾燥速度が遅いため生産性が低いこと、未乾燥物の付着ロスが発生して収率が低下する場合があること、などの観点から好ましくなく、入口温度は80℃以上が好ましく、100℃以上がより好ましく、130℃以上がさらに好ましい。他方、入口温度が高すぎると、乾燥速度が速く皮膜形成と体積収縮がほとんど同時に進行して所定凹凸構造の制御が難しいこと、ノズル部に固化物が生じて安定造粒に支障をきたす場合があること、スプレードライヤーの缶壁に接触・付着した粒子が熱変性して変色する場合があること、などの事情から好ましくなく、かかる観点から入口温度は300℃以下が好ましく、250℃以下がより好ましく、200℃以下がさらに好ましい。
 出口温度は、入口温度よりも低い範囲であれば特に限定されないが、出口温度が低すぎると、未乾燥物の付着ロスが発生して収率が低下する場合があること、サイクロン回収部において結露が発生し生成物粒子の凝集を招く可能性があること、などの観点から好ましくなく、出口温度は40℃以上が好ましく、50℃以上がより好ましく、60℃以上がさらに好ましい。他方、出口温度が高すぎると、サイクロン部で捕集された粒子中のセルロースの熱分解が起きて変色・物性低下をもたらす懸念があり好ましくなく、かかる観点から出口温度は150℃以下が好ましく、100℃以下がより好ましい。一方、微細な凹凸を有する粗い曲面で構成された特定凹凸構造を得る場合には、出口温度は60℃以下とすることが好ましい。
 入口温度と出口温度の差(ΔT)は、噴霧液滴が乾燥可能な範囲であれば特に限定されないが、ΔTが小さすぎると、スプレードライヤーの乾燥缶体内におけるアンモニア蒸気濃度・湿度が低下して乾燥速度が速くなり所定凹凸構造の制御が困難となること、生産性が悪化すること、などの観点から好ましくなく、ΔTは10℃以上とすることが好ましく、30℃以上とすることがより好ましい。他方、ΔTが大きすぎると、スプレードライヤーの乾燥缶体内におけるアンモニア蒸気濃度・湿度が上昇して皮膜形成が阻害され、畔部(R)が消失または乱れた構造となる場合があること、未乾燥物の付着ロスが発生して収率が低下する場合があること、などの観点から好ましくなく、ΔTは100℃以下とすることが好ましい。
 本実施形態のセルロース粒子の製造方法として、銅アンモニアセルロース水溶液をスプレードライする製法を選択する場合、まず、銅とセルロースを含む青色の粉体が得られる。銅が残留したそのままの微粒子として用いてもよいが、用途によっては銅の含有が許容されない場合がある。その場合は酸処理によって脱銅させることができる。酸処理の方法は特に限定されないが、例えば、硫酸に微粒子を浸漬させた後に吸引ろ過・遠心分離などの方法で固液分離すればよい。酸を用いて脱銅を行った後に、酸を除去する手法は任意に選択できるが、例えば、純水に酸処理後の微粒子を浸漬させた後に吸引ろ過・遠心分離などの方法で固液分離すればよい。脱銅・脱酸した微粒子は含水状態となるが、含水状態のまま用いても乾燥させてから用いてもよい。乾燥させる場合、乾燥方法は特に限定されず、公知の乾燥方法・乾燥設備を用いればよい。乾燥中の粒子凝集を抑制できるという観点からは、凍結乾燥・スプレードライ・パドル撹拌乾燥などの方法が好ましい。乾燥後の粒子凝集が問題となる場合には、特定凹凸構造に影響を与えない範囲で粒子の凝集体を粉砕する工程を設けてもよい。
 本実施形態のセルロース粒子の残留銅と残留硫酸は少ない方が好ましい。それらが高いと、乾燥時の粒子の凝集・変色・炭化、保存中の強度低下・物性劣化、生分解性速度の低下、皮膚への刺激性、などの影響が生じる可能性がある。
 本実施形態のセルロース粒子は、得られた粒子をさらに分級に供し、微粉、粗粉や、特定凹凸構造を有していない粒子を除去することができる。
 本実施形態のセルロース粒子は、使用感その他の物性を向上・調整する目的で、任意の表面処理、誘導体化、変性を施されていてもよい。表面処理剤としては、顔料等の表面処理に一般的に用いられるものを使用すればよく、例えば金属石鹸・脂肪酸・アミノ酸・油剤・界面活性剤・シリコーン・シランカップリング剤・固体微粒子などが挙げられるがこの限りではない。セルロースに吸着固定化されやすいという観点からは、カチオン性界面活性剤・アミノ酸などの窒素原子を含む表面処理剤が好ましい。セルロースと共有結合によって強固に固定化できるという観点からは、シランカップリング剤が好ましい。
 本発明で得られるセルロース粒子は、コンポスト中、土壌中、海洋中で分解する生分解性を有する。特に海洋中での生分解は微生物が少なく温度も上がりにくいことが原因で生分解しにくいため、海洋中での生分解速度を早くするためにはセルロースは表面処理、誘導体化、変性を施されていないことが好ましい。また生分解した結果生成する物質の安全性への懸念といった観点からも、セルロースは表面処理、誘導体化、変性を施されていないことが好ましい。
 本実施形態のセルロース粒子は、粒子の内部または表層に各種の機能性物質や有効成分が担持・複合化されていてもよい。機能性物質や有効成分としては、例えば有機物、無機物、高分子化合物、染料、顔料、レーキ、油剤、界面活性剤などが例示されるがこの限りではない。無機物の例としては、酸化チタン、酸化亜鉛、硫酸バリウム、タルク、マイカ、白金、金、プルシアンブルーおよびその類似体、酸化鉄、ベンガラ、等が挙げられるがこの限りではない。
 本実施形態のセルロース粒子は、粒子の内部および/または表層に光散乱性固体粒子が担持・複合化されていてもよい。光散乱性固体粒子が担持・複合化されることで、特定凹凸構造を有するセルロース粒子の紫外線・可視光線・赤外線のいずれかまたはそれら複数の散乱性は向上され得る。また、特定凹凸構造によって固体粒子のもつ光散乱効果は増強され得る。また、単独では感触が不良な光散乱性固体粒子であっても、特定凹凸構造を有するセルロース粒子に複合化することで感触を良好とすることができる。以上のような特徴から、光散乱性固体粒子を複合化したセルロース粒子は、増強された光散乱性・感触特性などを要求するあらゆる組成物に好適に使用できる。例えば、化粧品製剤に配合する場合、単独では製剤中の分散性が不良な光散乱性固体粒子であっても、特定凹凸構造を有するセルロース粒子に複合化することで分散性を向上することができ、結果として製剤の感触改良、光散乱性能向上、白浮き抑制などの効果を発現し得る。
 光散乱性固体粒子の例としては、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、酸化スズ、酸化セリウム、硫酸バリウム、シリカ、マイカ、セリサイト、タルク、カオリン、雲母、雲母チタン、オキシ塩化ビスマス、窒化ホウ素、等が挙げられるがこの限りではない。
 光散乱性固体粒子の担持・複合化状態は特に限定されないが、感触および光学特性を良好にする観点からは、粒子の内部および/または表層で、凝集せずに分散して担持・複合化されていることが好ましい。
 光散乱性固体粒子の担持・複合化方法は特に限定されないが、光散乱性固体粒子を分散させる観点、および特定凹凸構造を付与する観点からは、光散乱性固体粒子を原料液である銅アンモニアセルロース水溶液に添加・分散させたうえで、スプレードライ法にて造粒する方法が好ましい。
 光散乱性固体粒子の含有量は、目的とする物性に応じて任意に調整することができる。
 本実施形態のセルロース粒子は、乾燥状態であっても、湿潤状態であっても、任意の液体・媒体中に分散されていてもよい。
 以下、実施例、比較例により、本発明を具体的に説明する。
 まず、実施例、比較例で用いた、主な製造方法、製造設備、製造条件、測定方法、測定装置、測定条件等について説明する。
[粒子製造方法]
(造粒設備)
 スプレードライヤーには、大川原化工機製L-8i(ディスクアトマイザ:大川原化工機製MC-50、二流体ノズル:大川原化工機製RJ-5)、又はヤマト科学製パルビスミニスプレーGB210-A(二流体ノズル:1A)を用いた。
(ろ紙)
 吸引ろ過用のろ紙には、アズワン製アズフィル定性ろ紙(品番:2-872-02、直径:9mm、材質:セルロース、最大開孔径:10~15μm)を用いた。
[構造解析用の粒子サンプルの準備]
 粒子の構造解析に際しては、乾燥粉体を準備する。
 サンプルが既に乾燥粉体である場合は、そのまま構造解析に供する。
 サンプルが湿潤状態または液体中に分散されている場合は、液体を水置換したのちに乾燥させて乾燥粉体を得る。具体的には、まず吸引ろ過により可能な限り液体を除去する。続いてろ紙上の残渣に、重量にして10倍量の水を加えて常温で10分間マグネチックスターラーで撹拌混合した後、吸引ろ過する(1回目の水置換操作)。同様の水置換操作を計3回繰り返す。得られたウェットケークを薬さじでほぐしてステンレス製のトレー上に広げ、80℃の恒温乾燥機で乾燥させる。被乾燥物が、さらさらとした粉末状または粉末が凝集したフレーク状になり、水分率が10wt%以下となった段階で乾燥終了とし、恒温乾燥機から取り出し、構造解析に供する。
[体積平均粒子径(Dv50)]
 乾燥状態の粒子について、レーザー回折式粒子径測定装置(Malvern製Mastersizer 3000E)を用いて体積平均粒子径(Dv50)を測定した。測定前処理として、Aero Mにて分散圧力4barでの分散処理を実施した。
[粒子表面構造の評価]
 セルロース粒子をカーボンテープ上に少量散布し、前処理としてスパッタ装置(真空デバイス製、MSP-1S)で30秒間の白金コーティングを行った。サンプルを走査電子顕微鏡によって観察し、粒子表面のSEM画像を得た。特定凹凸構造を観察・測定する際は、以下のSEM観察条件で画像を取得した。
  SEM機種:日立ハイテク製TM4000 II
  倍率:100~30,000倍
  電子検出器:反射電子検出器
  観察条件:5kV、Mode3、標準(H)
[粒子断面構造の評価]
 樹脂包埋したセルロース微粒子をBIB(Broad Ion Beam)加工により露出させた切断面の輪郭を以下の手順で測定することにより、セルロース微粒子の断面構造を評価した。下記条件は一例であり、当該技術に詳しい技術者が、結果を変えないと推測される範囲で観察条件を変更してもよい。
 セルロース粒子の樹脂包埋は以下の要領で実施した。エポキシ樹脂として日新EM株式会社製Quetrol-812を用いた。Quetol-812を10.6mL、MNA(日新EM株式会社製)を9.4mL秤量して混ぜ樹脂混合液とし、容量50mLのビーカーに入れて、10分間スターラーを用いて攪拌した。この時撹拌速度は300rpm/minとした。ついでDMP-30(日新EM株式会社製)を0.34mL添加し、さらに5分攪拌した。撹拌後、樹脂混合液を真空乾燥機に入れて20分以上減圧脱泡した。脱泡した樹脂混合液にセルロース粒子を添加し十分に攪拌した後、再度真空乾燥機にいれ10分以上減圧脱泡した。市販のカバーガラス(18×18×0.2mm程度の大きさ)を長方形に8分割し、カバーガラスの上に適量セルロース粒子をまぜた樹脂混合液を滴下し、もう一枚8分割したカバーガラスを樹脂混合液の上に載せて静置し、樹脂混合液がカバーガラスの間に広がるのを待った。十分に樹脂混合液が広がってから、60℃で24時間加熱処理した。
 樹脂包埋したセルロース粒子はBIB加工装置(IM4000+、日立)によって以下の条件で断面加工した。
  加速電圧:2.5kV
  イオンビーム電流:20μA
  アルゴン流量:0.35cm/min
  ステージモード:C6
  加工時間:6時間
  温度:室温
 加工したセルロース粒子を含む樹脂の切断面を走査電子顕微鏡(Regulus8220、日立)により、以下の条件で観察し、SEM画像を得た。
  倍率:1,000から1,500倍
  電子検出器:二次電子検出器(SE(U)、SE(L)、LMのいずれか又はそれらの組み合わせ)
  加速電圧:1kV
  エミッション電流:10μA
  コンデンサレンズ:5~13
  プローブ電流:ノーマル
  ワーキングディスタンス(WD):8±0.2mm
  画像取得時のスキャン方式:Rapid
[円形度の評価]
 粒子形状画像解析装置(セイシン企業製PITA-04)を用いて、セルロース粒子の円形度を測定した。100mLのビーカーに粒子サンプル0.5gと精製水25gを入れ、超音波分散前処理を施したのち、装置にサンプルを全量投入した。観測粒子数10000個を超過するまで測定を実施し、各粒子の円形度を平均した数値を評価結果とした。
[結晶化度の評価]
 セルロースの結晶化度を透過法WAXSと磯貝法によって測定・算出した。粒子を両面テープとポリエーテルイミドフィルムで作製したセル中に封入し、厚み1mmのサンプルとして測定に供した。測定は以下の条件で実施した。
  装置:(株)リガク製NANOPIX
  X線波長:0.154nm
  X線入射方向:フィルム法線方向
  光学系:ポイントコリメーション(1st:0.55mm,2nd:Open,Guard:0.35mm)
  ビームストッパ―:φ2.0mm
  検出器:Hypix-6000(2次元半導体検出器)
  カメラ長:WAXS:86.1mm(重継4枚測定)
露光時間:WAXS:10min*4/sample
 2次元検出器により測定された散乱パターンI(2θ,φ)に対し、以下の式(1):
{式中、P:偏光因子、2θ:散乱角、φ:方位角である。}
により、円環平均することで、1次元散乱プロファイルIobs(2θ)を得た。
 式(1)で算出した1次元プロファイルは試料由来の散乱のほかに、窓材や空気散乱等の試料以外の散乱を含んでいる。また、散乱強度は装置や試料厚みに依存している。そうしたことを補正するために、以下の式(2):
により、空セル散乱、絶対強度補正を行った。
 尚、式(2)中、各項は以下の通りである。
  I(2θ):空セル散乱、絶対強度補正済みの散乱強度、
  Iobs(2θ):補正前散乱強度(式(1)により求めた1次元散乱プロファイルであり、下付き文字sample記載の項は粒子サンプルの測定値であり、下付き文字empty記載の項は空セルの測定値、
  I:X線透過光強度(cps)×Iobs(2θ)を測定した際の露光時間(I(2θ)と同じ検出器で減衰板を入れて測定)、
  t:試料厚み、
  R:I測定時に使用した減衰板の減衰率、
  S:検出器のピクセル面積、
  A:電子の古典半径。
 結晶化度は磯貝法に従い、以下の式(3):
により算出した。
 式(3)中、I(1-10)は(1-10)面由来のピーク強度であり、I(1-10)Bは(1-10)面由来ピーク位置におけるバックグラウンドの強度である。
 式(3)中のI(1-10)とI(1-10)Bは、以下の手順で算出した。
 (i)WAXSプロファイルの10°<2θ<15°の範囲において線形バックグラウンドとLorentz関数を足し合わせた、以下の式(4):
により、円環平均プロファイルをフィッティングし、ピーク位置2θ*、I(1-10)=I(2θ*)、ピーク半値全幅2wを決定した。
 (ii)フィッティングにより得られた線形バックグラウンドの切片aと傾きbを用いて、I(1-10)B=a+b(2θ*)を計算した。
[実施例1:銅安スプレードライ粒子]
 造粒:セルロース3.5wt%、アンモニア4.0wt%、銅1.3wt%、水91.2wt%の銅アンモニアセルロース水溶液を調製した。この液をRJ-5で噴霧圧0.3MPa・液供給量1.3kg/h・入口温度130℃・出口温度65℃の条件でスプレードライし、サイクロン部で青色の粉体を回収した。
 酸洗(脱銅):実施例1で得た青色の粉体50gを7.5wt%硫酸1000gに投入して分散させ、マグネチックスターラーで10分間攪拌した後、スラリーを吸引ろ過してウェットケークを得た。続いて、ウェットケークを新しい7.5wt%硫酸1000gに投入して再分散させ、マグネチックスターラーで10分間攪拌した後、スラリーを吸引ろ過してウェットケークを得た。同様の酸洗・吸引ろ過操作を、ウェットケークが十分に脱銅されて白色となるまで繰り返した。
 水洗(脱酸):ウェットケークを純水1000gに投入して分散させ、マグネチックスターラーで10分間攪拌した後、スラリーを吸引ろ過してウェットケークを得た。同様の水洗・吸引ろ過操作を、ろ液のpHが中性となるまで繰り返した。
 乾燥:ウェットケークを薬さじでほぐしてステンレス製のトレー上に広げ、80℃の恒温乾燥機で乾燥させた。被乾燥物が、さらさらとした粉末状または粉末が凝集したフレーク状になり、水分率が10wt%以下となった段階で乾燥終了とし、恒温乾燥機から取り出した。
 粉砕・分級:先のサンプルを乳鉢と乳棒を用いてよく粉砕し、目開き75μmのふるいにかけて粗大粒子を除去して、セルロース粒子を得た。体積平均粒子径(Dv50)は6.4μmであった。粒子表面には特定凹凸構造がみられ、かつ最表面層には繊維状・針状の構造物がみられず滑らかであった。
[実施例2~10:銅安スプレードライ粒子]
 造粒条件を、以下の表1に記載の通りに変更した以外は、実施例1と同様の方法でセルロース粒子を得た。実施例4で得られた粒子の表面SEM像を図3に示す。粒子表面には特定凹凸構造がみられ、かつ最表面層には繊維状・針状の構造物がみられず滑らかであった。実施例7で得られた粒子の表面SEM像を図4に示す。粒子表面には特定凹凸構造がみられ、かつ、最表面層には繊維状・針状の構造物がみられず滑らかであった。実施例7で得られた粒子の断面SEM像を図6に示す。粒子内部は中実であった(但し、SEMで観察できないスケールのミクロな微多孔の存在を否定するものではない)。また、断面の輪郭線には、全周にわたって特定凹凸構造に由来してU字状のへこみ/乳頭状の突出部が交互に連なる形状がみられた。
[実施例11:光散乱性固体を担持した銅安スプレードライ粒子]
 酸化チタン粒子(富士チタン工業製・TA-300D)を水に分散させたスラリーと、銅アンモニアセルロース水溶液を混合して調製した、セルロース3.9wt%、アンモニア5.7wt%、銅1.4wt%、酸化チタン3.9wt%、水85.1wt%の溶液を用いたことと、造粒条件を以下の表1に記載の通りに変更した以外は、実施例1と同様の方法でセルロース粒子を得た。
[実施例12:銅安スプレードライ粒子]
 造粒条件を、以下の表1に記載の通りに変更した以外は、実施例1と同様の方法でセルロース粒子を得た。実施例12で得られた粒子の表面SEM像を図8に示す。実施例12で得られた粒子表面には特定凹凸構造がみられ、特定凹凸構造は微細な凹凸がある粗い曲面で構成されていた。
[比較例1、12、13、14:銅安スプレードライ粒子]
 造粒条件を、以下の表1に記載の通りに変更した以外は、実施例1と同様の方法でセルロース粒子を得た。
[比較例4:CNF分散液スプレードライ粒子]
 市販のセルロースナノファイバー分散液(スギノマシン製BiNFi-s Ima-00002、セルロース濃度2wt%)を純水で2倍希釈し、セルロース濃度1.0wt%のCNF分散液を得た。このCNF分散液を、ディスク回転数30000rpm・液供給量1.0kg/h・入口温度180℃・出口温度95℃の条件で噴霧し、サイクロン部で白色の粉体を回収して、セルロース粒子を得た。体積平均粒子径(Dv50)は10.5μmであった。図5に示すように、表面構造をSEMで観察した結果、しわ状の構造を有していたが、畦部(R)の始点・終点が明確でなく分岐点(B)の特定が困難であり、また、畦部(R)に取り囲まれたクレーター状の陥没部(C)が存在せず、特定凹凸構造を有するものではなかった。また粒子の最表面層には針状・繊維状の構造物が観察され粗い表面となっていた。
[比較例15:架橋カルボキシメチルセルロース粒子]
 カルボキシメチルセルロースアンモニウム(ニチリン化学工業株式会社製・NA-3L)の2wt%水溶液を調製した。この液をGB210-Aで噴霧圧0.15MPa・液供給量0.35kg/h・入口温度185℃・出口温度100℃の条件でスプレードライし、サイクロン部で粉体を回収した。得られた粉体を恒温乾燥機(ヤマト科学株式会社・DKN602)を用いて、110℃で16時間加熱して、架橋カルボキシメチルセルロース粒子を得た。
[比較例16:架橋カルボキシメチルセルロース粒子]
 造粒条件を、入口温度120℃・出口温度60℃に変更した以外は、比較例15と同様の方法にて架橋カルボキシメチルセルロース粒子を得た。
 実施例1~12、比較例1、4、12~16で得られたセルロース粒子の製造における原液組成、スプレードライ条件、得られた粒子の平均粒子径を以下の表1に示す。
[比較例2:銅安スプレー湿式凝固粒子]
 セルロース5.0wt%、アンモニア4.0wt%、銅1.8wt%、水89.2wt%の銅アンモニアセルロース水溶液を調製した。この液を二流体ノズル(霧のいけうち製、SETO 07507S303+TS303)で噴霧圧0.1MPa・液供給量1.2kg/hの条件で噴霧した。二流体ノズルに対向する位置に傾斜させた樋を設け、10wt%NaOH水溶液を樋の上部から流して常に液面が更新されるようにして、ここに二流体ノズルから吐出された霧滴を受けてセルロースを凝固させ、樋の下部にてスラリーを回収した。得られたスラリーを吸引ろ過し、ウェットケークを純水で十分に洗浄した。その後実施例1と同様に酸洗・水洗・乾燥・粉砕・分級を行い、セルロース粒子を得た。体積平均粒子径(Dv50)は11.0μmであった。表面構造をSEMで観察した結果、平滑な表面を有する略球状粒子であり、畦部(R)や陥没部(C)はみられなかった。
[比較例3:銅安W/O乳化後凝固粒子]
 セルロース5.0wt%、アンモニア4.0wt%、銅1.8wt%、水89.2wt%の銅アンモニアセルロース水溶液を調製した。銅アンモニアセルロース水溶液10mLをシリコーンオイル(信越化学工業製、KF96-10CS)300mLとともにビーカーに投入し、さらにTriton(登録商標)X-100(シグマアルドリッチ製)を1mL投入した。この混合液を、ホモジナイザー(IKA製ULTRA TURRAX T25 easy clean、シャフトジェネレーター:S25N-18G)を用いて8500rpmで5分間以上攪拌して乳化させた。ホモジナイザーでの攪拌を継続しながら、アセトン(関東化学製、試薬特級)を10mL投入し、さらに5分間ホモジナイザーでの攪拌を続けてセルロースを凝固させた。得られたスラリーを吸引ろ過し、その後実施例1と同様に酸洗・水洗・乾燥・粉砕・分級を行い、セルロース粒子を得た。体積平均粒子径(Dv50)は4.2μmであった。表面構造をSEMで観察した結果、平滑な表面を有する略球状粒子であり、畦部(R)や陥没部(C)はみられなかった。
[比較例5:セルロース粒子]
 市販のセルロース粒子(大東化成工業製セルロビーズD-10)を入手した。
[比較例6:セルロース粒子]
 市販のセルロース粒子(JNC製セルフローC-25)を入手した。
[比較例7:セルロース粒子]
 市販のセルロース粒子(レッテンマイヤー社製VIVAPUR CS Sensory5)を入手した。
[比較例8:シリカ粒子]
 市販のシリカ粒子(富士シリシア化学製コスメシリカCQ10)を入手した。
[比較例9:酢酸セルロース粒子]
 市販の酢酸セルロース粒子(ダイセル製ベロセアS7)を入手した。
[比較例10:シリコーン粒子]
 市販のシリコーン粒子(日興リカ製MSP-S110)を入手した。
[比較例11:ナイロン-12粒子]
 市販のナイロン-12粒子(東レ製SP-10)を入手した。
 また、実施例1~12、比較例1~16の粒子の粒子構造の測定結果を、以下の表2に示す。
[感触の評価]
 微粒子の感触について、10人のパネルテストによる官能評価を行った。微粒子サンプルを気温25℃、湿度60%の室内で一昼夜調湿して評価用サンプルとした。評価用サンプルを少量指でつまみ取って指の腹で擦ったときの感触を、「きしみ感」「しっとり感」「すべり感」の観点から評価し、各人が+3点~-3点の範囲で相対的に点数付けした結果から平均点を算出した。「きしみ感」については、最もきしみ感が弱いサンプルを+3点、最もきしみ感が強いサンプルを-3点とした。「しっとり感」については、最もしっとりとした感触のサンプルを+3点、最もさらさらとした感触のサンプルを-3点とした。「すべり感」については、最もすべりのよいサンプルを+3点、最も摩擦感を感じるサンプルを-3点とした。なお「きしみ感」については、+3点相当の基準として比較例8の粒子の感触を、-3点相当の基準として比較例7の粒子の感触を、それぞれあらかじめ確認してから他の粒子の評価を実施した。
実施例1~12、比較例1~16の粒子についての評価結果を以下の表3に示す。
 実施例1~12のセルロース粒子は、きしみ感の評点がプラス(きしみ感が弱い)側であるのに対して、比較例1~7の粒子では、きしみ感の評点がマイナス(きしみ感が強い)側であり、本実施形態のセルロース粒子では、きしみ感が改善されていることがわかる。また、本実施形態のセルロース粒子は、特定凹凸構造を制御することでしっとり感とすべり感を調節可能であることがわかる。
[光学特性の評価]
 黒画用紙(マルアイ製PI-N46D)に両面テープ(ニチバン製ナイスタックNW-40)を貼り、両面テープの上に微粒子サンプルを振り撒いた後に化粧筆で均一に塗布し、両面テープに付着しなかった余分な粉を払い落として光学特性評価用サンプルとした。標準サンプルとして硫酸バリウム白色板(村上色彩工業製、50mm×50mm)を用いた。変角光度計(村上色彩工業製GP-5)にて、入射角を-45°として硫酸バリウム白色板の可視光反射強度を測定し、0°方向への反射光強度が90(基準)となるように規格化した後、各サンプルの相対反射光強度を測定した。1種類の微粒子サンプルにつき光散乱性測定用サンプルは5枚作製し、5枚のサンプルの相対反射光強度の平均値を算出して、各反射角における相対反射光強度の平均値をプロットした。
 実施例1、比較例5、6、8、11の粒子の結果を図2に示す。図2から、実施例1のセルロース粒子は入射光をあらゆる方向に均等に散乱させ、かつ、反射光強度が中程度、すなわち、ある程度の光透過性を有しており、これらの結果から良好な光学特性を有しているといえる。本実施形態の粒子は、例えば、化粧料原料として用いた場合にはソフトフォーカス性と自然な素肌感の両立を達成し得る。
 実施例11の粒子の結果を図7に示す。セルロース粒子は、再帰反射性が強く、例えば化粧料原料として用いた場合にはマット感、ソフトフォーカス性、UVカット性などの光学特性を好適に発現し得る。
[打錠成形試験]
 実施例1~8、比較例1~11に記載の粒子サンプル10重量部、タルク(小堺製薬製食品添加物グレード)55重量部、マイカ(日本光研工業製合成マイカパール干渉赤RXD)35重量部を混合して試料粉とした。試料粉をφ6mmの平錠型枠に230mg充填し、成形装置(アイコーエンジニアリング製、MODEL-1325VCW)にて圧縮圧19kN・10秒保持の条件で打錠成形し、成形品の横割れ発生有無を目視確認した。その結果、比較例8の粒子を含む試料粉から作製した成形体のみ横割れが発生し、その他の成形体には横割れが発生しなかった(図示せず)。
[10%変形時応力]
 微小粒子圧壊力測定装置(ナノシーズ社製NS-A300)を使用して、セルロース粒子1個の圧縮試験を実施した。下部加圧板の上に微粒子サンプルを微量散布し、顕微鏡観察下で粒子径10μm程度の粒子を選択して10%変形時応力を測定した。測定は1サンプルにつき10粒子実施し、10%変形時応力の平均値を算出した。
[粉体層せん断力測定]
 粉体層せん断力測定装置(ナノシーズ社製NS-S500)を用いて、粉体層せん断力測定を実施し、成形性に関連する各種物性値を取得した。粒子サンプルをせん断セルに充填し、粉体層上面を平坦にした後、押し込み目標荷重を押し込み制御の条件として、せん断試験を行った。測定条件は以下の通りである。
  サンプル充填量:2.5g
  サンプリング周波数:10Hz
  粉体層内径:15mm
  押し込み速度:0.20mm/秒
  押し込み制御条件:押し込み荷重:50N又は100N又は150N
  せん断速度:10μm/秒
  せん断開始遅延:100秒(押し込み制御条件成立後)
 目標押し込み荷重に達して押し込みを停止したときの荷重の実測値を、瞬間最大垂直荷重として記録した。せん断を開始する直前の底面荷重と押し込み荷重から、以下の式:
   応力伝達率(%)=(底面荷重/押し込み荷重)×100
により、応力伝達率を算出した。尚、応力伝達率が大きいほど、粉体層と充填セル内壁との摩擦が小さいことを意味し、圧縮成形を実施するにあたっては好ましい。
 粒子サンプルのせん断セルへの初期充填時の粉体層高さと、せん断を開始する直前の粉体層高さから圧縮率を算出した。さらに、一連の測定で取得されたデータを、横軸に垂直応力、縦軸にせん断応力をとってプロットし、ここから粉体層破壊包絡線PYLを生成し、最大主応力、単軸崩壊応力、動摩擦係数を求めた。尚、最大主応力は、円柱形に圧縮成形された粉体層に対して、側面に静水圧が加わっている状態で上下方向から加圧していき円柱が破壊された時点の圧力を意味する。単軸崩壊応力は、円柱形に圧縮成形体された粉体層に対して、側壁を外した状態で円柱の上方に載荷していき円柱が破壊された時点の圧力を意味する。最大主応力、単軸崩壊応力はどちらも成形体の強度を示す1つの指標であり、同一荷重を付加した際に最大主応力、単軸崩壊応力が大きいほどその粉体は成形性がよいと判断することができる。
 実施例4、比較例5、6についての10%変形時応力と粉体層せん断力測定の結果を以下の表4に示す。
 本実施形態のセルロース粒子は、既存のセルロース粒子と比較して、同一の目標荷重で圧縮成形した際の最大主応力および単軸崩壊応力、特に単軸崩壊応力が大きくなり得て、良好な成形性が発現され得ることがわかる。
[結晶化度]
 実施例1の粒子の結晶化度は0.42であった。
[海洋生分解速度]
 ASTM D6691に準拠し、微粒子の海水中での生分解性試験を実施した。微粒子を海水中に入れ、セルロースが分解される時に消費される酸素量を28日間測定し分解速度を評価した。同じタイミングで並行して基準物質である対照材料(Sigma-Aldrich製、微結晶セルロースAvicel PH-101)の分解速度を評価し、試験開始から28日経過後の時点で、対照材料の生分解度に対して90%以上の生分解度を示したサンプルを「〇」(生分解速度が十分に速い)、90%未満の生分解度を示したサンプルを「×」(生分解速度が遅い)として、海洋生分解速度を評価した。微粒子、基準物質共に評価はn=2で行い、平均値を結果として採用した。実施例1~12、比較例1~14についての結果を、以下の表5に示す。
 実施例1~12のセルロース粒子は迅速な海洋生分解性を有していた。
[吸油倍率の評価]
 粉体サンプル約0.2gをシャーレ上に秤り取り、市販の食用サラダ油を少量ずつ滴下してヘラで練り込むように混合した。サンプルがひとまとまりとなり、ぼろぼろになったりせずに広げることができる滑らかなペースト状になる時点までのサラダ油添加重量(W1)を測定し、粉体サンプルの重量(W2)に対する吸油倍率を以下の式:
   吸油倍率 = W1/W2×100 (%)
で算出した。
[吸水倍率の評価]
 サラダ油を純水に代えた以外は、上記に記載の吸油倍率の評価と同様の方法・計算式にて吸水倍率を算出した。実施例4、9、12、比較例5~9、及び11についての結果を、以下の表6に示す。比較例11の粒子は撥水性のため、吸水倍率を測定できなかった。
[化粧品組成物1:サンケア組成物]
 市販のサンケア製品(丹平製薬製・アトピタ保湿UVクリーム29)に、各種の粒子を表7に記載の重量比で添加し、よく混合して化粧品組成物1を得た。化粧品組成物1のUVカット性能と塗布時の感触を評価した。UVカット性能評価としては、サンスクリーンアナライザ(Labsphere社製・UV-2000S)を使用し、塗布基板としてはPMMAプレート(Helioscreen社製・HELIOPLATE SB6)を使用して、SPF値とPA値を測定した。
 化粧品組成物1の評価結果を以下の表7に示す。
 特定凹凸構造を有するセルロース粒子を添加した化粧品組成物1-1、1-2では、市販のサンケア製品よりもSPF値・PA値が向上し、塗布時の感触は良好であった。特定凹凸構造を有さないセルロース粒子を添加した化粧品組成物1-3では、SPF値の向上がみられなかった。微粒子酸化チタンを添加した化粧品組成物1-4では、UVカット性能は向上したが皮膚に塗布した際の伸び・きしみ感が不良であった。
[化粧品組成物2:固形ファンデーション組成物]
 化粧料の原料として従来用いられている各種成分を混合して化粧品組成物2を製造した。具体的には、各粉体を表8に示す重量割合で配合し、ブレンダーで混合した後、さらに結合剤を以下の表8に示す重量割合で加えて混合した。
これを粉砕機で粉砕した後、ふるいを通し、容器に充填してプレス成型した。成型品にひび割れ等はみられなかった。
 化粧品組成物2の肌への塗布時の感触について官能評価を実施した結果、化粧品組成物2-1、2-2、2-3はきしみ感が小さく良好であったが、化粧品組成物2-4はきしみ感が感じられ不良であった。また肌への塗布時の隠ぺい性・ソフトフォーカス性を目視にて評価した結果、化粧品組成物2-1は肌の小ジワが目立たず良好なソフトフォーカス性があり、化粧品組成物2-2ではソフトフォーカス性に加えて隠ぺい性の向上も確認できた。一方で化粧品組成物2-3、2-4は肌の小ジワが目立ち、隠ぺい性・ソフトフォーカス性が不十分であった。
[化粧品組成物3:O/W乳化型ファンデーション組成物]
 化粧料の原料として従来用いられている各種成分を混合して化粧品組成物3を製造した。具体的には、表以下の9に示す重量割合で、ベントナイト・プロピレングリコール・精製水を混合し70℃でホモミキサー処理した後、残りの水相成分を添加し十分に撹拌した。これに十分混合された粉体部を撹拌しながら添加し、70℃でホモミキサー処理した。つぎに70-80℃で加熱溶解された油相を徐々に添加し70℃でホモミキサー処理した。得られた混合物を撹拌しながら室温まで冷却し、脱気して、化粧品組成物3を得た。
 化粧品組成物3を肌へ塗布し乾燥させた後の塗膜の感触について官能評価を実施した結果、化粧品組成物3-1、3-2ではきしみ感が感じられたが、化粧品組成物3-3ではきしみ感が低減され、化粧品組成物3-4ではきしみ感がさらに低減された。またソフトフォーカス性を目視にて評価した結果、化粧品組成物3-1,3-2と比較して化粧品組成物3-3、3-4では肌の小ジワが目立たず良好なソフトフォーカス性を確認できた。
[化粧品組成物4:W/O乳化型ファンデーション組成物]
 化粧料の原料として従来用いられている各種成分を混合して化粧品組成物4を製造した。具体的には、以下の表10に示す重量割合で、水相を撹拌後に、十分混合された粉体部を添加しホモミキサー処理し、さらに溶解させた油相を加えてホモミキサー処理し、脱気して、化粧品組成物4を得た。
 化粧品組成物4の肌への塗布時のソフトフォーカス性を目視にて評価した結果、化粧品組成物4-1、4-2は肌の小ジワが目立たず良好なソフトフォーカス性があったが。化粧品組成物4-3、4-4は肌の小ジワが目立ちソフトフォーカス性が不十分であった。
 本発明に係るセルロース粒子は、きしみ感が低く、しっとり感やすべり感が調整可能で、光学特性に優れ、成形性に優れ、かつ、生分解性に優れるセルロース粒子である。したがって、本発明に係るセルロース粒子は、化粧品原料、感触改良剤、可視光散乱剤、赤外線散乱剤、樹脂添加剤、各種フィラー、離型剤、コーティング剤、塗料、スクラブ剤、クレンジング剤、吸着剤担体、ろ材、ろ過助剤、カラム充填剤、賦形剤、等の様々な分野で好適に利用可能である。
 R  畦部
 C  クレーター状の陥没部
 B  畦部(R)の分岐点
 RL  分岐点(B)同士を、畦部(R)の幅を二等分するように結んだ稜線(RL)
 S1  粒子全体を二次元投影したときの面積
 S2  1個のクレーター状の陥没部(C)を、稜線(RL)で取り囲むようにして描いた図形(輪郭形状)の面積
 S3  輪郭形状の凸包の面積
 W  畦部(R)の所定幅
 D  粒子径

Claims (14)

  1.  セルロース粒子であって、該粒子の表面全体に、網状に配された所定幅(W)の畦部(R)と、該畦部(R)により取り囲まれ、該畦部(R)により互いに隔てられたクレーター状の陥没部(C)とを、有するセルロース粒子。
  2.  前記畦部(R)により互いに隔てられた陥没部(C)の個数が、前記セルロース粒子の表面100μmあたり20個以上200個以下である、請求項1に記載のセルロース粒子。
  3.  前記畦部(R)の所定幅(W)が、0.1μm以上2.0μm以下であり、かつ所定幅(W)の粒子径(D)に対する比W/Dが0.25以下である、請求項1又は2に記載のセルロース粒子。
  4.  円形度が0.8以上である、請求項1又は2に記載のセルロース粒子。
  5.  前記セルロース粒子を構成するセルロースの結晶化度が70%未満である、請求項1又は2に記載のセルロース粒子。
  6.  前記セルロース粒子を構成するセルロースが、結晶構造II型の再生セルロースである、請求項1又は2に記載のセルロース粒子。
  7.  前記結晶構造II型の再生セルロースが、銅アンモニア法再生セルロース(キュプラ)である、請求項6に記載のセルロース粒子。
  8.  前記畦部(R)により互いに隔てられた陥没部(C)の輪郭形状のうち、凹形状であるものを少なくとも1個含む、請求項1又は2に記載のセルロース粒子。
  9.  前記畦部(R)により互いに隔てられた陥没部(C)の輪郭形状のうち、凹形状であるものの個数割合が10%以上である、請求項1又は2に記載のセルロース粒子。
  10.  前記セルロース粒子の内部又は表層に、光散乱性固体粒子が担持されている、請求項1又は2に記載のセルロース粒子。
  11.  前記光散乱性固体粒子が、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、酸化スズ、酸化セリウム、硫酸バリウム、シリカ、マイカ、セリサイト、タルク、カオリン、雲母、雲母チタン、オキシ塩化ビスマス、窒化ホウ素、のいずれか又はそれらの組み合わせである、請求項1又は2に記載のセルロース粒子。
  12.  請求項1又は2に記載のセルロース粒子の集合体であるセルロース粉体であって、セルロース粒子の体積平均粒子径(Dv50)が、1μm以上50μm以下であるセルロース粉体。
  13.  請求項1又は2に記載のセルロース粒子の集合体であるセルロース粉体であって、所定幅(W)の粒子径(D)に対する比W/Dが0.15以下である粒子の個数割合が50%以上である、セルロース粉体。
  14.  請求項12に記載のセルロース粉体を配合した化粧品組成物。
PCT/JP2023/037219 2022-10-18 2023-10-13 セルロース粒子 WO2024085087A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-167025 2022-10-18
JP2022167025 2022-10-18

Publications (1)

Publication Number Publication Date
WO2024085087A1 true WO2024085087A1 (ja) 2024-04-25

Family

ID=90737622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037219 WO2024085087A1 (ja) 2022-10-18 2023-10-13 セルロース粒子

Country Status (1)

Country Link
WO (1) WO2024085087A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151486A1 (ja) * 2018-02-01 2019-08-08 日産化学株式会社 機能性多糖粒子
WO2020054810A1 (ja) * 2018-09-12 2020-03-19 日産化学株式会社 機能性複合多糖粒子
WO2021145450A1 (ja) * 2020-01-17 2021-07-22 日産化学株式会社 紫外線防御用粒子状組成物
JP2022135891A (ja) * 2021-03-05 2022-09-15 積水化成品工業株式会社 多糖類含有粒子、該粒子の製造方法、及び該粒子の用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151486A1 (ja) * 2018-02-01 2019-08-08 日産化学株式会社 機能性多糖粒子
WO2020054810A1 (ja) * 2018-09-12 2020-03-19 日産化学株式会社 機能性複合多糖粒子
WO2021145450A1 (ja) * 2020-01-17 2021-07-22 日産化学株式会社 紫外線防御用粒子状組成物
JP2022135891A (ja) * 2021-03-05 2022-09-15 積水化成品工業株式会社 多糖類含有粒子、該粒子の製造方法、及び該粒子の用途

Similar Documents

Publication Publication Date Title
JP4255619B2 (ja) セルロース分散体
JP7478204B2 (ja) セルロース複合粉体
WO2010026925A1 (ja) 粉体化粧料
JP2012193139A (ja) 化粧料
CN113056306B (zh) 化妆品
JP5344398B2 (ja) 樹脂粒子、複合粒子の製造方法及び化粧料
US20220265525A1 (en) Particles containing starch, method for producing same, and cosmetic preparation
JPS6121201B2 (ja)
WO2024085087A1 (ja) セルロース粒子
JP2011126979A (ja) 保湿性粒子およびその製造方法
CN112672726A (zh) 功能性复合多糖粒子
JP6075845B2 (ja) 油中水型乳化化粧料
JP7453770B2 (ja) 複合粒子及びその製造方法
JP7377924B1 (ja) ポリマー粒子及びその用途
JP3448751B2 (ja) 紫外線遮蔽粉体及びこれを配合した化粧料
JP3400213B2 (ja) パック料
JP2019214531A (ja) 二重まぶた形成液
JP2006240994A (ja) 化粧用パック剤
WO2022131358A1 (ja) セルロースを含む顔料
EP4389802A1 (en) Novel and versatile biodegradable micropowder
JP7443605B2 (ja) ポリマー粒子及びその用途
WO2024014166A1 (ja) 固形粉体化粧料
WO2023139987A1 (ja) 粒子、及びその用途
TW202200107A (zh) 多糖複合粒子
JP5458326B2 (ja) 粉体化粧料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879730

Country of ref document: EP

Kind code of ref document: A1