WO2024082365A1 - 聚硅氧烷-聚酰亚胺-聚脲共聚物、制备方法以及隔热涂层及制备方法 - Google Patents

聚硅氧烷-聚酰亚胺-聚脲共聚物、制备方法以及隔热涂层及制备方法 Download PDF

Info

Publication number
WO2024082365A1
WO2024082365A1 PCT/CN2022/132103 CN2022132103W WO2024082365A1 WO 2024082365 A1 WO2024082365 A1 WO 2024082365A1 CN 2022132103 W CN2022132103 W CN 2022132103W WO 2024082365 A1 WO2024082365 A1 WO 2024082365A1
Authority
WO
WIPO (PCT)
Prior art keywords
polysiloxane
polyimide
polyurea
polyurea copolymer
coating
Prior art date
Application number
PCT/CN2022/132103
Other languages
English (en)
French (fr)
Inventor
王国辉
付继伟
陈红波
于霖
林三春
刘金峰
王筱宇
李玉山
Original Assignee
北京宇航系统工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京宇航系统工程研究所 filed Critical 北京宇航系统工程研究所
Publication of WO2024082365A1 publication Critical patent/WO2024082365A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/61Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/47Levelling agents

Definitions

  • the invention relates to a polysiloxane-polyimide-polyurea copolymer, a preparation method thereof, and a heat-insulating coating and a preparation method thereof, belonging to the technical field of heat-insulating protection.
  • the temperature of rocket/missile engine gas can be as high as 3000K.
  • the high-temperature, high-speed, under-expanded gas flow acts on the rear section of the launch tube, causing the launch tube to be subjected to high-pressure, high-temperature gas impact.
  • the equipment inside the shell near the fire source will still be exposed to high-intensity heat flow impact.
  • the peak heat flux density on the surface of the instrument inside the rocket body may be as high as 500KW/m2, and the surface temperature may reach more than 1500°C.
  • Such high heat flux radiation will have an adverse effect on the reliability of the internal equipment of the rocket/missile, especially the electronic equipment.
  • the instrument surface needs to be thermally protected.
  • the commonly used thermal protection method is to spray and immerse the thermal insulation coating on the surface of the flame-retardant inorganic fabric multiple times to form a thermal insulation sleeve with a certain thickness, thereby forming a thermal insulation protective sleeve on the surface of the instrument/equipment.
  • the thermal insulation protective sleeve needs to be soft enough to achieve rapid disassembly and installation; for lightweight considerations, the thermal insulation protective sleeve needs to be thin enough and have excellent flame retardant and thermal insulation properties.
  • the thermal insulation coating used for the internal instruments of rockets/missiles generally uses polyurethane as the coating matrix.
  • the polyurethane coating has a series of advantages such as good mechanical strength, softness, molding processability, insulation, and low thermal conductivity.
  • a good thermal insulation protection effect can be achieved.
  • the coating matrix is severely thermally decomposed, the residual carbon rate is not high, and the formed thermal insulation carbon layer is not dense enough.
  • These problems affect the thermal insulation effect of traditional polyurethane thermal insulation coatings.
  • polyurethane itself is flammable.
  • a large amount of flame retardant fillers must be added. These flame retardant fillers reduce the mechanical properties of the coating, increase moisture absorption, and increase the density of the coating, which are extremely unfavorable to the application effect of the thermal insulation coating.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art and to provide a polysiloxane-polyimide-polyurea copolymer, a preparation method, and a thermal insulation coating and a preparation method.
  • the flexible refractory thermal insulation coating with the new polysiloxane-polyimide-polyurea copolymer as the matrix and containing inorganic flame retardant fillers has good flexibility at low temperature of -70°C and high thermal stability. It can form an expanded and dense foam carbon layer under the heat flux radiation of 500kw/m2 to achieve good thermal insulation effect.
  • a polysiloxane-polyimide-polyurea copolymer, the copolymer structural formula is as follows:
  • n1, n2, n3 are all integers greater than or equal to 1;
  • R1, R2 are independently selected from C1-C12 alkyl or aryl groups
  • U is a divalent group containing the portion of the diisocyanate monomer other than the isocyanate group
  • V is a tetravalent group, and contains one or more of an alicyclic group, an aromatic group, an ether, a sulfone, a thioether or a carbonyl group.
  • the divalent group U is selected from one or more of the following groups:
  • the tetravalent group V is selected from one or more of the following groups:
  • W is a divalent group selected from one or more of the following groups:
  • n is an integer from 1 to 20.
  • the preparation method of the polysiloxane-polyimide-polyurea copolymer comprises the following steps:
  • the bifunctional amino-terminated polysiloxane and solvent B are uniformly mixed and added dropwise to the reactor. During the addition, stirring is maintained in the reactor. The temperature in the reactor is 5-10°C. After the addition is completed, the reaction is continued for 1-2 hours.
  • the molar ratio of isocyanate to amino in the reaction raw materials is 1.5 to 2:1;
  • the molar ratio of tetracarboxylic dianhydride to isocyanate in the polyurea prepolymer is 1:1.1-1.2.
  • the dripping speed of the mixed solution of the difunctional amino-terminated polysiloxane and solvent B in step (1) is controlled to be 2% to 5% of the total mass of the mixed solution per minute.
  • step (1) stirring is maintained in the reactor at a speed of 200 to 500 r/s.
  • the reduced pressure distillation in step (1) is carried out at 80 to 130° C. and a vacuum degree of -0.08 to -0.098 MPa.
  • the solvent A is one or a combination of tetrahydrofuran, dioxane, ethyl acetate, butyl acetate or methyl formate;
  • the solvent B is one or a combination of chloroform, toluene, xylene, cyclohexane, hexane or petroleum ether;
  • the solvent C is one of N,N-dimethylformamide DMF, N,N-dimethylacetamide DMAc, N-methylpyrrolidone NMP or dimethyl sulfoxide DMSO or a combination thereof;
  • the protective gas is nitrogen or argon.
  • the diisocyanate is toluene diisocyanate TDI, diphenylmethane diisocyanate MDI, 1,4-bis-(isocyanate methyl)benzene XDI, naphthalene diisocyanate NDI, methylcyclohexyl diisocyanate HTDI, dicyclohexylmethane diisocyanate HMDI, hexamethylene diisocyanate HDI, isophorone diisocyanate IPDI or 1,4-bis-(isocyanate methyl)benzene, or a combination thereof.
  • the difunctional amino-terminated polysiloxane has the structure shown below:
  • n1 is an integer greater than or equal to 1; R1 and R2 are independently selected from C1-C12 alkyl or aryl groups.
  • the tetracarboxylic dianhydride has the structure shown below:
  • V is a tetravalent group, containing one or more of alicyclic groups, aromatic groups, ethers, sulfones, thioethers or carbonyl groups, and has the following structure:
  • W is a divalent group, and the divalent bonds of W are at positions 2,2', 3,3', 4,4', 2,3', 3,4', and the structure is as follows:
  • n is an integer from 1 to 20.
  • the tertiary amine catalyst is one of N,N-dimethylcyclohexylamine, bis(2-dimethylaminoethyl) ether, N,N,N',N'-tetramethylalkylenediamine, triethylamine, bis(dimethylamino)-2-propanol, N,N-dimethylbenzylamine, triethanolamine or N,N'-lutidine, 2,4,6-tris(dimethylaminomethyl)phenol or a combination thereof.
  • a flexible fire-resistant heat-insulating coating the raw materials of which include the above-mentioned polysiloxane-polyimide-polyurea copolymer, an expanding flame-retardant filler and a leveling agent.
  • the mass ratio of the intumescent flame-retardant filler, the leveling agent and the polysiloxane-polyimide-polyurea copolymer is 1:0.05-0.1:3-6.
  • the intumescent flame-retardant filler includes ammonium polyphosphate, pentaerythritol, antimony trioxide and kaolin, and the mass ratio is 4-6:2-3:0.5-1:0.5-1.
  • the leveling agent is an acrylic homopolymer or copolymer.
  • the method for preparing the above-mentioned flexible fire-resistant heat-insulating coating comprises:
  • ammonium polyphosphate, pentaerythritol, antimony trioxide and kaolin are mixed uniformly according to a proportion, and the mixture is ground and sieved to obtain an intumescent flame retardant powder;
  • the coating is evenly applied to the surface of the substrate, and a flexible fire-resistant heat-insulating coating is obtained after curing.
  • the curing is carried out under a vacuum degree of -0.8 to 0.98 MPa, and the curing adopts a gradient temperature increase method, including: 90 to 110°C/0.5 to 1 hour, 150 to 170°C/0.5 to 1 hour, and 170 to 190°C/3 to 6 hours.
  • the coating is evenly applied to the surface of the substrate by brushing, dipping or spraying.
  • the present invention has at least the following beneficial effects:
  • the present invention provides a polysiloxane-polyimide-polyurea copolymer with a novel structure and a preparation method thereof, and also provides a flexible fire-resistant heat-insulating coating with the polysiloxane-polyimide-polyurea copolymer as a matrix, containing an inorganic flame-retardant filler and a leveling agent and a preparation method thereof;
  • the introduction of the polyimide structure significantly improves the thermal stability of the polyurethane, thereby forming a dense and uniform expanded carbon layer at high temperature, achieving a good flame-retardant and heat-insulating effect;
  • the introduction of the polysiloxane structure on the one hand, weakens the crystallization tendency of the imide ring, and on the other hand, the flexibility of the silicon-oxygen bond gives the polymer molecule main chain better mobility, thereby improving the flexibility of the coating, while not reducing the heat resistance of the coating, thereby compensating for the poor softness caused by the
  • the present invention further optimizes the selection of the composition ratio of raw materials and the design of the preparation process conditions in the preparation process of the polysiloxane-polyimide-polyurea copolymer, so that the prepared polysiloxane-polyimide-polyurea copolymer has more excellent performance;
  • the present invention further optimizes the selection of the composition ratio of raw materials and the design of the preparation process conditions during the preparation of the flexible fire-resistant heat-insulating coating, so that the prepared flexible fire-resistant heat-insulating coating has more excellent fire-resistant and heat-insulating properties.
  • the polysiloxane-polyimide-polyurea copolymer flexible fire-resistant thermal insulation coating provided by the present invention has good performance in low-temperature flexibility, thermal stability, and thermal insulation performance in a large heat flux environment, and is expected to replace existing thermal protection coating materials for rockets/missiles.
  • FIG1 is an infrared spectrum of a polysiloxane-polyimide-polyurea copolymer prepared in Example 1 of the present invention
  • FIG2 is a graph showing the water contact angles of the copolymers prepared in Example 1 and Comparative Example 1 of the present invention
  • FIG3 is a microscopic morphology photograph of the ablated product of the coating prepared in Example 1 of the present invention and Comparative Example 1 after irradiation at a heat flux intensity of 500 kW/m2 for 60 seconds.
  • the present invention provides a polysiloxane-polyimide-polyurea copolymer, and the copolymer has the following structural formula:
  • n1, n2, n3 are all integers greater than or equal to 1;
  • R1, R2 are independently selected from C1-C12 alkyl or aryl groups
  • U is a divalent group, containing the part of the diisocyanate monomer other than the isocyanate group, and is selected from one or more of the following groups:
  • V is a tetravalent group, containing one or more of an alicyclic group, an aromatic group, an ether, a sulfone, a thioether or a carbonyl group, for example, one or more of the following groups:
  • W is a divalent group, for example, one or more selected from the following groups:
  • n is an integer from 1 to 20.
  • the preparation method of the polysiloxane-polyimide-polyurea copolymer of the present invention comprises the following steps:
  • Step 1 preparing an isocyanate-terminated polyurea prepolymer having a main chain containing a polysiloxane structure.
  • the specific method includes:
  • diisocyanate and solvent A In a reactor filled with dry protective gas (such as nitrogen or argon), add diisocyanate and solvent A, and stir to completely dissolve the diisocyanate.
  • dry protective gas such as nitrogen or argon
  • the solvent B and the difunctional amino-terminated polysiloxane are mixed uniformly and dripped into the reactor at a uniform speed using a dropping funnel or a peristaltic pump.
  • the dripping speed is controlled to be 2% to 5%/min of the total amount of the mixed solution.
  • the solvent and low-boiling point substances in the system are removed by reduced pressure distillation at 80 to 130° C. and a vacuum degree of -0.08 to -0.098 MPa.
  • the molar ratio of isocyanate to amino in the raw material is 1.5 to 2:1.
  • the solvent A is one or a mixture of two or more of tetrahydrofuran, dioxane, ethyl acetate, butyl acetate and methyl formate.
  • the volume ratio of the solvent A to the diisocyanate is 10-20:1.
  • Solvent B is one or a mixture of two or more of chloroform, toluene, xylene, cyclohexane, hexane and petroleum ether.
  • the volume ratio of solvent B to difunctional amino-terminated polysiloxane is 10-20:1.
  • the diisocyanate is one or two of toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), 1,4-bis-(isocyanate methyl)benzene (XDI), naphthalene diisocyanate (NDI), methylcyclohexyl diisocyanate (HTDI), dicyclohexylmethane diisocyanate (HMDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), 1,4-bis-(isocyanate methyl)benzene, or a mixture of two or more thereof.
  • TDI toluene diisocyanate
  • MDI diphenylmethane diisocyanate
  • XDI 1,4-bis-(isocyanate methyl)benzene
  • NDI naphthalene diisocyanate
  • HMDI methylcyclohexyl diis
  • the difunctional amino-terminated polysiloxane has the following structure:
  • n1 is an integer greater than or equal to 1; R1 and R2 are independently selected from C1 to C12 alkyl or aryl groups.
  • Step 2 using the prepared polyurea prepolymer to prepare a polysiloxane-polyimide-polyurea copolymer, the specific method includes:
  • tetracarboxylic dianhydride and the polyurea prepolymer obtained in step 1 are dissolved in solvent C.
  • the molar ratio of the acid anhydride to the isocyanate in the polyurea prepolymer is 1:1.1-1.2, and the isocyanate content in the polyurea prepolymer is measured by a hydrochloric acid-di-n-butylamine method.
  • Tetracarboxylic dianhydride has the structure shown below:
  • V is a tetravalent group, containing one or more of, including but not limited to, alicyclic groups, aromatic groups, ethers, sulfones, thioethers, and carbonyl groups.
  • its structure is as follows:
  • W is a divalent group, and the divalent bonds of W are at positions 2,2', 3,3', 4,4', 2,3', 3,4'.
  • its structure is as follows:
  • n is an integer from 1 to 20.
  • Tertiary amine catalysts include, but are not limited to: N,N-dimethylcyclohexylamine, bis(2-dimethylaminoethyl) ether, N,N,N',N'-tetramethylalkylenediamine, bis(dimethylamino)-2-propanol, triethylamine, N,N-dimethylbenzylamine, triethanolamine, N,N'-lutidine, 2,4,6-tris(dimethylaminomethyl)phenol, one or two of them, or a mixture of two or more thereof.
  • the solvent C is one of N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N-methylpyrrolidone (NMP) or dimethyl sulfoxide (DMSO) or a combination thereof.
  • the volume ratio of the solvent C to (tetracarboxylic dianhydride and polyurea prepolymer) is 10 to 30:1.
  • the flexible fire-resistant heat-insulating coating with polysiloxane-polyimide-polyurea copolymer as the matrix of the present invention comprises polysiloxane-polyimide-polyurea copolymer, intumescent flame-retardant filler and leveling agent, wherein the mass ratio of intumescent flame-retardant filler, leveling agent and polysiloxane-polyimide-polyurea copolymer is 1:0.05-0.1:3-6.
  • the intumescent flame retardant filler comprises ammonium polyphosphate, pentaerythritol, antimony trioxide and kaolin, and the mass ratio thereof is 4-6:2-3:0.5-1:0.5-1.
  • the leveling agent is an acrylic homopolymer or copolymer.
  • the present invention relates to a flexible fire-resistant heat-insulating coating based on a polysiloxane-polyimide-polyurea copolymer, and the preparation method thereof is as follows:
  • Step 1 Evenly mix ammonium polyphosphate, pentaerythritol, antimony trioxide and kaolin in a mass ratio of 4-6:2-3:0.5-1:0.5-1, grind and sieve to obtain an intumescent flame retardant powder.
  • Step 2 adding the intumescent flame retardant powder and the leveling agent to the polysiloxane-polyimide-polyurea copolymer reaction solution and stirring evenly to obtain a coating, wherein the mass ratio of the intumescent flame retardant powder, the leveling agent, and the total mass of the polysiloxane-polyimide-polyurea copolymer is 1:0.05-0.1:3-6.
  • Step 3 use brushing, dipping, spraying and other processes to evenly apply the coating on the surface of the substrate, and cure it by gradient heating at a vacuum degree of -0.8 to 0.98 MPa.
  • An optional embodiment includes: (90 to 110°C/0.5 to 1 hour), (150 to 170°C/0.5 to 1 hour), (170 to 190°C/3 to 6 hours); the coating is cured at a curing temperature to obtain a flexible fire-resistant and thermal-insulating coating based on a polysiloxane-polyimide-polyurea copolymer.
  • the flexible fire-resistant heat-insulating coating can be used for the surface of the protective shell of the aircraft internal equipment.
  • the flexible fire-resistant heat-insulating coating is coated on the surface of the substrate, and the substrate is arranged outside the equipment to form a protective shell, or is sleeved on the outside of the protective shell of the equipment.
  • the substrate can be a composite material or a metal material.
  • Polyurea is a type of polymer formed by the polymerization of isocyanate and amine substances. Its structure and properties are similar to those of polyurethane. Compared with polyurethane, urea has a greater polarity and higher cohesive energy than carbamate. Therefore, under similar molecular structures, polyurea has higher mechanical strength and stronger adhesion to the substrate than polyurethane. In addition, the reactivity of isocyanate with amine is much greater than that of isocyanate with alcohol. Therefore, the process of synthesizing polyurea can be carried out quickly without heating, which is more efficient and energy-saving.
  • Polyimide is a type of thermoplastic polymer with an imide ring in the main chain.
  • thermoplastic polymer material with the best comprehensive performance known so far.
  • the initial pyrolysis temperature of fully aromatic polyimide is generally above 500°C and can reach up to 600°C.
  • polyimide has good mechanical properties.
  • the tensile strength of unfilled plastics is above 100Mpa, and that of homophenyl polyimide is 170Mpa.
  • polyimide in addition to fluorinated polymers, is one of the few completely flame-retardant polymer materials. Without adding any flame retardant, its flame retardant effect can reach V-0 level. Therefore, moderately introducing polyimide into the molecular structure of polyurethane can greatly improve the heat resistance and flame retardancy of the resin.
  • polysiloxane is a class of polymers with Si-O-Si repeating units in the main chain of the molecule.
  • the main chain is an inorganic structure and the side chain is an organic group, which has both organic and inorganic properties.
  • polysiloxane Due to the long Si-O bond and low rotation energy barrier, polysiloxane is softer and has higher low-temperature toughness than organic rubber; in addition, the bond energy of the Si-O covalent bond is 462kJ/mol, while the bond energy of the C-C bond is only 347kJ/mol, so polysiloxane has better thermal stability and flame retardancy than organic rubber.
  • the thermal stability and flame retardancy of the material can be greatly improved.
  • the polysiloxane structure can make up for the lack of flexibility of polyimide, thereby obtaining a flexible coating material with strong low-temperature toughness, high-temperature thermal stability, and better flame retardant and heat insulation properties.
  • This material is expected to replace the existing rocket/missile instrument heat-resistant coating materials, thereby better meeting the needs of rocket/missile lightweight and high reliability.
  • FT-IR Fourier transform infrared spectroscopy
  • the testing instrument is German OCA50 contact angle meter.
  • Thermogravimetric analysis The test instrument is TGA Q500 thermogravimetric analyzer produced by TA Instruments, USA. The test conditions are room temperature to 600°C under nitrogen atmosphere, and the heating rate is 20°C/min.
  • Coating tensile properties The tensile properties are tested according to GBT 13022-1991 "Test method for tensile properties of plastic films”.
  • Step 2 In a nitrogen-protected reactor, 15.5 g of 3,3',4,4'-diphenyl ether tetracarboxylic anhydride and 118 g of the polyurea prepolymer obtained in step 1 were dissolved in DMAc. 0.8 g of 2,4,6-tris(dimethylaminomethyl)phenol was added, and the temperature was raised to 100°C and refluxed for reaction for 1 hour.
  • Step 3 18g of ammonium polyphosphate, 9g of pentaerythritol, 1.5g of antimony trioxide, and 1.5g of kaolin, a total of 30g, are mixed evenly, ball-milled, and sieved to obtain an intumescent flame retardant powder. 30g of the intumescent flame retardant powder and 1.5g of a leveling agent are added to the polysiloxane-polyimide-polyurea copolymer reaction solution of step 2, and stirred evenly to obtain a coating based on the polysiloxane-polyimide-polyurea copolymer.
  • Step 4 Spray the coating obtained in step (3) onto the substrate, and cure the coating under a vacuum degree of -0.098Mpa using a curing procedure of 100°C/0.5 hour, 160°C/1 hour, and 180°C/5 hours to obtain a flexible fire-resistant thermal insulation coating based on a polysiloxane-polyimide-polyurea copolymer.
  • FIG. 1 it is the infrared spectrum of the coating obtained in Example 1.
  • the infrared absorption peak at 3300cm-1 is attributed to the N-H stretching vibration in the imide and urea bonds;
  • the double peaks at 1000-1100cm-1 are attributed to the stretching vibrations of Si-O-Si and Si-O-C.
  • the coating material in Example 1 contains three structures of urea, siloxane, and imide, and the coating substrate material is a polysiloxane-polyimide-polyurea copolymer.
  • Step 2 In a nitrogen-protected reactor, 13.5 g of 3,3',4,4'-diphenyl ether tetracarboxylic anhydride and 113 g of the polyurea prepolymer obtained in step (1) were dissolved in DMAc. 0.8 g of 2,4,6-tris(dimethylaminomethyl)phenol was added, and the temperature was raised to 100°C for reflux reaction for 1 hour.
  • Step 3 Same as step 3 in Example 1.
  • Step 4 Same as step 4 in Example 1.
  • Mw bisamino-terminated dimethylsilane
  • Step 2 In a nitrogen-protected reactor, 9.8 g of pyromellitic anhydride and 1015 g of the polyurea prepolymer obtained in step (1) were dissolved in DMSO. 6 g of bis(dimethylamino)-2-propanol was added, and the temperature was raised to 100° C. and refluxed for 1 hour.
  • Step 3 128g of ammonium polyphosphate, 60g of pentaerythritol, 11g of antimony trioxide, and 11g of kaolin, a total of 210g, are mixed evenly, ball-milled, and sieved to obtain an intumescent flame retardant powder. 210g of the intumescent flame retardant powder and 11g of a leveling agent are added to the reaction solution of step 2, and stirred evenly to obtain a coating based on a polysiloxane-polyimide-polyurea copolymer.
  • Step 4 Same as step 4 in Example 1.
  • Mw diamino-terminated dimethylsilane
  • Step 2 In a nitrogen-protected reactor, 9.5 g of pyromellitic dianhydride and 912 g of the polyurea prepolymer obtained in (1) were dissolved in DMF, 9 g of bis(dimethylamino)-2-propanol was added, and the temperature was raised to 100° C. and refluxed for reaction for 1 hour.
  • Step 3 120g of ammonium polyphosphate, 60g of pentaerythritol, 10g of antimony trioxide, and 10g of kaolin, a total of 200g, are mixed evenly, ball-milled, and sieved to obtain an intumescent flame retardant powder. 200g of the intumescent flame retardant powder and 10g of a leveling agent are added to the reaction solution of step 2, and stirred evenly to obtain a coating based on a polysiloxane-polyimide-polyurea copolymer.
  • Step 4 Same as step 4 in Example 1.
  • the polyurea matrix in this example does not contain polysiloxane and polyimide structures, and its preparation process is as follows:
  • Step 2 28g of ammonium polyphosphate, 14g of pentaerythritol, 2g of antimony trioxide, and 2g of kaolin, a total of 46g, are mixed evenly, ball-milled, and sieved to obtain an intumescent flame retardant powder. 46g of the intumescent flame retardant powder and 3g of a leveling agent are added to the reaction solution of step 1, and stirred evenly to obtain a coating based on polyurea.
  • Step 3 Apply the coating obtained in step 2 on the substrate, remove the solvent under a vacuum degree of -0.098 MPa, and obtain a flexible fire-resistant heat-insulating coating based on polyurea.
  • Figure 3 is a microscopic morphology photograph of the ablated product of the coating prepared in Example 1 of the present invention and Comparative Example 1 after irradiation for 60 seconds at a heat flux intensity of 500kw/m2.
  • Figure a is Example 1 of the present invention
  • Figure b is Comparative Example 1.
  • Figure 3 is a digital photograph of the ablated product of the coating after the thermal insulation test. It can be clearly seen that the ablated product of the coating in Example 1 is expanded and dense. This morphology of the expanded carbon layer is very beneficial to the thermal insulation performance of the coating under a high heat flux environment.
  • the carbon layer of Comparative Example 1 has a large number of hollow areas, and the carbon layer is not dense enough. This is due to the insufficient thermal stability of the matrix material and the excessively fast pyrolysis rate. The formation of large-sized hollows is very unfavorable for the thermal insulation performance.
  • the polyurea matrix in this example contains polysiloxane structure but no polyimide structure, and its preparation process is as follows:
  • Step 2 Same as step 2 in comparative example 1
  • Step 3 Same as step 3 of comparative example 1
  • the polyurea matrix in this example contains a polyimide structure but no polysiloxane structure, and its preparation process is as follows:
  • Step 1 Replace the bisamino-terminated dimethylsilane in step 1 of Example 1 with amino-terminated polyether D2000, and the rest is the same as step 1 of Example 1.
  • Step 2 Same as step 2 in Example 1.
  • Step 3 Same as step 3 in Example 1.
  • Step 4 Same as step 4 in Example 1.
  • Table 2 shows the test results of thermogravimetry (nitrogen atmosphere), hardness, elongation at break, and thermal insulation performance of the coating materials of each embodiment and comparative example. It is used to demonstrate the beneficial effects of polysiloxane and polyimide structures in the main chain structure on the heat resistance, mechanical properties, thermal insulation properties, and hydrophobic properties of the polymer.
  • the thermal stability of the coatings of Examples 1 to 4 is significantly higher than that of the comparative example, and the coatings are still relatively soft at a low temperature of -70°C, and the elongation at break is relatively large, indicating that the coatings have good flexibility at low temperatures.
  • the results of the thermal insulation test show that under a large heat flux radiation of 500Kw/m2, the thermal insulation performance of the coating material prepared by the method of the present invention is significantly better than that of the coating in the comparative example (lower temperature rise).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

一种聚硅氧烷-聚酰亚胺-聚脲共聚物、制备方法以及隔热涂层及制备方法,合成新型的聚硅氧烷-聚酰亚胺-聚脲共聚物,通过聚酰亚胺结构的引入明显提升了聚氨酯的热稳定性,从而在高温下形成致密均匀的膨胀碳层,达到良好的阻燃隔热效果;聚硅氧烷结构的引入,一方面减弱了酰亚胺环的结晶倾向,另一方面硅氧键的柔韧性赋予聚合物分子主链更好的运动能力,因此提升了涂层的柔韧性,同时不会降低涂层的耐热性,从而弥补了聚酰亚胺结构带来的柔软性差的不足,最终得到了低温柔韧,高温阻燃隔热性能好的柔性涂层,在低温-70℃柔韧性良好,热稳定性高,在500kw/m 2的热流辐射下能形成膨胀且致密的泡沫碳层起到良好的隔热效果。

Description

聚硅氧烷-聚酰亚胺-聚脲共聚物、制备方法以及隔热涂层及制备方法
本申请要求于2022年10月19日提交中国专利局、申请号为202211280493.X、发明名称为“聚硅氧烷-聚酰亚胺-聚脲共聚物、制备方法以及隔热涂层及制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种聚硅氧烷-聚酰亚胺-聚脲共聚物、制备方法以及隔热涂层及制备方法,属于防隔热技术领域。
背景技术
火箭/导弹发动机燃气温度可高达3000K。大推力运载火箭在点火过程中,高温、高速、欠膨胀燃气流作用在发射筒筒体后段内部,导致发射筒体会承受高压、高温燃气冲击。虽然有壳体的保护,火源附近壳体内部的设备仍然会暴露于高强度的热流冲击下,箭体内部仪器表面的峰值热流密度可能高达500KW/m2,表面温度最高可达1500℃以上,如此高的热流辐射会对火箭/导弹内部设备,尤其是电子设备的可靠性产生不利影响。为了保证仪器设备在发动机喷流高温辐射、回流加热以及舱内高温部件的辐射加热环境下的可靠工作,需要对仪器表面进行热防护处理。
目前通常采用的热防护方法是:在阻燃无机织物表面多次喷涂、浸渍隔热涂层,从而形成具有一定厚度的隔热套体,从而在仪器/设备表面形成隔热保护套体。因为火箭/导弹内部的仪器设备有快速检修的需求,因此要求隔热保护套体需要足够柔软,以实现快速拆卸安装;出于轻量化的考虑,隔热保护套体需要足够轻薄且具有优良的阻燃、隔热性能。目前用于火箭/导弹内部仪器的隔热涂层一般以聚氨酯作为涂层基体,这是因为聚氨酯涂层具备良好的力学强度、柔软性、成型工艺性,绝缘性、低热导率等一系列优点。通过在聚氨酯树脂内部添加阻燃剂和增强相,可以实现良好的隔热防护效果。然而,由于聚氨酯本 身的耐热性能不足,在高热流强度下,涂层基体热分解严重,残碳率不高,形成的隔热碳层不够致密,这些问题都影响了传统聚氨酯隔热涂层的隔热效果。此外,聚氨酯本身是易燃的,为了达到良好的阻燃效果,必须添加大量的阻燃填料,这些阻燃填料使涂层的力学性能下降,吸潮性增加,涂层密度增加,这些对于隔热涂层的应用效果都是极为不利的。
发明内容
本发明的目的在于克服现有技术的上述不足,提供一种聚硅氧烷-聚酰亚胺-聚脲共聚物、制备方法以及隔热涂层及制备方法,以该新型聚硅氧烷-聚酰亚胺-聚脲共聚物为基体,含有无机阻燃填料的柔性耐火隔热涂层在低温-70℃柔韧性良好,热稳定性高,在500kw/m2的热流辐射下能形成膨胀且致密的泡沫碳层起到良好的隔热效果。
本发明的上述目的主要是通过如下技术方案予以实现的:
一种聚硅氧烷-聚酰亚胺-聚脲共聚物,所述共聚物结构式如下所示:
Figure PCTCN2022132103-appb-000001
其中:
n1,n2,n3均为大于或等于1的整数;
R1,R2独立地选自C1~C12的烷基或芳基;
U为二价基团,含有二异氰酸酯单体中除异氰酸根以外的部分;
V为四价基团,含有脂环基团、芳香基团、醚、砜、硫醚或羰基中的一种或几种。
在上述聚硅氧烷-聚酰亚胺-聚脲共聚物中,所述二价基团U选自下列基团中的一种或几种:
Figure PCTCN2022132103-appb-000002
在上述聚硅氧烷-聚酰亚胺-聚脲共聚物中,所述四价基团V选自下列基团中的一种或几种:
Figure PCTCN2022132103-appb-000003
其中,W为二价基团,选自下列基团中的一种或几种:
Figure PCTCN2022132103-appb-000004
其中,n为1~20的整数。
上述聚硅氧烷-聚酰亚胺-聚脲共聚物的制备方法,包括如下步骤:
(1)、制备主链含聚硅氧烷结构的异氰酸根封端的聚脲预聚体,包括:
在通保护气体的反应器内,加入二异氰酸酯和溶剂A,搅拌使二异氰酸酯溶解;
将双官能度氨基封端的聚硅氧烷和溶剂B混合均匀滴加至反应器内,滴加 过程中反应器内维持搅拌,反应器内温度为5~10℃,滴加完毕后继续反应1~2小时;
反应结束后减压蒸馏除去反应体系中的溶剂和低沸点物质;
其中,反应原料中异氰酸根与氨基的摩尔比为1.5~2:1;
(2)、采用制备得到的聚脲预聚体制备聚硅氧烷-聚酰亚胺-聚脲共聚物,包括:
在通有保护气体的反应器内,将四羧酸二酐和所述聚脲预聚体溶解在溶剂C中;
加入反应物总质量0.5~1%的叔胺催化剂,升温至80~100℃回流反应0.5~2小时,得到聚硅氧烷-聚酰亚胺-聚脲共聚物溶液;
其中,四羧酸二酐和聚脲预聚体中异氰酸根的摩尔比为1:1.1~1.2。
在上述聚硅氧烷-聚酰亚胺-聚脲共聚物的制备方法中,所述步骤(1)中控制双官能度氨基封端的聚硅氧烷和溶剂B混合溶液的滴加速度为:每分钟滴加混合溶液总质量的2%~5%。
所述步骤(1)滴加过程中反应器内维持搅拌,搅拌速度为200~500r/s。
在上述聚硅氧烷-聚酰亚胺-聚脲共聚物的制备方法中,所述步骤(1)中减压蒸馏在80~130℃,-0.08~-0.098MPa真空度下进行。
在上述聚硅氧烷-聚酰亚胺-聚脲共聚物的制备方法中,所述溶剂A为四氢呋喃、二氧六环、乙酸乙酯、乙酸丁酯或甲酸甲酯中的一种或其组合;
所述溶剂B为氯仿、甲苯、二甲苯、环己烷、己烷或石油醚中的一种或其组合;
所述溶剂C为N,N-二甲基甲酰胺DMF、N,N-二甲基乙酰胺DMAc、N-甲基吡咯烷酮NMP或二甲基亚砜DMSO中的一种或其组合;
所述保护气体为氮气或氩气。
在上述聚硅氧烷-聚酰亚胺-聚脲共聚物的制备方法中,所述二异氰酸酯为甲苯二异氰酸酯TDI、二苯甲烷二异氰酸酯MDI、1,4-双-(异氰酸酯甲基)苯 XDI、萘二异氰酸酯NDI、甲基环己基二异氰酸酯HTDI、二环己基甲烷二异氰酸酯HMDI、己二异氰酸酯HDI、异氟尔酮二异氰酸酯IPDI或1,4-双(异氰酸酯甲基)苯其中的一种或其组合.
在上述聚硅氧烷-聚酰亚胺-聚脲共聚物的制备方法中,所述双官能度氨基封端的聚硅氧烷具有如下所示的结构:
Figure PCTCN2022132103-appb-000005
其中:n 1为大于或等于1的整数;R 1、R 2独立地选自C1~C12的烷基或芳基。
在上述聚硅氧烷-聚酰亚胺-聚脲共聚物的制备方法中,所述四羧酸二酐具有如下所示的结构:
Figure PCTCN2022132103-appb-000006
其中:V为四价基团,含有脂环基团、芳香基团、醚、砜、硫醚或羰基中的一种或几种,具有如下所示的结构:
Figure PCTCN2022132103-appb-000007
其中,W为二价基团,W的二价键在2,2’、3,3’、4,4’、2,3'、3,4’位置,结构如下:
Figure PCTCN2022132103-appb-000008
其中,n为1~20的整数。
在上述聚硅氧烷-聚酰亚胺-聚脲共聚物的制备方法中,所述叔胺催化剂为N,N-二甲基环己胺、双(2-二甲氨基乙基)醚、N,N,N',N'-四甲基亚烷基二胺、三乙胺、双(二甲氨基)-2-丙醇、N,N-二甲基苄胺、三乙醇胺或N,N’-二甲基吡啶、2,4,6-三(二甲氨基甲基)苯酚中的一种或其组合。
一种柔性耐火隔热涂层,该涂层的原料包括上述聚硅氧烷-聚酰亚胺-聚脲共聚物、膨胀阻燃填料和流平剂。
在上述柔性耐火隔热涂层中,所述膨胀阻燃填料、流平剂与聚硅氧烷-聚酰亚胺-聚脲共聚物的质量比为1:0.05~0.1:3~6。
在上述柔性耐火隔热涂层中,所述膨胀阻燃填料包括聚磷酸铵、季戊四醇、三氧化二锑和高岭土,质量比为4~6:2~3:0.5~1:0.5~1。
在上述柔性耐火隔热涂层中,所述流平剂为丙烯酸均聚物或共聚物。
上述柔性耐火隔热涂层的制备方法,包括:
将聚磷酸铵、季戊四醇、三氧化二锑和高岭土按照配比混合均匀,经研磨、过筛,得到膨胀阻燃剂粉末;
将所述膨胀阻燃剂粉末、流平剂加入到聚硅氧烷-聚酰亚胺-聚脲共聚物中搅拌均匀,得到涂料;
将涂料均匀涂覆于基体表面,固化后得到柔性耐火隔热涂层。
在上述柔性耐火隔热涂层的制备方法中,所述固化在-0.8~0.98Mpa真空度 下进行,固化采用梯度升温的方式,包括:90~110℃/0.5~1小时、150~170℃/0.5~1小时、170~190℃/3~6小时。
在上述柔性耐火隔热涂层的制备方法中,采用涂刷、浸渍或喷涂方法将涂料均匀涂覆于基体表面。
本发明与现有技术相比至少具有如下有益效果:
本发明提供了一种新型结构的聚硅氧烷-聚酰亚胺-聚脲共聚物及其制备方法,同时给出了以该聚硅氧烷-聚酰亚胺-聚脲共聚物为基体,含有无机阻燃填料和流平剂的柔性耐火隔热涂层及其制备方法;聚酰亚胺结构的引入明显提升了聚氨酯的热稳定性,从而在高温下形成致密均匀的膨胀碳层,达到良好的阻燃隔热效果;聚硅氧烷结构的引入,一方面减弱了酰亚胺环的结晶倾向,另一方面硅氧键的柔韧性赋予聚合物分子主链更好的运动能力,因此提升了涂层的柔韧性,同时不会降低涂层的耐热性,从而弥补了聚酰亚胺结构带来的柔软性差的不足,最终得到了低温柔韧,高温阻燃隔热性能好的柔性涂层,进一步提升了柔性隔热涂层在火箭/导弹上的应用表现。
本发明通过进一步对聚硅氧烷-聚酰亚胺-聚脲共聚物制备过程中原料的组成配比的选取及制备工艺条件的优化设计,使得制备得到的聚硅氧烷-聚酰亚胺-聚脲共聚物具有更加优异的性能;
本发明通过进一步对柔性耐火隔热涂层制备过程中原料的组成配比的选取及制备工艺条件的优化设计,使得制备得到的柔性耐火隔热涂层具有更加优异的耐火隔热性能。
综上所述,本发明提供的一种聚硅氧烷-聚酰亚胺-聚脲共聚物柔性耐火隔热涂层,在低温柔韧性、热稳定性、大热流环境下的隔热性能上均有良好的性能,有望替换现有的火箭/导弹用热防护涂层材料。
附图说明
图1为本发明实施例1中制备的聚硅氧烷-聚酰亚胺-聚脲共聚物红外光谱图;
图2为本发明实施例1和对比例1中制备的共聚物的水接触角;
图3为本发明实施例1和对比例1中制备的涂层在500kw/m2热流强度下辐射60s后的烧蚀物微观形貌照片。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细的描述:
本发明提供一种聚硅氧烷-聚酰亚胺-聚脲共聚物,该共聚物结构式如下:
Figure PCTCN2022132103-appb-000009
其中:
n1,n2,n3均为大于或等于1的整数;
R1,R2独立地选自C1~C12的烷基或芳基;
U为二价基团,含有二异氰酸酯单体中除异氰酸根以外的部分,选自下列基团中的一种或几种:
Figure PCTCN2022132103-appb-000010
V为四价基团,含有脂环基团、芳香基团、醚、砜、硫醚或羰基中的一种或几种,例如选自下列基团中的一种或几种:
Figure PCTCN2022132103-appb-000011
其中,W为二价基团,例如选自下列基团中的一种或几种:
Figure PCTCN2022132103-appb-000012
其中,n为1~20的整数。
本发明聚硅氧烷-聚酰亚胺-聚脲共聚物的制备方法包括如下步骤:
步骤1、制备主链含聚硅氧烷结构的异氰酸根封端的聚脲预聚体,一可选实施例中,具体方法包括:
在通干燥保护气体的(例如氮气或氩气)的反应器内,加入二异氰酸酯和溶剂A,搅拌使二异氰酸酯完全溶解。
在反应器外,将溶剂B和双官能度氨基封端的聚硅氧烷混合均匀,以滴液漏斗或蠕动泵匀速滴加至反应器内,一可选实施例中,控制滴加速度为混合液总量的2%~5%/min。
滴加过程中,反应器内维持搅拌,搅拌速度200~500r/s,反应器内温度为5~10℃;滴加完毕后继续反应1~2小时。
反应结束后,在80~130℃,-0.08~-0.098MPa真空度下减压蒸馏除去体系中的溶剂和低沸点物质。
所述原料中异氰酸根与氨基的摩尔比为1.5~2:1。
溶剂A为四氢呋喃、二氧六环、乙酸乙酯、乙酸丁酯、甲酸甲酯中的一种或两种及两种以上的混合物。溶剂A与二异氰酸酯的体积比为10~20:1。
溶剂B为氯仿、甲苯、二甲苯、环己烷、己烷、石油醚中的一种或两种及两种以上的混合物。溶剂B与双官能度氨基封端的聚硅氧烷的体积比为10~20:1。
二异氰酸酯为甲苯二异氰酸酯(TDI)、二苯甲烷二异氰酸酯(MDI)、1,4-双-(异氰酸酯甲基)苯(XDI)、萘二异氰酸酯(NDI)、甲基环己基二异氰酸酯(HTDI)、二环己基甲烷二异氰酸酯(HMDI)、己二异氰酸酯(HDI)、异氟尔酮二异氰酸酯(IPDI)、1,4-双(异氰酸酯甲基)苯其中的一种或两种及两种以上的混合物。
双官能度氨基封端的聚硅氧烷具有如下所示结构:
Figure PCTCN2022132103-appb-000013
式中:n1为大于或等于1的整数;R1、R2独立地选自C1~C12的烷基或芳基.
步骤2、采用制备得到的聚脲预聚体制备聚硅氧烷-聚酰亚胺-聚脲共聚物,具体方法包括:
在通有保护气体(例如氮气或氩气)的反应器内,将四羧酸二酐和步骤1所得聚脲预聚体溶解在溶剂C中。
加入反应物总质量0.5~1%的叔胺催化剂,升温至80~100℃回流反应0.5~2小时,得到聚硅氧烷-聚酰亚胺-聚脲共聚物溶液;
其中,酸酐和聚脲预聚体中异氰酸根的摩尔比为1:1.1~1.2,其中,聚脲预聚体异氰酸根的含量采用盐酸-二正丁胺法测量得出。
四羧酸二酐具有如下所示的结构:
Figure PCTCN2022132103-appb-000014
其中:V是四价基团,含有包括但不限于脂环基团、芳香基团、醚、砜、硫醚、羰基中的一种或几种,例如其结构如下:
Figure PCTCN2022132103-appb-000015
其中:W是二价基团,W的二价键在2,2’、3,3’、4,4’、2,3'、3,4’位置,例如其结构如下:
Figure PCTCN2022132103-appb-000016
其中,n为1~20的整数。
叔胺催化剂包括但不限于:N,N-二甲基环己胺、双(2-二甲氨基乙基)醚、N,N,N',N'-四甲基亚烷基二胺、双(二甲氨基)-2-丙醇、三乙胺、N,N-二甲基苄胺、三乙醇胺、N,N’-二甲基吡啶、2,4,6-三(二甲氨基甲基)苯酚其中的一种或两种及两种以上的混合。
溶剂C为N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺(DMAc)、N-甲基吡咯烷酮(NMP)或二甲基亚砜(DMSO)中的一种或其组合。溶剂C与(四羧酸二酐和聚脲预聚体)的体积比为10~30:1。
本发明以聚硅氧烷-聚酰亚胺-聚脲共聚物为基体的柔性耐火隔热涂层,其成分包含聚硅氧烷-聚酰亚胺-聚脲共聚物、膨胀阻燃填料和流平剂。其中膨胀阻燃填料、流平剂与聚硅氧烷-聚酰亚胺-聚脲共聚物的质量比为1:0.05~0.1:3~6。
膨胀阻燃填料包括聚磷酸铵、季戊四醇、三氧化二锑和高岭土,其质量比为4~6:2~3:0.5~1:0.5~1。
流平剂为丙烯酸均聚物或共聚物。
本发明涉及的聚硅氧烷-聚酰亚胺-聚脲共聚物为基体的柔性耐火隔热涂层,其制备方法如下:
步骤1、将聚磷酸铵、季戊四醇、三氧化二锑、高岭土以质量比4~6:2~3:0.5~1:0.5~1的比例混合均匀,研磨、过筛,得到膨胀阻燃剂粉末。
步骤2、将膨胀阻燃剂粉末和流平剂加入到聚硅氧烷-聚酰亚胺-聚脲共聚物反应液中搅拌均匀,得到涂料。其中膨胀阻燃剂粉末、流平剂、聚硅氧烷-聚酰亚胺-聚脲共聚物总质量的质量比为1:0.05~0.1:3~6。
步骤3、采用涂刷、浸渍、喷涂等工艺,将涂料均匀涂覆于基体表面,在-0.8~0.98Mpa真空度下,采用采用梯度升温的方式进行固化,一可选实施例中包括:(90~110℃/0.5~1小时)、(150~170℃/0.5~1小时)、(170~190℃/3~6小时);的固化温度对涂料进行固化,即获得以聚硅氧烷-聚酰亚胺-聚脲共聚物为基体的柔性耐火隔热涂层。
一可选实施例中,该柔性耐火隔热涂层可用于飞行器内部设备保护壳体表面。其中柔性耐火隔热涂层涂覆于基体表面,基体设置于设备外部形成保护壳体,或者套装于设备的保护壳体外部。一可选实施例中,基体可以为复合材料或金属材料。
聚脲是一类由异氰酸酯与胺类物质聚合而成的高聚物,其结构和性能与聚氨酯类似,与聚氨酯相比,由于脲基比胺基甲酸酯极性更大,内聚能更高,因此在分子结构相似的情况下,聚脲比聚氨酯力学强度更高,在基材上的粘接更牢固;此外,异氰酸酯与胺的反应活性远大于异氰酸酯与醇的反应活性,因此,合成聚脲的过程不需要加热便可以快速进行,更加高效、节能。聚酰亚胺是主链含酰亚胺环的一类热塑性聚合物,是目前已知综合性能最好的热塑性聚合物材料。全芳型聚酰亚胺,其初始热解温度一般都在500℃以上,最高可达600℃。此外聚酰亚胺有很好的机械性能,未填充的塑料,拉伸强度都在100Mpa以上,均苯型聚酰亚胺为170Mpa。此外,除了含氟聚合物以外,聚酰亚胺是为数不多的完全阻燃的聚合物材料之一,在不添加任何阻燃剂的情况下,其阻燃效果可以达到V-0级。因此,适度地将聚酰亚胺引入到聚氨酯分子结构中,可以极大地提高树脂的耐热性和阻燃性。然而,由于酰胺环刚度大、极性强,普通聚酰亚胺材料模量高,不够柔软,尤其是在低温下,脆性很大;此外,聚酰亚胺吸湿性强,影响了材料在湿热环境下的寿命。聚硅氧烷是一类分子主链含Si-O-Si重复单元的聚合物,主链为无机结构,侧链为有机基团,兼具有机和无机特性。由于Si-O键键长大,旋转能垒低,因此聚硅氧烷比有机橡胶更柔软、低温韧性更高;此外,Si-O共价键的键能为462kJ/mol,而C-C键键能仅为347kJ/mol,因此聚硅氧烷比有机橡胶热稳定性和阻燃性更好。鉴于以上分析,如能将聚硅氧烷和聚酰亚胺同时引入到涂层的分子结构中,可以大大提升材料的热稳定性和阻燃性、同时聚硅氧烷结构可以弥补聚酰亚胺柔软性不足的问题,从而获得一种低温韧性强,高温热稳定,阻燃隔热性能更好的柔性涂层材料。此种材料有望替代现有的火箭/导弹仪器防热涂层材料,从而更好地满足火箭/导弹轻量化、高可靠度的需求。
以下实施例满足如下要求:
材料表征分析:
傅里叶红外光谱(FT-IR):测试仪器为美国Thermo Fisher Scientific公司 Nicolet 6700型红外光谱仪,采用全反射模式。
接触角:测试仪器为德国OCA50接触角测量仪。
热重分析:测试仪器为美国TA仪器公司的TGA Q500热重分析仪,测试条件为氮气气氛下室温到600℃,升温速率为20℃/min。
涂层拉伸性能:拉伸性能依据GBT 13022-1991《塑料薄膜拉伸性能试验方法》进行测试。
实施例1
步骤1:在通干燥氮气保护的反应器内,加入4,4’二苯甲烷二异氰酸酯25g,二氧六环100ml,室温下搅拌至4,4’二苯甲烷二异氰酸酯完全溶解,反应器内温度设置为5℃。在反应器外,将100g双官能度氨基封端二甲基硅烷(Mw=2000)溶解于250ml的环己烷中,将此溶液匀速滴加到反应器内,滴加时间1小时。滴加完成后维持温度继续反应1小时。反应结束后,在100℃下,-0.98Mpa真空度下出去溶剂和低沸点物质,得到含聚硅氧烷的聚脲预聚体118g。其中,异氰酸根质量分数为3.4%。
步骤2:在氮气保护的反应器内,将3,3’,4,4’-二苯醚四甲二酐15.5g和步骤1中所得聚脲预聚体118g,溶解在DMAc中。加入0.8g的2,4,6-三(二甲氨基甲基)苯酚,升温至100℃回流反应1小时。
步骤3:将聚磷酸铵18g、季戊四醇9g、三氧化二锑1.5g、高岭土1.5g,共计30g混合均匀,球磨、过筛,得到膨胀阻燃剂粉末。将膨胀阻燃剂粉末30g和流平剂1.5g加入到步骤2的聚硅氧烷-聚酰亚胺-聚脲共聚物反应液中,搅拌均匀,即获得以聚硅氧烷-聚酰亚胺-聚脲共聚物为基体的涂料。
步骤4:将步骤(3)所获得的涂料喷涂于基材上,在真空度-0.098Mpa真空度下,采用100℃/0.5小时,160℃/1小时,180℃/5小时的固化程序对涂料进行固化,即获得以聚硅氧烷-聚酰亚胺-聚脲共聚物为基体的柔性耐火隔热涂层。
如图1所示为实施例1获得的涂层的红外光谱图,3300cm-1的红外吸收峰归属于酰亚胺和脲键中N-H伸缩振动;1780cm-1、1724cm-1、1650cm-1处的 红外吸收峰归属于C=O的反对称伸缩、对称伸缩和弯曲振动峰;此外,1000~1100cm-1的双峰归属于Si-O-Si和Si-O-C的伸缩振动,由红外光谱可见,实施例1中的涂层材料包含脲、硅氧烷、酰亚胺三种结构,涂层基体材料为聚硅氧烷-聚酰亚胺-聚脲共聚物。
实施例2
步骤1:在通干燥氮气保护的反应器内,加入2,6-甲苯二异氰酸酯17.4g,二氧六环100ml,室温下搅拌至入2,6-甲苯二异氰酸酯完全溶解,反应器内温度设置为5℃。在反应器外,将100g双氨基封端二甲基硅烷(Mw=2000)溶解于250ml的环己烷中,将此溶液匀速滴加到反应器内,滴加时间1小时。滴加完成后维持温度继续反应1小时。反应结束后,在100℃下,-0.98Mpa真空度下出去溶剂和低沸点物质,得到含聚硅氧烷的聚脲预聚体113g。其中,异氰酸根质量分数为3.5%。
步骤2:在氮气保护的反应器内,将3,3',4,4'-二苯醚四甲二酐13.5g和步骤(1)中所得聚脲预聚体溶113g,溶解在DMAc中。加入0.8g的2,4,6-三(二甲氨基甲基)苯酚,升温至100℃回流反应1小时。
步骤3:同实施例1步骤3。
步骤4:同实施例1步骤4。
实施例3
步骤1:在通干燥氮气保护的反应器内,加入1,4-双-(异氰酸酯甲基)苯18.8g,乙酸乙酯100ml,室温下搅拌至1,4-双-(异氰酸酯甲基)苯完全溶解,反应器内温度设置为10℃。在反应器外,将1000g双氨基封端二甲基硅烷(Mw=20000)溶解于2500ml的甲苯中,将此溶液匀速滴加到反应器内,滴加时间1小时。滴加完成后维持温度继续反应1小时。反应结束后,在100℃下,-0.98Mpa真空度下出去溶剂和低沸点物质,得到含聚硅氧烷的聚脲预聚体1015g。其中,异氰酸根质量分数为0.41%。
步骤2:在氮气保护的反应器内,将均苯四甲酸二酐9.8g和步骤(1)中所得聚脲预聚体溶1015g,溶解在DMSO中。加入反应物总质量6g的双(二甲氨基)-2-丙醇升温至100℃回流反应1小时。
步骤3:将聚磷酸铵128g、季戊四醇60g、三氧化二锑11g、高岭土11g,共计210g混合均匀,球磨、过筛,得到膨胀阻燃剂粉末。将膨胀阻燃剂粉末210g和流平剂11g加入到步骤2的反应液中,搅拌均匀,即获得以聚硅氧烷-聚酰亚胺-聚脲共聚物为基体的涂料。
步骤4:同实施例1步骤4。
实施例4
步骤1:在通干燥氮气保护的反应器内,加入2,6-甲苯二异氰酸酯17.4g,二氧六环100ml,室温下搅拌至入2,6-甲苯二异氰酸酯完全溶解,反应器内温度设置为5℃。在反应器外,将900g双氨基封端二甲基硅烷(Mw=18000)溶解于2000ml的环己烷中,将此溶液匀速滴加到反应器内,滴加时间1小时。滴加完成后维持温度继续反应1小时。反应结束后,在100℃下,-0.98Mpa真空度下出去溶剂和低沸点物质,得到含聚硅氧烷的聚脲预聚体912g。其中,异氰酸根质量分数为0.44%。
步骤2:在氮气保护的反应器内,将均苯四甲酸二酐9.5g和(1)中所得聚脲预聚体溶912g,溶解在DMF中。加入9g的双(二甲氨基)-2-丙醇,升温至100℃回流反应1小时。
步骤3:将聚磷酸铵120g,、季戊四醇60g、三氧化二锑10g、高岭土10g,共计200g混合均匀,球磨、过筛,得到膨胀阻燃剂粉末。将膨胀阻燃剂粉末200g和流平剂10g加入到步骤2的反应液中,搅拌均匀,即获得以聚硅氧烷-聚酰亚胺-聚脲共聚物为基体的涂料。
步骤4:同实施例1步骤4。
对比例1
为了证实聚脲基体中引入聚硅氧烷和聚酰亚胺结构对涂层的有益影响,本例中的聚脲基体不含聚硅氧烷和聚酰亚胺结构,其制备过程为:
步骤1:在通干燥氮气保护的反应器内,加入4,4’二苯甲烷二异氰酸酯25g,二氧六环100ml,室温下搅拌至4,4’二苯甲烷二异氰酸酯完全溶解,反应器内温度设置为5℃。在反应器外,将180g端氨基聚醚D2000(Mw=2000)溶解于250ml的环己烷中,将此溶液匀速滴加到反应器内,滴加时间1小时。滴加完成后维持温度继续反应1小时。反应结束后,在100℃下,-0.98Mpa真空度下出去溶剂和低沸点物质,得到不含聚硅氧烷和聚酰亚胺结构的聚脲预聚体197g。
步骤2:将聚磷酸铵28g,、季戊四醇14g、三氧化二锑2g、高岭土2g,共计46g混合均匀,球磨、过筛,得到膨胀阻燃剂粉末。将膨胀阻燃剂粉末46g和流平剂3g加入到步骤1的反应液中,搅拌均匀,即获得聚脲为基体的涂料。
步骤3:将步骤2所获得的涂料涂覆于基材上,在真空度-0.098Mpa真空度下除掉溶剂,即获得以聚脲为基体的柔性耐火隔热涂层。
如图2所示为本发明实施例1和对比例1中制备的共聚物的水接触角;图a为本发明实施例1,图b为对比例1;由图可见,实施例1中涂层的水接触角明显大于对比例1中的涂层,这正是由于涂层基体中引入了聚硅氧烷链段,因此疏水性能显著提升,这有利于涂层材料在湿热环境下的寿命。
如图3所示为本发明实施例1和对比例1中制备的涂层在500kw/m2热流强度下辐射60s后的烧蚀物微观形貌照片。图a为本发明实施例1,图b为对比例1。图3为隔热测试后,涂层烧蚀物的数码照片,可以明显的看到,实施例1中涂层的烧蚀物膨胀而致密,这种形貌的膨胀碳层对于高热流环境下的涂层隔热性能非常有利。对比之下,对比例1的碳层有大量的中空区域,碳层不够致密,这是由于基体材料热稳定性不足,热解速度过快导致的,大尺寸中空的形成对于隔热性能非常不利。
对比例2
为了证实聚脲基体中引入聚酰亚胺结构对涂层的有益影响,本例中的聚脲基体含有聚硅氧烷结构,不含聚酰亚胺结构,其制备过程为:
步骤1:将对比例1步骤1中的端氨基聚醚D2000替换成端氨基封端聚硅氧烷(Mw=2000),其余同对比例1步骤1。
步骤2:同对比例1步骤2
步骤3:同对比例1步骤3
对比例3
为了证实聚脲基体中引入聚硅氧烷对涂层的有益影响,本例中的聚脲基体含有聚酰亚胺结构,不含聚硅氧烷结构,其制备过程为:
步骤1:将实施例1步骤1中的双氨基封端二甲基硅烷替换成端氨基聚醚D2000,其余同实施例1步骤1。
步骤2:同实施例1步骤2。
步骤3:同实施例1步骤3。
步骤4:同实施例1步骤4。
如下表1所示为本发明实施例和对比例中原料汇总表。
表1实施例和对比例中原料汇总
Figure PCTCN2022132103-appb-000017
Figure PCTCN2022132103-appb-000018
如下表2所示为各实施例和对比例的涂层材料的热重(氮气氛围)、硬度、断裂伸长率、隔热性能的试验结果。用以展示在主链结构中含有聚硅氧烷和聚酰亚胺结构时对聚合物耐热性能、力学性能、隔热性能的、疏水性能的有益影响。实施例1~实施例4的涂层的热稳定性明显高于对比例,且涂层在-70℃低温下仍然比较柔软,断裂伸长率较大,说明涂层在低温下柔韧性良好。隔热试验的结果显示,在500Kw/m2大热流辐射下,本发明方法制备的涂层材料的隔热性能明显好于对比例中的涂层(温升较低)。
表2实施例和对比例性能汇总
Figure PCTCN2022132103-appb-000019
注:a,b:均在-70℃下测量;
d:热流辐射强度500Kw/m 2,热源尺寸20cm×20cm,涂层厚度1.5mm,涂层面积40cm×40cm,辐射时间60s。
以上所述,仅为本发明最佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。

Claims (18)

  1. 一种聚硅氧烷-聚酰亚胺-聚脲共聚物,其特征在于,所述共聚物结构式如下所示:
    Figure PCTCN2022132103-appb-100001
    其中:
    n1,n2,n3均为大于或等于1的整数;
    R1,R2独立地选自C1~C12的烷基或芳基;
    U为二价基团,含有二异氰酸酯单体中除异氰酸根以外的部分;
    V为四价基团,含有脂环基团、芳香基团、醚、砜、硫醚或羰基中的一种或几种。
  2. 根据权利要求1所述的聚硅氧烷-聚酰亚胺-聚脲共聚物,其特征在于,所述二价基团U选自下列基团中的一种或几种:
    Figure PCTCN2022132103-appb-100002
  3. 根据权利要求1所述的聚硅氧烷-聚酰亚胺-聚脲共聚物,其特征在于,所述四价基团V选自下列基团中的一种或几种:
    Figure PCTCN2022132103-appb-100003
    其中,W为二价基团,选自下列基团中的一种或几种:
    Figure PCTCN2022132103-appb-100004
    其中,n为1~20的整数。
  4. 权利要求1~3任一项所述的聚硅氧烷-聚酰亚胺-聚脲共聚物的制备方法,其特征在于,包括如下步骤:
    (1)、制备主链含聚硅氧烷结构的异氰酸根封端的聚脲预聚体,包括:
    在通保护气体的反应器内,加入二异氰酸酯和溶剂A,搅拌使二异氰酸酯溶解;
    将双官能度氨基封端的聚硅氧烷和溶剂B混合均匀滴加至反应器内,滴加过程中反应器内维持搅拌,反应器内温度为5~10℃,滴加完毕后继续反应1~2小时;
    反应结束后减压蒸馏除去反应体系中的溶剂和低沸点物质;
    其中,反应原料中异氰酸根与氨基的摩尔比为1.5~2:1;
    (2)、采用制备得到的聚脲预聚体制备聚硅氧烷-聚酰亚胺-聚脲共聚物,包括:
    在通有保护气体的反应器内,将四羧酸二酐和所述聚脲预聚体溶解在溶剂 C中;
    加入反应物总质量0.5~1%的叔胺催化剂,升温至80~100℃回流反应0.5~2小时,得到聚硅氧烷-聚酰亚胺-聚脲共聚物溶液;
    其中,四羧酸二酐和聚脲预聚体中异氰酸根的摩尔比为1:1.1~1.2。
  5. 根据权利要求4所述的聚硅氧烷-聚酰亚胺-聚脲共聚物的制备方法,其特征在于,所述步骤(1)中控制双官能度氨基封端的聚硅氧烷和溶剂B混合溶液的滴加速度为:每分钟滴加混合溶液总质量的2%~5%。
    所述步骤(1)滴加过程中反应器内维持搅拌,搅拌速度为200~500r/s。
  6. 根据权利要求4所述的聚硅氧烷-聚酰亚胺-聚脲共聚物的制备方法,其特征在于,所述步骤(1)中减压蒸馏在80~130℃,-0.08~-0.098MPa真空度下进行。
  7. 根据权利要求4所述的聚硅氧烷-聚酰亚胺-聚脲共聚物的制备方法,其特征在于,所述溶剂A为四氢呋喃、二氧六环、乙酸乙酯、乙酸丁酯或甲酸甲酯中的一种或其组合;
    所述溶剂B为氯仿、甲苯、二甲苯、环己烷、己烷或石油醚中的一种或其组合;
    所述溶剂C为N,N-二甲基甲酰胺DMF、N,N-二甲基乙酰胺DMAc、N-甲基吡咯烷酮NMP或二甲基亚砜DMSO中的一种或其组合;
    所述保护气体为氮气或氩气。
  8. 根据权利要求4所述的聚硅氧烷-聚酰亚胺-聚脲共聚物的制备方法,其特征在于,所述二异氰酸酯为甲苯二异氰酸酯TDI、二苯甲烷二异氰酸酯MDI、1,4-双-(异氰酸酯甲基)苯XDI、萘二异氰酸酯NDI、甲基环己基二异氰酸酯HTDI、二环己基甲烷二异氰酸酯HMDI、己二异氰酸酯HDI、异氟尔酮二异氰酸酯IPDI或1,4-双(异氰酸酯甲基)苯其中的一种或其组合.
  9. 根据权利要求4所述的聚硅氧烷-聚酰亚胺-聚脲共聚物的制备方法,其特征在于,所述双官能度氨基封端的聚硅氧烷具有如下所示的结构:
    Figure PCTCN2022132103-appb-100005
    其中:n 1为大于或等于1的整数;R 1、R 2独立地选自C1~C12的烷基或芳基。
  10. 根据权利要求4所述的聚硅氧烷-聚酰亚胺-聚脲共聚物的制备方法,其特征在于,所述四羧酸二酐具有如下所示的结构:
    Figure PCTCN2022132103-appb-100006
    其中:V为四价基团,含有脂环基团、芳香基团、醚、砜、硫醚或羰基中的一种或几种,具有如下所示的结构:
    Figure PCTCN2022132103-appb-100007
    其中,W为二价基团,W的二价键在2,2’、3,3’、4,4’、2,3'、3,4’位置,结构如下:
    Figure PCTCN2022132103-appb-100008
    其中,n为1~20的整数。
  11. 根据权利要求4所述的聚硅氧烷-聚酰亚胺-聚脲共聚物的制备方法,其特征在于,所述叔胺催化剂为N,N-二甲基环己胺、双(2-二甲氨基乙基)醚、N,N,N',N'-四甲基亚烷基二胺、三乙胺、双(二甲氨基)-2-丙醇、N,N-二甲基苄胺、三乙醇胺或N,N’-二甲基吡啶、2,4,6-三(二甲氨基甲基)苯酚中的一种或其组合。
  12. 一种柔性耐火隔热涂层,其特征在于,所述涂层的原料包括权利要求1~3任一项所述的聚硅氧烷-聚酰亚胺-聚脲共聚物、膨胀阻燃填料和流平剂。
  13. 根据权利要求12所述的一种柔性耐火隔热涂层,其特征在于,所述膨胀阻燃填料、流平剂与聚硅氧烷-聚酰亚胺-聚脲共聚物的质量比为1:0.05~0.1:3~6。
  14. 根据权利要求12所述的一种柔性耐火隔热涂层,其特征在于,所述膨胀阻燃填料包括聚磷酸铵、季戊四醇、三氧化二锑和高岭土,质量比为4~6:2~3:0.5~1:0.5~1。
  15. 根据权利要求12所述的一种柔性耐火隔热涂层,其特征在于,所述流平剂为丙烯酸均聚物或共聚物。
  16. 权利要求12~15任一项所述的一种柔性耐火隔热涂层的制备方法,其特征在于,包括:
    将聚磷酸铵、季戊四醇、三氧化二锑和高岭土按照配比混合均匀,经研磨、过筛,得到膨胀阻燃剂粉末;
    将所述膨胀阻燃剂粉末、流平剂加入到聚硅氧烷-聚酰亚胺-聚脲共聚物中搅拌均匀,得到涂料;
    将涂料均匀涂覆于基体表面,固化后得到柔性耐火隔热涂层。
  17. 根据权利要求16所述的一种柔性耐火隔热涂层的制备方法,其特征在于,所述固化在-0.8~0.98Mpa真空度下进行,固化采用梯度升温的方式,包括:90~110℃/0.5~1小时、150~170℃/0.5~1小时、170~190℃/3~6小时。
  18. 根据权利要求16所述的一种柔性耐火隔热涂层的制备方法,其特征在于,采用涂刷、浸渍或喷涂方法将涂料均匀涂覆于基体表面。
PCT/CN2022/132103 2022-10-19 2022-11-16 聚硅氧烷-聚酰亚胺-聚脲共聚物、制备方法以及隔热涂层及制备方法 WO2024082365A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211280493.X 2022-10-19
CN202211280493.XA CN115746298B (zh) 2022-10-19 2022-10-19 聚硅氧烷-聚酰亚胺-聚脲共聚物、制备方法以及隔热涂层及制备方法

Publications (1)

Publication Number Publication Date
WO2024082365A1 true WO2024082365A1 (zh) 2024-04-25

Family

ID=85353905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132103 WO2024082365A1 (zh) 2022-10-19 2022-11-16 聚硅氧烷-聚酰亚胺-聚脲共聚物、制备方法以及隔热涂层及制备方法

Country Status (2)

Country Link
CN (1) CN115746298B (zh)
WO (1) WO2024082365A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118652139A (zh) * 2024-08-14 2024-09-17 湖南泽尔顿新材料有限公司 一种耐高温硅碳棒的表面改性方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03195730A (ja) * 1989-12-25 1991-08-27 Hitachi Chem Co Ltd シロキサン変性ポリイミド及びその前駆体
EP0487487A2 (de) * 1990-10-16 1992-05-27 Lenzing Aktiengesellschaft Verfahren zur Herstellung von Polysiloxanimiden
CN102559022A (zh) * 2010-12-27 2012-07-11 海洋化工研究院 聚脲膨胀型防火涂料及其制备方法和用途
JP2013078880A (ja) * 2011-10-04 2013-05-02 Nitta Corp 離型材
JP2013129720A (ja) * 2011-12-21 2013-07-04 Nitta Corp イミド変性シリコーンエラストマー
CN108219146A (zh) * 2017-12-25 2018-06-29 山东大学 一种有机硅改性聚脲(聚氨酯)弹性体及其制备方法
CN114854008A (zh) * 2022-05-12 2022-08-05 厦门大学 一种聚脲-聚酰亚胺无规嵌段共聚物及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101469063A (zh) * 2007-12-26 2009-07-01 汉高股份两合公司 有机硅聚酰亚胺-聚脲基础聚合物、其制备的弹性体、及其制备方法及其应用
WO2019049982A1 (ja) * 2017-09-08 2019-03-14 Jnc株式会社 ポリウレア系交互共重合体、樹脂組成物、塗膜、樹脂フィルム、oled素子、発光装置、及びポリウレア系交互共重合体の製造方法
CN110229373A (zh) * 2019-06-27 2019-09-13 青岛爱尔家佳新材料股份有限公司 一种防爆吸能夹心材料及其制备方法
CN112831024A (zh) * 2021-01-04 2021-05-25 哈尔滨工程大学 一种安全的聚酰亚胺-聚脲隔热保温泡沫及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03195730A (ja) * 1989-12-25 1991-08-27 Hitachi Chem Co Ltd シロキサン変性ポリイミド及びその前駆体
EP0487487A2 (de) * 1990-10-16 1992-05-27 Lenzing Aktiengesellschaft Verfahren zur Herstellung von Polysiloxanimiden
CN102559022A (zh) * 2010-12-27 2012-07-11 海洋化工研究院 聚脲膨胀型防火涂料及其制备方法和用途
JP2013078880A (ja) * 2011-10-04 2013-05-02 Nitta Corp 離型材
JP2013129720A (ja) * 2011-12-21 2013-07-04 Nitta Corp イミド変性シリコーンエラストマー
CN108219146A (zh) * 2017-12-25 2018-06-29 山东大学 一种有机硅改性聚脲(聚氨酯)弹性体及其制备方法
CN114854008A (zh) * 2022-05-12 2022-08-05 厦门大学 一种聚脲-聚酰亚胺无规嵌段共聚物及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118652139A (zh) * 2024-08-14 2024-09-17 湖南泽尔顿新材料有限公司 一种耐高温硅碳棒的表面改性方法

Also Published As

Publication number Publication date
CN115746298A (zh) 2023-03-07
CN115746298B (zh) 2024-05-31

Similar Documents

Publication Publication Date Title
WO2024082365A1 (zh) 聚硅氧烷-聚酰亚胺-聚脲共聚物、制备方法以及隔热涂层及制备方法
US20110313080A1 (en) Benzoxazine resin composition
Jiang et al. Alkoxysilane functionalized polyurethane/polysiloxane copolymers: Synthesis and the effect of end-capping agent
CN110527300B (zh) 一种具有互穿网络结构的高强度环氧-硅橡胶改性材料
CN109354937B (zh) 一种氟碳涂料用柔性固化剂及其制备方法
CN117106366B (zh) 一种单组分聚脲涂料及其制备方法和应用
KR20220147103A (ko) 코팅
TWI791718B (zh) 可固化環氧系統
US5716677A (en) Protective coatings for polyimide composites
JP6789499B2 (ja) ポリアミドイミド樹脂及びその利用
TWI694988B (zh) 製備含五碳環氧氮苯并環己烷聚胺酯阻尼材料
US20120129413A1 (en) Halogen-free and phosphorus-free resin formulation and composite materials prepared therefrom
CN113136141A (zh) 机载雷达天线罩聚磷腈耐雨蚀涂层及其制备方法
CN114736409B (zh) 一种侧链接枝硅氧烷的聚酰亚胺薄膜
CN118308028B (zh) 一种耐温隔热材料及其应用
CN109796771B (zh) 一种三源膨胀微发泡阻燃体系的柔性耐烧蚀复合材料
CN116875174B (zh) 一种硅烷改性聚氨酯防水涂料及其制备方法
CN117964897B (zh) 一种碱溶性树脂及其应用
CN117304800B (zh) 一种气凝胶陶瓷涂料及其制备工艺
Jain et al. Effect of phosphorus content on thermal behaviour of diglycidyl ether of bisphenol-A/phosphorus containing amines
Wang et al. A novel isocyanate-free strategy towards preparation of polyurea by a ring-opening reaction
Mahesh et al. Synthesis and characterization of polyurethane-toughened Epoxy-bismaleimide matrices
US20180320022A1 (en) Polyamideimide resin and coating material
US5116913A (en) Polyamide-polyimide block copolymers soluble in aprotic dipolar solvents
CN116875054A (zh) 一种聚酰亚胺复合材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962544

Country of ref document: EP

Kind code of ref document: A1