WO2024060490A1 - 一种多孔碳化硅陶瓷晶体托及其制备方法与应用 - Google Patents

一种多孔碳化硅陶瓷晶体托及其制备方法与应用 Download PDF

Info

Publication number
WO2024060490A1
WO2024060490A1 PCT/CN2023/075244 CN2023075244W WO2024060490A1 WO 2024060490 A1 WO2024060490 A1 WO 2024060490A1 CN 2023075244 W CN2023075244 W CN 2023075244W WO 2024060490 A1 WO2024060490 A1 WO 2024060490A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
ceramic crystal
porous silicon
carbide ceramic
crystal holder
Prior art date
Application number
PCT/CN2023/075244
Other languages
English (en)
French (fr)
Inventor
郭超
母凤文
Original Assignee
青禾晶元(天津)半导体材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青禾晶元(天津)半导体材料有限公司 filed Critical 青禾晶元(天津)半导体材料有限公司
Publication of WO2024060490A1 publication Critical patent/WO2024060490A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Definitions

  • the present application belongs to the field of semiconductor manufacturing technology and relates to a silicon carbide ceramic crystal holder, and in particular to a porous silicon carbide ceramic crystal holder and its preparation method and application.
  • Devices made from silicon carbide single crystal substrates have the advantages of high temperature resistance, high voltage resistance, high frequency, high power, radiation resistance, and high efficiency, and have important application value in radio frequency, new energy vehicles and other fields.
  • the methods for growing silicon carbide crystals mainly include physical vapor transport (PVT), solution method (LPE) and high temperature chemical vapor deposition (HTCVD).
  • the above methods require pasting the seed crystal on the graphite plate, and then crystallizing and growing silicon carbide crystals on the surface of the seed crystal. Regardless of the method used, silicon carbide crystal growth must be carried out in a high temperature environment with a minimum temperature of 1500°C and a maximum temperature of 2500°C. After the growth is completed, the temperature of the crystal and graphite plate gradually decreases.
  • thermal mismatch Due to the difference in thermal expansion coefficients between silicon carbide crystals and graphite, the shrinkage amounts of the two during the cooling process are not consistent. This phenomenon is called "thermal mismatch.” For example, at 2000°C, the thermal expansion coefficient of 4H-type silicon carbide perpendicular to the c-axis is 5.17 ⁇ 10 -6 /K, and the thermal expansion coefficient of graphite is 6.12 ⁇ 10 -6 /K. The latter is 18.6% larger than the former. There is A more severe thermal mismatch. Thermal mismatch will generate high stress inside the crystal, causing the crystal to crack or crack during subsequent processing, thus seriously affecting the yield of the resulting silicon carbide crystal.
  • CN 110306239A discloses a silicon carbide seed crystal holder, in which a layer of silicon carbide polycrystalline ceramic is arranged between a graphite plate and the seed crystal, thereby reducing the stress inside the resulting crystal.
  • the polycrystalline ceramic provided by this invention cannot fully absorb stress. As a result, the stress caused by the thermal mismatch between the polycrystalline ceramic and graphite is still conducted to the growing crystal, and thus the cracking of the crystal cannot be effectively avoided.
  • the purpose of this application is to provide a porous silicon carbide ceramic crystal holder and its preparation method and application.
  • the porous silicon carbide ceramic crystal holder When used to grow silicon carbide crystals, it fully absorbs the heat loss of the silicon carbide crystal during the growth process. Matching the stress generated thereby avoiding cracking of the crystal and improving the yield of the obtained silicon carbide crystal.
  • the present application provides a porous silicon carbide ceramic crystal holder.
  • the porous silicon carbide ceramic crystal holder is a three-dimensional hollow structure, including a first surface and a second surface arranged oppositely, and from the first surface to the third surface. On the second surface, the porosity inside the ceramic crystal support shows a non-uniform distribution.
  • This application designs a silicon carbide ceramic crystal holder with a three-dimensional hollow structure, and further limits the porosity inside the ceramic crystal holder to be non-uniformly distributed, so that when it is used to grow silicon carbide crystals, the deformation will be large in areas with high porosity, and in the pores The area with low rate has small deformation, which fully absorbs the stress caused by thermal mismatch during the growth process of silicon carbide crystal, thereby avoiding cracking of the crystal and improving the yield of the obtained silicon carbide crystal.
  • the structural units of the three-dimensional hollow structure are hollow cells.
  • the shapes of the hollow cells include square holes, crossed tubes, hollow spheres, hollow corners, crossed Any one or a combination of at least two of cylinders, four spheres, four crossed cylinders, truncated octahedrons, intersection arc angles or rhombohedral octahedrons.
  • Typical but non-limiting combinations include the combination of square holes and cross tubes, The combination of crossed tubes and hollow spheres, the combination of hollow spheres and hollow angles, the combination of hollow angles and crossed columns, the combination of crossed columns and four spheres, the combination of four spheres and four crossed columns, the combination of four crossed columns and truncated octahedrons Combination, the combination of the truncated octahedron and the intersection arc angle, or the combination of the intersection arc angle and the rhombohedral octahedron.
  • the diameter of the circumscribed equivalent sphere of the hollow cell is 0.2-2 mm, for example, it can be 0.2 mm, 0.4 mm, 0.6 mm, 0.8 mm, 1 mm, 1.2 mm, 1.4 mm, 1.6 mm, 1.8 mm or 2 mm, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
  • the shape of the porous silicon carbide ceramic crystal support is disk-shaped, and the disk size is 4-8 inches, for example, it can be 4 inches, 5 inches, 6 inches, 7 inches or 8 inches, but not only Limited to the listed values, other unlisted values within this range are also applicable.
  • the thickness of the porous silicon carbide ceramic crystal support is 3-40mm, for example, it can be 3mm, 5mm, 10mm, 15mm, 20mm, 25mm, 30mm, 35mm or 40mm, but is not limited to the listed values. The same applies to other values within the numerical range that are not listed.
  • the porosity inside the ceramic crystal holder is 40-95%, for example, it can be 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75% , 80%, 85%, 90% or 95%, but are not limited to the listed values, and other unlisted values within this range of values are also applicable.
  • the porosity inside the ceramic crystal holder gradually decreases from the first surface to the second surface.
  • the porosity inside the ceramic crystal holder gradually increases from the first surface to the second surface.
  • the pores inside the ceramic crystal holder first decrease and then increase.
  • the pores inside the ceramic crystal holder increase first and then decrease.
  • the porosity inside the ceramic crystal support can be adjusted by keeping the overall size of the hollow cell unchanged and only changing the cross-sectional size of the column or surface inside the cell.
  • the larger the cross-sectional size of the column or surface inside the cell the smaller the porosity of the space filled by the cell; it can also be adjusted by keeping the cross-sectional size of the column or surface inside the cell unchanged and only changing the overall size of the hollow cell.
  • the larger the overall size of the hollow cell the larger the porosity of the space filled by the cell.
  • the present application provides a method for preparing a porous silicon carbide ceramic crystal support as described in the first aspect, the preparation method comprising the following steps:
  • a green body is manufactured by a layer-by-layer accumulation method, wherein the green body is composed of silicon carbide ceramic powder and a binder;
  • step (3) The green body obtained in step (2) is roasted to obtain a porous silicon carbide ceramic crystal support.
  • the preparation method provided in the present application adopts a layer-by-layer accumulation method to manufacture the green body, which can realize the construction of any complex shape, thereby significantly reducing the manufacturing cost of the porous silicon carbide ceramic crystal holder and shortening the product delivery cycle.
  • the layer-by-layer accumulation method in step (2) includes any of the following two methods:
  • the binder includes sodium carboxymethyl cellulose, gum arabic, xanthan gum, phenolic resin, gelatin, silica sol, sodium alginate, agarose, polyvinyl alcohol, acrylic acid, dextrin, polycarbosilane, Any one or a combination of at least two of xylene, toluene or cyclohexane.
  • Typical but non-limiting combinations include a combination of sodium carboxymethyl cellulose and gum arabic, a combination of gum arabic and xanthan gum, xanthan gum, The combination of original gum and phenolic resin, the combination of phenolic resin and gelatin, the combination of gelatin and silica sol, the combination of silica sol and sodium alginate, the combination of sodium alginate and agarose, the combination of agarose and polyvinyl alcohol, poly Combinations of vinyl alcohol and acrylic acid, acrylic acid and dextrin, dextrin and polycarbosilane, polycarbosilane and xylene, polycarbosilane and toluene, or polycarbosilane and cyclohexane .
  • the temperature of the roasting treatment in step (3) is 1100-2300°C, for example, it can be 1100°C, 1200°C, 1400°C, 1600°C, 1800°C, 2000°C, 2200°C or 2300°C, but it is not limited to Limited to the listed values, other unlisted values within this range are also applicable.
  • the application provides an application of the porous silicon carbide ceramic crystal holder as described in the first aspect, the porous silicon carbide ceramic crystal holder is used to grow silicon carbide crystals, and the first surface is in contact with the graphite plate. connection, the second surface is connected to the seed crystal, silicon carbide crystal is grown on the surface of the seed crystal; or silicon carbide crystal is grown directly on the second surface of the porous silicon carbide ceramic crystal support.
  • This application designs a silicon carbide ceramic crystal holder with a three-dimensional hollow structure, and further limits the porosity inside the ceramic crystal holder to be non-uniformly distributed, so that when it is used to grow silicon carbide crystals, the deformation will be large in areas with high porosity, and in the pores The area with low rate has small deformation, which fully absorbs the stress caused by thermal mismatch during the growth process of silicon carbide crystal, thereby avoiding cracking of the crystal and improving the yield of the obtained silicon carbide crystal.
  • Figure 1 is a schematic diagram of the three-dimensional hollow structure of the porous silicon carbide ceramic crystal support provided in Examples 1-3;
  • Figure 2 is a cross-sectional schematic diagram of the porous silicon carbide ceramic crystal support provided in Example 4-6;
  • Figure 3 is a connection diagram for growing silicon carbide single crystal on a porous silicon carbide ceramic crystal support provided by this application;
  • Figure 4 is a connection diagram for growing silicon carbide polycrystalline on a porous silicon carbide ceramic crystal support provided by this application;
  • Figure 5 is a schematic diagram of the device for growing silicon carbide crystals using porous silicon carbide ceramic crystal supports in Application Example 1;
  • Figure 6 is a schematic diagram of the device for growing silicon carbide crystals using porous silicon carbide ceramic crystal supports in Application Example 2;
  • Figure 7 is a schematic diagram of the device for growing silicon carbide crystals using porous silicon carbide ceramic crystal supports in Application Example 3;
  • Figure 8 is a schematic diagram of the device for growing silicon carbide crystals using porous silicon carbide ceramic crystal supports in Application Example 4;
  • Figure 9 is a schematic diagram of the device for growing silicon carbide crystals using porous silicon carbide ceramic crystal supports in Application Example 5;
  • Figure 10 is a schematic diagram of the device for growing silicon carbide crystals using porous silicon carbide ceramic crystal supports in Application Example 6.
  • the present application provides a porous silicon carbide ceramic crystal holder and its preparation method and application.
  • the porous silicon carbide ceramic crystal holder is a three-dimensional hollow structure, including a first surface 101 and a second surface 102 arranged oppositely. , and from the first surface 101 to the second surface 102, the porosity inside the ceramic crystal support presents a non-uniform distribution (see Figure 2).
  • the structural unit of the three-dimensional hollow structure is a hollow cell
  • the shape of the hollow cell includes any one of a square hole 1, a cross tube 2, a hollow sphere 3, a hollow corner 4, a cross column 5, a four-sphere 6, a four-cross column 7, a truncated octahedron 8, an intersection arc angle 9, a rhombus octahedron 10, a combination of four cross columns and intersection arc angles 11, or a combination of four cross columns and a rhombus octahedron 12 (see Figure 1); the diameter of the circumscribed equivalent sphere of the hollow cell is 0.2-2 mm.
  • the shape of the porous silicon carbide ceramic crystal holder is disk-shaped, and the disk size is 4-8 inches and the thickness is 3-40mm; from the first surface 101 to the second surface 102, the ceramic crystal
  • the porosity inside the holder is 40-95%, and the changing trend includes any one of the following four situations: (A) From the first surface 101 to the second surface 102, the porosity inside the ceramic crystal holder gradually decreases ; (B) From the first surface 101 to the second surface 102, the porosity inside the ceramic crystal holder gradually increases; (C) From the first surface 101 to the second surface 102, the pores inside the ceramic crystal holder take the lead. Decrease and then increase; (D) From the first surface 101 to the second surface 102, the pores inside the ceramic crystal support first increase and then decrease.
  • the preparation method provided in this application includes the following steps:
  • the layer-by-layer accumulation method includes the following two methods Any one of the formulas:
  • the binder includes any one or a combination of at least two of sodium carboxymethyl cellulose, gum arabic, xanthan gum, phenolic resin, gelatin, silica sol, sodium alginate, agarose, polyvinyl alcohol, acrylic acid, dextrin, polycarbosilane, xylene, toluene or cyclohexane;
  • step (3) The green body obtained in step (2) is calcined at 1100-2300° C. to obtain a porous silicon carbide ceramic crystal holder.
  • the porous silicon carbide ceramic crystal support provided by this application is used to grow silicon carbide crystals
  • the first surface 101 is connected to the graphite plate 200
  • the second surface 102 is connected to the seed crystal 300
  • silicon carbide is grown on the surface of the seed crystal 300.
  • Crystal 400 (see Figure 3), and the obtained silicon carbide crystal 400 is a single crystal; or directly grow the silicon carbide crystal 400 (see Figure 4) on the second surface 102 of the porous silicon carbide ceramic crystal support, and the obtained silicon carbide crystal 400 is Polycrystalline.
  • the porous silicon carbide ceramic crystal holder is a three-dimensional hollow structure, including a first surface 101 and a second surface 102 arranged oppositely. And from the first surface 101 to the second surface 102, the porosity inside the ceramic crystal support gradually decreases, specifically: the average porosity from the first surface 101 to 1/4 of the total thickness is 80%, The average porosity of the second surface 102 to 1/4 of the total thickness is 40%.
  • the structural unit of the three-dimensional hollow structure is a hollow cell, and the shape of the hollow cell is a hollow sphere 3 with a diameter of 0.5 mm.
  • the shape of the porous silicon carbide ceramic crystal holder is disk-shaped, and the disk size is 6 inches and the thickness is 20mm.
  • the preparation method includes the following steps:
  • a green body is manufactured by layer-by-layer accumulation, and the green body is composed of silicon carbide ceramic powder and a binder (polycarbosilane and xylene); the layer-by-layer
  • the specific method of accumulation is: pre-mix silicon carbide ceramic powder and binder, and extrude the resulting mixture through the nozzle. During the extrusion process of the nozzle, the nozzle moves along the preset path to form one of the ceramic crystal supports. Sections, a total of 50 sections are accumulated layer by layer to finally form a green body;
  • step (3) The green body obtained in step (2) is roasted at 1200 ⁇ 100°C to obtain a porous silicon carbide ceramic crystal support.
  • the porous silicon carbide ceramic crystal holder is a three-dimensional hollow structure, including a first surface 101 and a second surface 102 arranged oppositely. And from the first surface 101 to the second surface 102, the porosity inside the ceramic crystal support gradually decreases, specifically: the average porosity from the first surface 101 to 1/4 of the total thickness is 95%. The average porosity from the two surfaces 102 to 1/4 of the total thickness is 45%.
  • the structural unit of the three-dimensional hollow structure is a hollow cell, and the shape of the hollow cell is a square hole 1 with a side length of 0.2 mm.
  • the shape of the porous silicon carbide ceramic crystal support is disk-shaped, The disc size is 4 inches and the thickness is 3mm.
  • the preparation method includes the following steps:
  • a green body is manufactured by layer-by-layer accumulation, and the green body is composed of silicon carbide ceramic powder and a binder (polyvinyl alcohol);
  • the layer-by-layer accumulation method Specifically: lay silicon carbide ceramic powder in advance, extrude the binder through the nozzle, and during the extrusion process of the nozzle, the nozzle moves along the preset path, and the binder binds the silicon carbide ceramic powder to form a ceramic crystal support. For one of the sections, a total of 15 sections are accumulated layer by layer to finally form a green body;
  • step (3) The green body obtained in step (2) is first subjected to siliconization and calcination at 1450 ⁇ 50°C, and then subjected to desiliconization and calcination at 1700 ⁇ 100°C to obtain a porous silicon carbide ceramic crystal holder.
  • the porous silicon carbide ceramic crystal holder is a three-dimensional hollow structure, including a first surface 101 and a second surface 102 arranged oppositely. And from the first surface 101 to the second surface 102, the porosity inside the ceramic crystal support gradually decreases, specifically: the average porosity from the first surface 101 to 1/4 of the total thickness is 90%. The average porosity from the two surfaces 102 to 1/4 of the total thickness is 50%.
  • the structural unit of the three-dimensional hollow structure is a hollow cell, and the shape of the hollow cell is a truncated octahedron 8 with an equivalent spherical diameter of 2 mm.
  • the shape of the porous silicon carbide ceramic crystal holder is disk-shaped, and the disk size is 8 inches and the thickness is 40mm.
  • the preparation method includes the following steps:
  • the green body is manufactured by layer-by-layer accumulation, and the green body is composed of silicon carbide ceramic powder and binder (phenolic resin);
  • the layer-by-layer accumulation method is specific It is: pre-mix silicon carbide ceramic powder and binder, and extrude the resulting mixture through the nozzle.
  • the nozzle moves along the preset path to form one of the cross-sections of the ceramic crystal support, a total of 80
  • the sections are accumulated layer by layer to finally form a green body;
  • step (3) The green body obtained in step (2) is first siliconized and roasted at 1500 ⁇ 50°C, and then desiliconized and roasted at 2000 ⁇ 100°C to obtain a porous silicon carbide ceramic crystal support.
  • the porous silicon carbide ceramic crystal holder is a three-dimensional hollow structure, including a first surface 101 and a second surface arranged oppositely. 102, and from the first surface 101 to the second surface 102, the porosity inside the ceramic crystal holder gradually decreases. Specifically, the pores inside the ceramic along the vertical longitudinal section are circular, and the average porosity from the first surface 101 to 1/4 of the total thickness is 80%, and the average pores from the second surface 102 to 1/4 of the total thickness are 80%. The rate is 40%.
  • the shape of the porous silicon carbide ceramic crystal holder is disk-shaped, and the disk size is 6 inches and the thickness is 20mm.
  • the preparation method includes the following steps:
  • a green body is manufactured by layer-by-layer accumulation, and the green body is composed of silicon carbide ceramic powder and a binder (polycarbosilane and xylene); the layer-by-layer
  • the specific method of accumulation is: pre-mix silicon carbide ceramic powder and binder, and extrude the resulting mixture through a nozzle. And during the extrusion process of the nozzle, the nozzle moves along the preset path to form one of the sections of the ceramic crystal support. A total of 50 sections are accumulated layer by layer to finally form the green body;
  • step (3) The green body obtained in step (2) is roasted at 1300 ⁇ 100°C to obtain a porous silicon carbide ceramic crystal support.
  • the porous silicon carbide ceramic crystal holder is a three-dimensional hollow structure, including a first surface 101 and a second surface arranged oppositely. 102, and from the first surface 101 to the second surface 102, the porosity inside the ceramic crystal holder gradually decreases. Specifically, the pores inside the ceramic along the vertical longitudinal section are square, and the average porosity from the first surface 101 to 1/4 of the total thickness is 95%, and the average porosity from the second surface 102 to 1/4 of the total thickness is 95%. is 45%.
  • the shape of the porous silicon carbide ceramic crystal holder is disk-shaped, and the disk size is 4 inches and the thickness is 10 mm.
  • the preparation method includes the following steps:
  • a green body is manufactured by layer-by-layer accumulation, and the green body is composed of silicon carbide ceramic powder and a binder (polyvinyl alcohol);
  • the layer-by-layer accumulation method Specifically: lay silicon carbide ceramic powder in advance, extrude the binder through the nozzle, and during the extrusion process of the nozzle, the nozzle moves along the preset path, and the binder binds the silicon carbide ceramic powder to form a ceramic crystal support. For one of the sections, a total of 50 sections are accumulated layer by layer to finally form a green body;
  • step (3) The green body obtained in step (2) is first siliconized and roasted at 1550 ⁇ 50°C, and then desiliconized and roasted at 1900 ⁇ 100°C to obtain a porous silicon carbide ceramic crystal support.
  • the porous silicon carbide ceramic crystal holder is a three-dimensional hollow structure, including a first surface 101 and a second surface arranged oppositely. 102, and from the first surface 101 to the second surface 102, the porosity inside the ceramic crystal holder gradually decreases. Specifically, the pores inside the ceramic along the vertical longitudinal section are hexagonal, and the average porosity from the first surface 101 to 1/4 of the total thickness is 90%, and the average porosity from the second surface 102 to 1/4 of the total thickness is 90%. Porosity is 50%.
  • the shape of the porous silicon carbide ceramic crystal holder is disk-shaped, and the disk size is 6 inches and the thickness is 40mm.
  • the preparation method includes the following steps:
  • the green body is manufactured by layer-by-layer accumulation, and the green body is composed of silicon carbide ceramic powder and binder (phenolic resin);
  • the layer-by-layer accumulation method is specific It is: pre-mix silicon carbide ceramic powder and binder, and extrude the resulting mixture through the nozzle.
  • the nozzle moves along the preset path to form one of the cross-sections of the ceramic crystal support, a total of 80
  • the sections are accumulated layer by layer to finally form a green body;
  • step (3) The green body obtained in step (2) is first siliconized and roasted at 1500 ⁇ 50°C, and then desiliconized and roasted at 2200 ⁇ 100°C to obtain a porous silicon carbide ceramic crystal support.
  • This embodiment provides a porous silicon carbide ceramic crystal holder and a preparation method thereof.
  • the pores inside the ceramic crystal holder The rate gradually increases, and the average porosity from the first surface 101 to 1/4 of the total thickness is 40%, The average porosity from the second surface 102 to 1/4 of the total thickness is 80%, and the preparation method is adapted.
  • the rest of the structure and conditions are the same as those in Embodiment 1, so they will not be described again here.
  • This embodiment provides a porous silicon carbide ceramic crystal holder and a preparation method thereof.
  • the pores inside the ceramic crystal holder It first decreases and then increases, and the average porosity from the first surface 101 to 1/4 of the total thickness is 80%, the average porosity from the central position and accounting for 1/2 of the total thickness is 40%, and the average porosity from the second surface 102 to the total thickness is 40%.
  • the average porosity at 1/4 of the thickness is 80%, and the preparation method is adapted.
  • the rest of the structure and conditions are the same as those in Example 1, so they will not be described again here.
  • This embodiment provides a porous silicon carbide ceramic crystal holder and a preparation method thereof.
  • the average porosity from the first surface 101 to 1/4 of the total thickness is 40%
  • the average porosity from the central position and accounting for 1/2 of the total thickness is 80%
  • the average porosity from the second surface 102 to the total thickness is 80%.
  • the average porosity at 1/4 of the thickness is 40%, and the preparation method is adapted. The rest of the structure and conditions are the same as in Example 1, so they will not be described again.
  • This comparative example provides a porous silicon carbide ceramic crystal holder and its preparation method.
  • the porosity inside the ceramic crystal holder is 60%, and making adaptive adjustments to the preparation method.
  • the remaining structures and conditions are the same as those in Embodiment 1, so they will not be described again here.
  • This comparative example provides a silicon carbide ceramic crystal support and a preparation method thereof.
  • the ceramic crystal support In addition to changing the ceramic crystal support into It is a solid structure, and the preparation method is adapted.
  • the other structures and conditions are the same as those in Example 1, so they will not be described again here.
  • This application example uses the porous silicon carbide ceramic crystal support provided in Example 1 to grow silicon carbide single crystal. As shown in Figure 3, the first surface 101 of the ceramic crystal support 100 is connected to the graphite plate 200, and the second surface 102 is connected to the seed crystal. 300 connections.
  • this application example uses the physical vapor transport method (PVT) to grow silicon carbide crystals, and uses an induction coil 800 for heating, and the induction coil 800 is outside the chamber 900; the crucible 500 is filled with silicon carbide powder 20, and the chamber Chamber 900 has an exhaust port and an air inlet port.
  • PVT physical vapor transport method
  • the crucible holder 600 supports the crucible 500 and can drive the crucible 500 to rotate or move in the vertical direction, and the crucible holder 600 passes through the wall of the chamber 900 .
  • the crucible 500 is surrounded by a heat-insulating box 700 , and the heat-insulating box 700 is located in the chamber 900 .
  • An induction coil 800 is provided on the outer periphery of the chamber 900 .
  • the induction coil 800 is spiral, the current frequency is 7kHz, the coil is hollow, and can be cooled by water; the energized induction coil 800 heats the silicon carbide powder 20 in the crucible 500, causing the silicon carbide powder 20 to sublime and form in the seed crystal 300 silicon carbide single crystal ingots are grown on the surface.
  • This application example uses the porous silicon carbide ceramic crystal support provided in Example 2 to grow silicon carbide polycrystalline. As shown in Figure 4, the first surface 101 of the ceramic crystal support 100 is connected to the graphite plate 200, and the second surface 102 is directly connected to the graphite plate 200. Silicon carbide crystal 400 is grown.
  • this application example uses physical vapor transport (PVT) to grow silicon carbide crystals, using a resistance heater 801 for heating; a crucible 500 is filled with silicon carbide powder 20, and a chamber 900 has a pump. Air port and an air inlet.
  • PVT physical vapor transport
  • the graphite plate 200 and the ceramic crystal holder 100 are connected, and the ceramic crystal holder 100 faces the silicon carbide powder 20 .
  • the crucible holder 600 supports the crucible 500 and can drive the crucible 500 to rotate or move in the vertical direction, and the crucible holder 600 passes through the wall of the chamber 900 .
  • a resistance heater 801 is provided outside the crucible 500 and is surrounded by a heat insulation box 700; the resistance heater 801 is a graphite heater, and the energized graphite heater heats the silicon carbide powder 20 in the crucible 500, so that the silicon carbide powder 20 sublimation, and the silicon carbide polycrystalline ingot is grown on the surface of the ceramic crystal support 100.
  • This application example uses the porous silicon carbide ceramic crystal support provided in Example 3 to grow silicon carbide single crystal. As shown in Figure 3, the first surface 101 of the ceramic crystal support 100 is connected to the graphite plate 200, and the second surface 102 is connected to the seed crystal. 300 connections.
  • this application example adopts a solution process (LPE) to grow silicon carbide crystals, and uses an induction coil 800 for heating; a flux 21 is contained in a graphite crucible 500 , and a chamber 900 has an exhaust port and an inlet port.
  • LPE solution process
  • the crystal rod 201 is connected to the graphite plate 200, the graphite plate 200 is connected to the ceramic crystal holder 100, and the seed crystal 300 on the surface of the ceramic crystal holder 100 is opposite to the co-solvent 21.
  • the crystal rod 201 can rotate and move in the vertical direction.
  • the crucible holder 600 supports the graphite crucible 500 and can drive the graphite crucible 500 to rotate or move in the vertical direction, and the crystal rod 201 and the crucible holder 600 pass through the wall of the chamber 900 respectively.
  • the graphite crucible 500 is surrounded by a heat insulation box 700 , and an induction coil 800 is provided around the heat insulation box 700 .
  • the induction coil 800 is spiral-shaped, the current frequency is 5kHz, the coil is hollow, and can be cooled by water; the energized induction coil 800 heats and melts the cosolvent 21 in the graphite crucible 500, and the chamber 900 provides an atmosphere for crystal growth.
  • a silicon carbide single crystal ingot is grown on the surface of the seed crystal 300 .
  • the porous silicon carbide ceramic crystal support provided in Example 4 is used to grow silicon carbide polycrystalline. As shown in Figure 4, the first surface 101 of the ceramic crystal support 100 is connected to the graphite plate 200, and the second surface 102 is directly connected to the graphite plate 200. Silicon carbide crystal 400 is grown.
  • this application example uses a solution method (LPE) to grow silicon carbide crystals and uses a resistance heater 801 for heating; the graphite crucible 500 is equipped with a cosolvent 21, and the chamber 900 has an air extraction port and an air inlet.
  • LPE solution method
  • the crystal rod 201 is connected to the graphite plate 200, the graphite plate 200 is connected to the ceramic crystal holder 100, and the ceramic crystal holder 100 is opposite to the co-solvent 21.
  • the crystal rod 201 can rotate and move in the vertical direction.
  • the crucible holder 600 supports the graphite crucible 500 and can drive the graphite crucible 500 to rotate or move in the vertical direction, and the crystal rod 201 and the crucible holder 600 pass through the wall of the chamber 900 respectively.
  • a resistance heater 801 is provided outside the graphite crucible 500 and is surrounded by a heat insulation box 700; the resistance heater 801 is a graphite heater, and the energized graphite heater heats and melts the co-solvent 21 in the graphite crucible 500, and the chamber 900 An atmosphere is provided for crystal growth, and silicon carbide polycrystalline ingots are grown on the surface of the ceramic crystal support 100 .
  • This application example uses the porous silicon carbide ceramic crystal support provided in Example 5 to grow silicon carbide single crystal. As shown in Figure 3, the first surface 101 of the ceramic crystal support 100 is connected to the graphite plate 200, and the second surface 102 is connected to the seed crystal. 300 connections.
  • this application example uses high-temperature chemical vapor deposition (HTCVD) to grow silicon carbide crystals and uses an induction coil 800 for heating.
  • the chamber 900 has an air extraction port and an air inlet.
  • the crystal rod 201 is connected to the graphite plate 200, the bottom of the graphite plate 200 is connected to the ceramic crystal holder 100, and the seed crystal 300 on the surface of the ceramic crystal holder 100 is opposite to the air inlet.
  • the crystal rod 201 can rotate and moves in the vertical direction and passes through the wall of the chamber 900.
  • the reaction chamber 501 is made of graphite, and is surrounded by a heat-insulating box 700 .
  • the heat-insulating box 700 is in the chamber 900 , and an induction coil 800 is arranged around the periphery of the chamber 900 .
  • the induction coil 800 is spiral-shaped, the current frequency is 7 kHz, the coil is hollow, and can be cooled by water; the energized induction coil 800 heats the reaction chamber 501 to the temperature of crystal growth.
  • the air inlet of the chamber 900 is filled with reactive gases silane and propane, and the reactive gases react in the high-temperature reaction chamber 501 to grow a silicon carbide single crystal ingot on the surface of the seed crystal 300 .
  • This application example uses the porous silicon carbide ceramic crystal support provided in Example 6 to grow silicon carbide polycrystalline. As shown in Figure 4, the first surface 101 of the ceramic crystal support 100 is connected to the graphite plate 200, and the second surface 102 is directly connected to the graphite plate 200. Silicon carbide crystal 400 is grown.
  • this application example uses high-temperature chemical vapor deposition (HTCVD) to grow silicon carbide crystals, and uses a resistance heater 801 for heating.
  • the chamber 900 has an air extraction port and an air inlet.
  • the crystal rod 201 is connected to the graphite plate 200, and the bottom of the graphite plate 200 is connected to the ceramic crystal holder 100.
  • the crystal rod 201 can rotate and move in the vertical direction, and passes through the wall of the chamber 900.
  • the reaction chamber 501 is made of graphite, and a resistance heater 801 is arranged outside and surrounded by a heat insulation box 700; the resistance heater 801 is a graphite heater, and the energized graphite heater heats the reaction chamber 501 to the temperature of crystal growth.
  • the air inlet of the chamber 900 is filled with reactive gases silane and propane, and the reactive gases react in the high-temperature reaction chamber 501 to grow silicon carbide polycrystalline ingots on the surface of the ceramic crystal support 100 .
  • This application example uses the porous silicon carbide ceramic crystal support provided in Example 7 to grow silicon carbide single crystal.
  • the specific device structure and growth method are the same as those in Application Example 1, so they will not be described again here.
  • This application example uses the porous silicon carbide ceramic crystal support provided in Example 8 to grow silicon carbide single crystal.
  • the specific device structure and growth method are the same as those in Application Example 1, so they will not be described again here.
  • This application example uses the porous silicon carbide ceramic crystal support provided in Example 9 to grow silicon carbide single crystal.
  • the specific device structure and growth method are the same as those in Application Example 1, so they will not be described again here.
  • This comparative application example uses the porous silicon carbide ceramic crystal support provided in Comparative Example 1 to grow silicon carbide single crystal.
  • the specific device structure and growth method are the same as those in Application Example 1, so they will not be described again here.
  • This comparative application example uses the silicon carbide ceramic crystal support provided in Comparative Example 2 to grow silicon carbide single crystal.
  • the specific device structure and growth method are the same as those in Application Example 1, so they will not be described again here.
  • the present application designs a three-dimensional hollow structure of silicon carbide ceramic crystal holder, and further limits the porosity inside the ceramic crystal holder to present a non-uniform distribution, so that when it is used to grow silicon carbide crystals, the deformation is large in the area with high porosity and small in the area with low porosity, which fully absorbs the stress generated by thermal mismatch in the growth process of the silicon carbide crystal, thereby avoiding cracking of the crystal and improving the yield of the obtained silicon carbide crystal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种多孔碳化硅陶瓷晶体托及其制备方法与应用,所述多孔碳化硅陶瓷晶体托为立体镂空结构,包括相对设置的第一表面和第二表面,且从所述第一表面至第二表面,陶瓷晶体托内部的孔隙率呈现非均匀分布。所述制备方法包括:(1)构建立体镂空结构的三维数字模型,将所得模型分层,得到模型截面;(2)基于步骤(1)所得模型截面,通过逐层累加的方式制造坯体,且所述坯体由碳化硅陶瓷粉末和粘结剂组成;(3)将步骤(2)所得坯体进行焙烧处理,得到多孔碳化硅陶瓷晶体托。将所述陶瓷晶体托用于生长碳化硅晶体时,充分吸收了碳化硅晶体在生长过程中因热失配所产生的应力,从而避免了晶体出现开裂现象,提升了所得碳化硅晶体的成品率。

Description

一种多孔碳化硅陶瓷晶体托及其制备方法与应用 技术领域
本申请属于半导体制造技术领域,涉及一种碳化硅陶瓷晶体托,尤其涉及一种多孔碳化硅陶瓷晶体托及其制备方法与应用。
背景技术
由碳化硅单晶衬底制作的器件具有耐高温、耐高压、高频、大功率、抗辐射、效率高等优势,在射频、新能源汽车等领域具有重要的应用价值。生长碳化硅晶体的方法主要包括物理气相传输法(PVT)、溶液法(LPE)和高温化学气相沉积法(HTCVD)。
通常,上述方法均需要将籽晶粘贴在石墨板上,然后在籽晶表面结晶生长碳化硅晶体。不论采用何种方法,碳化硅晶体生长均需在最低1500℃、最高可达2500℃的高温环境中进行。生长完成后,晶体和石墨板的温度逐渐降低。
由于碳化硅晶体和石墨的热膨胀系数差异,两者在降温过程中的收缩量并不一致,这种现象称之为“热失配”。比如,在2000℃下,4H型碳化硅垂直于c轴方向的热膨胀系数为5.17×10-6/K,石墨的热膨胀系数为6.12×10-6/K,后者比前者大18.6%,存在较为严重的热失配。热失配会在晶体内部产生较高的应力,导致晶体开裂或者在后续的加工过程中开裂,从而严重影响了所得碳化硅晶体的成品率。
CN 110306239A公开了一种碳化硅材质籽晶托,在石墨板和籽晶之间设置一层碳化硅多晶陶瓷,从而减少所得晶体内部的应力。然而,该发明提供的多晶陶瓷并不能充分吸收应力,导致多晶陶瓷和石墨之间因热失配产生的应力仍然会传导至生长的晶体中,进而无法有效避免晶体出现开裂现象。
由此可见,如何提供一种用于生长碳化硅晶体的陶瓷晶体托,充分吸收碳化硅晶体在生长过程中因热失配所产生的应力,从而避免晶体出现开裂现象,提升所得碳化硅晶体的成品率,成为了目前本领域技术人员迫切需要解决的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的目的在于提供一种多孔碳化硅陶瓷晶体托及其制备方法与应用,所述多孔碳化硅陶瓷晶体托用于生长碳化硅晶体时,充分吸收了碳化硅晶体在生长过程中因热失配所产生的应力,从而避免了晶体出现开裂现象,提升了所得碳化硅晶体的成品率。
为达到此目的,本申请采用以下技术方案:
第一方面,本申请提供一种多孔碳化硅陶瓷晶体托,所述多孔碳化硅陶瓷晶体托为立体镂空结构,包括相对设置的第一表面和第二表面,且从所述第一表面至第二表面,陶瓷晶体托内部的孔隙率呈现非均匀分布。
本申请通过设计立体镂空结构的碳化硅陶瓷晶体托,并进一步限定陶瓷晶体托内部的孔隙率呈现非均匀分布,使其用于生长碳化硅晶体时,在孔隙率高的区域变形大,在孔隙率低的区域变形小,充分吸收了碳化硅晶体在生长过程中因热失配所产生的应力,从而避免了晶体出现开裂现象,提升了所得碳化硅晶体的成品率。
可选地,所述立体镂空结构的结构单元为中空胞元。
可选地,所述中空胞元的形状包括方孔、交叉管、空心球、空心角、交叉 柱、四球体、四交叉柱、截角八面体、交点弧角或斜方八面体中的任意一种或至少两种的组合,典型但非限制性的组合包括方孔与交叉管的组合,交叉管与空心球的组合,空心球与空心角的组合,空心角与交叉柱的组合,交叉柱与四球体的组合,四球体与四交叉柱的组合,四交叉柱与截角八面体的组合,截角八面体与交点弧角的组合,或交点弧角与斜方八面体的组合。
可选地,所述中空胞元的外接等效球的直径为0.2-2mm,例如可以是0.2mm、0.4mm、0.6mm、0.8mm、1mm、1.2mm、1.4mm、1.6mm、1.8mm或2mm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述多孔碳化硅陶瓷晶体托的形状为圆盘状,且圆盘尺寸为4-8寸,例如可以是4寸、5寸、6寸、7寸或8寸,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述多孔碳化硅陶瓷晶体托的厚度为3-40mm,例如可以是3mm、5mm、10mm、15mm、20mm、25mm、30mm、35mm或40mm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
从所述第一表面至第二表面,陶瓷晶体托内部的孔隙率为40-95%,例如可以是40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%或95%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,从所述第一表面至第二表面,陶瓷晶体托内部的孔隙率逐渐减小。
可选地,从所述第一表面至第二表面,陶瓷晶体托内部的孔隙率逐渐增加。
可选地,从所述第一表面至第二表面,陶瓷晶体托内部的孔隙率先减小后增加。
可选地,从所述第一表面至第二表面,陶瓷晶体托内部的孔隙率先增加后 减小。
本申请中,陶瓷晶体托内部的孔隙率可以通过保持中空胞元的整体尺寸不变,仅改变胞元内柱或面的截面尺寸进行调变,例如胞元内柱或面的截面尺寸越大,被胞元填充的空间孔隙率就越小;还可以通过保持胞元内柱或面的截面尺寸不变,仅改变中空胞元的整体尺寸进行调变,例如中空胞元的整体尺寸越大,被胞元填充的空间孔隙率就越大。
第二方面,本申请提供一种如第一方面所述多孔碳化硅陶瓷晶体托的制备方法,所述制备方法包括以下步骤:
(1)构建立体镂空结构的三维数字模型,将所得模型分层,得到模型截面;
(2)基于步骤(1)所得模型截面,通过逐层累加的方式制造坯体,且所述坯体由碳化硅陶瓷粉末和粘结剂组成;
(3)将步骤(2)所得坯体进行焙烧处理,得到多孔碳化硅陶瓷晶体托。
本申请提供的制备方法采用逐层累加的方式制造坯体,可以实现任意复杂形状的构建,从而显著降低了多孔碳化硅陶瓷晶体托的制造成本,且缩短了产品交付周期。
可选地,步骤(2)所述逐层累加的方式包括以下两种方式中的任意一种:
(2.1)预先混合碳化硅陶瓷粉末和粘结剂,将所得混料通过喷头挤出,且在喷头挤料的过程中,喷头沿着预设路径运动,形成陶瓷晶体托的其中一个截面,至少2个截面逐层累加,最终形成坯体;
(2.2)预先铺设碳化硅陶瓷粉末,将粘结剂通过喷头挤出,且在喷头挤料的过程中,喷头沿着预设路径运动,粘结剂粘合碳化硅陶瓷粉末形成陶瓷晶体托的其中一个截面,至少2个截面逐层累加,最终形成坯体。
其中,所述粘结剂包括羧甲基纤维素钠、阿拉伯树胶、黄原胶、酚醛树脂、明胶、硅溶胶、海藻酸钠、琼脂糖、聚乙烯醇、丙烯酸、糊精、聚碳硅烷、二甲苯、甲苯或环己烷中的任意一种或至少两种的组合,典型但非限制性的组合包括羧甲基纤维素钠与阿拉伯树胶的组合,阿拉伯树胶与黄原胶的组合,黄原胶与酚醛树脂的组合,酚醛树脂与明胶的组合,明胶与硅溶胶的组合,硅溶胶与海藻酸钠的组合,海藻酸钠与琼脂糖的组合,琼脂糖与聚乙烯醇的组合,聚乙烯醇与丙烯酸的组合,丙烯酸与糊精的组合,糊精与聚碳硅烷的组合,聚碳硅烷与二甲苯的组合,聚碳硅烷与甲苯的组合,或聚碳硅烷与环己烷的组合。
可选地,步骤(3)所述焙烧处理的温度为1100-2300℃,例如可以是1100℃、1200℃、1400℃、1600℃、1800℃、2000℃、2200℃或2300℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
第三方面,本申请提供一种如第一方面所述多孔碳化硅陶瓷晶体托的应用,将所述多孔碳化硅陶瓷晶体托用于生长碳化硅晶体,且所述第一表面与石墨板相连接,所述第二表面与籽晶相连接,在籽晶的表面生长碳化硅晶体;或直接在所述多孔碳化硅陶瓷晶体托的第二表面生长碳化硅晶体。
相对于现有技术,本申请具有以下有益效果:
本申请通过设计立体镂空结构的碳化硅陶瓷晶体托,并进一步限定陶瓷晶体托内部的孔隙率呈现非均匀分布,使其用于生长碳化硅晶体时,在孔隙率高的区域变形大,在孔隙率低的区域变形小,充分吸收了碳化硅晶体在生长过程中因热失配所产生的应力,从而避免了晶体出现开裂现象,提升了所得碳化硅晶体的成品率。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1是实施例1-3提供的多孔碳化硅陶瓷晶体托的立体镂空结构示意图;
图2是实施例4-6提供的多孔碳化硅陶瓷晶体托的横截面示意图;
图3是本申请提供的多孔碳化硅陶瓷晶体托生长碳化硅单晶的连接关系图;
图4是本申请提供的多孔碳化硅陶瓷晶体托生长碳化硅多晶的连接关系图;
图5是应用例1采用多孔碳化硅陶瓷晶体托生长碳化硅晶体的装置示意图;
图6是应用例2采用多孔碳化硅陶瓷晶体托生长碳化硅晶体的装置示意图;
图7是应用例3采用多孔碳化硅陶瓷晶体托生长碳化硅晶体的装置示意图;
图8是应用例4采用多孔碳化硅陶瓷晶体托生长碳化硅晶体的装置示意图;
图9是应用例5采用多孔碳化硅陶瓷晶体托生长碳化硅晶体的装置示意图;
图10是应用例6采用多孔碳化硅陶瓷晶体托生长碳化硅晶体的装置示意图。
其中:1-方孔;2-交叉管;3-空心球;4-空心角;5-交叉柱;6-四球体;7-四交叉柱;8-截角八面体;9-交点弧角;10-斜方八面体;11-四交叉柱与交点弧角的组合;12-四交叉柱与斜方八面体的组合;20-碳化硅粉料;21-助溶剂;100-陶瓷晶体托;101-第一表面;102-第二表面;200-石墨板;201-晶体杆;300-籽晶;400-碳化硅晶体;500-坩埚;501-反应室;600-坩埚托;700-隔热箱;800-感应线圈;801-电阻加热器;900-腔室。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
本申请提供一种多孔碳化硅陶瓷晶体托及其制备方法与应用,如图1所示,所述多孔碳化硅陶瓷晶体托为立体镂空结构,包括相对设置的第一表面101和第二表面102,且从所述第一表面101至第二表面102,陶瓷晶体托内部的孔隙率呈现非均匀分布(见图2)。
本申请中,所述立体镂空结构的结构单元为中空胞元,且所述中空胞元的形状包括方孔1、交叉管2、空心球3、空心角4、交叉柱5、四球体6、四交叉柱7、截角八面体8、交点弧角9、斜方八面体10、四交叉柱与交点弧角的组合11或四交叉柱与斜方八面体的组合12中的任意一种(见图1);所述中空胞元的外接等效球的直径为0.2-2mm。
本申请中,所述多孔碳化硅陶瓷晶体托的形状为圆盘状,且圆盘尺寸为4-8寸,厚度为3-40mm;从所述第一表面101至第二表面102,陶瓷晶体托内部的孔隙率为40-95%,且变化趋势包括以下四种情况中的任意一种:(A)所述第一表面101至第二表面102,陶瓷晶体托内部的孔隙率逐渐减小;(B)从所述第一表面101至第二表面102,陶瓷晶体托内部的孔隙率逐渐增加;(C)从所述第一表面101至第二表面102,陶瓷晶体托内部的孔隙率先减小后增加;(D)从所述第一表面101至第二表面102,陶瓷晶体托内部的孔隙率先增加后减小。
本申请提供的制备方法包括以下步骤:
(1)构建立体镂空结构的三维数字模型,将所得模型分层,得到模型截面;
(2)基于步骤(1)所得模型截面,通过逐层累加的方式制造坯体,且所述坯体由碳化硅陶瓷粉末和粘结剂组成;所述逐层累加的方式包括以下两种方 式中的任意一种:
(2.1)预先混合碳化硅陶瓷粉末和粘结剂,将所得混料通过喷头挤出,且在喷头挤料的过程中,喷头沿着预设路径运动,形成陶瓷晶体托的其中一个截面,至少2个截面逐层累加,最终形成坯体;
(2.2)预先铺设碳化硅陶瓷粉末,将粘结剂通过喷头挤出,且在喷头挤料的过程中,喷头沿着预设路径运动,粘结剂粘合碳化硅陶瓷粉末形成陶瓷晶体托的其中一个截面,至少2个截面逐层累加,最终形成坯体;
其中,所述粘结剂包括羧甲基纤维素钠、阿拉伯树胶、黄原胶、酚醛树脂、明胶、硅溶胶、海藻酸钠、琼脂糖、聚乙烯醇、丙烯酸、糊精、聚碳硅烷、二甲苯、甲苯或环己烷中的任意一种或至少两种的组合;
(3)将步骤(2)所得坯体在1100-2300℃下进行焙烧处理,得到多孔碳化硅陶瓷晶体托。
本申请提供的多孔碳化硅陶瓷晶体托用于生长碳化硅晶体时,第一表面101与石墨板200相连接,第二表面102与籽晶300相连接,并在籽晶300的表面生长碳化硅晶体400(见图3),且所得碳化硅晶体400为单晶;或直接在多孔碳化硅陶瓷晶体托的第二表面102生长碳化硅晶体400(见图4),且所得碳化硅晶体400为多晶。
实施例1
本实施例提供一种多孔碳化硅陶瓷晶体托及其制备方法,如图1所示,所述多孔碳化硅陶瓷晶体托为立体镂空结构,包括相对设置的第一表面101和第二表面102,且从所述第一表面101至第二表面102,陶瓷晶体托内部的孔隙率孔隙率逐渐减小,具体为:第一表面101至总厚度1/4处的平均孔隙率为80%, 第二表面102至总厚度1/4处的平均孔隙率为40%。
如图1所示,所述立体镂空结构的结构单元为中空胞元,且所述中空胞元的形状为直径0.5mm的空心球3。所述多孔碳化硅陶瓷晶体托的形状为圆盘状,且圆盘尺寸为6寸,厚度为20mm。
本实施例中,所述制备方法包括以下步骤:
(1)利用SolidWorks和Materialise软件构建如图1所示的立体镂空结构的三维数字模型,将所得模型分层,得到模型截面;
(2)基于步骤(1)所得模型截面,通过逐层累加的方式制造坯体,且所述坯体由碳化硅陶瓷粉末和粘结剂(聚碳硅烷与二甲苯)组成;所述逐层累加的方式具体为:预先混合碳化硅陶瓷粉末和粘结剂,将所得混料通过喷头挤出,且在喷头挤料的过程中,喷头沿着预设路径运动,形成陶瓷晶体托的其中一个截面,总共50个截面逐层累加,最终形成坯体;
(3)将步骤(2)所得坯体在1200±100℃下进行焙烧处理,得到多孔碳化硅陶瓷晶体托。
实施例2
本实施例提供一种多孔碳化硅陶瓷晶体托及其制备方法,如图1所示,所述多孔碳化硅陶瓷晶体托为立体镂空结构,包括相对设置的第一表面101和第二表面102,且从所述第一表面101至第二表面102,陶瓷晶体托内部的孔隙率孔隙率逐渐减小,具体为:第一表面101至总厚度1/4处的平均孔隙率为95%,第二表面102至总厚度1/4处的平均孔隙率为45%。
如图1所示,所述立体镂空结构的结构单元为中空胞元,且所述中空胞元的形状为边长0.2mm的方孔1。所述多孔碳化硅陶瓷晶体托的形状为圆盘状, 且圆盘尺寸为4寸,厚度为3mm。
本实施例中,所述制备方法包括以下步骤:
(1)利用SolidWorks和Materialise软件构建如图1所示的立体镂空结构的三维数字模型,将所得模型分层,得到模型截面;
(2)基于步骤(1)所得模型截面,通过逐层累加的方式制造坯体,且所述坯体由碳化硅陶瓷粉末和粘结剂(聚乙烯醇)组成;所述逐层累加的方式具体为:预先铺设碳化硅陶瓷粉末,将粘结剂通过喷头挤出,且在喷头挤料的过程中,喷头沿着预设路径运动,粘结剂粘合碳化硅陶瓷粉末形成陶瓷晶体托的其中一个截面,总共15个截面逐层累加,最终形成坯体;
(3)将步骤(2)所得坯体先在1450±50℃下进行渗硅焙烧处理,再在1700±100℃下进行脱硅焙烧处理,得到多孔碳化硅陶瓷晶体托。
实施例3
本实施例提供一种多孔碳化硅陶瓷晶体托及其制备方法,如图1所示,所述多孔碳化硅陶瓷晶体托为立体镂空结构,包括相对设置的第一表面101和第二表面102,且从所述第一表面101至第二表面102,陶瓷晶体托内部的孔隙率孔隙率逐渐减小,具体为:第一表面101至总厚度1/4处的平均孔隙率为90%,第二表面102至总厚度1/4处的平均孔隙率为50%。
如图1所示,所述立体镂空结构的结构单元为中空胞元,且所述中空胞元的形状为外接等效球直径2mm的截角八面体8。所述多孔碳化硅陶瓷晶体托的形状为圆盘状,且圆盘尺寸为8寸,厚度为40mm。
本实施例中,所述制备方法包括以下步骤:
(1)利用SolidWorks和Materialise软件构建如图1所示的立体镂空结构的 三维数字模型,将所得模型分层,得到模型截面;
(2)基于步骤(1)所得模型截面,通过逐层累加的方式制造坯体,且所述坯体由碳化硅陶瓷粉末和粘结剂(酚醛树脂)组成;所述逐层累加的方式具体为:预先混合碳化硅陶瓷粉末和粘结剂,将所得混料通过喷头挤出,且在喷头挤料的过程中,喷头沿着预设路径运动,形成陶瓷晶体托的其中一个截面,总共80个截面逐层累加,最终形成坯体;
(3)将步骤(2)所得坯体先在1500±50℃下进行渗硅焙烧处理,再在2000±100℃下进行脱硅焙烧处理,得到多孔碳化硅陶瓷晶体托。
实施例4
本实施例提供一种多孔碳化硅陶瓷晶体托及其制备方法,如图2-a所示,所述多孔碳化硅陶瓷晶体托为立体镂空结构,包括相对设置的第一表面101和第二表面102,且从所述第一表面101至第二表面102,陶瓷晶体托内部的孔隙率孔隙率逐渐减小。具体地,陶瓷内部沿竖直纵向切面的孔隙为圆形,且第一表面101至总厚度1/4处的平均孔隙率为80%,第二表面102至总厚度1/4处的平均孔隙率为40%。所述多孔碳化硅陶瓷晶体托的形状为圆盘状,且圆盘尺寸为6寸,厚度为20mm。
本实施例中,所述制备方法包括以下步骤:
(1)利用SolidWorks和Materialise软件构建如图2-a所示的立体镂空结构的三维数字模型,将所得模型分层,得到模型截面;
(2)基于步骤(1)所得模型截面,通过逐层累加的方式制造坯体,且所述坯体由碳化硅陶瓷粉末和粘结剂(聚碳硅烷与二甲苯)组成;所述逐层累加的方式具体为:预先混合碳化硅陶瓷粉末和粘结剂,将所得混料通过喷头挤出, 且在喷头挤料的过程中,喷头沿着预设路径运动,形成陶瓷晶体托的其中一个截面,总共50个截面逐层累加,最终形成坯体;
(3)将步骤(2)所得坯体在1300±100℃下进行焙烧处理,得到多孔碳化硅陶瓷晶体托。
实施例5
本实施例提供一种多孔碳化硅陶瓷晶体托及其制备方法,如图2-b所示,所述多孔碳化硅陶瓷晶体托为立体镂空结构,包括相对设置的第一表面101和第二表面102,且从所述第一表面101至第二表面102,陶瓷晶体托内部的孔隙率孔隙率逐渐减小。具体地,陶瓷内部沿竖直纵向切面的孔隙为方形,且第一表面101至总厚度1/4处的平均孔隙率为95%,第二表面102至总厚度1/4处的平均孔隙率为45%。所述多孔碳化硅陶瓷晶体托的形状为圆盘状,且圆盘尺寸为4寸,厚度为10mm。
本实施例中,所述制备方法包括以下步骤:
(1)利用SolidWorks和Materialise软件构建如图2-b所示的立体镂空结构的三维数字模型,将所得模型分层,得到模型截面;
(2)基于步骤(1)所得模型截面,通过逐层累加的方式制造坯体,且所述坯体由碳化硅陶瓷粉末和粘结剂(聚乙烯醇)组成;所述逐层累加的方式具体为:预先铺设碳化硅陶瓷粉末,将粘结剂通过喷头挤出,且在喷头挤料的过程中,喷头沿着预设路径运动,粘结剂粘合碳化硅陶瓷粉末形成陶瓷晶体托的其中一个截面,总共50个截面逐层累加,最终形成坯体;
(3)将步骤(2)所得坯体先在1550±50℃下进行渗硅焙烧处理,再在1900±100℃下进行脱硅焙烧处理,得到多孔碳化硅陶瓷晶体托。
实施例6
本实施例提供一种多孔碳化硅陶瓷晶体托及其制备方法,如图2-c所示,所述多孔碳化硅陶瓷晶体托为立体镂空结构,包括相对设置的第一表面101和第二表面102,且从所述第一表面101至第二表面102,陶瓷晶体托内部的孔隙率孔隙率逐渐减小。具体地,陶瓷内部沿竖直纵向切面的孔隙为六边形,且第一表面101至总厚度1/4处的平均孔隙率为90%,第二表面102至总厚度1/4处的平均孔隙率为50%。所述多孔碳化硅陶瓷晶体托的形状为圆盘状,且圆盘尺寸为6寸,厚度为40mm。
本实施例中,所述制备方法包括以下步骤:
(1)利用SolidWorks和Materialise软件构建如图2-c所示的立体镂空结构的三维数字模型,将所得模型分层,得到模型截面;
(2)基于步骤(1)所得模型截面,通过逐层累加的方式制造坯体,且所述坯体由碳化硅陶瓷粉末和粘结剂(酚醛树脂)组成;所述逐层累加的方式具体为:预先混合碳化硅陶瓷粉末和粘结剂,将所得混料通过喷头挤出,且在喷头挤料的过程中,喷头沿着预设路径运动,形成陶瓷晶体托的其中一个截面,总共80个截面逐层累加,最终形成坯体;
(3)将步骤(2)所得坯体先在1500±50℃下进行渗硅焙烧处理,再在2200±100℃下进行脱硅焙烧处理,得到多孔碳化硅陶瓷晶体托。
实施例7
本实施例提供一种多孔碳化硅陶瓷晶体托及其制备方法,除了将陶瓷晶体托内部孔隙率的变化趋势改为:从所述第一表面101至第二表面102,陶瓷晶体托内部的孔隙率逐渐增加,且第一表面101至总厚度1/4处的平均孔隙率为40%, 第二表面102至总厚度1/4处的平均孔隙率为80%,并对制备方法作出适应性调整,其余结构及条件均与实施例1相同,故在此不做赘述。
实施例8
本实施例提供一种多孔碳化硅陶瓷晶体托及其制备方法,除了将陶瓷晶体托内部孔隙率的变化趋势改为:从所述第一表面101至第二表面102,陶瓷晶体托内部的孔隙率先减小后增加,且第一表面101至总厚度1/4处的平均孔隙率为80%,中央位置且占总厚度1/2部分的平均孔隙率为40%,第二表面102至总厚度1/4处的平均孔隙率为80%,并对制备方法作出适应性调整,其余结构及条件均与实施例1相同,故在此不做赘述。
实施例9
本实施例提供一种多孔碳化硅陶瓷晶体托及其制备方法,除了将陶瓷晶体托内部孔隙率的变化趋势改为:从所述第一表面101至第二表面102,陶瓷晶体托内部的孔隙率先增加后减小,且第一表面101至总厚度1/4处的平均孔隙率为40%,中央位置且占总厚度1/2部分的平均孔隙率为80%,第二表面102至总厚度1/4处的平均孔隙率为40%,并对制备方法作出适应性调整,其余结构及条件均与实施例1相同,故在此不做赘述。
对比例1
本对比例提供一种多孔碳化硅陶瓷晶体托及其制备方法,除了将陶瓷晶体托内部的孔隙率改为均匀分布,且各处的孔隙率均为60%,并对制备方法作出适应性调整,其余结构及条件均与实施例1相同,故在此不做赘述。
对比例2
本对比例提供一种碳化硅陶瓷晶体托及其制备方法,除了将陶瓷晶体托改 为实心结构,并对制备方法作出适应性调整,其余结构及条件均与实施例1相同,故在此不做赘述。
应用例1
本应用例应用实施例1提供的多孔碳化硅陶瓷晶体托生长碳化硅单晶,如图3所示,陶瓷晶体托100的第一表面101与石墨板200相连接,第二表面102与籽晶300相连接。
如图5所示,本应用例采用物理气相传输法(PVT)生长碳化硅晶体,利用感应线圈800加热,且感应线圈800在腔室900外;坩埚500内装有碳化硅粉料20,且腔室900具有一个抽气口和一个进气口。
具体地,石墨板200和陶瓷晶体托100连接,且陶瓷晶体托100表面的籽晶300与碳化硅粉料20相对。坩埚托600承托着坩埚500,可带动坩埚500旋转或在竖直方向上运动,且坩埚托600穿过腔室900的壁。坩埚500外侧包围有隔热箱700,且隔热箱700在腔室900内,腔室900外周设置有感应线圈800。感应线圈800是螺旋状的,电流频率为7kHz,线圈是中空的,可通水冷却;通电的感应线圈800加热坩埚500中的碳化硅粉料20,使得碳化硅粉料20升华,在籽晶300的表面生长碳化硅单晶晶锭。
应用例2
本应用例应用实施例2提供的多孔碳化硅陶瓷晶体托生长碳化硅多晶,如图4所示,陶瓷晶体托100的第一表面101与石墨板200相连接,在第二表面102上直接生长碳化硅晶体400。
如图6所示,本应用例采用物理气相传输法(PVT)生长碳化硅晶体,利用电阻加热器801加热;坩埚500内装有碳化硅粉料20,且腔室900具有一个抽 气口和一个进气口。
具体地,石墨板200和陶瓷晶体托100连接,且陶瓷晶体托100与碳化硅粉料20相对。坩埚托600承托着坩埚500,可带动坩埚500旋转或在竖直方向上运动,且坩埚托600穿过腔室900的壁。坩埚500外侧设置有电阻加热器801,并被隔热箱700包围;所述电阻加热器801为石墨加热器,通电的石墨加热器加热坩埚500中的碳化硅粉料20,使得碳化硅粉料20升华,在陶瓷晶体托100的表面生长碳化硅多晶晶锭。
应用例3
本应用例应用实施例3提供的多孔碳化硅陶瓷晶体托生长碳化硅单晶,如图3所示,陶瓷晶体托100的第一表面101与石墨板200相连接,第二表面102与籽晶300相连接。
如图7所示,本应用例采用溶液法(LPE)生长碳化硅晶体,利用感应线圈800加热;石墨坩埚500内装有助溶剂21,且腔室900具有一个抽气口和一个进气口。
具体地,晶体杆201和石墨板200连接,石墨板200和陶瓷晶体托100连接,且陶瓷晶体托100表面的籽晶300与助溶剂21相对,晶体杆201可旋转和在竖直方向上运动。坩埚托600承托着石墨坩埚500,可带动石墨坩埚500旋转或在竖直方向上运动,且晶体杆201与坩埚托600分别穿过腔室900的壁。石墨坩埚500外侧包围有隔热箱700,隔热箱700外周设置有感应线圈800。感应线圈800是螺旋状的,电流频率为5kHz,线圈是中空的,可通水冷却;通电的感应线圈800将石墨坩埚500中的助溶剂21加热熔化,腔室900为晶体生长提供气氛环境,在籽晶300的表面生长碳化硅单晶晶锭。
应用例4
本应用例应用实施例4提供的多孔碳化硅陶瓷晶体托生长碳化硅多晶,如图4所示,陶瓷晶体托100的第一表面101与石墨板200相连接,在第二表面102上直接生长碳化硅晶体400。
如图8所示,本应用例采用溶液法(LPE)生长碳化硅晶体,利用电阻加热器801加热;石墨坩埚500内装有助溶剂21,且腔室900具有一个抽气口和一个进气口。
具体地,晶体杆201和石墨板200连接,石墨板200和陶瓷晶体托100连接,且陶瓷晶体托100与助溶剂21相对,晶体杆201可旋转和在竖直方向上运动。坩埚托600承托着石墨坩埚500,可带动石墨坩埚500旋转或在竖直方向上运动,且晶体杆201与坩埚托600分别穿过腔室900的壁。石墨坩埚500外侧设置有电阻加热器801,并被隔热箱700包围;所述电阻加热器801为石墨加热器,通电的石墨加热器将石墨坩埚500中的助溶剂21加热熔化,腔室900为晶体生长提供气氛环境,在陶瓷晶体托100的表面生长碳化硅多晶晶锭。
应用例5
本应用例应用实施例5提供的多孔碳化硅陶瓷晶体托生长碳化硅单晶,如图3所示,陶瓷晶体托100的第一表面101与石墨板200相连接,第二表面102与籽晶300相连接。
如图9所示,本应用例采用高温化学气相沉积法(HTCVD)生长碳化硅晶体,利用感应线圈800加热,腔室900具有一个抽气口和一个进气口。
具体地,晶体杆201和石墨板200连接,石墨板200底部连接陶瓷晶体托100,且陶瓷晶体托100表面的籽晶300与进气口相对。晶体杆201可旋转和在 竖直方向上运动,且穿过腔室900的壁。反应室501材料为石墨,外侧包围有隔热箱700,隔热箱700在腔室900中,腔室900外周设置有感应线圈800。感应线圈800是螺旋状的,电流频率为7kHz,线圈是中空的,可通水冷却;通电的感应线圈800将反应室501加热至晶体生长的温度。腔室900进气口充入反应气体硅烷和丙烷,反应气体在高温的反应室501中发生反应,在籽晶300的表面生长碳化硅单晶晶锭。
应用例6
本应用例应用实施例6提供的多孔碳化硅陶瓷晶体托生长碳化硅多晶,如图4所示,陶瓷晶体托100的第一表面101与石墨板200相连接,在第二表面102上直接生长碳化硅晶体400。
如图10所示,本应用例采用高温化学气相沉积法(HTCVD)生长碳化硅晶体,利用电阻加热器801加热,腔室900具有一个抽气口和一个进气口。
具体地,晶体杆201和石墨板200连接,石墨板200底部连接陶瓷晶体托100,晶体杆201可旋转和在竖直方向上运动,且穿过腔室900的壁。反应室501材料为石墨,外侧设置有电阻加热器801,并被隔热箱700包围;所述电阻加热器801为石墨加热器,通电的石墨加热器将反应室501加热至晶体生长的温度。腔室900进气口充入反应气体硅烷和丙烷,反应气体在高温的反应室501中发生反应,在陶瓷晶体托100的表面生长碳化硅多晶晶锭。
应用例7
本应用例应用实施例7提供的多孔碳化硅陶瓷晶体托生长碳化硅单晶,具体装置结构及生长方法与应用例1相同,故在此不做赘述。
应用例8
本应用例应用实施例8提供的多孔碳化硅陶瓷晶体托生长碳化硅单晶,具体装置结构及生长方法与应用例1相同,故在此不做赘述。
应用例9
本应用例应用实施例9提供的多孔碳化硅陶瓷晶体托生长碳化硅单晶,具体装置结构及生长方法与应用例1相同,故在此不做赘述。
对比应用例1
本对比应用例应用对比例1提供的多孔碳化硅陶瓷晶体托生长碳化硅单晶,具体装置结构及生长方法与应用例1相同,故在此不做赘述。
对比应用例2
本对比应用例应用对比例2提供的碳化硅陶瓷晶体托生长碳化硅单晶,具体装置结构及生长方法与应用例1相同,故在此不做赘述。
应用例1-9与对比应用例1-2连续生长100块碳化硅晶体,结果显示:应用例1-9所得碳化硅晶体均未出现开裂现象,成品率接近于100%,而对比应用例1-2所得碳化硅晶体中的部分样品出现了开裂现象,且对比应用例1所得碳化硅晶体的成品率为95%,对比应用例2所得碳化硅晶体的成品率仅为90%。
由此可见,本申请通过设计立体镂空结构的碳化硅陶瓷晶体托,并进一步限定陶瓷晶体托内部的孔隙率呈现非均匀分布,使其用于生长碳化硅晶体时,在孔隙率高的区域变形大,在孔隙率低的区域变形小,充分吸收了碳化硅晶体在生长过程中因热失配所产生的应力,从而避免了晶体出现开裂现象,提升了所得碳化硅晶体的成品率。
申请人声明,以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技 术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,均落在本申请的保护范围和公开范围之内。

Claims (10)

  1. 一种多孔碳化硅陶瓷晶体托,其中,所述多孔碳化硅陶瓷晶体托为立体镂空结构,包括相对设置的第一表面和第二表面,且从所述第一表面至第二表面,陶瓷晶体托内部的孔隙率呈现非均匀分布。
  2. 根据权利要求1所述的多孔碳化硅陶瓷晶体托,其中,所述立体镂空结构的结构单元为中空胞元;
    所述中空胞元的形状包括方孔、交叉管、空心球、空心角、交叉柱、四球体、四交叉柱、截角八面体、交点弧角或斜方八面体中的任意一种或至少两种的组合;
    所述中空胞元的外接等效球的直径为0.2-2mm。
  3. 根据权利要求1或2所述的多孔碳化硅陶瓷晶体托,其中,所述多孔碳化硅陶瓷晶体托的形状为圆盘状,且圆盘尺寸为4-8寸;
    所述多孔碳化硅陶瓷晶体托的厚度为3-40mm;
    从所述第一表面至第二表面,陶瓷晶体托内部的孔隙率为40-95%。
  4. 根据权利要求3所述的多孔碳化硅陶瓷晶体托,其中,从所述第一表面至第二表面,陶瓷晶体托内部的孔隙率逐渐减小。
  5. 根据权利要求3所述的多孔碳化硅陶瓷晶体托,其中,从所述第一表面至第二表面,陶瓷晶体托内部的孔隙率逐渐增加。
  6. 根据权利要求3所述的多孔碳化硅陶瓷晶体托,其中,从所述第一表面至第二表面,陶瓷晶体托内部的孔隙率先减小后增加。
  7. 根据权利要求3所述的多孔碳化硅陶瓷晶体托,其中,从所述第一表面至第二表面,陶瓷晶体托内部的孔隙率先增加后减小。
  8. 一种如权利要求1-7任一项所述多孔碳化硅陶瓷晶体托的制备方法,其中,所述制备方法包括以下步骤:
    (1)构建立体镂空结构的三维数字模型,将所得模型分层,得到模型截面;
    (2)基于步骤(1)所得模型截面,通过逐层累加的方式制造坯体,且所述坯体由碳化硅陶瓷粉末和粘结剂组成;
    (3)将步骤(2)所得坯体进行焙烧处理,得到多孔碳化硅陶瓷晶体托。
  9. 根据权利要求8所述的制备方法,其中,步骤(2)所述逐层累加的方式包括以下两种方式中的任意一种:
    (2.1)预先混合碳化硅陶瓷粉末和粘结剂,将所得混料通过喷头挤出,且在喷头挤料的过程中,喷头沿着预设路径运动,形成陶瓷晶体托的其中一个截面,至少2个截面逐层累加,最终形成坯体;
    (2.2)预先铺设碳化硅陶瓷粉末,将粘结剂通过喷头挤出,且在喷头挤料的过程中,喷头沿着预设路径运动,粘结剂粘合碳化硅陶瓷粉末形成陶瓷晶体托的其中一个截面,至少2个截面逐层累加,最终形成坯体;
    其中,所述粘结剂包括羧甲基纤维素钠、阿拉伯树胶、黄原胶、酚醛树脂、明胶、硅溶胶、海藻酸钠、琼脂糖、聚乙烯醇、丙烯酸、糊精、聚碳硅烷、二甲苯、甲苯或环己烷中的任意一种或至少两种的组合;
    步骤(3)所述焙烧处理的温度为1100-2300℃。
  10. 一种如权利要求1-7任一项所述多孔碳化硅陶瓷晶体托的应用,其中,将所述多孔碳化硅陶瓷晶体托用于生长碳化硅晶体,且所述第一表面与石墨板相连接,所述第二表面与籽晶相连接,在籽晶的表面生长碳化硅晶体;或直接在所述多孔碳化硅陶瓷晶体托的第二表面生长碳化硅晶体。
PCT/CN2023/075244 2022-09-21 2023-02-09 一种多孔碳化硅陶瓷晶体托及其制备方法与应用 WO2024060490A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211147113.5 2022-09-21
CN202211147113.5A CN115233301B (zh) 2022-09-21 2022-09-21 一种多孔碳化硅陶瓷晶体托及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2024060490A1 true WO2024060490A1 (zh) 2024-03-28

Family

ID=83681196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075244 WO2024060490A1 (zh) 2022-09-21 2023-02-09 一种多孔碳化硅陶瓷晶体托及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN115233301B (zh)
WO (1) WO2024060490A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115233301B (zh) * 2022-09-21 2022-12-02 青禾晶元(天津)半导体材料有限公司 一种多孔碳化硅陶瓷晶体托及其制备方法与应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269297A (ja) * 2003-03-06 2004-09-30 Toyota Central Res & Dev Lab Inc SiC単結晶及びその製造方法
JP2005247681A (ja) * 2004-02-04 2005-09-15 Matsushita Electric Ind Co Ltd 種結晶の固定方法及びその固定方法を用いた単結晶の製造方法
JP2009120419A (ja) * 2007-11-13 2009-06-04 Denso Corp 炭化珪素単結晶の製造装置
CN101580964A (zh) * 2008-05-12 2009-11-18 中国科学院物理研究所 一种用于生长高质量碳化硅晶体的籽晶托
CN101985773A (zh) * 2009-11-05 2011-03-16 新疆天科合达蓝光半导体有限公司 一种籽晶处理方法和生长碳化硅单晶的方法
JP2012046425A (ja) * 2011-12-02 2012-03-08 Denso Corp 炭化珪素単結晶の製造装置
JP2012116679A (ja) * 2010-11-30 2012-06-21 Fujikura Ltd 種結晶保持体及びこれを用いた単結晶の製造方法
CN104233458A (zh) * 2014-09-30 2014-12-24 中国科学院上海硅酸盐研究所 一种碳化硅晶体生长用的石墨籽晶托
CN108048911A (zh) * 2017-12-20 2018-05-18 中国科学院上海硅酸盐研究所 一种采用物理气相沉积技术生长大尺寸碳化硅晶体的方法
CN110306239A (zh) * 2019-07-16 2019-10-08 中国科学院上海硅酸盐研究所 一种碳化硅材质籽晶托
CN111270311A (zh) * 2020-03-20 2020-06-12 广州南砂晶圆半导体技术有限公司 碳化硅籽晶及降低碳化硅单晶中穿透型位错密度的方法
CN112593289A (zh) * 2021-01-29 2021-04-02 芯璨半导体科技(山东)有限公司 一种改进生长碳化硅单晶质量的装置及方法
CN115233301A (zh) * 2022-09-21 2022-10-25 青禾晶元(天津)半导体材料有限公司 一种多孔碳化硅陶瓷晶体托及其制备方法与应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5883796B2 (ja) * 2010-09-29 2016-03-15 日本碍子株式会社 炭化珪素質セラミックスの製造方法及びハニカム構造体の製造方法
CN106045571B (zh) * 2016-05-31 2018-05-15 中钢集团洛阳耐火材料研究院有限公司 一种梯度多孔碳化硅陶瓷管的制备方法
CN106435732B (zh) * 2016-08-30 2019-08-30 河北同光晶体有限公司 一种快速制备大尺寸SiC单晶晶棒的方法
CN108863392A (zh) * 2018-07-09 2018-11-23 天津大学 一种碳化硅陶瓷的增材制造方法
CN111910246A (zh) * 2019-05-07 2020-11-10 广州南砂晶圆半导体技术有限公司 一种籽晶托及碳化硅单晶生长方法
CN111217609B (zh) * 2019-11-29 2022-02-01 宁波伏尔肯科技股份有限公司 一种3d打印整体式碳化硅隔热屏的制备方法
CN111334855A (zh) * 2020-03-20 2020-06-26 广州南砂晶圆半导体技术有限公司 籽晶托及降低碳化硅单晶中穿透型位错密度的方法
CN114438588B (zh) * 2022-02-15 2023-04-07 合肥世纪金芯半导体有限公司 碳化硅单晶的制备方法与碳化硅支撑系统与单晶生长炉
CN114775058B (zh) * 2022-06-21 2022-11-11 中国电子科技集团公司第四十六研究所 一种氮化铝单晶生长用复合籽晶托的制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269297A (ja) * 2003-03-06 2004-09-30 Toyota Central Res & Dev Lab Inc SiC単結晶及びその製造方法
JP2005247681A (ja) * 2004-02-04 2005-09-15 Matsushita Electric Ind Co Ltd 種結晶の固定方法及びその固定方法を用いた単結晶の製造方法
JP2009120419A (ja) * 2007-11-13 2009-06-04 Denso Corp 炭化珪素単結晶の製造装置
CN101580964A (zh) * 2008-05-12 2009-11-18 中国科学院物理研究所 一种用于生长高质量碳化硅晶体的籽晶托
CN101985773A (zh) * 2009-11-05 2011-03-16 新疆天科合达蓝光半导体有限公司 一种籽晶处理方法和生长碳化硅单晶的方法
JP2012116679A (ja) * 2010-11-30 2012-06-21 Fujikura Ltd 種結晶保持体及びこれを用いた単結晶の製造方法
JP2012046425A (ja) * 2011-12-02 2012-03-08 Denso Corp 炭化珪素単結晶の製造装置
CN104233458A (zh) * 2014-09-30 2014-12-24 中国科学院上海硅酸盐研究所 一种碳化硅晶体生长用的石墨籽晶托
CN108048911A (zh) * 2017-12-20 2018-05-18 中国科学院上海硅酸盐研究所 一种采用物理气相沉积技术生长大尺寸碳化硅晶体的方法
CN110306239A (zh) * 2019-07-16 2019-10-08 中国科学院上海硅酸盐研究所 一种碳化硅材质籽晶托
CN111270311A (zh) * 2020-03-20 2020-06-12 广州南砂晶圆半导体技术有限公司 碳化硅籽晶及降低碳化硅单晶中穿透型位错密度的方法
CN112593289A (zh) * 2021-01-29 2021-04-02 芯璨半导体科技(山东)有限公司 一种改进生长碳化硅单晶质量的装置及方法
CN115233301A (zh) * 2022-09-21 2022-10-25 青禾晶元(天津)半导体材料有限公司 一种多孔碳化硅陶瓷晶体托及其制备方法与应用

Also Published As

Publication number Publication date
CN115233301A (zh) 2022-10-25
CN115233301B (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2024060490A1 (zh) 一种多孔碳化硅陶瓷晶体托及其制备方法与应用
CN109280976B (zh) 一种大尺寸高纯碳化硅单晶、单晶衬底及其制备方法
CN105483825B (zh) 一种溴铅铯单晶制备方法
CN101643933A (zh) Cz法硅单晶生长炉石英坩埚碳素护埚及其制造工艺
CN104451885A (zh) 一种碳化硅晶体生长方法和装置
CN105531405A (zh) 用来生产大块硅碳化物的器具
CN214830783U (zh) 一种生长碳化硅单晶的坩埚结构
CN106894079A (zh) 单晶硅锭生长装置
CN113122923B (zh) 一种高质量碳化硅晶体及其生长方法和装置
CN115074821A (zh) 一种石墨电阻加热生长碳化硅的热场结构及方法
CN110670121B (zh) 局部涂层石英坩埚及其制作方法
CN211079401U (zh) 局部涂层石英坩埚
CN101130859B (zh) 飞机炭刹车盘致密工艺电阻外热式热梯度气相沉炭装置
WO2020000602A1 (zh) 一种半导体合成装置和合成方法
CN106517163B (zh) 一种用于cvd法制备石墨烯的冷壁炉及连续生产方法
JPH0458602B2 (zh)
CN216688415U (zh) 一种改善粉源温场的坩埚结构
CN116988143A (zh) 一种单晶生长装置
CN217173945U (zh) 碳化硅长晶装置
CN109280964B (zh) 一种生长碳化硅单晶的热场结构
CN214572359U (zh) 一种晶体生长装置
CN103949599B (zh) 一种棒状硅材料铸造模具及其铸造方法
US20100320075A1 (en) High-Temperature Ionic State Compound Crystallization Technology
CN113550002A (zh) 一种碳化硅籽晶的固定方法及固定结构
TWI651265B (zh) 形成石墨烯之裝置及其方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23866794

Country of ref document: EP

Kind code of ref document: A1