WO2024048508A1 - ポリアミド樹脂組成物、金属樹脂接合体およびその製造方法、バスバーユニット、駆動ユニットならびに移動体 - Google Patents

ポリアミド樹脂組成物、金属樹脂接合体およびその製造方法、バスバーユニット、駆動ユニットならびに移動体 Download PDF

Info

Publication number
WO2024048508A1
WO2024048508A1 PCT/JP2023/030938 JP2023030938W WO2024048508A1 WO 2024048508 A1 WO2024048508 A1 WO 2024048508A1 JP 2023030938 W JP2023030938 W JP 2023030938W WO 2024048508 A1 WO2024048508 A1 WO 2024048508A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
acid
mass
resin composition
resin
Prior art date
Application number
PCT/JP2023/030938
Other languages
English (en)
French (fr)
Inventor
悠 土井
晶規 天野
功 鷲尾
絢也 島▲崎▼
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Publication of WO2024048508A1 publication Critical patent/WO2024048508A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a polyamide resin composition, a metal-resin bonded body, a method for manufacturing the same, a busbar unit, a drive unit, and a moving body.
  • polyamide resin compositions have been widely used as materials for various parts such as industrial materials, automobiles, electrical/electronic, and industrial products due to their excellent moldability, mechanical properties, and chemical resistance. It is being
  • Patent Document 1 includes a polyamide resin in which Tm ⁇ 290°C, Tm-Tcc ⁇ 28°C, and 0J/g ⁇ Hm ⁇ 55J/g, and 0.1 to 10% by mass of talc. It is stated that the polyamide resin composition bonded well to aluminum.
  • airtightness between the polyamide resin composition and the metal member is required.
  • the above assembly is used as an in-vehicle component such as a bus bar connected to a drive unit, high airtightness is required to prevent oil leakage.
  • it is also required to maintain sufficient airtightness when subjected to repeated temperature changes from low to high temperatures (thermal shock).
  • the present invention provides a polyamide resin composition that is capable of producing a metal-resin bonded body that has high airtightness at the initial stage of bonding and maintains sufficient airtightness even when subjected to repeated thermal shocks.
  • the object of the present invention is to provide a metal-resin bonded body using the polyamide resin composition, a method for manufacturing the same, and a busbar unit, drive unit, and moving body using the polyamide resin composition.
  • One aspect of the present invention relates to the polyamide resin compositions of [1] to [8] below.
  • Polyamide resin (A) is A polyamide resin (A1) having a melting point (Tm) of 280° C.
  • the content of the modified polyolefin resin (B) is 4.70% by mass or more and 20.00% by mass or less based on the total mass of the polyamide resin (A) and the modified polyolefin resin (B).
  • the content of the modified polyolefin resin (B) is 4.70% by mass or more and 12.50% by mass or less based on the total mass of the polyamide resin (A) and the modified polyolefin resin (B).
  • the content of the copper-based heat stabilizer is 0.30% by mass or less based on the total mass of the polyamide resin composition.
  • the polyamide resin (A1) has a component unit (A1a) derived from a dicarboxylic acid and a component unit (A1b) derived from a diamine,
  • the component unit derived from dicarboxylic acid (A1a) includes a component unit derived from terephthalic acid and a component unit derived from isophthalic acid.
  • the polyamide resin composition according to any one of [1] to [3].
  • the polyamide resin (A) is Contains a polyamide resin (A3) whose glass transition temperature (Tg) measured by differential scanning calorimetry (DSC) is 70 ° C. or less, The polyamide resin composition according to any one of [1] to [4].
  • the polyamide resin (A3) has a melting point (Tm) of 200°C or less as measured by differential scanning calorimetry (DSC).
  • the polyamide resin (A1) has a glass transition temperature (Tg) measured by differential scanning calorimetry (DSC) of 75°C or more and 160°C or less
  • the polyamide resin (A2) has a glass transition temperature (Tg) of 75° C. or more and 160° C.
  • the polyamide resin composition according to any one of [1] to [6].
  • the nucleating agent (C) is talc, The content of the nucleating agent (C) is 0.10 to 5.00% by mass based on the total mass of the polyamide resin composition, The polyamide resin composition according to any one of [1] to [7].
  • Metal member a resin member containing a polyamide resin composition bonded to the surface of the metal member; including;
  • the polyamide resin composition is polyamide resin (A); Modified polyolefin resin (B), A nucleating agent (C),
  • the polyamide resin (A) is A polyamide resin (A1) having a melting point (Tm) of 280° C.
  • the content of the modified polyolefin resin (B) is 4.70% by mass or more and 20.00% by mass or less based on the total mass of the polyamide resin (A) and the modified polyolefin resin (B).
  • Metal-resin joint is 4.70% by mass or more and 20.00% by mass or less based on the total mass of the polyamide resin (A) and the modified polyolefin resin (B).
  • the content of the modified polyolefin resin (B) is 4.70% by mass or more and 20.00% by mass or less based on the total mass of the polyamide resin (A) and the modified polyolefin resin (B).
  • a method for producing a metal-resin bonded body [11] The method for producing a metal-resin bonded body according to [10], wherein in the step of preparing the metal member, the surface of the metal member to be bonded to the polyamide resin composition is roughened.
  • a metal bus bar comprising: a holding member disposed in contact with the busbar and holding the busbar,
  • the holding member is made of a polyamide resin (A1) having a melting point (Tm) of 280° C. or higher as measured by differential scanning calorimetry (DSC), and a polyamide resin (A1) having a heat of fusion ( ⁇ H) of 5 J as measured by differential scanning calorimetry (DSC).
  • polyamide resin (A2) a polyamide resin (A) containing a modified polyolefin resin (B), and a nucleating agent (C)
  • Another aspect of the present invention relates to the drive unit described in [13] below.
  • the busbar unit is the busbar unit described in [12], drive unit.
  • Another aspect of the present invention relates to the moving object described in [14] below.
  • the aircraft A moving body having a drive unit,
  • the drive unit is the drive unit described in [13], mobile object.
  • a polyamide resin composition capable of producing a metal-resin bonded body that has high airtightness at the initial stage of bonding and maintains airtightness sufficiently when subjected to repeated thermal shocks, and the polyamide resin. It is possible to provide a metal-resin bonded body using the composition and a method for manufacturing the same, as well as a busbar unit, a drive unit, and a moving body using the polyamide resin composition.
  • FIG. 1 is a schematic diagram showing an exemplary form of a metal-resin assembly as a busbar unit.
  • FIG. 2 is a configuration diagram showing an exemplary configuration of a moving body (vehicle) having a busbar unit.
  • the first embodiment of the present invention relates to a polyamide resin composition for bonding to a metal member.
  • the polyamide resin composition includes a polyamide resin (A), a modified polyolefin resin (B), and a nucleating agent (C).
  • the above polyamide resin composition is suitable as a polyamide resin composition for direct bonding to a metal member having an uneven surface.
  • the above polyamide resin composition is a resin composition in which the main component of the resin component is a polyamide resin (A).
  • Being a main component means that the proportion of the polyamide resin (A) in the resin component is 50.00% by mass or more.
  • the proportion of the polyamide resin (A) in the resin component is preferably 60.00% by mass or more, more preferably 70.00% by mass or more.
  • the upper limit of the proportion of the polyamide resin (A) in the resin component is not particularly limited, but it can be 100.00% by mass or less, may be 90.00% by mass or less, and 80.00% by mass or less. It may be.
  • Polyamide resin (A) is a polyamide resin (A1) having a melting point (Tm) of 280°C or higher as measured by differential scanning calorimetry (DSC), and a heat of fusion ( ⁇ H) measured by differential scanning calorimetry (DSC). 5 J/g or less of polyamide resin (A2).
  • the polyamide resin (A) may further include a polyamide resin (A3) having a glass transition temperature (Tg) of 70° C. or lower as measured by differential scanning calorimetry (DSC).
  • the polyamide resin (A1) is a polyamide resin having a melting point (Tm) of 280° C. or higher as measured by differential scanning calorimetry (DSC).
  • the polyamide resin (A1) may be a polyamide resin containing a component unit (A1a) derived from a dicarboxylic acid and a component unit (A1b) derived from a diamine.
  • the component unit derived from dicarboxylic acid (A1a) contains a component unit derived from aromatic dicarboxylic acid or alicyclic dicarboxylic acid. It is preferable.
  • the polyamide resin (A1) increases the bonding strength of a resin member containing the above polyamide resin composition to a metal member. From the viewpoint of further increasing bonding strength and airtightness, the polyamide resin (A1) is preferably a crystalline polyamide resin.
  • Component unit derived from dicarboxylic acid (A1a) Examples of aromatic dicarboxylic acids include terephthalic acid, naphthalene dicarboxylic acid and esters thereof. Examples of cycloaliphatic dicarboxylic acids include cyclohexanedicarboxylic acid and esters thereof. Among them, from the viewpoint of obtaining a polyamide resin with high crystallinity and high heat resistance, the component unit derived from dicarboxylic acid (A1a) preferably includes a component unit derived from aromatic dicarboxylic acid, and from the viewpoint of obtaining a polyamide resin with high crystallinity and high heat resistance. It is more preferable to include a component unit that does.
  • the content of component units derived from aromatic dicarboxylic acids or alicyclic dicarboxylic acids is not particularly limited, but dicarboxylic acid It is preferably 50 mol% or more and 100 mol% or less based on the total number of moles of the component unit (A1a) derived from the acid.
  • dicarboxylic acid It is preferably 50 mol% or more and 100 mol% or less based on the total number of moles of the component unit (A1a) derived from the acid.
  • the content of the above-mentioned component units is 50 mol% or more, the crystallinity of the polyamide resin can be easily improved. From the same viewpoint, the content of the above component units is more preferably 70 mol% or more and 100 mol% or less.
  • the component unit (A1a) derived from dicarboxylic acid preferably includes a component unit (a1) derived from terephthalic acid, naphthalene dicarboxylic acid, or cyclohexanedicarboxylic acid.
  • component units (a1) can enhance the crystallinity of the polyamide resin (A1) and increase the bonding strength and airtightness of the resin member to the metal member.
  • the content of these component units (a1) should be more than 20 mol% and 100 mol% or less based on the total number of moles of the component units (A1a) derived from dicarboxylic acid. It is preferable to do so.
  • the content of these component units (a1) is 45 mol% or more and 100 mol% or less based on the total number of moles of the component units (A1a) derived from dicarboxylic acid. It is preferably 50 mol% or more and 99 mol% or less, even more preferably 60 mol% or more and 90 mol% or less, even more preferably 60 mol% or more and 85 mol% or less, and 60 mol% or more and 90 mol% or less. It is particularly preferred that the amount is greater than 80 mol%.
  • the component unit (A1a) derived from a dicarboxylic acid is an aromatic carboxylic acid component unit (a2) other than the component unit (a1) or an aliphatic group having 4 or more and 20 or less carbon atoms, to the extent that the effects of the present invention are not impaired. It may also contain a component unit (a3) derived from dicarboxylic acid.
  • component unit (a2) derived from aromatic dicarboxylic acids other than terephthalic acid examples include component units derived from isophthalic acid and 2-methylterephthalic acid. Among these, component units derived from isophthalic acid are preferred.
  • the content of these component units (a2) is determined from the total content of component units (A1a) derived from dicarboxylic acid, from the viewpoint of ensuring crystallinity of the polyamide resin.
  • the component unit (a3) derived from an aliphatic dicarboxylic acid is a component unit derived from an aliphatic dicarboxylic acid having an alkylene group having 4 or more and 20 or less carbon atoms, and having an alkylene group having 6 or more and 12 or less carbon atoms.
  • the component unit is derived from an aliphatic dicarboxylic acid.
  • the aliphatic dicarboxylic acids mentioned above include dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, 3,3-diethylsuccinic acid.
  • the polyamide resin (A1) contains the component units (a3)
  • the content of these component units (a3) is determined from the viewpoint of increasing the crystallinity of the polyamide resin (A1). It is preferably 0 mol% or more and 40 mol% or less, more preferably 0 mol% or more and 20 mol% or less, and even more preferably 1 mol% or more and 10 mol% or less, based on the total number of moles. , it is particularly preferable that the amount is 1 mol % or more and 5 mol % or less.
  • the component unit (A1a) derived from dicarboxylic acid preferably includes a component unit (a1) derived from terephthalic acid and a component unit (a2) derived from isophthalic acid.
  • the component unit (A1a) derived from dicarboxylic acid contains the component unit (a2) derived from isophthalic acid in addition to the component unit (a1) derived from terephthalic acid.
  • the melting point (Tm) of the polyamide resin (A1) can be lowered and the moldability can be improved.
  • the component unit (A1a) derived from dicarboxylic acid includes, in addition to the above-mentioned component unit (a1), component unit (a2), and component unit (a3), a small amount of a tribase such as trimellitic acid or pyromellitic acid. It may further contain a polycarboxylic acid component unit having a polycarboxylic acid content or higher. The content of such polyhydric carboxylic acid component units can be 0 mol % or more and 5 mol % or less with respect to the total number of moles of component units (A1a) derived from dicarboxylic acids.
  • the component unit (A1b) derived from a diamine preferably contains a component unit (b1) derived from a linear alkylene diamine having 4 to 18 carbon atoms, and the component unit (A1b) derived from a diamine has a side chain alkyl group. It may further contain a component unit (b2) derived from an alkylene diamine or a component unit (b3) derived from an alicyclic diamine having 4 to 20 carbon atoms.
  • the component unit (A1b) derived from diamine is the component unit (b1) derived from a linear alkylene diamine having 4 to 18 carbon atoms based on the total number of moles of component units derived from diamine contained in the polyamide resin (A1). ) is preferably 20 mol% or more and 100 mol% or less, more preferably 20 mol% or more and 80 mol% or less. When the content of the above-mentioned component units is 20 mol % or more, the crystallization rate is appropriately increased, and the crystallinity and mechanical strength of the polyamide resin (A1) are easily increased appropriately.
  • the content of the above component units is 100 mol% or less, preferably 80 mol% or less, the crystallization rate of the polyamide resin (A1) does not become too high, so that fluidity during molding is less likely to be impaired.
  • the content of component units derived from linear aliphatic diamine is more preferably 30 mol% or more and 60 mol% or less based on the above total.
  • component unit (b1) derived from a linear alkylene diamine having 4 to 18 carbon atoms examples include 1,4-diaminobutane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8- Contains component units derived from diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, and the like.
  • component units derived from 1,6-diaminohexane, 1,8-diaminooctane, 1,10-diaminodecane and 1,12-diaminododecane are preferred, and component units derived from 1,6-diaminohexane. is more preferable.
  • a plurality of types of these component units may be contained in the polyamide resin (A1).
  • the component unit (A1b) derived from diamine is derived from the component unit (b2) derived from alkylene diamine having 4 to 18 carbon atoms having a side chain alkyl group or alicyclic diamine having 4 to 20 carbon atoms.
  • the component unit (b3) may also be included.
  • the content of the above-mentioned component units is 20 mol% or more, the crystallization rate of the polyamide resin (A1) tends to be moderately slow, so that the fluidity during molding can be easily improved.
  • the content of the above component units is 80 mol% or less, the crystallinity and mechanical strength of the polyamide resin (A1) are less likely to be impaired.
  • the content of component units derived from branched aliphatic diamines is more preferably 40 mol% or more and 70 mol% or less based on the above total.
  • Examples of the component unit (b2) derived from an alkylene diamine having 4 to 18 carbon atoms having a side chain alkyl group include 1-butyl-1,2-diamino-ethane, 1,1-dimethyl-1,4- Diamino-butane, 1-ethyl-1,4-diamino-butane, 1,2-dimethyl-1,4-diamino-butane, 1,3-dimethyl-1,4-diamino-butane, 1,4-dimethyl- 1,4-diamino-butane, 2,3-dimethyl-1,4-diamino-butane, 2-methyl-1,5-diaminopentane, 2,5-dimethyl-1,6-diamino-hexane, 2,4 -dimethyl-1,6-diamino-hexane, 3,3-dimethyl-1,6-diamino-hexane, 2,2-dimethyl-1,
  • component units derived from side chain alkyl diamines having 1 to 2 side chain alkyl groups having 1 to 2 carbon atoms and having 4 to 10 carbon atoms in the main chain are preferred, and 2-methyl More preferred are component units derived from -1,5-diaminopentane.
  • a plurality of types of these component units may be contained in the polyamide resin (A1).
  • Examples of the component unit (b3) derived from an alicyclic diamine having 4 to 20 carbon atoms include 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, 1,3-bis(aminomethyl)cyclohexane, 1 , 4-bis(aminomethyl)cyclohexane, isophoronediamine, piperazine, 2,5-dimethylpiperazine, bis(4-aminocyclohexyl)methane, bis(4-aminocyclohexyl)propane, 4,4'-diamino-3,3 '-dimethyldicyclohexylpropane, 4,4'-diamino-3,3'-dimethyldicyclohexylmethane, 4,4'-diamino-3,3'-dimethyl-5,5'-dimethyldicyclohexylmethane, 4,4'- Diamino-3,3'-
  • the number of carbon atoms in a component unit derived from an alkylene diamine having a side chain alkyl group is based on the number of carbon atoms in the main chain alkylene group and the number of carbon atoms in the side chain alkyl group. It is the total.
  • the polyamide resin (A1) includes a component unit (b1) derived from the above-mentioned linear alkylene diamine having 4 to 18 carbon atoms, and a component unit derived from an alkylene diamine having 4 to 18 carbon atoms having a side chain alkyl group.
  • a small amount of component units derived from other diamines such as a component unit derived from meta-xylylene diamine may be added. May include.
  • the content of such component units derived from other diamines may be 50 mol% or less, preferably 40 mol% or less, based on the total amount of diamine-derived component units (A1b).
  • Polyamide resin (A1) can be used even if at least some of the terminal groups of its molecules are capped with a terminal capping agent, from the viewpoint of increasing thermal stability during compounding and molding, and further increasing mechanical strength. good.
  • the terminal capping agent is preferably a monoamine
  • the terminal end of the molecule is an amino group, it is preferably a monocarboxylic acid.
  • Examples of monoamines include aliphatic monoamines, including methylamine, ethylamine, propylamine, and butylamine, cycloaliphatic monoamines, including cyclohexylamine, dicyclohexylamine, and the like, and aromatic monoamines, including aniline, toluidine, and the like. is included.
  • Examples of monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecylic acid, myristic acid, palmitic acid, stearic acid, oleic acid, and linoleic acid.
  • Aliphatic monocarboxylic acids having 2 to 30 atoms aromatic monocarboxylic acids including benzoic acid, toluic acid, naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid, and phenylacetic acid, and alicyclic monocarboxylic acids including cyclohexanecarboxylic acid, etc. Contains carboxylic acid.
  • the aromatic monocarboxylic acid and the alicyclic monocarboxylic acid may have a substituent in the cyclic structure.
  • the polyamide resin (A1) can have a melting point (Tm) of 280°C or more and 340°C or less.
  • Tm melting point
  • the melting point (Tm) of the polyamide resin (A1) is 280°C or higher, the mechanical strength and heat resistance of the resin composition and molded product in a high temperature range are unlikely to be impaired, and when it is 340°C or lower, the molding temperature can be reduced. Since it is not necessary to increase the temperature excessively, the moldability of the resin composition tends to be good.
  • the melting point (Tm) of the polyamide resin is more preferably 290°C or more and 340°C or less.
  • the polyamide resin (A1) can have a glass transition temperature (Tg) higher than 70°C and lower than 160°C, preferably higher than 75°C and lower than 160°C.
  • Tg glass transition temperature
  • the polyamide resin (A1) can have a glass transition temperature (Tg) higher than 70°C and lower than 160°C, preferably higher than 75°C and lower than 160°C.
  • the polyamide resin (A1) has a heat of fusion ( ⁇ H) of 20 J/g or more.
  • the heat of fusion ( ⁇ H) of the polyamide resin (A1) is 20 J/g or more, the crystallinity increases, so the heat resistance and bonding strength of the resin member tend to increase.
  • the upper limit of the heat of fusion ( ⁇ H) of the polyamide resin (A1) is not particularly limited, but may be 130 J/g from the viewpoint of improving moldability.
  • the heat of fusion ( ⁇ H) of the polyamide resin (A1) is preferably 30 J/g or more and 130 J/g or less, more preferably 30 J/g or more and 100 J/g or less.
  • the heat of fusion ( ⁇ H), melting point (Tm), and glass transition temperature (Tg) of the polyamide resin can be measured using a differential scanning calorimeter (Model DSC220C, manufactured by Seiko Instruments Inc.).
  • crystalline polyamide resin is sealed in an aluminum pan for measurement and heated from room temperature to 350°C at a rate of 10°C/min. Hold at 350°C for 3 minutes to completely melt the resin, then cool to 30°C at 10°C/min. After leaving it at 30°C for 5 minutes, it is heated a second time to 350°C at 10°C/min.
  • the temperature (° C.) of the endothermic peak in this second heating is defined as the melting point (Tm) of the crystalline polyamide resin, and the displacement point corresponding to the glass transition is defined as the glass transition temperature (Tg).
  • Tm melting point
  • Tg glass transition temperature
  • the heat of fusion ( ⁇ H) is determined from the area of the endothermic peak during melting during the first temperature increase process according to JIS K7122 (2012).
  • the melting point (Tm), glass transition temperature (Tg), and heat of fusion ( ⁇ H) of the polyamide resin (A1) are determined by, for example, the composition of the component unit (A1a) derived from the dicarboxylic acid mentioned above, or the component unit (A1b) derived from the diamine. ) The number of carbon atoms per carbon atom can be adjusted. In order to increase the melting point of the polyamide resin (A1), for example, the content ratio of component units derived from terephthalic acid may be increased.
  • the intrinsic viscosity [ ⁇ ] of the polyamide resin (A1) measured in 96.5% sulfuric acid at a temperature of 25° C. is preferably 0.6 dl/g or more and 1.5 dl/g or less.
  • the intrinsic viscosity [ ⁇ ] of the polyamide resin (A1) is 0.6 dl/g or more, it is easy to sufficiently increase the mechanical strength (toughness, etc.) of the molded product, and when it is 1.5 dl/g or less, the resin composition Fluidity during molding of objects is less likely to be impaired.
  • the intrinsic viscosity [ ⁇ ] of the polyamide resin (A1) is more preferably 0.8 dl/g or more and 1.2 dl/g or less.
  • the intrinsic viscosity [ ⁇ ] can be adjusted by adjusting the amount of end-blocking of the polyamide resin (A1).
  • the polyamide resin (A1) can be produced, for example, by polycondensing the above-mentioned dicarboxylic acid and the above-mentioned diamine in a homogeneous solution. Specifically, a lower condensate is obtained by heating a dicarboxylic acid and a diamine in the presence of a catalyst as described in WO 03/085029, and then the lower condensate is heated. It can be produced by applying shear stress to a melt and causing polycondensation.
  • the dicarboxylic acid that is the raw material for the polyamide resin (A1) may be at least partially derived from biomass, and the diamine may be at least partially derived from biomass. That is, the polyamide resin (A1) may be a biomass-derived polyamide resin obtained by polymerizing a raw material group including a biomass-derived raw material.
  • the above-mentioned terminal capping agent may be added to the reaction system.
  • the intrinsic viscosity [ ⁇ ] (or molecular weight) of the polyamide resin (A1) can be adjusted by the amount of the terminal capping agent added.
  • the terminal capping agent is added to the reaction system of dicarboxylic acid and diamine.
  • the amount added is preferably 0.07 mol or less, more preferably 0.05 mol or less, per 1 mol of the total amount of dicarboxylic acids.
  • the content of the polyamide resin (A1) is preferably 25.00% by mass or more and 80.00% by mass or less, and 30.00% by mass or more and 80.00% by mass, based on the total mass of the polyamide resin composition. It is preferably at least 35.00% by mass and at most 80.00% by mass, even more preferably at least 40.00% by mass and at most 80.00% by mass.
  • the higher the content of the polyamide resin (A1) the more the bonding strength of the resin member to the metal member can be increased.
  • the upper limit of the polyamide resin (A1) is set within the above range in order to leave room for further improvement in bonding strength and airtightness by adding other components to retard the crystallization rate. It can be said.
  • Polyamide resin (A2) The polyamide resin (A2) is a polyamide resin whose heat of fusion ( ⁇ H) measured by differential scanning calorimetry (DSC) is 5 J/g or less. Since the polyamide resin (A2) has lower crystallinity than the polyamide resin (A1), it can retard the crystallization rate of the resin composition during molding of the resin member. Thereby, the resin composition constituting the resin member can be sufficiently flowed along the irregularities on the surface of the metal member, and the resin composition can be brought into sufficient contact with the irregularities. Therefore, it is thought that the polyamide resin (A2) can further increase the bonding strength between the metal member and the resin member, and further improve the airtightness.
  • ⁇ H heat of fusion
  • DSC differential scanning calorimetry
  • the melting point (Tm) of the polyamide resin (A2) is not substantially measured in differential scanning calorimetry (DSC). "The melting point (Tm) is not substantially measured” means that the displacement point corresponding to the melting point is not substantially observed in the above-mentioned measurement method.
  • the polyamide resin (A2) can have a glass transition temperature (Tg) higher than 70°C and lower than 160°C, preferably higher than 75°C and lower than 160°C.
  • Tg glass transition temperature
  • the fluidity of the resin composition can be easily maintained without excessively increasing the mold temperature during molding, and molding processability can be improved.
  • the resin composition can be sufficiently impregnated into the unevenness of the surface of the metal member, and the resin composition can be sufficiently adhered to the unevenness.
  • the bonding strength between the metal member and the resin member can be further increased, and the airtightness can be further improved.
  • the heat of fusion ( ⁇ H) of the polyamide resin (A2) is 5 J/g or less, and more preferably 0 J/g.
  • the heat of fusion ( ⁇ H) of the polyamide resin (A2) is 5 J/g or less, the crystallinity is moderately low, so that the crystallization rate of the resin composition during molding of the resin member cannot be more fully retarded. can.
  • the polyamide resin (A2) exhibits amorphous properties.
  • the heat of fusion ( ⁇ H) can be measured by the same method as described above.
  • the polyamide resin (A2) may be a polyamide resin containing a component unit (A2a) derived from a dicarboxylic acid and a component unit (A2b) derived from a diamine.
  • the component unit (A2a) derived from dicarboxylic acid preferably contains at least a component unit derived from isophthalic acid.
  • the component unit derived from isophthalic acid can lower the crystallinity of the polyamide resin (A2).
  • the content of component units derived from isophthalic acid is preferably 40 mol% or more, more preferably 50 mol% or more, based on the total amount of component units (A2a) derived from dicarboxylic acid.
  • the content of component units derived from isophthalic acid is 40 mol% or more, the polyamide resin (A2) tends to be amorphous.
  • the upper limit of the content of component units derived from isophthalic acid is not particularly limited, it can be 100 mol% or less, and preferably 90 mol% or less.
  • the component unit (A2a) derived from a dicarboxylic acid may further contain a component unit derived from a dicarboxylic acid other than the component unit derived from isophthalic acid, to the extent that the effects of the present invention are not impaired.
  • dicarboxylic acids include aromatic dicarboxylic acids other than isophthalic acid, aliphatic dicarboxylic acids, and alicyclic dicarboxylic acids, such as terephthalic acid, 2-methylterephthalic acid, and naphthalene dicarboxylic acid.
  • the aliphatic dicarboxylic acid and alicyclic dicarboxylic acid may be the same as the aliphatic dicarboxylic acid and alicyclic dicarboxylic acid described above, respectively.
  • aromatic dicarboxylic acids other than isophthalic acid are preferred, and terephthalic acid is more preferred.
  • the molar ratio of the component unit derived from isophthalic acid and the component unit derived from an aromatic dicarboxylic acid other than isophthalic acid (preferably terephthalic acid) in the component unit derived from dicarboxylic acid (A2a) is the component derived from isophthalic acid.
  • Unit/component unit derived from an aromatic dicarboxylic acid other than isophthalic acid preferably terephthalic acid
  • isophthalic acid preferably 55/45 to 100/0 (molar ratio), 60/40 to 90/10 (molar ratio)
  • the polyamide resin (A2) tends to become amorphous, which slows down the crystallization rate of the resin composition during molding of resin parts and makes it difficult to form metal parts. It is easier to increase the bonding strength of resin members and improve airtightness.
  • Component unit derived from diamine (A2b) The component unit (A2b) derived from a diamine preferably contains a component unit derived from an aliphatic diamine having 4 to 15 carbon atoms.
  • the aliphatic diamine having 4 to 15 carbon atoms is the same as the aliphatic diamine having 4 to 15 carbon atoms among the aforementioned diamine-derived component units (A1b), and is preferably 1,6-hexanediamine. .
  • the content of component units derived from aliphatic diamines having 4 to 15 carbon atoms is preferably 50 mol% or more, and 60 mol% or more based on the total amount of diamine-derived component units (A2b). It is more preferable that there be.
  • the component unit (A2b) derived from a diamine may further include a component unit derived from a diamine other than the component unit derived from an aliphatic diamine having 4 to 15 carbon atoms, as long as the effects of the present invention are not impaired. good.
  • examples of other diamines include alicyclic diamines and aromatic diamines.
  • the alicyclic diamine and aromatic diamine may be the same as the alicyclic diamine and aromatic diamine described above, respectively.
  • the content of other diamine component units may be 50 mol% or less, preferably 40 mol% or less.
  • polyamide resin (A2) examples include isophthalic acid/terephthalic acid/1,6-hexanediamine/bis(3-methyl-4-aminocyclohexyl)methane polycondensate, isophthalic acid/bis(3-methyl- 4-aminocyclohexyl)methane/ ⁇ -laurolactam polycondensate, isophthalic acid/terephthalic acid/1,6-hexanediamine polycondensate, isophthalic acid/2,2,4-trimethyl-1,6-hexanediamine /2,4,4-trimethyl-1,6-hexanediamine polycondensate, isophthalic acid/terephthalic acid/2,2,4-trimethyl-1,6-hexanediamine/2,4,4-trimethyl-1 , polycondensates of 6-hexanediamine, polycondensates of isophthalic acid/bis(3-methyl-4-aminocyclohexyl)methane/ ⁇ -laurolact
  • the intrinsic viscosity [ ⁇ ] of the polyamide resin (A2) measured in 96.5% sulfuric acid at a temperature of 25° C. is preferably 0.4 dl/g or more and 1.6 dl/g or less, and 0.5 dl/g. It is more preferable that it is 1.2 dl/g or more and 1.2 dl/g or less.
  • the intrinsic viscosity [ ⁇ ] of the polyamide resin (A2) can be measured in the same manner as the intrinsic viscosity [ ⁇ ] of the polyamide resin (A1) described above.
  • the polyamide resin (A2) can be produced in the same manner as the polyamide resin (A1) described above.
  • the content of the polyamide resin (A2) is preferably 5.00% by mass or more, more preferably 10.00% by mass or more, and 15.00% by mass based on the total mass of the polyamide resin composition. % or more is more preferable.
  • the upper limit of the content of the polyamide resin (A2) is not particularly limited, but from the viewpoint of blending a sufficient amount of the polyamide resin (A1) into the resin composition, it can be set to 30.00% by mass or less, and 25. 00% by mass or less.
  • the polyamide resin (A3) is a polyamide resin whose glass transition temperature (Tg) measured by differential scanning calorimetry (DSC) is 70° C. or lower.
  • the polyamide resin (A3) has a glass transition temperature (Tg) lower than that of the polyamide resin (A1). Therefore, when the temperature of the resin composition decreases during molding of a resin member, polyamide resin (A3) is less likely to lose fluidity than polyamide resin (A1), and the fluidity of the entire resin composition decreases. can be suppressed. Thereby, the resin composition constituting the resin member can be sufficiently flowed along the irregularities on the surface of the metal member, and the resin composition can be brought into sufficient contact with the irregularities. Therefore, it is considered that the polyamide resin (A3) can further increase the bonding strength between the metal member and the resin member, and further improve the airtightness.
  • the content of the component unit is preferably 80 mol% or more, more preferably 90 to 100 mol%, based on the total number of moles of the amide bond-containing component units constituting the polyamide resin (A3).
  • the polyamide resin (A3) which is an aliphatic polyamide, may be obtained by polycondensation reaction of dicarboxylic acid and diamine, or may be obtained by polycondensation reaction of aminocarboxylic acid, or may be obtained by polycondensation reaction of dicarboxylic acid and diamine. It may also be one subjected to a ring polymerization reaction. That is, the polyamide resin (A3), which is an aliphatic polyamide, contains an amide bond-containing component unit that includes a component unit (A3a) derived from a dicarboxylic acid and a component unit (A3b) derived from a diamine, and an aminocarboxylic acid component unit. It is composed of at least one of a component unit (A3c) derived from a lactam and a component unit (A3d) derived from a lactam.
  • the component unit (A3a) derived from dicarboxylic acid includes a component unit derived from aliphatic dicarboxylic acid.
  • the aliphatic dicarboxylic acid preferably has 2 to 14 carbon atoms, more preferably 4 to 14 carbon atoms.
  • Examples of aliphatic dicarboxylic acids include oxalic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid and tetradecanedioic acid. Among these, adipic acid, sebacic acid and dodecanedioic acid are preferred.
  • the content of component units derived from aliphatic dicarboxylic acid is preferably 80 mol% or more, and 90 to 100 mol%, based on the total number of moles of the component unit (e1) derived from dicarboxylic acid. is more preferable.
  • the component unit (A3b) derived from diamine includes a component unit derived from aliphatic diamine.
  • the aliphatic diamine the same aliphatic diamine constituting the aforementioned semi-aromatic polyamide (A1) can be used.
  • the content of component units derived from aliphatic diamine is preferably 80 mol% or more, more preferably 90 to 100 mol%, based on the total number of moles of component units (A3b) derived from diamine. .
  • the aminocarboxylic acid may be an aminocarboxylic acid having 6 to 12 carbon atoms, preferably 6 to 10 carbon atoms.
  • Examples of such aminocarboxylic acids include 6-aminocaproic acid, 7-aminoheptanoic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid.
  • the lactam may be a lactam having 6 to 12 carbon atoms, preferably 6 to 10 carbon atoms.
  • lactams include ⁇ -pyrrolidone, ⁇ -caprolactam, undecanelactam, ⁇ -laurolactam.
  • polyamide resins (A3) that are aliphatic polyamides include polyamide 6, polyamide 66, polyamide 610, polyamide 12, and the like.
  • the melting point (Tm) of the polyamide resin (A3) measured by differential scanning calorimetry (DSC) is preferably 270°C or less, more preferably 100°C or more and 250°C or less, and 120°C or more and 220°C It is more preferable that it is the following.
  • the melting point (Tm) of the polyamide resin (A1) can be measured in the same manner as the melting point (Tm) of the polyamide resin (A1) described above.
  • the polyamide resin (A3) can be produced by a known method.
  • the content of the polyamide resin (A3) is preferably 1.00% by mass or more and 10.00% by mass or less based on the total mass of the polyamide resin composition. If the amount of polyamide resin (A3) is large, if it is above a certain amount, the bonding strength between the metal member and the resin member can be further increased, and the airtightness can be further improved both initially and when subjected to repeated thermal shocks. . When the amount of aliphatic polyamide (D) is below a certain amount, resin strength can be easily increased, and joint strength and airtightness can be improved. From the above viewpoint, the content of the polyamide resin (A3) is more preferably 1.00% by mass or more and 8.00% by mass or less, and preferably 3.00% by mass or more and 5.50% by mass or less. More preferred.
  • Modified polyolefin resin (B) The polyamide resin composition contains a modified polyolefin resin (B) in addition to the polyamide resin (A).
  • the modified polyolefin resin (B) lowers the elastic modulus of the polyamide resin composition and imparts flexibility to the resin member.
  • the modified polyolefin resin (B) makes the resin member flexible, so that the resin member expands and contracts when subjected to repeated thermal shocks, and due to stress caused by the difference in linear expansion coefficient between the resin member and the metal member. Cracks and peeling are less likely to occur. It is thought that this allows the modified polyolefin resin (B) to better maintain airtightness when subjected to repeated thermal shocks.
  • the modified polyolefin resin (B) can reduce the crystallization rate of the resin composition during molding of the resin member, thereby delaying crystallization.
  • the resin composition constituting the resin member can be sufficiently flowed along the irregularities on the surface of the metal member, and the resin composition can be brought into sufficient contact with the irregularities. Therefore, it is thought that the modified polyolefin resin (B) can further increase the bonding strength between the metal member and the resin member and further improve the airtightness.
  • the modified polyolefin resin (B) is an olefin polymer having a polyolefin unit and a functional group structural unit.
  • the functional group that the functional group structural unit has include a functional group containing a hetero atom, an aromatic hydrocarbon group, and the like.
  • the modified polyolefin resin (B) is a modified olefin polymer having a polyolefin unit and a structural unit containing a functional group containing a hetero atom (functional group structural unit).
  • the heteroatom is preferably oxygen.
  • functional groups containing heteroatoms include ester groups, ether groups, carboxylic acid groups (including carboxylic anhydride groups), aldehyde groups, and ketone groups.
  • the modified polyolefin resin (B) preferably contains 0.1 to 5.0% by mass of functional group structural units based on 100% by mass of the modified polyolefin resin (B).
  • the content of functional group structural units contained in the modified polyolefin resin (B) is preferably 0.2 to 3.0% by mass, preferably 0.2 to 2.0% by mass.
  • the content of functional group structural units contained in the modified polyolefin resin (B) is determined by the charging ratio when reacting the olefin polymer and the functional group-containing organic compound in the presence of a radical initiator, 13 C NMR measurement, etc. It is identified by known means such as 1 H NMR measurement. As specific NMR measurement conditions, the following conditions can be exemplified.
  • 13C NMR measurements were performed using an ECP500 nuclear magnetic resonance apparatus manufactured by JEOL Ltd., using an orthodichlorobenzene/heavybenzene (80/20% by volume) mixed solvent as the solvent, a measurement temperature of 120°C, and an observation nucleus. This can be carried out under the conditions of 13 C (125 MHz), single pulse proton decoupling, 45° pulse, repetition time of 5.5 seconds, number of integrations of 10,000 or more, and 27.50 ppm as the reference value for chemical shift. Assignment of various signals is performed based on conventional methods, and quantification can be performed based on the integrated value of signal intensity.
  • the skeleton of the modified polyolefin resin (B) preferably has a structure derived from polyolefin, such as ethylene polymers, propylene polymers, butene polymers, and copolymers of these olefins.
  • polyolefin such as ethylene polymers, propylene polymers, butene polymers, and copolymers of these olefins.
  • it is a known olefin polymer.
  • the skeleton portion of the olefin polymer is more preferably a copolymer of ethylene and an ⁇ -olefin having 3 or more carbon atoms (hereinafter also simply referred to as “ethylene/ ⁇ -olefin copolymer”).
  • the olefin polymer may be a biomass-derived olefin polymer containing at least a portion of a biomass-derived raw material.
  • Examples of the ⁇ -olefin having 3 or more carbon atoms include propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, and 1-decene.
  • Specific examples of the above ethylene/ ⁇ -olefin copolymers include ethylene/propylene copolymer, ethylene/1-butene copolymer, ethylene/1-hexene copolymer, ethylene/1-octene copolymer, ethylene ⁇ Contains 4-methyl-1-pentene copolymer, etc.
  • ethylene/propylene copolymer ethylene/1-butene copolymer, ethylene/4-methyl-1-pentene copolymer, ethylene/1-hexene copolymer, and ethylene/1-octene copolymer Combination is preferred.
  • the above ethylene/ ⁇ -olefin copolymer contains 70 to 99.5 mol% of structural units derived from ethylene, when the total number of moles of structural units contained in the ethylene/ ⁇ -olefin copolymer is 100 mol%. It is preferably contained in an amount of 80 to 99 mol%, more preferably in an amount of 80 to 99 mol%.
  • the above ethylene/ ⁇ -olefin copolymer contains 0.5 to 0.5 to 0.5 to 100% of the structural units derived from ⁇ -olefin, when the total number of moles of structural units contained in the ethylene/ ⁇ -olefin copolymer is 100 mol%. It is preferably contained in an amount of 30 mol%, more preferably 1 to 25 mol%.
  • the above ethylene/ ⁇ -olefin copolymer preferably has a melt flow rate (MFR) of 0.01 to 20 g/10 min, preferably 0.05 to 20 g/10 min at 190°C and 2.16 kg load according to ASTM D1238. It is more preferably 10 minutes, and even more preferably 0.1 to 10 g/10 minutes.
  • MFR melt flow rate
  • the modified polyolefin resin (B) can be obtained, for example, by reacting an olefin polymer as described above and a compound having the above functional group in a specific ratio.
  • Preferred examples of the functional group-containing compound to be reacted with the olefin polymer include unsaturated carboxylic acids or derivatives thereof.
  • Specific examples of the above functional group-containing compounds include acrylic acid, methacrylic acid, ⁇ -ethyl acrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid, endocis-bicyclo[2, 2,1]
  • Unsaturated carboxylic acids such as hept-5-ene-2,3-dicarboxylic acid (Nadic acid [trademark]), and derivatives of these acids such as halides, amides, imides, acid anhydrides, and esters. included.
  • unsaturated dicarboxylic acids or their acid anhydrides are preferred, and maleic acid, Nadic acid (trademark), or their acid anhydrides are particularly preferred.
  • the functional group-containing compound is preferably maleic anhydride.
  • Maleic anhydride has a relatively high reactivity with the above-mentioned olefin polymer, and tends to be stable as a basic structure without undergoing major structural changes due to polymerization or the like. Therefore, there are various advantages such as being able to obtain modified polyolefin resin (B) of stable quality.
  • An example of a method for obtaining a modified polyolefin resin (B) using an ethylene/ ⁇ -olefin copolymer includes so-called grafting of the ethylene/ ⁇ -olefin copolymer with a functional group-containing compound corresponding to the functional group structural unit. Includes methods of denaturing.
  • the density of the modified polyolefin resin (B) is preferably 0.800 to 0.965 g/cm 3 , more preferably 0.820 to 0.950 g/cm 3 , and 0.850 to 0.920 g /cm 3 is more preferable.
  • the intrinsic viscosity [ ⁇ ] of the modified polyolefin resin (B) measured in a decalin (decahydronaphthalene) solution at 135°C is preferably 1.0 to 4.5 dl/g, and preferably 1.2 to 3 dl/g. It is preferable that it is g. If [ ⁇ ] is within the above range, the resin composition can achieve both high levels of mechanical strength and injection fluidity.
  • the [ ⁇ ] of the modified polyolefin resin (B) in decalin at 135°C is measured as follows based on a conventional method. 20 mg of the sample is dissolved in 15 ml of decalin, and the specific viscosity ( ⁇ sp) is measured in an atmosphere of 135° C. using an Ubbelohde viscometer. After further diluting the decalin solution by adding 5 ml of decalin, the specific viscosity is measured in the same manner. Based on the measurement results obtained by repeating this dilution operation and viscosity measurement twice more, the " ⁇ sp/C" value when the concentration (C) is extrapolated to zero is defined as the limiting viscosity [ ⁇ ].
  • the melt flow rate (MFR, according to JIS K7210, temperature 190°C, load 21.2N) of the modified polyolefin resin (B) is preferably 0.01 to 20 g/10 minutes, and 0.05 to 20 g/10 minutes. It is more preferably 10 minutes, and even more preferably 0.1 to 10 g/10 minutes. If the MFR is less than 0.01 g/10 minutes, the fluidity is poor, and if it exceeds 20 g/10 minutes, the impact strength may be low depending on the shape of the molded product.
  • the content of the modified polyolefin resin (B) is 4.70% by mass or more and 20.00% by mass or less based on the total mass of the polyamide resin (A) and the modified polyolefin resin (B).
  • the content is 4.70% by mass or more, the airtightness of the metal-resin bonded body at the initial stage and when repeatedly subjected to thermal shock can be improved.
  • the content is 20.00% by mass or less, a sufficient amount of the polyamide resin (A) can be blended into the resin composition, and the various properties of the polyamide resin can be fully exhibited.
  • the content of the modified polyolefin resin (B) is preferably 4.70% by mass or more and 12.50% by mass or less, more preferably 4.70% by mass or more and 8.00% by mass or less. preferable.
  • the molding processability of the resin composition can be improved, and a molded article having excellent mechanical properties such as tensile strength can be formed.
  • the polyamide resin composition contains a nucleating agent (C) in addition to the polyamide resin (A) and the modified polyolefin resin (B).
  • the nucleating agent (C) can promote crystallization of the polyamide resin (A).
  • the nucleating agent (C) enhances the crystallinity of the resin member by promoting the crystallization of the polyamide resin (A) in the resin composition impregnated into the recesses on the surface of the metal member during the molding process of the resin member. Can be done. Thereby, the bonding strength between the metal member and the resin member can be increased.
  • the polyamide resin composition contains the nucleating agent (C) in addition to the polyamide resin (A), as described above, the crystallinity of the resin member obtained by molding the polyamide resin composition increases. As the crystallinity of the resin member increases, the elongation of the resin member tends to decrease. By the way, when a temperature change is applied to a metal-resin bonded body in which a metal member and a resin member are joined, the difference in thermal expansion coefficient (linear expansion coefficient) between the metal member and the resin member causes the difference between the metal member and the resin member.
  • the polyamide resin composition contains only the nucleating agent (C) in addition to the polyamide resin (A), the bonding strength of the metal-resin bonded body is improved, but on the other hand, when subjected to repeated thermal shocks, There was a possibility that the airtightness of the
  • the polyamide resin composition of this embodiment contains a modified polyolefin resin (B) in addition to the polyamide resin (A) and the nucleating agent (C).
  • the modified polyolefin resin (B) lowers the elastic modulus of the polyamide resin composition and imparts flexibility to the resin member. It is thought that by making the resin member flexible, it is possible to better maintain airtightness when subjected to repeated thermal shocks. Therefore, by containing the nucleating agent (C) and the modified polyolefin resin (B), the polyamide resin composition of the present embodiment can achieve both high bonding strength and maintenance of airtightness when subjected to repeated thermal shocks. ,it is conceivable that.
  • the polyamide resin composition contains a modified polyolefin resin (B) in addition to the polyamide resin (A), as mentioned above, the crystallization rate of the polyamide resin composition decreases, and the resin member after molding has flexibility. will be granted.
  • Increasing the content of the modified polyolefin resin (B) further increases the flexibility of the resin member after molding, and as a result, it is possible to maintain airtightness even better when subjected to repeated thermal shocks. become.
  • the crystallization rate of the polyamide resin composition is also accelerated, the crystallinity of the resin member after molding is reduced, and the bonding strength between the metal member and the resin member is reduced.
  • the polyamide resin composition of this embodiment contains a nucleating agent (C) in addition to the polyamide resin (A) and the modified polyolefin resin (B).
  • C nucleating agent
  • the present inventors have discovered that the above trade-off relationship can be overcome by adding the nucleating agent (C). That is, by adding the nucleating agent (C), a polyamide resin composition containing a predetermined amount or more of the modified polyolefin resin (B) can be bonded to a metal member and a resin member while maintaining high airtightness when subjected to repeated thermal shocks. The strength of the bond can be increased.
  • nucleating agents examples include metal salts including sodium 2,2-methylenebis(4,6-di-t-butylphenyl) phosphate, aluminum tris(pt-butylbenzoate), and stearate.
  • Sorbitol-based compounds including bis(p-methylbenzylidene) sorbitol, bis(4-ethylbenzylidene) sorbitol, and the like, and inorganic substances including talc, calcium carbonate, hydrotalcite, and the like. Among these, talc is preferred from the viewpoint of further increasing the degree of crystallinity of the molded body.
  • These nucleating agents may be used alone or in combination of two or more.
  • Talc is generally hydrated magnesium silicate (SiO 2 : 58-64%, MgO: 28-32%, Al 2 O 3 : 0.5-5%, Fe 2 O 3 : 0.3-5%). ) is the main component.
  • the average particle size of talc is not particularly limited, but is preferably 1 to 15 ⁇ m. When the average particle diameter of talc is within the above range, talc can be easily dispersed in the polyamide resin (A) without impairing the fluidity of the polyamide resin composition. From the same viewpoint, the average particle diameter of talc is more preferably 1 to 7.5 ⁇ m.
  • the average particle diameter of talc can be measured by a laser diffraction method, for example, using a Shimadzu particle size distribution meter SALD-2000A manufactured by Shimadzu Corporation.
  • the content of the nucleating agent is preferably 0.10 parts by mass or more and 5.00 parts by mass or less, and 0.10 parts by mass or more and 3.00 parts by mass or less, based on the total mass of the polyamide resin composition. It is more preferable.
  • the content of the nucleating agent is within the above range, it is easy to sufficiently increase the degree of crystallinity of the molded article, and it is easy to obtain sufficient mechanical strength.
  • the polyamide resin composition may contain other known components.
  • ingredients examples include lubricants, colorants, reinforcing agents, heat stabilizers, corrosion resistance enhancers, anti-drip agents, ion scavengers, elastomers (rubbers), antistatic agents, mold release agents, and antioxidants.
  • the polyamide resin composition constituting the resin member further contains a reinforcing material from the viewpoint of increasing the mechanical strength of the molded article.
  • the lubricant improves the injection fluidity of the polyamide resin composition and improves the appearance of the resulting molded product.
  • the lubricant can be a fatty acid metal salt, such as an oxycarboxylic acid metal salt and a higher fatty acid metal salt.
  • the oxycarboxylic acid constituting the oxycarboxylic acid metal salt may be an aliphatic oxycarboxylic acid or an aromatic oxycarboxylic acid.
  • the aliphatic oxycarboxylic acids include ⁇ -hydroxymyristic acid, ⁇ -hydroxypalmitic acid, ⁇ -hydroxystearic acid, ⁇ -hydroxyeicosanoic acid, ⁇ -hydroxydocosanoic acid, ⁇ -hydroxytetraeicosanoic acid.
  • ⁇ -hydroxyhexaeicosanoic acid ⁇ -hydroxyoctaeicosanoic acid, ⁇ -hydroxytriacontanoic acid, ⁇ -hydroxymyristic acid
  • 10-hydroxydecanoic acid 15-hydroxypentadecanoic acid
  • 16-hydroxyhexadecanoic acid 12- Included are aliphatic oxycarboxylic acids having 10 to 30 carbon atoms, such as hydroxystearic acid and ricinoleic acid.
  • aromatic oxycarboxylic acids include salicylic acid, m-oxybenzoic acid, p-oxybenzoic acid, gallic acid, mandelic acid, and trobic acid.
  • metals constituting the oxycarboxylic acid metal salt include alkali metals such as lithium, and alkaline earth metals such as magnesium, calcium, and barium.
  • the oxycarboxylic acid metal salt is preferably a metal salt of 12-hydroxystearic acid, and magnesium 12-hydroxystearate and calcium 12-hydroxystearate are more preferable.
  • Examples of the higher fatty acids constituting the higher fatty acid metal salt include higher fatty acids having 15 to 30 carbon atoms such as stearic acid, oleic acid, behenic acid, behenic acid, and montanic acid.
  • metals constituting the higher fatty acid metal salt include calcium, magnesium, barium, lithium, aluminum, zinc, sodium, and potassium.
  • the higher fatty acid metal salt is preferably calcium stearate, magnesium stearate, barium stearate, calcium behenate, sodium montanate, calcium montanate, or the like.
  • the content of the lubricant is preferably 0.01% by mass or more and 1.30% by mass or less based on the total mass of the polyamide resin composition.
  • the content of the lubricant is 0.01% by mass or more, fluidity during molding tends to increase, and the appearance of the obtained molded product tends to improve.
  • the content of the lubricant is 1.30% by mass or less, gas due to decomposition of the lubricant is less likely to be generated during molding, and the appearance of the product tends to be good.
  • the colorant imparts a desired color tone to the molded article.
  • the colorant can be, but is not limited to, a pigment.
  • pigments include inorganic pigments such as carbon black, alumina, titanium oxide, chromium oxide, iron oxide, zinc oxide, and barium sulfate, as well as azo pigments, phthalocyanine pigments, quinacridone pigments, perylene pigments, and anthraquinone pigments. , thioindigo pigments, and indanthrene pigments.
  • the content of the colorant is preferably 0.01% by mass or more and 5.00% by mass or less, and 0.10% by mass or more and 2.00% by mass or less, based on the total mass of the polyamide resin composition. It is more preferable.
  • Reinforcing materials can provide high mechanical strength to the polyamide resin composition.
  • the reinforcing material may be an inorganic filler.
  • reinforcements include fibrous reinforcements such as glass fibers, wollastonite, potassium titanate whiskers, calcium carbonate whiskers, aluminum borate whiskers, magnesium sulfate whiskers, zinc oxide whiskers, milled and cut fibers, and granular reinforcements. Contains reinforcing materials. Among these, one type may be used alone or two or more types may be used in combination. Among these, wollastonite, glass fiber, and potassium titanate whiskers are preferable, and wollastonite or glass fiber is more preferable, since they can easily increase the mechanical strength of the molded article.
  • the average fiber length of the fibrous reinforcing material may be, for example, 1 ⁇ m or more and 20 mm or less, preferably 5 ⁇ m or more and 10 mm or less, from the viewpoint of the moldability of the polyamide resin composition and the mechanical strength and heat resistance of the resulting molded product.
  • the aspect ratio of the fibrous reinforcing material may be, for example, 5 or more and 2000 or less, preferably 30 or more and 600 or less.
  • the average fiber length and average fiber diameter of the fibrous reinforcement can be measured by the following method. 1) A polyamide resin composition is dissolved in a hexafluoroisopropanol/chloroform solution (0.1/0.9% by volume), and then filtered to collect the resulting filtrate. 2) Disperse the filtrate obtained in 1) above in water, and measure the fiber length (Li) and fiber diameter (di) of each of 300 arbitrary fibers using an optical microscope (magnification: 50x). The number of fibers having a fiber length of Li is set as qi, and the weight average length (Lw) is calculated based on the following formula, and this is taken as the average fiber length of the fibrous reinforcing material.
  • the content of the reinforcing material is not particularly limited, but can be, for example, 15% by mass or more and 70% by mass or less based on the total mass of the polyamide resin composition.
  • the addition of the reinforcing material is necessary.
  • the content is preferably 15% by mass or more and 50% by mass or less based on the total mass of the polyamide resin composition.
  • Heat-resistant stabilizer A heat-resistant stabilizer can improve the fluidity of a polyamide resin composition during molding of a resin member. Thereby, the polyamide resin composition constituting the resin member can be sufficiently flowed along the irregularities on the surface of the metal member, and the polyamide resin composition can be sufficiently adhered to the irregularities. Therefore, it is thought that the heat-resistant stabilizer can further increase the bonding strength between the metal member and the resin member and further improve the airtightness.
  • the heat-resistant stabilizer contains (i) a salt of a halogen and a group 1 or group 2 metal element of the periodic table of elements (halogen metal salt), (ii) a copper compound, and optionally (iii) a higher fatty acid. It may further include a metal salt.
  • halogen metal salts include potassium iodide, potassium bromide, potassium chloride, sodium iodide, and sodium chloride. Among these, potassium iodide and potassium bromide are preferred. Only one type of halogen metal salt may be included, or two or more types may be included.
  • Examples of copper compounds include copper halides, copper salts (sulfates, acetates, propionates, benzoates, adipates, terephthalates, salicylates, nicotinates and stearates).
  • copper chelate compounds compounds of copper and ethylenediamine or ethylenediaminetetraacetic acid, etc..
  • copper iodide, cuprous bromide, cupric bromide, cuprous chloride, and copper acetate are preferred. Only one type of copper compound may be included, or two or more types may be included.
  • the content mass ratio of (i) halogen metal salt and (ii) copper compound is such that the molar ratio of halogen to copper is 0.1 from the viewpoint of easily improving the heat resistance of the molded product and the corrosion resistance during manufacturing.
  • /1 to 200/1 preferably 0.5/1 to 100/1, more preferably 2/1 to 40/1.
  • Examples of higher fatty acid metal salts include higher saturated fatty acid metal salts and higher unsaturated fatty acid metal salts.
  • the higher saturated fatty acid metal salt may be a metal salt of a saturated fatty acid having 6 to 22 carbon atoms and a metal element (M1) such as a group 1, 2 or 3 element of the periodic table of elements, zinc, or aluminum. preferable.
  • a higher saturated fatty acid metal salt is represented by the following formula (1). CH 3 (CH 2 ) n COO (M1). .. .. (1)
  • the metal element (M1) is an element of Groups 1, 2, or 3 of the Periodic Table of Elements, zinc, or aluminum, and n may be 8 to 30.
  • higher saturated fatty acid metal salts include capric acid, uradecylic acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, and serotinic acid.
  • capric acid uradecylic acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, and serotinic acid.
  • Higher unsaturated fatty acid metal salts are metal salts of unsaturated fatty acids having 6 to 22 carbon atoms and metal elements (M1) such as Groups 1, 2, and 3 elements of the Periodic Table of Elements, zinc, and aluminum. It is preferable.
  • higher unsaturated fatty acid metal salts include undecylenic acid, oleic acid, elaidic acid, cetoleic acid, erucic acid, brassic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid, stearolic acid, 2-hexadecenoic acid, Included are lithium, sodium, magnesium, calcium, zinc, and aluminum salts of 7-hexadecenoic acid, 9-hexadenoic acid, gadoleic acid, gadoelaidic acid, and 11-eicosenoic acid.
  • copper-based heat stabilizers include a mixture of 10% by mass copper(I) iodide and 90% by mass potassium iodide, and a mixture of 14.3% by mass copper(I) iodide and 85.7% by mass. % potassium iodide/calcium distearate (98:2 mass ratio).
  • copper-based heat stabilizers may generate gas when subjected to repeated thermal shocks, which may reduce the airtightness maintenance rate.
  • the content of the copper-based heat-resistant stabilizer should be 0.30% by mass or less based on the total mass of the polyamide resin composition.
  • the content is preferably 0.10% by mass or less, more preferably less than 0.01% by mass.
  • the polyamide resin composition can be prepared by mixing the above-mentioned polyamide resin and other components as necessary by a known resin kneading method, such as a Henschel mixer, a V blender, a ribbon blender, or a tumbler blender, or by mixing the polyamide resin and other components as necessary, or by mixing the polyamide resin and other components as necessary. Furthermore, it can be produced by melt-kneading in a single-screw extruder, multi-screw extruder, kneader, or Banbury mixer, followed by granulation or pulverization.
  • a known resin kneading method such as a Henschel mixer, a V blender, a ribbon blender, or a tumbler blender
  • a known resin kneading method such as a Henschel mixer, a V blender, a ribbon blender, or a tumbler blender
  • it can be produced by melt-kneading in a single-screw
  • a second embodiment of the present invention relates to a metal-resin bonded body in which a resin member containing the above-mentioned polyamide resin composition is bonded to the surface of a metal member.
  • Resin member contains the polyamide resin composition described above.
  • the proportion of the polyamide resin composition in the total mass of the resin member is preferably 50.00% by mass or more, more preferably 60.00% by mass or more, and 70.00% by mass or more. It is even more preferable.
  • the upper limit of the proportion of the polyamide resin composition in the total mass of the resin member is not particularly limited, but may be 100.00% by mass or less, may be 90.00% by mass or less, and may be 80.00% by mass or less. It may be less than % by mass.
  • Metal Member The material and shape of the metal member are not particularly limited as long as they are made of metal.
  • metal parts may be made of iron, copper, nickel, gold, silver, platinum, cobalt, zinc, lead, tin, titanium, chromium, aluminum, magnesium, and manganese, or alloys such as stainless steel, brass, and phosphor bronze. It can be done.
  • metal-resin bonded body materials can be selected depending on the use of the metal-resin bonded body. For example, when thermal conductivity is required, aluminum, aluminum alloys, magnesium, magnesium alloys, copper and copper alloys are preferred, and copper and copper alloys are more preferred. Furthermore, when weight reduction and strength are required, aluminum, aluminum alloy, magnesium, and magnesium alloy are preferable.
  • the surface of the metal member is preferably roughened.
  • the method of surface roughening treatment is not particularly limited, and the surface may be roughened by chemical treatment such as immersion in a treatment solution containing a base or acid or etching, or physical treatment such as laser or blasting. Bye.
  • the center-to-center distance (pitch) of the plurality of convex portions formed by the roughening treatment is 5 nm or more and 500 ⁇ m or less.
  • the distance between the centers of the plurality of convex portions is 5 nm or more, the concave portions between the convex portions are appropriately large, so that the resin member can easily penetrate into the concave portions during bonding, and the bonding between the metal member and the resin member is facilitated. Strength can be further improved.
  • the distance between the centers of the plurality of convex portions is 500 ⁇ m or less, the concave portions will not become too large, thereby further suppressing the formation of gaps at the metal-resin interface of the metal-resin bonded body, and further improving airtightness. be able to.
  • the distance between the centers of the plurality of convex portions is more preferably 5 ⁇ m or more and 250 ⁇ m or less.
  • the distance between the centers of the plurality of convex portions is the average value of the distances between the center of one convex portion and the center of adjacent convex portions.
  • the distance between the centers of multiple convex parts can be determined by removing the resin member from the metal-resin bonded body by mechanical peeling, solvent cleaning, etc., and observing the exposed surface of the metal member with an electron microscope or laser microscope, or using a surface roughness measuring device. It can be observed and measured using
  • the distance between the centers of multiple convex parts is less than 0.5 ⁇ m, it is possible to observe with an electron microscope, and when the distance between the centers of multiple convex parts is 0.5 ⁇ m or more can be observed using a laser microscope or a surface roughness measuring device.
  • a laser microscope or a surface roughness measuring device For example, in a photograph taken of the surface of a metal member using an electron microscope or a laser microscope, 50 arbitrary convex portions are selected and the distance between the centers of these convex portions is measured. Then, after integrating all the measured values of the distances between the centers of the convex portions, the value divided by 50 (the average value) is defined as the “distance between the centers of the plurality of convex portions”.
  • the average value of the ten-point average roughness (Rz) of the roughened surface of the metal member at an evaluation length of 4 mm is not particularly limited, but preferably exceeds 2 ⁇ m, and is greater than 2 ⁇ m and 50 ⁇ m or less. is more preferable, and even more preferably larger than 2.5 ⁇ m and not more than 45 ⁇ m.
  • the average value of ten-point average roughness (Rz) can be measured in accordance with JIS B0601 (ISO 4287). Specifically, the ten-point average roughness (Rz) on a total of six straight sections, including three straight sections that are parallel to each other and three straight sections that are perpendicular to these straight sections, is measured, and the average value of these is measured. Let be the average value of Rz.
  • the average length (RSm) of the roughness curve elements of the roughened surface of the metal member is preferably 0.5 ⁇ m or more and 500 ⁇ m or less.
  • the distance between the centers of the plurality of convex portions should be less than 0.5 ⁇ m, and the average length (RSm) of the roughness curve element should be 0.5 ⁇ m or more and 500 ⁇ m or less. is preferred.
  • the average length of the roughness curve elements can also be measured according to JIS B0601 (ISO 4287) as described above.
  • the second embodiment of the present invention relates to a method for manufacturing the metal-resin composite structure described above.
  • the method for manufacturing the metal-resin composite structure is not particularly limited, but includes, for example, (1) preparing a metal member; (2) bringing a molten polyamide resin composition into contact with the surface of the metal member; (3) Cooling the polyamide resin composition brought into contact.
  • the step (1) of preparing a metal member may include a step of roughening the surface of the metal member.
  • the metal member described above is prepared. At this time, at least a portion of the surface of the metal member may be roughened, or a metal member having an uneven structure on at least a portion of the surface may be prepared.
  • the method of roughening the surface of the metal member is not particularly limited.
  • a method using laser processing a method of immersing the metal member in an aqueous solution of an inorganic base such as NaOH or an aqueous solution of an inorganic acid such as HCl or HNO3 , a method of treating the metal member by an anodizing method, a method using an acid-based etching agent (preferably , a substitution crystallization method in which etching is performed using an inorganic acid, ferric ion, cupric ion, and if necessary an acid-based etchant aqueous solution containing manganese ion, aluminum chloride hexahydrate, sodium chloride, etc.), hydrated hydrazine , a method of immersing the metal member in an aqueous solution such as ammonia and a water-soluble amine compound, a hot water treatment method, and the like can be used.
  • the softened or melted polyamide resin composition is brought into contact with the surface (preferably the roughened surface) of the prepared metal member.
  • the method of contact is not particularly limited, and may be performed by a known method such as injection molding (insert molding).
  • injection molding insert molding
  • the metal member prepared above is placed in a cavity (space) in an injection mold.
  • the polyamide resin composition is injected into the cavity of the mold so that at least a portion of the polyamide resin composition comes into contact with the roughened surface of the metal member.
  • the injected molten polyamide resin composition comes into contact with the surface of the metal member.
  • the temperature of the injection mold at this time is not particularly limited as long as it can melt the polyamide resin composition to a state suitable for injection molding, and may be, for example, 100 to 350°C.
  • a known injection mold such as a mold for rapid heat cycle molding (RHCM, heat & cool molding) or a core-back mold for foam molding, can be used.
  • RHCM rapid heat cycle molding
  • core-back mold for foam molding a known injection mold, such as a mold for rapid heat cycle molding (RHCM, heat & cool molding) or a core-back mold for foam molding.
  • the metal-resin bonded body described above is suitably used in various uses where the metal-resin bonded body is applied or is being considered for application.
  • Examples of the above uses include vehicle structural parts, vehicle-mounted supplies, electronic equipment casings, home appliance casings, structural parts, mechanical parts, various automotive parts, electronic equipment parts, furniture, and kitchen utensils.
  • This includes household goods such as medical equipment, parts for building materials, other structural parts, and exterior parts.
  • examples of the above applications include, in the vehicle industry, instrument panels, console boxes, door knobs, door trims, shift levers, pedals, glove boxes, bumpers, bonnets, fenders, trunks, doors, roofs, Pillars, seats, steering wheels, bus bars, terminals, motors, power converters (inverters, converters), ECU boxes, electrical components, engine peripheral parts, drive train/gear peripheral parts, intake/exhaust system parts, and cooling system parts etc. are included. Precision electronic parts also include connectors, relays, gears, etc.
  • the above-mentioned metal-resin bonded body combines the high thermal conductivity of the copper member and the heat-insulating properties of the resin member, and is used for parts used in equipment that has optimal heat management design, such as various home appliances. be able to.
  • Examples of the above uses include refrigerators, washing machines, vacuum cleaners, microwave ovens, air conditioners, lighting equipment, electric water heaters, home appliances such as televisions, clocks, ventilation fans, projectors, speakers, computers, mobile phones, smartphones, and digital cameras.
  • tablet PCs portable music players, portable game machines, chargers, and electronic information devices such as batteries.
  • Examples of other uses include parts for lithium ion secondary batteries, robots, etc.
  • the metal-resin bonded body can be used for a busbar unit of a moving object (vehicle) such as an automobile.
  • FIG. 1 is a schematic diagram showing an exemplary form of the metal-resin bonded body as a busbar unit.
  • the busbar unit 100 includes a busbar 110 that is a conductor for supplying current to each member, which is a conductive metal member (for example, a copper metal member), and a protection member that protects the busbar 110, which is the above-mentioned resin member. It has a holding member 120 as a.
  • the surface in contact with the holding member 120 is roughened, and the roughened surface is coated with a resin member (a resin including a molded body of a polyamide resin composition).
  • a holding member 120 which is a member), is joined.
  • the busbar unit 100 can be used to electrically connect a motor of a moving body and an inverter that controls the electric power supplied to the motor using a busbar 110.
  • FIG. 2 is a configuration diagram showing an exemplary configuration of a moving body (vehicle) having the busbar unit 100.
  • the moving body 200 includes a body 210, a power source 220 such as a secondary battery that supplies power to drive the body 210, and a drive unit 230 that drives the body 210 with the power supplied from the power source 220.
  • a power source 220 such as a secondary battery that supplies power to drive the body 210
  • a drive unit 230 that drives the body 210 with the power supplied from the power source 220.
  • the drive unit 230 includes an inverter 232 that controls power (current) from the power source 220, a motor 234 that rotates when supplied with the power controlled by the inverter 232, and a bus bar 110 that connects the inverter 232 and the motor 234. It has a unit 100.
  • the motor 234 is housed in a motor case 236 along with a reducer 235 that converts the rotational speed obtained by the motor 234 into a rotational speed for driving the aircraft body 210.
  • the busbar unit 100 is attached to the motor case 236, and the busbar 110 communicates from the inside of the motor case 236 to the outside via the busbar unit 100.
  • cooling fluid for cooling the motor 234 is stored inside the motor case 236. Furthermore, the connection between the busbar unit 100 and the motor case 236 is airtight with a sealing member such as an O-ring, thereby preventing oil from leaking from the inside of the motor case 236 to the outside.
  • a holding member 120 made of a resin member including a molded body of the polyamide resin composition described above is joined to a bus bar 110 that is a conductive metal member (for example, a copper metal member). Therefore, even if cold shocks due to the heat of the motor 234 are repeatedly applied, the airtightness is maintained at a high rate, and oil leakage can be suppressed over a long period of time.
  • FIG. 2 shows an example in which the moving body 200 is a vehicle such as a car
  • the moving body 200 is not particularly limited as long as it is a movable object that includes a body and a drive unit.
  • the moving object 200 may also be a railway vehicle, a ship, an aircraft, a drone, a robot, or the like.
  • the melting point (Tm), glass transition temperature (Tg) of the polyamide resin were measured using differential scanning calorimetry (Model DSC220C, manufactured by Seiko Instruments Inc.). Specifically, about 5 mg of polyamide resin was sealed in an aluminum pan for measurement, and the pan was set for differential scanning calorimetry. Then, it was heated from room temperature to 350°C at a rate of 10°C/min. To completely melt the resin, it was held at 350°C for 3 minutes and then cooled to 30°C at 10°C/min. After leaving it at 30°C for 5 minutes, it was heated a second time to 350°C at 10°C/min. The temperature (°C) of the endothermic peak in this second heating was defined as the melting point (Tm) of the polyamide resin, and the displacement point corresponding to the glass transition was defined as the glass transition temperature (Tg).
  • Heat of fusion ( ⁇ H) The heat of fusion ( ⁇ H) of the polyamide resin was determined from the area of the exothermic peak of crystallization during the first temperature increase process according to JIS K 7122 (2012).
  • composition The composition of the modified polyolefin resin, specifically the content (mol %) of ethylene and ⁇ -olefin having 3 or more carbon atoms, and the content (mass %) of functional group structural units, were measured by 13 C-NMR.
  • the measurement conditions are as follows.
  • Measuring device Nuclear magnetic resonance device (ECP500 type, manufactured by JEOL Ltd.) Observation core: 13C (125MHz) Sequence: Single pulse proton decoupling Pulse width: 4.7 ⁇ s (45° pulse) Repetition time: 5.5 seconds Total number of times: 10,000 times or more Solvent: Orthodichlorobenzene/deuterated benzene (volume ratio: 80/20) mixed solvent Sample concentration: 55 mg/0.6 mL Measurement temperature: 120°C Standard value of chemical shift: 27.50ppm
  • the density of the modified polyolefin resin was measured at a temperature of 23°C using a density gradient tube in accordance with JIS K7112.
  • melt flow rate (MFR) The melt flow rate (MFR) of the modified polyolefin resin was measured at 190° C. under a load of 2.16 kg in accordance with ASTM D1238. The unit is g/10min.
  • melting point The melting point of the modified polyolefin resin was measured by differential scanning calorimetry (DSC).
  • Synthesis/preparation of materials 1-1 Synthesis of polyamide resin (A) 1-1-1.
  • Polyamide resin (A-1) 1,6-hexanediamine 2800g (24.1mol), terephthalic acid 2774g (16.7mol), isophthalic acid 1196g (7.2mol), benzoic acid 36.6g (0.30mol), hypophosphorous acid 5.7 g of sodium monohydrate and 545 g of distilled water were placed in an autoclave with an internal capacity of 13.6 L, and the autoclave was purged with nitrogen. Stirring was started at 190°C, and the internal temperature was raised to 250°C over 3 hours. At this time, the internal pressure of the autoclave was increased to 3.03 MPa.
  • the autoclave was vented to the atmosphere from a spray nozzle installed at the bottom to extract the lower condensate. Thereafter, this low-order condensate was cooled to room temperature, and then the low-order condensate was pulverized to a particle size of 1.5 mm or less using a pulverizer, and dried at 110° C. for 24 hours.
  • the water content of the obtained low-order condensate was 4100 ppm, and the intrinsic viscosity [ ⁇ ] was 0.15 dl/g.
  • this low-order condensate was placed in a plated solid phase polymerization apparatus, and after nitrogen substitution, the temperature was raised to 180° C. over about 1 hour and 30 minutes. Thereafter, the reaction was carried out for 1 hour and 30 minutes, and the temperature was lowered to room temperature.
  • the resulting polyamide resin (A-1) had an intrinsic viscosity of 1.0 dl/g, a melting point (Tm) of 330°C, a glass transition temperature (Tg) of 125°C, and a heat of fusion ( ⁇ H) of 50 J/g. .
  • Polyamide resin (A-2) Polyamide resin (A-1) except that the raw materials were changed to 2184 g (13.1 mol) of terephthalic acid, 2800 g (24.1 mol) of 1,6-hexanediamine, and 1572 g (10.8 mol) of adipic acid.
  • a polyamide resin (A-2) was obtained in the same manner as the synthesis.
  • the obtained polyamide resin (A-2) had an intrinsic viscosity [ ⁇ ] of 0.8 dl/g, a melting point (Tm) of 310°C, a glass transition temperature (Tg) of 85°C, and a heat of fusion ( ⁇ H) of 50 J/g. Met.
  • Polyamide resin (A-3) Polyamide resin (A-1) except that the raw materials were changed to 1720 g (10.4 mol) of terephthalic acid, 2800 g (24.1 mol) of 1,6-hexanediamine, and 1849 g (12.7 mol) of adipic acid.
  • a polyamide resin (A-3) was obtained in the same manner as the synthesis.
  • the resulting polyamide resin (A-3) had an intrinsic viscosity [ ⁇ ] of 0.9 dl/g, a melting point (Tm) of 295°C, a glass transition temperature (Tg) of 75°C, and a heat of fusion ( ⁇ H) of 60 J/g. Met.
  • Polyamide resin (A-4) Except that the raw materials were changed to 3655 g (22.0 mol) of terephthalic acid, 1312 g (11.3 mol) of 1,6-diaminohexane, and 1312 g (11.3 mol) of 2-methyl-1,5-diaminopentane. Polyamide resin (A-4) was obtained in the same manner as the synthesis of polyamide resin (A-1).
  • the obtained polyamide resin (A-4) had an intrinsic viscosity [ ⁇ ] of 0.9 dl/g, a melting point (Tm) of 300°C, a glass transition temperature (Tg) of 140°C, and a heat of fusion ( ⁇ H) of 40 J/g. Met.
  • Polyamide resin (A-5) UBESTA 3014B manufactured by Ube Industries, Ltd. was used as the polyamide resin (A-5).
  • This polyamide resin (A-5) had an intrinsic viscosity [ ⁇ ] of 0.54 dl/g, a melting point (Tm) of 180°C, a glass transition temperature (Tg) of 50°C, and a heat of fusion ( ⁇ H) of 60 J/g. Ta.
  • Polyamide resin (A-6) Polyamide resin (A-1) except that the raw materials were changed to 2774 g (16.7 mol) of isophthalic acid, 2800 g (24.1 mol) of 1,6-diaminohexane, and 1196 g (7.2 mol) of terephthalic acid.
  • a polyamide resin (A-6) was obtained in the same manner as the synthesis.
  • the intrinsic viscosity [ ⁇ ] of the obtained polyamide resin (A-6) was 0.54 dl/g, the melting point (Tm) was not measured, the glass transition temperature (Tg) was 125°C, and the heat of fusion ( ⁇ H) was 0 J/g. It was g.
  • modified polyolefin resin (B) 0.63 mg of bis(1,3-dimethylcyclopentadienyl)zirconium dichloride was placed in a glass flask that had been sufficiently purged with nitrogen, and a toluene solution of methylaminoxane (Al; 0.63 mg) was added.
  • a catalyst solution was obtained by adding 1.57 ml of 13 mmol/liter) and 2.43 ml of toluene.
  • 912 ml of hexane and 320 ml of 1-butene were introduced into a stainless steel autoclave with an internal volume of 2 liters which was sufficiently purged with nitrogen, and the temperature inside the system was raised to 80°C.
  • the ethylene content of the ethylene/1-butene copolymer was 81 mol%. Further, the density was 0.860 g/cm 3 , the MFR (ASTM D 1238, 190°C, 2.16 kg load) was 0.5 g/10 min, and the melting point was 35°C.
  • a modified polyolefin resin (B) was obtained by melt-grafting the obtained mixture using a twin-screw extruder set at 230°C.
  • the amount of maleic anhydride grafted in the modified polyolefin resin (B) was 0.8% by mass. Further, the density was 0866 g/cm 3 , the MFR (ASTM D 1238, 190°C, 2.16 kg load) was 0.27 g/10 min, and the melting point (Tm) was 35°C.
  • Lubricant Sodium montanate was used as a lubricant.
  • Colorant A masterbatch containing pigment was used as the colorant.
  • Copper-based heat-resistant stabilizer A mixture of 10% by mass of copper (I) iodide and 90% by mass of potassium iodide was used as a copper-based heat-resistant stabilizer.
  • Airtightness (initial) The helium leakage of the prepared test piece was evaluated by a method based on ISO19095. Specifically, the above test piece was set in a special jig that can be sealed, He gas was applied to the sealed space at a pressure of 0.1 MPa, and the He gas that passed through the test piece was detected using a He gas detector (Canon Anelva Co., Ltd.). Measurement was performed using a sniffer method (manufactured by HELEN M-222LD). The airtightness was evaluated based on the detected He gas flow rate (leakage amount) 5 minutes after the start of detection based on the following criteria.
  • Detected He gas flow rate is 1 ⁇ 10 ⁇ 6 Pa ⁇ m 3 /s or less ⁇ Detected He gas flow rate is 1 ⁇ 10 ⁇ 5 Pa ⁇ m 3 /s greater than 1 ⁇ 10 ⁇ 6 Pa ⁇ m 3 /s ⁇ Detected He gas flow rate is greater than 1 ⁇ 10 ⁇ 5 Pa ⁇ m 3 /s
  • Airtightness (after thermal shock test (500 times, 1000 times))
  • the He leakage property of the produced test piece after the thermal shock test was evaluated by a method based on ISO19095. Specifically, the fabricated test piece was subjected to a thermal shock test under cooling and heating cycles under the following conditions, and the subsequent helium leakage amount was measured in the same manner as in the initial airtightness evaluation. The airtightness after the thermal shock test was also evaluated using the same criteria as the airtightness (initial stage).
  • Temperature range -40°C ⁇ 150°C Cycle conditions: -40°C, 150°C held for 30 minutes each, one round trip Number of cycles: 500 times, 1000 times
  • the obtained test piece was left at a temperature of 23°C under a nitrogen atmosphere for 24 hours.
  • a tensile test was conducted in accordance with ASTM D638 at a temperature of 23° C. and a relative humidity of 50% to measure the tensile strength.
  • the obtained test piece was left at a temperature of 23°C under a nitrogen atmosphere for 24 hours.
  • a bending test was conducted in an atmosphere at a temperature of 23° C. and a relative humidity of 50% using a bending tester: AB5 manufactured by NTESCO, a span of 51 mm, and a bending speed of 12.7 mm/min to measure the elastic modulus.
  • the composition of the prepared polyamide resin composition, the airtightness (initial) and airtightness (after the thermal shock test) of the metal-resin bonded body, and the evaluation results of the fluidity, tensile strength, and flexural modulus of the polyamide resin composition are shown in the table. 1 to Table 3.
  • a polyamide resin composition containing a polyamide resin (A1), a polyamide resin (A2), a predetermined amount of a modified polyolefin resin (B), and a nucleating agent (C) was bonded to a metal member. It had excellent airtightness both at the initial stage and after repeated thermal shocks.
  • the present invention explores the applicability of metal-resin bonded bodies to applications that are used in environments where the temperature changes and where leakage of gas or liquid is a problem, such as car body parts. It is expected that this will contribute to the further spread of metal-resin bonded bodies.
  • Busbar unit 110 Busbar 120 Holding member 200 Moving body 210 Airframe 220 Power supply 230 Drive unit 232 Inverter 234 Motor 235 Reducer 236 Motor case

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、接合初期の気密性が高く、かつ冷熱衝撃を繰り返し与えたときに気密性が十分に維持される金属樹脂接合体を作製することが可能なポリアミド樹脂組成物を提供する。前記ポリアミド樹脂組成物は、示差走査熱量測定(DSC)で測定される融点(Tm)が280℃以上のポリアミド樹脂(A1)と、示差走査熱量測定(DSC)で測定される融解熱量(ΔH)が5J/g以下のポリアミド樹脂(A2)と、変性ポリオレフィン樹脂(B)と、核剤(C)を含み、前記変性ポリオレフィン樹脂(B)の含有量は、前記ポリアミド樹脂(A)および前記変性ポリオレフィン樹脂(B)の合計質量に対して4.70質量%以上20.00質量%以下である、金属部材との接合用のポリアミド樹脂組成物である。

Description

ポリアミド樹脂組成物、金属樹脂接合体およびその製造方法、バスバーユニット、駆動ユニットならびに移動体
 本発明は、ポリアミド樹脂組成物、金属樹脂接合体およびその製造方法、バスバーユニット、駆動ユニットならびに移動体に関する。
 従来から、ポリアミド樹脂組成物は、成形加工性、機械的物性および耐薬品性に優れていることから、産業資材用、自動車、電気・電子用および工業用などの種々の部品の材料として広く用いられている。
 ポリアミド樹脂組成物をこれらの用途に用いるとき、ポリアミド樹脂組成物を成形してなる樹脂部材と、金属部材と、を強固に接合することが要求される。そのため、金属への接合性な良好なポリアミド樹脂組成物が検討されている。たとえば、特許文献1には、Tm≦290℃、Tm-Tcc≧28℃、かつ、0J/g<ΔHm≦55J/gであるポリアミド樹脂と、0.1~10質量%のタルクと、を含むポリアミド樹脂組成物が、アルミニウムに良好に接合したことが記載されている。
特開2017-132243号公報
 ところで、ポリアミド樹脂組成物と金属部材との接合体の用途によっては、ポリアミド樹脂組成物と金属部材との間の気密性が求められる。たとえば、駆動ユニットに接続されるバスバー等の車載用品として上記接合体を使用するときには、オイル漏れを防ぐための高い気密性が必要である。さらには、車載用品等の用途に使用するときは、低温および高温への温度変化(冷熱衝撃)を繰り返し与えたときに十分な気密性を維持することも求められる。しかし、特許文献1に記載のような従来のポリアミド樹脂組成物を金属部材に接合した接合体は、接合初期の気密性が十分に高くなかったり、あるいは冷熱衝撃を繰り返し与えたときに気密性が低下してしまったりしていた。
 これらの事情に鑑み、本発明は、接合初期の気密性が高く、かつ冷熱衝撃を繰り返し与えたときに気密性が十分に維持される金属樹脂接合体を作製することが可能なポリアミド樹脂組成物、当該ポリアミド樹脂組成物を用いた金属樹脂接合体およびその製造方法、ならびに当該ポリアミド樹脂組成物を用いたバスバーユニット、駆動ユニットおよび移動体を提供することを、その目的とする。
 本発明の一態様は、下記[1]~[8]のポリアミド樹脂組成物に関する。
 [1]ポリアミド樹脂(A)と、
 変性ポリオレフィン樹脂(B)と、
 核剤(C)と、を含み、
 前記ポリアミド樹脂(A)は、
 示差走査熱量測定(DSC)で測定される融点(Tm)が280℃以上のポリアミド樹脂(A1)と、
 示差走査熱量測定(DSC)で測定される融解熱量(ΔH)が5J/g以下のポリアミド樹脂(A2)と、
 を含み、
 前記変性ポリオレフィン樹脂(B)の含有量は、前記ポリアミド樹脂(A)および前記変性ポリオレフィン樹脂(B)の合計質量に対して4.70質量%以上20.00質量%以下である、
 金属部材との接合用のポリアミド樹脂組成物。
 [2]前記変性ポリオレフィン樹脂(B)の含有量は、前記ポリアミド樹脂(A)および前記変性ポリオレフィン樹脂(B)の合計質量に対して4.70質量%以上12.50質量%以下である、
 [1]に記載のポリアミド樹脂組成物。
 [3]銅系の耐熱安定剤の含有量は、前記ポリアミド樹脂組成物の全質量に対して0.30質量%以下である、
 [1]または[2]に記載のポリアミド樹脂組成物。
 [4]前記ポリアミド樹脂(A1)は、ジカルボン酸に由来する成分単位(A1a)と、ジアミンに由来する成分単位(A1b)とを有し、
 前記ジカルボン酸に由来する成分単位(A1a)は、テレフタル酸に由来する成分単位と、イソフタル酸に由来する成分単位とを含む、
 [1]~[3]のいずれかに記載のポリアミド樹脂組成物。
 [5]前記ポリアミド樹脂(A)は、
 示差走査熱量測定(DSC)で測定されるガラス転移温度(Tg)が70℃以下のポリアミド樹脂(A3)を含む、
 [1]~[4]のいずれかに記載のポリアミド樹脂組成物。
 [6]前記ポリアミド樹脂(A3)は、示差走査熱量測定(DSC)で測定される融点(Tm)が200℃以下である、
 [5]に記載のポリアミド樹脂組成物。
 [7]前記ポリアミド樹脂(A1)は、示差走査熱量測定(DSC)で測定されるガラス転移温度(Tg)が75℃以上160℃以下であり、
 前記ポリアミド樹脂(A2)は、示差走査熱量測定(DSC)で測定されるガラス転移温度(Tg)が75℃以上160℃以下である、
 [1]~[6]のいずれかに記載のポリアミド樹脂組成物。
 [8]前記核剤(C)はタルクであり、
 前記核剤(C)の含有量は、前記ポリアミド樹脂組成物の全質量に対して0.10~5.00質量%である、
 [1]~[7]のいずれかに記載のポリアミド樹脂組成物。
 本発明の他の態様は、下記[9]の金属樹脂接合体に関する。
 [9]金属部材と、
 前記金属部材の表面に接合した、ポリアミド樹脂組成物を含む樹脂部材と、
 を含み、
 前記ポリアミド樹脂組成物は、
 ポリアミド樹脂(A)と、
 変性ポリオレフィン樹脂(B)と、
 核剤(C)と、を含み、
 前記ポリアミド樹脂(A)は、
 示差走査熱量測定(DSC)で測定される融点(Tm)が280℃以上のポリアミド樹脂(A1)と、
 示差走査熱量測定(DSC)で測定される融解熱量(ΔH)が5J/g以下のポリアミド樹脂(A2)と、
 を含み、
 前記変性ポリオレフィン樹脂(B)の含有量は、前記ポリアミド樹脂(A)および前記変性ポリオレフィン樹脂(B)の合計質量に対して4.70質量%以上20.00質量%以下である、
 金属樹脂接合体。
 本発明の他の態様は、下記[10]~[11]の金属樹脂接合体の製造方法に関する。
 [10]金属部材を用意する工程と、
 軟化または溶融したポリアミド樹脂組成物を前記金属部材の表面に接触させる工程と、
 前記接触したポリアミド樹脂組成物を冷却する工程と、
 を有し、
  前記ポリアミド樹脂組成物は、
 ポリアミド樹脂(A)と、
 変性ポリオレフィン樹脂(B)と、
 核剤(C)と、を含み、
 前記ポリアミド樹脂(A)は、
 示差走査熱量測定(DSC)で測定される融点(Tm)が280℃以上のポリアミド樹脂(A1)と、
 示差走査熱量測定(DSC)で測定される融解熱量(ΔH)が5J/g以下のポリアミド樹脂(A2)と、
 を含み、
 前記変性ポリオレフィン樹脂(B)の含有量は、前記ポリアミド樹脂(A)および前記変性ポリオレフィン樹脂(B)の合計質量に対して4.70質量%以上20.00質量%以下である、
 金属樹脂接合体の製造方法。
 [11]前記金属部材を用意する工程において、前記金属部材の、前記ポリアミド樹脂組成物と接合する表面を粗面化処理する、[10]に記載の金属樹脂接合体の製造方法。
 本発明の他の態様は、下記[12]のバスバーユニットに関する。
 [12]金属製のバスバーと、
 前記バスバーに接して配置され、前記バスバーを保持する保持部材と、を有するバスバーユニットであって、
 前記保持部材は、示差走査熱量測定(DSC)で測定される融点(Tm)が280℃以上のポリアミド樹脂(A1)と、示差走査熱量測定(DSC)で測定される融解熱量(ΔH)が5J/g以下のポリアミド樹脂(A2)と、を含むポリアミド樹脂(A)と、変性ポリオレフィン樹脂(B)と、核剤(C)と、を含み、
 前記変性ポリオレフィン樹脂(B)の含有量は、前記ポリアミド樹脂(A)および前記変性ポリオレフィン樹脂(B)の合計質量に対して4.70質量%以上20.00質量%以下であるポリアミド樹脂組成物の成形体を含む、
 バスバーユニット。
 本発明の他の態様は、下記[13]の駆動ユニットに関する。
 [13]モータと、
 前記モータに電力を供給するインバータと、
 前記モータと前記インバータとを電気的に接続するバスバーユニットと、を有する駆動ユニットであって、
 前記バスバーユニットは、[12]に記載のバスバーユニットである、
 駆動ユニット。
 本発明の他の態様は、下記[14]の移動体に関する。
 [14]機体と、
 駆動ユニットと、を有する移動体であって、
 前記駆動ユニットは、[13]に記載の駆動ユニットである、
 移動体。
 本発明によれば、接合初期の気密性が高く、かつ冷熱衝撃を繰り返し与えたときに気密性が十分に維持される金属樹脂接合体を作製することが可能なポリアミド樹脂組成物、当該ポリアミド樹脂組成物を用いた金属樹脂接合体およびその製造方法、ならびに当該ポリアミド樹脂組成物を用いたバスバーユニット、駆動ユニットおよび移動体を提供することができる。
図1は、バスバーユニットとしての金属樹脂接合体の例示的な形態を示す模式図である。 図2は、バスバーユニットを有する移動体(車両)の例示的な構成を示す構成図である。
 1.第1の実施形態
 本発明の第1の実施形態は、金属部材との接合用のポリアミド樹脂組成物に関する。上記ポリアミド樹脂組成物は、ポリアミド樹脂(A)と、変性ポリオレフィン樹脂(B)と、核剤(C)と、を含む。上記ポリアミド樹脂組成物は、表面に凹凸を有する金属部材との直接接合用のポリアミド樹脂組成物として好適である。
 上記ポリアミド樹脂組成物は、樹脂成分の主成分がポリアミド樹脂(A)である樹脂組成物である。主成分であるとは、樹脂成分のうちポリアミド樹脂(A)が占める割合が50.00質量%以上であることを意味する。樹脂成分のうちポリアミド樹脂(A)が占める割合は、60.00質量%以上であることが好ましく、70.00質量%以上であることがより好ましい。樹脂成分のうちポリアミド樹脂(A)が占める割合の上限は特に限定されないが、100.00質量%以下とすることができ、90.00質量%以下であってもよく、80.00質量%以下であってもよい。
 1-1.ポリアミド樹脂(A)
 ポリアミド樹脂(A)は、示差走査熱量測定(DSC)で測定される融点(Tm)が280℃以上のポリアミド樹脂(A1)と、示差走査熱量測定(DSC)で測定される融解熱量(ΔH)が5J/g以下のポリアミド樹脂(A2)と、を含む。ポリアミド樹脂(A)は、示差走査熱量測定(DSC)で測定されるガラス転移温度(Tg)が70℃以下のポリアミド樹脂(A3)をさらに含んでもよい。
 1-1-1.ポリアミド樹脂(A1)
 ポリアミド樹脂(A1)は、示差走査熱量測定(DSC)で測定される融点(Tm)が280℃以上のポリアミド樹脂である。ポリアミド樹脂(A1)は、ジカルボン酸に由来する成分単位(A1a)と、ジアミンに由来する成分単位(A1b)とを含むポリアミド樹脂であり得る。ポリアミド樹脂(A1)の融点(Tm)およびガラス転移温度(Tg)を高めるため、ジカルボン酸に由来する成分単位(A1a)は、芳香族ジカルボン酸または脂環式ジカルボン酸に由来する成分単位を含むことが好ましい。ポリアミド樹脂(A1)は、上記ポリアミド樹脂組成物を含む樹脂部材の、金属部材への接合強度を高める。接合強度および気密性をより高める観点から、ポリアミド樹脂(A1)は、結晶性ポリアミド樹脂であることが好ましい。
 [ジカルボン酸に由来する成分単位(A1a)]
 芳香族ジカルボン酸の例には、テレフタル酸、ナフタレンジカルボン酸およびそれらのエステルが含まれる。脂環式ジカルボン酸の例には、シクロヘキサンジカルボン酸およびそのエステルが含まれる。中でも、結晶性が高く、耐熱性が高いポリアミド樹脂を得る観点などから、ジカルボン酸に由来する成分単位(A1a)は、芳香族ジカルボン酸に由来する成分単位を含むことが好ましく、テレフタル酸に由来する成分単位を含むことがより好ましい。
 芳香族ジカルボン酸または脂環式ジカルボン酸に由来する成分単位(好ましくは芳香族ジカルボン酸に由来する成分単位、より好ましくはテレフタル酸に由来する成分単位)の含有量は、特に限定されないが、ジカルボン酸に由来する成分単位(A1a)の総モル数に対して50モル%以上100モル%以下であることが好ましい。上記成分単位の含有量が50モル%以上であると、ポリアミド樹脂の結晶性を高めやすい。上記成分単位の含有量は、同様の観点から、70モル%以上100モル%以下であることがより好ましい。
 本実施形態において、ジカルボン酸に由来する成分単位(A1a)は、テレフタル酸、ナフタレンジカルボン酸またはシクロヘキサンジカルボン酸に由来する成分単位(a1)を含むことが好ましい。これらの成分単位(a1)は、ポリアミド樹脂(A1)の結晶性を高め、金属部材への樹脂部材の接合強度および気密性を高めることができる。これらの成分単位(a1)の含有量は、ポリアミド樹脂の結晶性を確保する観点から、ジカルボン酸に由来する成分単位(A1a)の総モル数に対して20モル%より多く100モル%以下とすることが好ましい。ポリアミド樹脂の結晶性をより高める観点から、これらの成分単位(a1)の含有量は、ジカルボン酸に由来する成分単位(A1a)の総モル数に対して45モル%以上100モル%以下であることが好ましく、50モル%以上99モル%以下であることがより好ましく、60モル%以上90モル%以下であることがさらに好ましく、60モル%以上85モル%以下であることがさらに好ましく、60モル%より多く80モル%以下であることが特に好ましい。
 ジカルボン酸に由来する成分単位(A1a)は、本発明の効果を損なわない範囲で、上記成分単位(a1)以外の芳香族カルボン酸成分単位(a2)または炭素原子数4以上20以下の脂肪族ジカルボン酸に由来する成分単位(a3)を含んでいてもよい。
 テレフタル酸以外の芳香族ジカルボン酸に由来する成分単位(a2)の例には、イソフタル酸、および2-メチルテレフタル酸に由来する成分単位などが含まれる。これらのうち、イソフタル酸に由来する成分単位が好ましい。ポリアミド樹脂(A1)が成分単位(a2)を含むときのこれらの成分単位(a2)の含有量は、ポリアミド樹脂の結晶性を確保する観点から、ジカルボン酸に由来する成分単位(A1a)の総モル数に対して1モル%以上50モル%以下であることが好ましく、10モル%以上40モル%以下であることがより好ましく、15モル%以上40モル%以下であることがさらに好ましく、20モル%以上40モル%未満であることが特に好ましい。
 脂肪族ジカルボン酸に由来する成分単位(a3)は、炭素原子数4以上20以下のアルキレン基を有する脂肪族ジカルボン酸に由来する成分単位であり、炭素原子数6以上12以下のアルキレン基を有する脂肪族ジカルボン酸に由来する成分単位であることが好ましい。上記脂肪族ジカルボン酸の例には、ジメチルマロン酸、コハク酸、グルタル酸、アジピン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2-ジメチルグルタル酸、3,3-ジエチルコハク酸、アゼライン酸、セバシン酸、スベリン酸成分単位などが含まれる。これらのうち、アジピン酸およびセバシン酸が好ましい。ポリアミド樹脂(A1)が成分単位(a3)を含むときのこれらの成分単位(a3)の含有量は、ポリアミド樹脂(A1)の結晶性を高める観点から、ジカルボン酸に由来する成分単位(A1a)の総モル数に対して0モル%以上40モル%以下であることが好ましく、0モル%以上20モル%以下であることがより好ましく、1モル%以上10モル%以下であることがさらに好ましく、1モル%以上5モル%以下であることが特に好ましい。
 ジカルボン酸に由来する成分単位(A1a)は、テレフタル酸に由来する成分単位(a1)と、イソフタル酸に由来する成分単位(a2)とを含むことが好ましい。ジカルボン酸に由来する成分単位(A1a)がテレフタル酸に由来する成分単位(a1)に加えてイソフタル酸に由来する成分単位(a2)を含むことで、ジカルボン酸に由来する成分単位(A1a)がテレフタル酸に由来する成分単位(a1)のみを含む場合に比べて、ポリアミド樹脂(A1)の融点(Tm)を低下させることができ、成形加工性を向上させることができる。
 ジカルボン酸に由来する成分単位(A1a)は、上述した成分単位(a1)、成分単位(a2)、および成分単位(a3)の外に、少量のトリメリット酸またはピロメリット酸のような三塩基性以上の多価カルボン酸成分単位をさらに含有していてもよい。このような多価カルボン酸成分単位の含有量は、ジカルボン酸に由来する成分単位(A1a)の総モル数に対して、0モル%以上5モル%以下とすることができる。
 [ジアミンに由来する成分単位(A1b)]
 ジアミンに由来する成分単位(A1b)は、炭素原子数4~18の直鎖状アルキレンジアミンに由来する成分単位(b1)を含むことが好ましく、側鎖アルキル基を有する炭素原子数4~18のアルキレンジアミンに由来する成分単位(b2)や、炭素原子数4~20の脂環族ジアミンに由来する成分単位(b3)をさらに含んでもよい。
 ジアミンに由来する成分単位(A1b)は、ポリアミド樹脂(A1)に含まれるジアミンに由来する成分単位の総モル数に対する、炭素原子数4~18の直鎖状アルキレンジアミンに由来する成分単位(b1)の量が、20モル%以上100モル%以下であることが好ましく、20モル%以上80モル%以下であることがより好ましい。上記成分単位の含有量が20モル%以上であると、結晶化速度を適度に速くして、ポリアミド樹脂(A1)の結晶性や機械的強度を適度に高めやすい。上記成分単位の含有量が100モル%以下、好ましくは80モル%以下であると、ポリアミド樹脂(A1)の結晶化速度が高くなりすぎないため、成形時の流動性が損なわれにくい。同様の観点から、直鎖状の脂肪族ジアミンに由来する成分単位の含有量は、上記合計に対して30モル%以上60モル%以下であることがさらに好ましい。
 炭素原子数4~18の直鎖状アルキレンジアミンに由来する成分単位(b1)の例には、1,4-ジアミノブタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカンおよび1,12-ジアミノドデカンなどに由来する成分単位が含まれる。これらのうち、1,6-ジアミノヘキサン、1,8-ジアミノオクタン、1,10-ジアミノデカンおよび1,12-ジアミノドデカンに由来する成分単位が好ましく、1,6-ジアミノヘキサンに由来する成分単位がより好ましい。これらの成分単位は、ポリアミド樹脂(A1)中に複数種類含有されていてもよい。
 また、ジアミンに由来する成分単位(A1b)は、側鎖アルキル基を有する炭素原子数4~18のアルキレンジアミンに由来する成分単位(b2)または炭素原子数4~20の脂環族ジアミンに由来する成分単位(b3)を含んでいてもよい。このとき、ポリアミド樹脂(A1)に含まれるジアミンに由来する成分単位の総モル数を100モル%としたとき、側鎖アルキル基を有する炭素原子数4~18のアルキレンジアミンに由来する成分単位(b2)または炭素原子数4~20の脂環族ジアミンに由来する成分単位(b3)の量が、20モル%以上80モル%以下であることが好ましい。上記成分単位の含有量が20モル%以上であると、ポリアミド樹脂(A1)の結晶化速度が適度に遅くなりやすいため、成形時の流動性を高めやすい。上記成分単位の含有量が80モル%以下であると、ポリアミド樹脂(A1)の結晶性や機械的強度が損なわれにくい。同様の観点から、分岐状の脂肪族ジアミンに由来する成分単位の含有量は、上記合計に対して40モル%以上70モル%以下であることがより好ましい。
 側鎖アルキル基を有する炭素原子数4~18のアルキレンジアミンに由来する成分単位(b2)の例には、1-ブチル-1,2-ジアミノ-エタン、1,1-ジメチル-1,4-ジアミノ-ブタン、1-エチル-1,4-ジアミノ-ブタン、1,2-ジメチル-1,4-ジアミノ-ブタン、1,3-ジメチル-1,4-ジアミノ-ブタン、1,4-ジメチル-1,4-ジアミノ-ブタン、2,3-ジメチル-1,4-ジアミノ-ブタン、2-メチル-1,5-ジアミノペンタン、2,5-ジメチル-1,6-ジアミノ-ヘキサン、2,4-ジメチル-1,6-ジアミノ-ヘキサン、3,3-ジメチル-1,6-ジアミノ-ヘキサン、2,2-ジメチル-1,6-ジアミノ-ヘキサン、2,2,4-トリメチル-1,6-ジアミノ-ヘキサン、2,4,4-トリメチル-1,6-ジアミノ-ヘキサン、2,4-ジエチル-1,6-ジアミノ-ヘキサン、2,3-ジメチル-1,7-ジアミノ-ヘプタン、2,4-ジメチル-1,7-ジアミノ-ヘプタン、2,5-ジメチル-1,7-ジアミノ-ヘプタン、2,2-ジメチル-1,7-ジアミノ-ヘプタン、2-メチル-4-エチル-1,7-ジアミノ-ヘプタン、2-エチル-4-メチル-1,7-ジアミノ-ヘプタン、2,2,5,5-テトラメチル-1,7-ジアミノ-ヘプタン、3-イソプロピル-1,7-ジアミノ-ヘプタン、3-イソオクチル-1,7-ジアミノ-ヘプタン、1,3-ジメチル-1,8-ジアミノ-オクタン、1,4-ジメチル-1,8-ジアミノ-オクタン、2,4-ジメチル-1,8-ジアミノ-オクタン、3,4-ジメチル-1,8-ジアミノ-オクタン、4,5-ジメチル-1,8-ジアミノ-オクタン、2,2-ジメチル-1,8-ジアミノ-オクタン、3,3-ジメチル-1,8-ジアミノ-オクタン、4,4-ジメチル-1,8-ジアミノ-オクタン、3,3,5-トリメチル-1,8-ジアミノ-オクタン、2,4-ジエチル-1,8-ジアミノ-オクタン、および5-メチル-1,9-ジアミノ-ノナン、2,2-ジメチルプロパンジアミンなどに由来する成分単位が含まれる。これらのうち、炭素原子数1~2の側鎖アルキル基を1~2個有すると共に、主鎖の炭素原子数が4~10である側鎖アルキルジアミンに由来する成分単位が好ましく、2-メチル-1,5-ジアミノペンタンに由来する成分単位がより好ましい。これらの成分単位は、ポリアミド樹脂(A1)中に複数種類含有されていてもよい。
 炭素原子数4~20の脂環族ジアミンに由来する成分単位(b3)の例には、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、イソホロンジアミン、ピペラジン、2,5-ジメチルピペラジン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)プロパン、4,4'-ジアミノ-3,3'-ジメチルジシクロヘキシルプロパン、4,4'-ジアミノ-3,3’-ジメチルジシクロヘキシルメタン、4,4'-ジアミノ-3,3'-ジメチル-5,5'-ジメチルジシクロヘキシルメタン、4,4'-ジアミノ-3,3'-ジメチル-5,5'-ジメチルジシクロヘキシルプロパン、α,α'-ビス(4-アミノシクロヘキシル)-p-ジイソプロピルベンゼン、α,α'-ビス(4-アミノシクロヘキシル)-m-ジイソプロピルベンゼン、α,α′-ビス(4-アミノシクロヘキシル)-1,4-シクロヘキサン、およびα,α'-ビス(4-アミノシクロヘキシル)-1,3-シクロヘキサン、ビス(アミノメチル)ノルボルナンなどに由来する成分単位が含まれる。これらのうち、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、および4,4'-ジアミノ-3,3'-ジメチルジシクロヘキシルメタン、ビス(アミノメチル)ノルボルナンに由来する成分単位が好ましく、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、1,3-ビス(アミノシクロヘキシル)メタン、および1,3-ビス(アミノメチル)シクロヘキサン、ビス(アミノメチル)ノルボルナンに由来する成分単位がより好ましく、1,3-ビス(アミノメチル)シクロヘキサン、ビス(アミノメチル)ノルボルナンに由来する成分単位が特に好ましい。
 なお、本明細書において、側鎖アルキル基を有するアルキレンジアミンに由来する成分単位における炭素原子数は、特に限定しない限り、主鎖アルキレン基の炭素原子数と側鎖アルキル基の炭素原子数との合計である。
 ポリアミド樹脂(A1)は、上述した炭素原子数4~18の直鎖状アルキレンジアミンに由来する成分単位(b1)、側鎖アルキル基を有する炭素原子数4~18のアルキレンジアミンに由来する成分単位(b2)、および炭素原子数4~20の脂環族ジアミンに由来する成分単位(b3)の外に、少量のメタキシリレンジアミンに由来する成分単位などの他のジアミンに由来する成分単位を含んでもよい。このような他のジアミンに由来する成分単位の含有量は、ジアミンに由来する成分単位(A1b)の合計量に対して50モル%以下であり、好ましくは40モル%以下でありうる。
 ポリアミド樹脂(A1)は、コンパウンドや成形時の熱安定性を高めたり、機械的強度をより高めたりする観点から、少なくとも一部の分子の末端基が末端封止剤で封止されていてもよい。末端封止剤は、例えば分子末端がカルボキシル基の場合は、モノアミンであることが好ましく、分子末端がアミノ基である場合は、モノカルボン酸であることが好ましい。
 モノアミンの例には、メチルアミン、エチルアミン、プロピルアミン、およびブチルアミンなどを含む脂肪族モノアミン、シクロヘキシルアミン、およびジシクロヘキシルアミンなどを含む脂環式モノアミン、ならびに、アニリン、およびトルイジンなどを含む芳香族モノアミンなどが含まれる。モノカルボン酸の例には、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸およびリノ-ル酸などを含む炭素原子数2以上30以下の脂肪族モノカルボン酸、安息香酸、トルイル酸、ナフタレンカルボン酸、メチルナフタレンカルボン酸およびフェニル酢酸などを含む芳香族モノカルボン酸、ならびにシクロヘキサンカルボン酸などを含む脂環式モノカルボン酸が含まれる。芳香族モノカルボン酸および脂環式モノカルボン酸は、環状構造部分に置換基を有していてもよい。
 [物性]
 ポリアミド樹脂(A1)は、融点(Tm)を280℃以上340℃以下とすることができる。ポリアミド樹脂(A1)の融点(Tm)が280℃以上であると、樹脂組成物や成形体の高温域における機械的強度や耐熱性などが損なわれにくく、340℃以下であると、成形温度を過剰に高くする必要がないため、樹脂組成物の成形加工性が良好となりやすい。上記観点から、ポリアミド樹脂の融点(Tm)は、290℃以上340℃以下であることがより好ましい。
 ポリアミド樹脂(A1)は、ガラス転移温度(Tg)を70℃より高く160℃以下とすることができ、75℃以上160℃以下とすることが好ましい。これにより、成形加工時に金型温度を過剰に高めずとも樹脂組成物の流動性を維持しやすくでき、成形加工性を向上させることができる。成形加工時に樹脂組成物の流動性を維持することで、金属部材の表面の凹凸に樹脂組成物を十分に含侵させ、上記凹凸に樹脂組成物を十分に密着させることができる。この結果、金属部材と樹脂部材の接合強度をより高め、かつ気密性をより高めることができる。
 ポリアミド樹脂(A1)は、融解熱量(ΔH)が20J/g以上であることが好ましい。ポリアミド樹脂(A1)の融解熱量(ΔH)が20J/g以上であると、結晶性が高まるため、樹脂部材の耐熱性および接合強度が高まりやすい。なお、ポリアミド樹脂(A1)の融解熱量(ΔH)の上限値は、特に制限されないが、成形加工性を高める観点から、130J/gでありうる。ポリアミド樹脂(A1)の融解熱量(ΔH)は、30J/g以上130J/g以下であることが好ましく、30J/g以上100J/g以下であることがより好ましい。
 ポリアミド樹脂の融解熱量(ΔH)、融点(Tm)およびガラス転移温度(Tg)は、示差走査熱量計(DSC220C型、セイコーインスツル社製)を用いて測定することができる。
 具体的には、約5mgの結晶性ポリアミド樹脂を測定用アルミニウムパン中に密封し、室温から10℃/minで350℃まで加熱する。樹脂を完全融解させるために、350℃で3分間保持し、次いで、10℃/minで30℃まで冷却する。30℃で5分間置いた後、10℃/minで350℃まで2度目の加熱を行う。この2度目の加熱における吸熱ピークの温度(℃)を結晶性ポリアミド樹脂の融点(Tm)とし、ガラス転移に相当する変位点をガラス転移温度(Tg)とする。融解熱量(ΔH)は、JIS K7122(2012年)に準じて、1度目の昇温過程での融解時の吸熱ピークの面積から求める。
 ポリアミド樹脂(A1)の融点(Tm)、ガラス転移温度(Tg)および融解熱量(ΔH)は、たとえば上述したジカルボン酸に由来する成分単位(A1a)の組成や、ジアミンに由来する成分単位(A1b)1つあたりの炭素原子数などによって調整されうる。ポリアミド樹脂(A1)の融点を高めるためには、たとえばテレフタル酸に由来する成分単位の含有比率を多くすればよい。
 ポリアミド樹脂(A1)の、温度25℃、96.5%硫酸中で測定される極限粘度[η]は、0.6dl/g以上1.5dl/g以下であることが好ましい。ポリアミド樹脂(A1)の極限粘度[η]が0.6dl/g以上であると、成形体の機械的強度(靱性など)を十分に高めやすく、1.5dl/g以下であると、樹脂組成物の成形時の流動性が損なわれにくい。ポリアミド樹脂(A1)の極限粘度[η]は、同様の観点から、0.8dl/g以上1.2dl/g以下であることがより好ましい。極限粘度[η]は、ポリアミド樹脂(A1)の末端封止量などによって調整することができる。
 ポリアミド樹脂の極限粘度は、JIS K6810(1977年)に準拠して測定することができる。具体的には、ポリアミド樹脂(A1)0.5gを96.5%硫酸溶液50mlに溶解して試料溶液とする。この試料溶液の流下秒数を、ウベローデ粘度計を使用して、25±0.05℃の条件下で測定し、得られた値を下記式に当てはめて算出することができる。
 [η]=ηSP/[C(1+0.205ηSP)]
 上記式において、各代数または変数は、以下を表す。
 [η]:極限粘度(dl/g)
 ηSP:比粘度
 C:試料濃度(g/dl)
 ηSPは、以下の式によって求められる。
 ηSP=(t-t0)/t0
 t:試料溶液の流下秒数(秒)
 t0:ブランク硫酸の流下秒数(秒)
 [製造方法]
 ポリアミド樹脂(A1)は、例えば前述のジカルボン酸と、前述のジアミンとを均一溶液中で重縮合させて製造することができる。具体的には、ジカルボン酸とジアミンとを、国際公開第03/085029号に記載されているように触媒の存在下で加熱することにより低次縮合物を得て、次いでこの低次縮合物の溶融物にせん断応力を付与して重縮合させることで製造することができる。なお、ポリアミド樹脂(A1)の原料であるジカルボン酸は少なくとも一部がバイオマス由来のジカルボン酸であってもよいし、ジアミンは少なくとも一部がバイオマス由来のジアミンであってもよい。すなわち、ポリアミド樹脂(A1)は、バイオマス由来の原料を含む原料群を重合してなる、バイオマス由来のポリアミド樹脂であってもよい。
 ポリアミド樹脂(A1)の極限粘度を調整するなどの観点から、反応系に前述の末端封止剤を添加してもよい。末端封止剤の添加量により、ポリアミド樹脂(A1)の極限粘度[η](または分子量)を調整することができる。
 末端封止剤は、ジカルボン酸とジアミンとの反応系に添加される。添加量はジカルボン酸の合計量1モルに対して、0.07モル以下であることが好ましく、0.05モル以下であることがより好ましい。
 ポリアミド樹脂(A1)の含有量は、ポリアミド樹脂組成物の全質量に対して、25.00質量%以上80.00質量%以下であることが好ましく、30.00質量%以上80.00質量%以下であることが好ましく、35.00質量%以上80.00質量%以下であることがより好ましく、40.00質量%以上80.00質量%以下であることがさらに好ましい。ポリアミド樹脂(A1)の含有量をより多くするほど、金属部材への樹脂部材の接合強度をより高めることができる。一方で、他の成分を添加して、結晶化速度を遅延化させることによる、接合強度のさらなる向上効果および気密性の向上効果を得る余地を残すため、ポリアミド樹脂(A1)の上限は上記範囲としうる。
 1-1-2.ポリアミド樹脂(A2)
 ポリアミド樹脂(A2)は、示差走査熱量測定(DSC)で測定される融解熱量(ΔH)が5J/g以下のポリアミド樹脂である。ポリアミド樹脂(A2)は、結晶性がポリアミド樹脂(A1)よりも低いため、樹脂部材の成形時における樹脂組成物の結晶化速度を遅延化させることができる。これにより、金属部材の表面の凹凸に沿って十分に樹脂部材を構成する樹脂組成物を流動させて、上記凹凸に樹脂組成物を十分に密着させることができる。そのため、ポリアミド樹脂(A2)は、金属部材と樹脂部材の接合強度をより高め、かつ気密性をより高めることができると考えられる。
 ポリアミド樹脂(A2)は、示差走査熱量測定(DSC)において融点(Tm)が実質的に測定されないことが好ましい。「融点(Tm)が実質的に測定されない」とは、上述した測定方法において、融点に相当する変位点が実質的に観測されないことをいう。
 ポリアミド樹脂(A2)は、ガラス転移温度(Tg)を70℃より高く160℃以下とすることができ、75℃以上160℃以下とすることが好ましい。これにより、成形加工時に金型温度を過剰に高めずとも樹脂組成物の流動性を維持しやすくでき、成形加工性を向上させることができる。成形加工時に樹脂組成物の流動性を維持することで、金属部材の表面の凹凸に樹脂組成物を十分に含侵させ、上記凹凸に樹脂組成物を十分に密着させることができる。この結果、金属部材と樹脂部材の接合強度をより高め、かつ気密性をより高めることができる。
 ポリアミド樹脂(A2)の融解熱量(ΔH)は、5J/g以下であり、0J/gであることがより好ましい。ポリアミド樹脂(A2)の融解熱量(ΔH)が5J/g以下であると、結晶性が適度に低いため、樹脂部材の成形時における樹脂組成物の結晶化速度をより十分に遅延化させることができる。ポリアミド樹脂(A2)は、非晶性を示すことが好ましい。融解熱量(ΔH)は、前述と同様の方法で測定することができる。
 ポリアミド樹脂(A2)は、ジカルボン酸に由来する成分単位(A2a)と、ジアミンに由来する成分単位(A2b)とを含むポリアミド樹脂であり得る。
 [ジカルボン酸に由来する成分単位(A2a)]
 ジカルボン酸に由来する成分単位(A2a)は、少なくともイソフタル酸に由来する成分単位を含むことが好ましい。イソフタル酸に由来する成分単位は、ポリアミド樹脂(A2)の結晶性を低くしうる。
 イソフタル酸に由来する成分単位の含有量は、ジカルボン酸に由来する成分単位(A2a)の合計量に対して40モル%以上であることが好ましく、50モル%以上であることがより好ましい。イソフタル酸に由来する成分単位の含有量が40モル%以上であると、ポリアミド樹脂(A2)を非晶性にしやすい。イソフタル酸に由来する成分単位の含有量の上限は特に限定されないものの、100モル%以下とすることができ、90モル%以下とすることが好ましい。
 ジカルボン酸に由来する成分単位(A2a)は、本発明の効果を損なわない範囲で、イソフタル酸に由来する成分単位以外の他のジカルボン酸に由来する成分単位をさらに含んでいてもよい。他のジカルボン酸の例には、テレフタル酸、2-メチルテレフタル酸およびナフタレンジカルボン酸などのイソフタル酸以外の芳香族ジカルボン酸、脂肪族ジカルボン酸、ならびに脂環族ジカルボン酸が含まれる。脂肪族ジカルボン酸および脂環族ジカルボン酸は、前述の脂肪族ジカルボン酸および脂環族ジカルボン酸とそれぞれ同様でありうる。中でも、イソフタル酸以外の芳香族ジカルボン酸が好ましく、テレフタル酸がより好ましい。
 ジカルボン酸に由来する成分単位(A2a)における、イソフタル酸に由来する成分単位とイソフタル酸以外の芳香族ジカルボン酸(好ましくはテレフタル酸)に由来する成分単位のモル比は、イソフタル酸に由来する成分単位/イソフタル酸以外の芳香族ジカルボン酸(好ましくはテレフタル酸)に由来する成分単位=55/45~100/0(モル比)であることが好ましく、60/40~90/10(モル比)であることがより好ましい。イソフタル酸に由来する成分単位の量が一定以上であると、ポリアミド樹脂(A2)は非晶性となりやすく、樹脂部材の成形時における樹脂組成物の結晶化速度を遅延化させて、金属部材と樹脂部材の接合強度をより高め、かつ気密性をより高めやすい。
 [ジアミンに由来する成分単位(A2b)]
 ジアミンに由来する成分単位(A2b)は、炭素原子数4~15の脂肪族ジアミンに由来する成分単位を含むことが好ましい。
 炭素原子数4~15の脂肪族ジアミンは、前述のジアミンに由来する成分単位(A1b)のうち炭素原子数4~15の脂肪族ジアミンと同様であり、好ましくは1,6-ヘキサンジアミンである。
 炭素原子数4~15の脂肪族ジアミンに由来する成分単位の含有量は、ジアミンに由来する成分単位(A2b)の合計量に対して50モル%以上であることが好ましく、60モル%以上であることがより好ましい。
 ジアミンに由来する成分単位(A2b)は、本発明の効果を損なわない範囲で、炭素原子数4~15の脂肪族ジアミンに由来する成分単位以外の他のジアミンに由来する成分単位をさらに含んでもよい。他のジアミンの例には、脂環族ジアミンおよび芳香族ジアミンが含まれる。脂環族ジアミンおよび芳香族ジアミンは、前述の脂環族ジアミンおよび芳香族ジアミンとそれぞれ同様でありうる。他のジアミン成分単位の含有量は、50モル%以下であり、好ましくは40モル%以下でありうる。
 ポリアミド樹脂(A2)の具体例には、イソフタル酸/テレフタル酸/1,6-ヘキサンジアミン/ビス(3-メチル-4-アミノシクロヘキシル)メタンの重縮合体、イソフタル酸/ビス(3-メチル-4-アミノシクロヘキシル)メタン/ω-ラウロラクタムの重縮合体、イソフタル酸/テレフタル酸/1,6-ヘキサンジアミンの重縮合体、イソフタル酸/2,2,4-トリメチル-1,6-ヘキサンジアミン/2,4,4-トリメチル-1,6-ヘキサンジアミンの重縮合体、イソフタル酸/テレフタル酸/2,2,4-トリメチル-1,6-ヘキサンジアミン/2,4,4-トリメチル-1,6-ヘキサンジアミンの重縮合体、イソフタル酸/ビス(3-メチル-4-アミノシクロヘキシル)メタン/ω-ラウロラクタムの重縮合体、及びイソフタル酸/テレフタル酸/その他ジアミン成分の重縮合体などが含まれる。これらのうち、イソフタル酸/テレフタル酸/1,6-ヘキサンジアミンの重縮合体が好ましい。ポリアミド樹脂(A2)は、1種のみ含まれてもよいし、2種以上含まれてもよい。
 ポリアミド樹脂(A2)の、温度25℃、96.5%硫酸中で測定される極限粘度[η]は、0.4dl/g以上1.6dl/g以下であることが好ましく、0.5dl/g以上1.2dl/g以下であることがより好ましい。ポリアミド樹脂(A2)の極限粘度[η]は、前述のポリアミド樹脂(A1)の極限粘度[η]と同様の方法で測定することができる。
 ポリアミド樹脂(A2)は、前述のポリアミド樹脂(A1)と同様の方法で製造することができる。
 ポリアミド樹脂(A2)の含有量は、ポリアミド樹脂組成物の全質量に対して、5.00質量%以上であることが好ましく、10.00質量%以上であることがより好ましく、15.00質量%以上であることがさらに好ましい。ポリアミド樹脂(A2)の含有量を記範囲とすることで、結晶化の遅延による接合強度および気密性の向上効果をより十分に奏することができる。ポリアミド樹脂(A2)の含有量の上限は特に限定されないが、十分な量のポリアミド樹脂(A1)を樹脂組成物中に配合する観点から、30.00質量%以下とすることができ、25.00質量%以下であってもよい。
 1-1-3.ポリアミド樹脂(A3)
 ポリアミド樹脂(A3)は、示差走査熱量測定(DSC)で測定されるガラス転移温度(Tg)が70℃以下のポリアミド樹脂である。ポリアミド樹脂(A3)は、ガラス転移温度(Tg)がポリアミド樹脂(A1)よりも低い。そのため、ポリアミド樹脂(A3)は、樹脂部材の成形時に樹脂組成物の温度が低下していく際に、ポリアミド樹脂(A1)よりも流動性が低下しにくく、樹脂組成物全体の流動性の低下を抑制することができる。これにより、金属部材の表面の凹凸に沿って十分に樹脂部材を構成する樹脂組成物を流動させて、上記凹凸に樹脂組成物を十分に密着させることができる。そのため、ポリアミド樹脂(A3)は、金属部材と樹脂部材の接合強度をより高め、かつ気密性をより高めることができると考えられる。
 ポリアミド樹脂(A3)は、アミド結合(-NH-C(=O)-)を有し、かつ芳香環を有しない成分単位(芳香環を有しないアミド結合含有成分単位)を含む、脂肪族ポリアミドとすることができる。当該成分単位の含有量は、ポリアミド樹脂(A3)を構成するアミド結合含有成分単位の全モル数に対して80モル%以上であることが好ましく、90~100モル%であることがより好ましい。
 脂肪族ポリアミドであるポリアミド樹脂(A3)は、ジカルボン酸とジアミンを重縮合反応させたものであってもよいし、アミノカルボン酸を重縮合反応させたものであってもよいし、ラクタムを開環重合反応させたものであってもよい。すなわち、脂肪族ポリアミドであるポリアミド樹脂(A3)は、ジカルボン酸に由来する成分単位(A3a)とジアミンに由来する成分単位(A3b)とを含んで構成されるアミド結合含有成分単位、アミノカルボン酸に由来する成分単位(A3c)、およびラクタムに由来する成分単位(A3d)のうち少なくとも一種で構成される。
 [ジカルボン酸に由来する成分単位(A3a)]
 ジカルボン酸に由来する成分単位(A3a)は、脂肪族ジカルボン酸に由来する成分単位を含む。脂肪族ジカルボン酸は、好ましくは炭素原子数2~14、より好ましくは炭素原子数4~14の脂肪族ジカルボン酸である。脂肪族ジカルボン酸の例には、蓚酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸およびテトラデカン二酸が含まれる。これらのうち、アジピン酸、セバシン酸およびドデカン二酸が好ましい。
 脂肪族ジカルボン酸に由来する成分単位の含有量は、ジカルボン酸に由来する成分単(e1)位の全モル数に対して80モル%以上であることが好ましく、90~100モル%であることがより好ましい。
 [ジアミンに由来する成分単位(A3b)]
 ジアミンに由来する成分単位(A3b)は、脂肪族ジアミンに由来する成分単位を含む。脂肪族ジアミンは、前述の半芳香族ポリアミド(A1)を構成する脂肪族ジアミンと同様のものを用いることができる。
 脂肪族ジアミンに由来する成分単位の含有量は、ジアミンに由来する成分単位(A3b)の全モル数に対して80モル%以上であることが好ましく、90~100モル%であることがより好ましい。
 [アミノカルボン酸に由来する成分単位(A3c)]
 アミノカルボン酸は、炭素原子数6~12、好ましくは炭素原子数6~10のアミノカルボン酸でありうる。そのようなアミノカルボン酸の例には、6-アミノカプロン酸、7-アミノヘプタン酸、11-アミノウンデカン酸、12-アミノドデカン酸が含まれる。
 [ラクタムに由来する成分単位(A3d)]
 ラクタムは、炭素原子数6~12、好ましくは炭素原子数6~10のラクタムでありうる。そのようなラクタムの例には、α-ピロリドン、ε-カプロラクタム、ウンデカンラクタム、ω-ラウロラクタムが含まれる。
 脂肪族ポリアミドであるポリアミド樹脂(A3)の例には、ポリアミド6、ポリアミド66、ポリアミド610、ポリアミド12などが含まれる。
 ポリアミド樹脂(A3)の示差走査熱量測定(DSC)より測定される融点(Tm)は、270℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、120℃以上220℃以下であることがさらに好ましい。ポリアミド樹脂(A1)の融点(Tm)は、前述のポリアミド樹脂(A1)の融点(Tm)と同様の方法で測定することができる。
 ポリアミド樹脂(A3)は、公知の方法で製造することができる。
 ポリアミド樹脂(A3)の含有量は、ポリアミド樹脂組成物の全質量に対して、1.00質量%以上10.00質量%以下であることが好ましい。ポリアミド樹脂(A3)の量が多いと、が一定量以上であると、金属部材と樹脂部材の接合強度をより高め、かつ初期および冷熱衝撃を繰り返し与えたときの気密性をより高めることができる。脂肪族ポリアミド(D)が一定量以下であると、樹脂強度を高めやすく接合強度や気密性を高められる。上記観点から、ポリアミド樹脂(A3)の上記含有量は、1.00質量%以上8.00質量%以下であることがより好ましく、3.00質量%以上5.50質量%以下であることがさらに好ましい。
 1-2.変性ポリオレフィン樹脂(B)
 ポリアミド樹脂組成物は、ポリアミド樹脂(A)に加えて、変性ポリオレフィン樹脂(B)を含有する。変性ポリオレフィン樹脂(B)は、ポリアミド樹脂組成物の弾性率を下げて、樹脂部材に柔軟性を付与する。変性ポリオレフィン樹脂(B)により樹脂部材が柔軟になることで、冷熱衝撃を繰り返し与えたときの樹脂部材の膨張および収縮や、金属部材との間の線膨張係数の違いにより生じる応力による、樹脂部材へのクラックや剥離が生じにくくなる。これにより、変性ポリオレフィン樹脂(B)は、冷熱衝撃を繰り返し与えたときの気密性をより良好に維持させることができると考えられる。
 また、変性ポリオレフィン樹脂(B)は、樹脂部材の成形時における樹脂組成物の結晶化速度を低下させ、結晶化を遅延させることができる。これにより、金属部材の表面の凹凸に沿って十分に樹脂部材を構成する樹脂組成物を流動させて、上記凹凸に樹脂組成物を十分に密着させることができる。そのため、変性ポリオレフィン樹脂(B)は、金属部材と樹脂部材の接合強度をより高め、かつ気密性をより高めることができると考えられる。
 変性ポリオレフィン樹脂(B)は、ポリオレフィン単位と、官能基構造単位とを有するオレフィン重合体である。上記官能基構造単位が有する官能基の例には、ヘテロ原子を含む官能基や、芳香族炭化水素基などが含まれる。好ましくは、変性ポリオレフィン樹脂(B)は、ポリオレフィン単位と、ヘテロ原子を含む官能基を含む構造単位(官能基構造単位)とを有する変性オレフィン重合体である。
 上記ヘテロ原子は、酸素であることが好ましい。ヘテロ原子を含む官能基の的には、エステル基、エーテル基、カルボン酸基(無水カルボン酸基を含む)、アルデヒド基、およびケトン基などが含まれる。
 変性ポリオレフィン樹脂(B)には、変性ポリオレフィン樹脂(B)100質量%に対して、0.1~5.0質量%の官能基構造単位が含まれることが好ましい。変性ポリオレフィン樹脂(B)に含まれる官能基構造単位の含有率は、好ましくは0.2~3.0質量%、好ましくは0.2~2.0質量%である。官能基構造単位量が上記範囲であると、樹脂組成物の耐衝撃性および伸び率が高まりやすい。
 変性ポリオレフィン樹脂(B)に含まれる官能基構造単位の含有率は、オレフィン重合体と官能基含有機化合物とをラジカル開始剤などの存在下に反応させる際の仕込み比や、13C NMR測定やH NMR測定などの公知の手段で特定される。具体的なNMR測定条件としては、以下の様な条件を例示できる。
 H NMR測定は、日本電子(株)製ECX400型核磁気共鳴装置を用い、溶媒は重水素化オルトジクロロベンゼンとし、試料濃度は20mg/0.6mL、測定温度は120℃、観測核はH(400MHz)、シーケンスはシングルパルス、パルス幅は5.12μ秒(45°パルス)、繰り返し時間は7.0秒、積算回数は500回以上とする条件で行い得る。基準のケミカルシフトは、テトラメチルシランの水素を0ppmとするが、例えば、重水素化オルトジクロロベンゼンの残存水素由来のピークを7.10ppmとしてケミカルシフトの基準値とすることでも同様の結果が得られる。なお官能基含有化合物由来のHなどのピークは、常法によりアサインされる。
 13C NMR測定は、測定装置は日本電子(株)製ECP500型核磁気共鳴装置を用い、溶媒としてオルトジクロロベンゼン/重ベンゼン(80/20容量%)混合溶媒、測定温度は120℃、観測核は13C(125MHz)、シングルパルスプロトンデカップリング、45°パルス、繰り返し時間は5.5秒、積算回数は1万回以上、27.50ppmをケミカルシフトの基準値とする条件で行い得る。各種シグナルのアサインは常法を基にして行い、シグナル強度の積算値を基に定量することができる。
 一方、変性ポリオレフィン樹脂(B)の骨格部分は、ポリオレフィン由来の構造であることが好ましく、エチレン系重合体、プロピレン系重合体、およびブテン系重合体、ならびにこれらのオレフィンの共重合体などの、公知のオレフィン重合体であることが好ましい。上記オレフィン重合体の骨格部分は、エチレンと炭素数3以上のα-オレフィンとの共重合体(以下、単に「エチレン・α-オレフィン共重合体」ともいう。)であることがより好ましい。なお、オレフィン重合体は、少なくとも一部にバイオマス由来の原料を含む、バイオマス由来のオレフィン重合体であってもよい。
 上記炭素数3以上のα-オレフィンの例には、プロピレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、および1-デセンなどが含まれる。上記エチレン・α-オレフィン共重合体の具体例には、エチレン・プロピレン共重合体、エチレン・1-ブテン共重合体、エチレン・1-ヘキセン共重合体、エチレン・1-オクテン共重合体、エチレン・4-メチル-1-ペンテン共重合体などが含まれる。これらのうち、エチレン・プロピレン共重合体、エチレン・1-ブテン共重合体、エチレン・4-メチル-1-ペンテン共重合体、エチレン・1-ヘキセン共重合体、およびエチレン・1-オクテン共重合体が好ましい。
 上記エチレン・α-オレフィン共重合体は、エチレン・α-オレフィン共重合体に含まれる構造単位の総モル数を100モル%としたとき、エチレン由来の構造単位を70~99.5モル%の量で含有することが好ましく、80~99モル%の量で含有することがより好ましい。また、上記エチレン・α-オレフィン共重合体は、エチレン・α-オレフィン共重合体に含まれる構造単位の総モル数を100モル%としたとき、α-オレフィン由来の構造単位を0.5~30モル%の量で含有することが好ましく、1~25モル%の量で含有することがより好ましい。
 上記エチレン・α-オレフィン共重合体は、ASTM D1238による190℃、2.16kg荷重におけるメルトフローレート(MFR)が、0.01~20g/10分であることが好ましく、0.05~20g/10分であることがより好ましく、0.1~10g/10分であることがさらに好ましい。
 変性ポリオレフィン樹脂(B)は、たとえば、上述したようなオレフィン重合体と上記官能基を有する化合物とを、特定の比率で反応させることによって得ることができる。
 オレフィン重合体と反応させる官能基含有化合物の好ましい例には、不飽和カルボン酸またはその誘導体が含まれる。上記官能基含有化合物の具体的には、アクリル酸、メタクリル酸、α-エチルアクリル酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸、エンドシス-ビシクロ〔2,2,1〕ヘプト-5-エン-2,3-ジカルボン酸(ナジック酸〔商標〕)等の不飽和カルボン酸、およびこれらの酸ハライド、アミド、イミド、酸無水物、エステル等の誘導体などが含まれる。これらのうち、不飽和ジカルボン酸もしくはその酸無水物が好適であり、特にマレイン酸、ナジック酸(商標)、またはこれらの酸無水物が好適である。
 官能基含有化合物は、無水マレイン酸であることが好ましい。無水マレイン酸は、前述のオレフィン重合体との反応性が比較的高く、それ自身が重合等による大きな構造変化が少なく、基本構造として安定な傾向がある。このため、安定した品質の変性ポリオレフィン樹脂(B)を得られるなどの様々な優位点がある。
 エチレン・α-オレフィン共重合体を用いて変性ポリオレフィン樹脂(B)を得る方法の例には、エチレン・α-オレフィン共重合体を、官能基構造単位に対応する官能基含有化合物で、所謂グラフト変性する方法が含まれる。
 変性ポリオレフィン樹脂(B)の密度は、0.800~0.965g/cmであることが好ましく、0.820~0.950g/cmであることがより好ましく、0.850~0.920g/cmであることがさらに好ましい。
 さらに、変性ポリオレフィン樹脂(B)の135℃デカリン(デカヒドロナフタレン)溶液中で測定した極限粘度[η]は、1.0~4.5dl/gであることが好ましく、1.2~3dl/gであることが好ましい。[η]が上記の範囲内であれば、樹脂組成物の機械強度と射出流動性とを高いレベルで両立することが出来る。
 変性ポリオレフィン樹脂(B)の135℃、デカリン中の[η]は、常法に基づき、以下の様にして測定される。サンプル20mgをデカリン15mlに溶解し、ウベローデ粘度計を用い、135℃雰囲気にて比粘度(ηsp)を測定する。このデカリン溶液に更にデカリン5mlを加えて希釈後、同様の比粘度測定を行う。この希釈操作と粘度測定を更に2度繰り返した測定結果を基に、濃度(C)をゼロに外挿したときの「ηsp/C」値を極限粘度[η]とする。
 変性ポリオレフィン樹脂(B)のメルトフローレート(MFR、JIS K7210に準拠し、温度190℃、荷重21.2N荷重)は0.01~20g/10分であることが好ましく、0.05~20g/10分であることがより好ましく、0.1~10g/10分であることが更に好ましい。MFRが0.01g/10分未満の場合は流動性が悪く、20g/10分を超える場合は成形体の形状によっては衝撃強度が低くなる場合もある。
 変性ポリオレフィン樹脂(B)の含有量は、ポリアミド樹脂(A)および変性ポリオレフィン樹脂(B)の合計質量に対して、4.70質量%以上20.00質量%以下である。上記含有量が4.70質量%以上であると、金属樹脂接合体の初期および冷熱衝撃を繰り返し与えたときの気密性を高めることができる。上記含有量が20.00質量%以下であると、十分な量のポリアミド樹脂(A)を樹脂組成物中に配合して、ポリアミド樹脂による各種特性を十分に発揮させることができる。上記観点から、変性ポリオレフィン樹脂(B)の含有量は、4.70質量%以上12.50質量%以下であることが好ましく、4.70質量%以上8.00質量%以下であることがより好ましい。変性ポリオレフィン樹脂(B)の含有量を8.00質量%以下とすることで、樹脂組成物の成形加工性を高めるとともに、引張強度等の機械特性に優れる成形品を形成可能にできる。
 1-3.核剤(C)
 ポリアミド樹脂組成物は、ポリアミド樹脂(A)および変性ポリオレフィン樹脂(B)に加えて、核剤(C)を含有する。核剤(C)は、ポリアミド樹脂(A)の結晶化を促進し得る。核剤(C)は、樹脂部材の成形過程において金属部材の表面の凹部に含侵した樹脂組成物中のポリアミド樹脂(A)の結晶化を促進することで、樹脂部材の結晶性を高めることができる。それにより、金属部材と樹脂部材との接合強度を高めることができる。
 ポリアミド樹脂組成物がポリアミド樹脂(A)に加えて核剤(C)を含有すると、上述の通り、ポリアミド樹脂組成物を成形して得られる樹脂部材の結晶性が高まる。樹脂部材の結晶性が高くなると、樹脂部材の伸びは低くなる傾向にある。ところで、金属部材と樹脂部材とを接合させた金属樹脂接合体に温度変化を与えた場合、金属部材と樹脂部材の熱膨張係数(線膨張率)の違いに起因して、金属部材と樹脂部材との間の界面に応力が生じる。このとき、樹脂部材の伸びが低いと、金属部材と樹脂部材との間の界面で剥離が生じたり、圧縮応力によって樹脂部材にクラックが生じたりし得る。したがって、ポリアミド樹脂組成物がポリアミド樹脂(A)に加えて核剤(C)のみを含有する場合には、金属樹脂接合体の接合強度は向上するものの、その反面、冷熱衝撃を繰り返し与えたときの気密性は低下してしまう可能性があった。
 一方、本実施形態のポリアミド樹脂組成物は、ポリアミド樹脂(A)および核剤(C)に加えて変性ポリオレフィン樹脂(B)を含有する。上述の通り、変性ポリオレフィン樹脂(B)は、ポリアミド樹脂組成物の弾性率を下げて、樹脂部材に柔軟性を付与する。樹脂部材が柔軟になることで、冷熱衝撃を繰り返し与えたときの気密性をより良好に維持することができると考えられる。したがって、本実施形態のポリアミド樹脂組成物は、核剤(C)および変性ポリオレフィン樹脂(B)を含有することにより、高い接合強度と冷熱衝撃を繰り返し与えたときの気密性の維持を両立しうる、と考えられる。
 また、ポリアミド樹脂組成物がポリアミド樹脂(A)に加えて変性ポリオレフィン樹脂(B)を含有すると、上述の通り、ポリアミド樹脂組成物の結晶化速度が低下するとともに、成形後の樹脂部材に柔軟性が付与される。変性ポリオレフィン樹脂(B)の含有量を増加させると、成形後の樹脂部材の柔軟性がより高まり、その結果、冷熱衝撃を繰り返し与えたときの気密性をより一層良好に維持させることができるようになる。しかしその反面、ポリアミド樹脂組成物の結晶化速度の低下も促進され、成形後の樹脂部材の結晶性が低下し、金属部材と樹脂部材との接合強度が低下してしまう。このように、変性ポリオレフィン樹脂(B)添加系のポリアミド樹脂組成物においては、金属部材と樹脂部材との接合強度と、冷熱衝撃を繰り返し与えたときの気密性と、の間にはトレードオフの関係があり、その両立は困難であった。
 一方、本実施形態のポリアミド樹脂組成物は、ポリアミド樹脂(A)および変性ポリオレフィン樹脂(B)に加えて核剤(C)を含有する。本発明者らは、核剤(C)を添加することによって、上述のトレードオフの関係を打破できることを見いだした。すなわち、核剤(C)の添加によって、変性ポリオレフィン樹脂(B)を所定量以上含有するポリアミド樹脂組成物において、冷熱衝撃を繰り返し与えたときの高い気密性を維持したまま、金属部材と樹脂部材との接合強度を高めることができる。
 核剤の例には、リン酸-2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)ナトリウム、トリス(p-t-ブチル安息香酸)アルミニウム、およびステアリン酸塩などを含む金属塩系化合物、ビス(p-メチルベンジリデン)ソルビトール、およびビス(4-エチルベンジリデン)ソルビトールなどを含むソルビトール系化合物、ならびに、タルク、炭酸カルシウム、およびハイドロタルサイトなどを含む無機物などが含まれる。これらのうち、成形体の結晶化度をより高める観点から、タルクが好ましい。これらの核剤は、一種類を単独で用いてもよいし、二種類以上を組み合わせて用いてもよい。
 タルクは、一般的に、含水ケイ酸マグネシウム(SiO:58~64%、MgO:28~32%、Al:0.5~5%、Fe:0.3~5%)を主成分とする。タルクの平均粒子径は、特に制限されないが、1~15μmであることが好ましい。タルクの平均粒子径が上記範囲内であると、ポリアミド樹脂組成物の流動性を損なうことなく、タルクをポリアミド樹脂(A)中に分散させやすい。同様の観点から、タルクの平均粒子径は、1~7.5μmであることがより好ましい。タルクの平均粒子径は、レーザー回折法、例えば(株)島津製作所製の島津粒度分布測定器SALD-2000A型を用いたレーザー回折法により測定できる。
 核剤の含有量は、ポリアミド樹脂組成物の全質量に対して、0.10質量部以上5.00質量部以下であることが好ましく、0.10質量部以上3.00質量部以下であることがより好ましい。核剤の含有量が上記範囲内であると、成形体の結晶化度を十分に高めやすく、十分な機械的強度が得られやすい。
 1-4.その他の成分
 ポリアミド樹脂組成物は、公知の他の成分を含んでもよい。
 他の成分の例には、滑剤、着色剤、強化材、耐熱安定剤、耐腐食性向上剤、ドリップ防止剤、イオン捕捉剤、エラストマー(ゴム)、帯電防止剤、離型剤、酸化防止剤(フェノール類、アミン類、イオウ類およびリン類など)、上記以外の耐熱安定剤(ラクトン化合物、ビタミンE類、ハイドロキノン類など)、光安定剤(ベンゾトリアゾール類、トリアジン類、ベンゾフェノン類、ベンゾエート類、ヒンダードアミン類およびオギザニリド類など)、他の重合体(ポリオレフィン類、エチレン・プロピレン共重合体、エチレン・1-ブテン共重合体などのオレフィン共重合体、プロピレン・1-ブテン共重合体などのオレフィン共重合体、ポリスチレン、ポリアミド、ポリカーボネート、ポリアセタール、ポリスルフォン、ポリフェニレンオキシド、フッ素樹脂、シリコーン樹脂およびLCPなど)などが含まれる。中でも、樹脂部材を構成するポリアミド樹脂組成物は、成形体の機械的強度を高める観点からは、強化材をさらに含むことが好ましい。
 1-4-1.滑剤
 滑剤は、ポリアミド樹脂組成物の射出流動性を高め、かつ、得られる成形体の外観を良好にする。滑剤は、オキシカルボン酸金属塩および高級脂肪酸金属塩などの脂肪酸金属塩とすることができる。
 上記オキシカルボン酸金属塩を構成するオキシカルボン酸は、脂肪族オキシカルボン酸であってもよく、芳香族オキシカルボン酸であってもよい。上記脂肪族オキシカルボン酸の例には、α-ヒドロキシミリスチン酸、α-ヒドロキシパルミチン酸、α-ヒドロキシステアリン酸、α-ヒドロキシエイコサン酸、α-ヒドロキシドコサン酸、α-ヒドロキシテトラエイコサン酸、α-ヒドロキシヘキサエイコサン酸、α-ヒドロキシオクタエイコサン酸、α-ヒドロキシトリアコンタン酸、β-ヒドロキシミリスチン酸、10-ヒドロキシデカン酸、15-ヒドロキシペンタデカン酸、16-ヒドロキシヘキサデカン酸、12-ヒドロキシステアリン酸、およびリシノール酸などの炭素原子数10以上30以下の脂肪族のオキシカルボン酸が含まれる。上記芳香族オキシカルボン酸の例には、サリチル酸、m-オキシ安息香酸、p-オキシ安息香酸、没食子酸、マンデル酸、およびトロバ酸などが含まれる。
 上記オキシカルボン酸金属塩を構成する金属の例には、リチウムなどのアルカリ金属、ならびにマグネシウム、カルシウムおよびバリウムなどのアルカリ土類金属が含まれる。
 これらのうち、上記オキシカルボン酸金属塩は、12-ヒドロキシステアリン酸の金属塩であることが好ましく、12-ヒドロキシステアリン酸マグネシウムおよび12-ヒドロキシステアリン酸カルシウムがより好ましい。
 上記高級脂肪酸金属塩を構成する高級脂肪酸の例は、ステアリン酸、オレイン酸、ベヘニン酸、ベヘン酸、およびモンタン酸などの炭素原子数15以上30以下の高級脂肪酸が含まれる。
 上記高級脂肪酸金属塩を構成する金属の例には、カルシウム、マグネシウム、バリウム、リチウム、アルミニウム、亜鉛、ナトリウム、およびカリウムなどが含まれる。
 これらのうち、上記高級脂肪酸金属塩は、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸バリウム、ベヘン酸カルシウム、モンタン酸ナトリウム、およびモンタン酸カルシウムなどであることが好ましい。
 滑剤の含有量は、ポリアミド樹脂組成物の全質量に対して、0.01質量%以上1.30質量%以下であることが好ましい。滑剤の含有量が0.01質量%以上であると、成形時の流動性が高まりやすく、得られる成形品の外観性が高まりやすい。滑剤の含有量が1.30質量%以下であると、滑剤の分解によるガスが成形時に発生し難く、製品の外観が良好になりやすい。
 1-4-2.着色剤
 着色剤は、成形体に所望の色調を付与する。着色剤は、特に制限されないが、顔料でありうる。顔料の例には、カーボンブラック、アルミナ、酸化チタン、酸化クロム、酸化鉄、酸化亜鉛、硫酸バリウムなどの無機顔料や、アゾ系顔料、フタロシアニン系顔料、キナクリドン系顔料、ペリレン系顔料、アントラキノン系顔料、チオインジゴ系顔料、インダンスレン系顔料などの有機顔料が含まれる。
 着色剤の含有量は、ポリアミド樹脂組成物の全質量に対して、0.01質量%以上5.00質量%以下であることが好ましく、0.10質量%以上2.00質量%以下であることがより好ましい。
 1-4-3.強化材
 強化材は、ポリアミド樹脂組成物に高い機械的強度を付与しうる。強化材は、無機フィラーであってもよい。強化材の例には、ガラス繊維、ワラストナイト、チタン酸カリウムウィスカー、炭酸カルシウムウィスカー、ホウ酸アルミニウムウィスカー、硫酸マグネシウムウィスカー、酸化亜鉛ウィスカー、ミルドファイバーおよびカットファイバーなどの繊維状強化材、ならびに粒状強化材が含まれる。これらのうち、1種を単独で用いても、2種以上を併用してもよい。中でも、成形体の機械的強度を高めやすいことなどから、ワラストナイト、ガラス繊維、チタン酸カリウムウィスカーが好ましく、ワラストナイトまたはガラス繊維がより好ましい。
 繊維状強化材の平均繊維長は、ポリアミド樹脂組成物の成形性、および得られる成形体の機械的強度や耐熱性の観点から、例えば1μm以上20mm以下、好ましくは5μm以上10mm以下としうる。また、繊維状強化材のアスペクト比は、例えば5以上2000以下、好ましくは30以上600以下としうる。
 繊維状強化材の平均繊維長と平均繊維径は、以下の方法により測定することができる。
 1)ポリアミド樹脂組成物を、ヘキサフルオロイソプロパノール/クロロホルム溶液(0.1/0.9体積%)に溶解させた後、濾過して得られる濾過物を採取する。
 2)前記1)で得られた濾過物を水に分散させ、光学顕微鏡(倍率:50倍)で任意の300本それぞれの繊維長(Li)と繊維径(di)を計測する。繊維長がLiである繊維の本数をqiとし、次式に基づいて重量平均長さ(Lw)を算出し、これを繊維状強化材の平均繊維長とする。
 重量平均長さ(Lw)=(Σqi×Li)/(Σqi×Li)
 同様に、繊維径がDiである繊維の本数をriとし、次式に基づいて重量平均径(Dw)を算出し、これを繊維状強化材の平均繊維径とする。
 重量平均径(Dw)=(Σri×Di)/(Σri×Di)
 強化材の含有量は、特に制限されないが、ポリアミド樹脂組成物の全質量に対して、例えば15質量%以上70質量%以下とすることができる。なお、強化材の添加によりポリアミド樹脂組成物が流動性や弾性率することによる、初期の気密性および冷熱衝撃を繰り返し与えた後の気密性の維持率の低下を抑制する観点からは、強化材の含有量は、ポリアミド樹脂組成物の全質量に対して15質量%以上50質量%以下とすることが好ましい。ただし、強化材を多く添加したときでも、ポリアミド樹脂(A)の量や変性ポリオレフィン樹脂(B)の量を調整することで、初期の気密性および冷熱衝撃を繰り返し与えた後の気密性の維持率を十分に高めることは可能である。
 1-4-4.耐熱安定剤
 耐熱安定剤は、樹脂部材の成形時におけるポリアミド樹脂組成物の流動性を向上させることができる。これにより、金属部材の表面の凹凸に沿って十分に樹脂部材を構成するポリアミド樹脂組成物を流動させて、上記凹凸にポリアミド樹脂組成物を十分に密着させることができる。そのため、耐熱安定剤は、金属部材と樹脂部材の接合強度をより高め、かつ気密性をより高めることができると考えられる。
 耐熱安定剤は、(i)ハロゲンと元素周期律表の1族又は2族金属元素との塩(ハロゲン金属塩)と、(ii)銅化合物とを含み、必要に応じて(iii)高級脂肪酸金属塩をさらに含みうる。
 (i)ハロゲン金属塩の例には、ヨウ化カリウム、臭化カリウム、塩化カリウム、ヨウ化ナトリウム及び塩化ナトリウムが含まれる。中でも、ヨウ化カリウム及び臭化カリウムが好ましい。ハロゲン金属塩は、1種類のみ含まれてもよいし、2種類以上が含まれてもよい。
 (ii)銅化合物の例には、銅のハロゲン化物、銅の塩(硫酸塩、酢酸塩、プロピオオン酸塩、安息香酸塩、アジピン酸塩、テレフタル酸塩、サルチル酸塩、ニコチン酸塩およびステアリン酸塩など)、ならびに銅のキレート化合物(銅とエチレンジアミン又はエチレンジアミン四酢酸等との化合物)が含まれる。中でも、ヨウ化銅、臭化第一銅、臭化第二銅、塩化第一銅、および酢酸銅が好ましい。銅化合物は、1種類のみ含まれてもよいし、2種類以上が含まれてもよい。
 (i)ハロゲン金属塩と(ii)銅化合物との含有質量比は、成形体の耐熱性や製造時の腐食性を改善しやすくする観点から、ハロゲンと銅とのモル比が、0.1/1~200/1、好ましくは0.5/1~100/1、より好ましくは2/1~40/1となるように調整されうる。
 (iii)高級脂肪酸金属塩の例には、高級飽和脂肪酸金属塩及び高級不飽和脂肪酸金属塩が含まれる。
 高級飽和脂肪酸金属塩は、炭素原子数6~22の飽和脂肪酸と、元素周期律表の1、2、3族元素、亜鉛、及びアルミニウム等の金属元素(M1)との金属塩であることが好ましい。そのような高級飽和脂肪酸金属塩は、下記式(1)で示される。
   CH(CHCOO(M1)...(1)
 (式(1)中、金属元素(M1)は、元素周期律表の1、2、3族元素、亜鉛又はアルミニウムであり、nは、8~30でありうる。)
 高級飽和脂肪酸金属塩の例には、カプリン酸、ウラデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸のリチウム塩、ナトリウム塩、マグネシウム塩、カルシウム塩、亜鉛塩及びアルミニウム塩が含まれる。
 高級不飽和脂肪酸金属塩は、炭素原子数6~22の不飽和脂肪酸と、元素周期律表の1、2、3族元素、亜鉛、及びアルミニウム等の金属元素(M1)との金属塩であることが好ましい。
 高級不飽和脂肪酸金属塩の例には、ウンデシレン酸、オレイン酸、エライジン酸、セトレイン酸、エルカ酸、ブラシジン酸、ソルビル酸、リノール酸、リノレン酸、アラキドン酸、ステアロール酸、2-ヘキサデセン酸、7-ヘキサデセン酸、9-ヘキサデセン酸、ガドレイン酸、ガドエライジン酸、11-エイコセン酸のリチウム塩、ナトリウム塩、マグネシウム塩、カルシウム塩、亜鉛塩及びアルミニウム塩が含まれる。
 銅系の耐熱安定剤の例には、10質量%のヨウ化銅(I)と90質量%のヨウ化カリウムの混合物や、14.3質量%のヨウ化銅(I)と85.7質量%のヨウ化カリウム/ジステアリン酸カルシウム(98:2質量比)との混合物等が含まれる。
 なお、本発明者らの知見によると、銅系の耐熱安定剤は、冷熱衝撃を繰り返し与えられたときにガスを発生することがあり、これにより気密性の維持率を低下させることがある。この冷熱衝撃を繰り返し与えられたときの気密性の低下を抑制する観点から、銅系の耐熱安定剤の含有量は、ポリアミド樹脂組成物の全質量に対して0.30質量%以下とすることが好ましく、0.10質量%以下であることがより好ましく、0.01質量%未満であることがより好ましい。
 1-5.製造方法
 ポリアミド樹脂組成物は、前述のポリアミド樹脂、および必要に応じて他の成分を、公知の樹脂混練方法、例えばヘンシェルミキサー、Vブレンダー、リボンブレンダー、またはタンブラーブレンダーで混合する方法、あるいは混合後、さらに一軸押出機、多軸押出機、ニーダー、またはバンバリーミキサーで溶融混練した後、造粒または粉砕する方法で製造することができる。
 2.金属樹脂接合体
 本発明の第2の実施形態は、上述したポリアミド樹脂組成物を含む樹脂部材が金属部材の表面に接合した、金属樹脂接合体に関する。
 2-1.樹脂部材
 樹脂部材は、上述したポリアミド樹脂組成物を含む。樹脂部材の全質量に対し上記ポリアミド樹脂組成物が占める割合は、50.00質量%以上であることが好ましく、60.00質量%以上であることがより好ましく、70.00質量%以上であることがさらに好ましい。樹脂部材の全質量に対し上記ポリアミド樹脂組成物が占める割合の上限は特に限定されないが、100.00質量%以下とすることができ、90.00質量%以下であってもよく、80.00質量%以下であってもよい。
 2-2.金属部材
 金属部材は、金属製の部材であれば、その材料および形状は特に限定されない。たとえば、金属部材の材料は、鉄、銅、ニッケル、金、銀、プラチナ、コバルト、亜鉛、鉛、スズ、チタン、クロム、アルミニウム、マグネシウム、およびマンガンや、ステンレス、真鍮、およびリン青銅などの合金とすることができる。
 これらの材料は、金属樹脂接合体の用途に応じて選択することができる。たとえば、熱伝導性が要求されるときは、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、銅および銅合金が好ましく、銅および銅合金がより好ましい。また、軽量化および強度確保が要求されるときは、アルミニウム、アルミニウム合金、マグネシウム、およびマグネシウム合金が好ましい。
 上記金属部材は、表面が粗面化処理されていることが好ましい。粗面化処理の方法は特に限定されず、塩基または酸を含む処理液への浸漬やエッチングなどの化学的な処理や、レーザーまたはブラストなどの物理的な処理により、表面が粗面化されればよい。
 粗面化された金属部材の表面は、粗面化処理により形成された複数の凸部の中心間距離(ピッチ)が、5nm以上500μm以下であることが好ましい。複数の凸部の中心間距離が5nm以上であると、凸部同士の間の凹部が適度に大きいため、接合時に樹脂部材を当該凹部に十分に浸入させやすく、金属部材と樹脂部材との接合強度をより向上させることができる。また、複数の凸部の中心間距離が500μm以下であると、当該凹部が大きくなりすぎないため、金属樹脂接合体の金属-樹脂界面に隙間が生じるのをより抑制し、気密性をより高めることができる。同様の観点から、複数の凸部の中心間距離は、5μm以上250μm以下であることがより好ましい。複数の凸部の中心間距離は、一の凸部の中心とそれと隣接する凸部の中心との間の距離の平均値である。
 複数の凸部の中心間距離は、金属樹脂接合体から樹脂部材を機械的剥離、溶剤洗浄などにより除去し、露出した金属部材の表面を、電子顕微鏡またはレーザー顕微鏡観察、あるいは表面粗さ測定装置を用いて観察して測定することができる。
 具体的には、複数の凸部の中心間距離が0.5μm未満であるときは、電子顕微鏡により観察することが可能であり、複数の凸部の中心間距離が0.5μm以上であるときは、レーザー顕微鏡または表面粗さ測定装置により観察することができる。例えば、金属部材の表面を電子顕微鏡またはレーザー顕微鏡で撮影した写真において、任意の凸部を50個選択し、それらの凸部の中心間距離をそれぞれ測定する。そして、凸部の中心間距離の全ての測定値を積算した後、50で除したもの(平均したもの)を「複数の凸部の中心間距離」とする。
 金属部材の粗面化処理された表面の、評価長さ4mmにおける十点平均粗さ(Rz)の平均値は、特に制限されないが、2μmを超えることが好ましく、2μmより大きく50μm以下であることがより好ましく、2.5μmより大きく45μm以下であることがさらに好ましい。
 十点平均粗さ(Rz)の平均値は、JIS B0601(ISO 4287)に準拠して測定することができる。具体的には、互いに平行な任意の3つの直線部と、それらと直交する任意の3つの直線部の合計6つの直線部上の十点平均粗さ(Rz)を測定し、これらの平均値をRzの平均値とする。
 金属部材の粗面化処理された表面の、粗さ曲線要素の平均長さ(RSm)は、0.5μm以上500μm以下であることが好ましい。特に、接合強度をより高める観点からは、複数の凸部の中心間距離が0.5μm未満であり、かつ、粗さ曲線要素の平均長さ(RSm)が0.5μm以上500μm以下であることが好ましい。粗さ曲線要素の平均長さも、前述と同様、JIS B0601(ISO 4287)により測定することができる。
 3.金属樹脂接合体の製造方法
 本発明の第2の実施形態は、上述した金属樹脂複合構造体の製造方法に関する。金属樹脂複合構造体の製造方法は、特に制限されないが、例えば、(1)金属部材を用意する工程と、(2)上記金属部材の表面に、溶融したポリアミド樹脂組成物を接触させる工程と、(3)接触させたポリアミド樹脂組成物を冷却する工程と、を有する。上記(1)金属部材を用意する工程は、金属部材の表面を粗面化処理する工程を含んでいてもよい。
 3-1.金属部材の用意
 まず、上述した金属部材を用意する。このとき、金属部材の少なくとも一部の表面を粗面化処理してもよいし、少なくとも一部の表面に凹凸構造を有する金属部材を用意してもよい。
 金属部材の表面を粗面化処理する方法は、特に制限されない。たとえば、レーザー加工を用いる方法、NaOH等の無機塩基水溶液またはHClもしくはHNOなどの無機酸水溶液に金属部材を浸漬する方法、陽極酸化法により金属部材を処理する方法、酸系エッチング剤(好ましくは、無機酸、第二鉄イオン、第二銅イオンおよび必要に応じてマンガンイオンや塩化アルミニウム六水和物、塩化ナトリウムなどを含む酸系エッチング剤水溶液)によってエッチングする置換晶析法、水和ヒドラジン、アンモニアおよび水溶性アミン化合物などの水溶液に金属部材を浸漬する方法、ならびに、温水処理法などを用いることができる。
 3-2.樹脂部材の接合
 次に、軟化または溶融したポリアミド樹脂組成物を、上記用意された金属部材の表面(好ましくは粗面化処理された表面)に接触させる。
 接触の方法は特に限定されず、射出成型(インサート成形)等の公知の方法で行えばよい。たとえば、上記用意された金属部材を、射出成型金型内のキャビティ部(空間部)に配置する。そして、上記ポリアミド樹脂組成物の少なくとも一部が、金属部材の粗面化処理された表面と接するように、金型のキャビティ部にポリアミド樹脂組成物を射出する。これにより、射出された溶融しているポリアミド樹脂組成物が、金属部材の表面に接触する。このときの射出成形金型の温度は、ポリアミド樹脂組成物を射出成形に適した状態に溶融させうる温度であればよく、特に制限されないが、例えば100~350℃としうる。
 金型としては、公知の射出成形金型、例えば高速ヒートサイクル成形(RHCM、ヒート&クール成形)用金型や発泡成形用コアバック金型を用いることができる。
 3-3.冷却
 その後、金属部材の表面に接触したポリアミド樹脂組成物を冷却させて固化させることで、ポリアミド樹脂組成物を含む樹脂部材が金属部材の表面に接合した金属樹脂接合体を得ることができる。
 4.用途
 上述した金属樹脂接合体は、金属樹脂接合体が応用されている、あるいは応用が検討されている各種用途に好適に用いられる。
 上記用途の例には、車両用構造部品、車両搭載用品、電子機器の筐体、家電機器の筐体、構造用部品、機械部品、種々の自動車用部品、電子機器用部品、家具、台所用品等の家財向け用途、医療機器、建築資材の部品、その他の構造用部品、および外装用部品などが含まれる。
 より具体的には、上記用途の例には、車両関係では、インスツルメントパネル、コンソールボックス、ドアノブ、ドアトリム、シフトレバー、ペダル類、グローブボックス、バンパー、ボンネット、フェンダー、トランク、ドア、ルーフ、ピラー、座席シート、ステアリングホイール、バスバー、端子、モータ、電力変換装置(インバータ、コンバータ)、ECUボックス、電装部品、エンジン周辺部品、駆動系・ギア周辺部品、吸気・排気系部品、および冷却系部品などが含まれる。また、精密電子部品類として、コネクタ、リレー、ギアなどが含まれる。
 また、上記金属樹脂接合体は、銅部材の高い熱伝導率と、樹脂部材の断熱的性質とを組み合わせ、ヒートマネージメントを最適に設計する機器に使用される部品用途、例えば、各種家電にも用いることができる。上記用途の例には、冷蔵庫、洗濯機、掃除機、電子レンジ、エアコン、照明機器、電気湯沸かし器、テレビ、時計、換気扇、プロジェクター、スピーカー等の家電製品類、パソコン、携帯電話、スマートフォン、デジタルカメラ、タブレット型PC、携帯音楽プレーヤー、携帯ゲーム機、充電器、および電池等電子情報機器などが含まれる。
 その他の用途の例には、リチウムイオン2次電池用部品、およびロボットなどが含まれる。
 たとえば、上記金属樹脂接合体は、自動車などの移動体(車両)のバスバーユニットに用いることができる。
 図1は、バスバーユニットとしての上記金属樹脂接合体の例示的な形態を示す模式図である。バスバーユニット100は、導電性の金属部材(たとえば銅製の金属部材)である、電流を各部材に供給するための導体であるバスバー110と、上述した樹脂部材である、バスバー110を保護する保護部材としての保持部材120と、を有する。
 そして、金属部材であるバスバー110の表面のうち、保持部材120と接する表面は粗面化処理されており、当該粗面化処理された表面に樹脂部材(ポリアミド樹脂組成物の成形体を含む樹脂部材)である保持部材120が接合している。
 バスバーユニット100は、移動体のモータと、上記モータに供給される電力を制御するインバータと、をバスバー110により電気的に接続するために用いることができる。
 図2は、バスバーユニット100を有する移動体(車両)の例示的な構成を示す構成図である。移動体200は、機体210と、機体210を駆動するための電力を供給する二次電池などの電源220と、電源220から供給される電力により機体210を駆動する駆動ユニット230と、を有する。
 駆動ユニット230は、電源220からの電力(電流)を制御するインバータ232と、インバータ232により制御された電力を供給されて回転するモータ234と、インバータ232とモータ234と接続するバスバー110を有するバスバーユニット100と、を有する。モータ234は、モータ234により得られる回転速度を、機体210を駆動するための回転速度に変換する減速機235とともに、モータケース236に収容されている。バスバーユニット100は、モータケース236に取り付けられており、バスバーユニット100を介して、モータケース236の内部から外部へとバスバー110が連通する。
 なお、モータケース236の内部には、モータ234を冷却する冷却液(クーラントオイル)が貯留されている。また、バスバーユニット100とモータケース236の接続部では、Oリングなどの封止部材により気密処理がされており、これによりモータケース236の内部から外部へのオイルの漏出が防がれている。
 ところで、従来のバスバーユニットでは、モータ234の熱による冷熱衝撃が繰り返し与えたときに、バスバーと樹脂製の保護部材との気密性が低下して、バスバーと保護部材との間からオイルが漏出することがあった。これに対し、本実施形態では、上述したポリアミド樹脂組成物の成形体を含む樹脂部材からなる保持部材120を、導電性の金属部材(たとえば銅製の金属部材)であるバスバー110に接合しているので、モータ234の熱による冷熱衝撃が繰り返し与えられても、気密性の維持率が高く、オイルの漏出を長期にわたって抑制することができる。
 なお、図2では移動体200が自動車などの車両である例を示しているが、移動体200は、機体と駆動ユニットを備えて移動可能である物体であれば特に限定されない。たとえば、自動車、バイクおよび電気自転車などの車両のほか、鉄道車両、船舶、航空機、ドローン、ロボットなどを移動体200としてもよい。
 以下において、実施例を参照して本発明を説明する。実施例によって、本発明の範囲は限定して解釈されない。
 なお、以下の実験において、各樹脂の物性は、以下の方法により測定した。
 (融点(Tm)、ガラス転移温度(Tg))
 ポリアミド樹脂の融点(Tm)、およびガラス転移温度(Tg)は、示差走査熱量測定(DSC220C型、セイコーインスツル社製)を用いて測定した。具体的には、約5mgのポリアミド樹脂を測定用アルミニウムパン中に密封し、示差走査熱量測定にセットした。そして、室温から10℃/minで350℃まで加熱した。当該樹脂を完全融解させるために、350℃で3分間保持し、次いで、10℃/minで30℃まで冷却した。30℃で5分間置いた後、10℃/minで350℃まで2度目の加熱を行った。この2度目の加熱における吸熱ピークの温度(℃)をポリアミド樹脂の融点(Tm)とし、ガラス転移に相当する変位点をガラス転移温度(Tg)とした。
 (融解熱量(ΔH))
 ポリアミド樹脂の融解熱量(ΔH)は、JIS K 7122(2012年)に準じて、1回目の昇温過程での結晶化の発熱ピークの面積から求めた。
 (極限粘度[η])
 ポリアミド樹脂の極限粘度[η]は、ポリアミド樹脂0.5gを96.5%硫酸溶液50mlに溶解させ、得られた溶液の、25℃±0.05℃の条件下での流下秒数を、ウベローデ粘度計を使用して測定し、「数式:[η]=ηSP/(C(1+0.205ηSP))」に基づき算出した。
 [η]:極限粘度(dl/g)
 ηSP:比粘度
 C:試料濃度(g/dl)
 t:試料溶液の流下秒数(秒)
 t0:ブランク硫酸の流下秒数(秒)
 ηSP=(t-t0)/t0
 (組成)
 変性ポリオレフィン樹脂の組成、具体的にはエチレンおよび炭素数3以上のα-オレフィンの含有率(モル%)、ならびに官能基構造単位の含有率(質量%)は、13C-NMRにより測定した。測定条件は、以下の通りである。
 測定装置:核磁気共鳴装置(ECP500型、日本電子(株)製)
 観測核:13C(125MHz)
 シーケンス:シングルパルスプロトンデカップリング
 パルス幅:4.7μ秒(45°パルス)
 繰り返し時間:5.5秒
 積算回数:1万回以上
 溶媒:オルトジクロロベンゼン/重水素化ベンゼン(容量比:80/20)混合溶媒
 試料濃度:55mg/0.6mL
 測定温度:120℃
 ケミカルシフトの基準値:27.50ppm
 (密度)
 変性ポリオレフィン樹脂の密度は、JIS K7112に準拠して密度勾配管を用いて温度23℃で測定した。
 (メルトフローレート(MFR))
 変性ポリオレフィン樹脂のメルトフローレート(MFR:Melt Flow Rate)は、ASTM D1238に準拠し、190℃で2.16kgの荷重にて測定した。単位は、g/10minである。
 (融点)
 変性ポリオレフィン樹脂の融点は、示差走査熱量測定(DSC)により測定した。
 1.材料の合成/用意
 1-1.ポリアミド樹脂(A)の合成
 1-1-1.ポリアミド樹脂(A-1)
 1,6-ヘキサンジアミン2800g(24.1モル)、テレフタル酸2774g(16.7モル)、イソフタル酸1196g(7.2モル)、安息香酸36.6g(0.30モル)、次亜リン酸ナトリウム一水和物5.7gおよび蒸留水545gを内容量13.6Lのオートクレーブに入れ、窒素置換した。190℃から攪拌を開始し、3時間かけて内部温度を250℃まで昇温させた。このとき、オートクレーブの内圧を3.03MPaまで昇圧させた。このまま1時間反応を続けた後、オートクレーブ下部に設置したスプレーノズルから大気放出して、低次縮合物を抜き出した。その後、この低縮合物を室温まで冷却後、低次縮合物を粉砕機で1.5mm以下の粒径まで粉砕し、110℃で24時間乾燥させた。得られた低次縮合物の水分量は4100ppm、極限粘度[η]は0.15dl/gであった。
 次に、この低次縮合物を棚段式固相重合装置に入れ、窒素置換後、約1時間30分かけて180℃まで昇温させた。その後、1時間30分反応させて、室温まで降温させた。得られたプレポリマーの極限粘度[η]は、0.20dl/gであった。
 その後、得られたプレポリマーを、スクリュー径30mm、L/D=36の二軸押出機にて、バレル設定温度を330℃、スクリュー回転数200rpm、6kg/hの樹脂供給速度で溶融重合させて、ポリアミド樹脂(A-1)を得た。
 得られたポリアミド樹脂(A-1)の極限粘度は1.0dl/g、融点(Tm)は330℃、ガラス転移温度(Tg)は125℃、融解熱量(ΔH)は50J/gであった。
 1-1-2.ポリアミド樹脂(A-2)
 原料を、テレフタル酸2184g(13.1モル)、1,6-ヘキサンジアミン2800g(24.1モル)、アジピン酸1572g(10.8モル)に変えたこと以外はポリアミド樹脂(A-1)の合成と同様にして、ポリアミド樹脂(A-2)を得た。
 得られたポリアミド樹脂(A-2)の極限粘度[η]は0.8dl/g、融点(Tm)は310℃、ガラス転移温度(Tg)は85℃、融解熱量(ΔH)は50J/gであった。
 1-1-3.ポリアミド樹脂(A-3)
 原料を、テレフタル酸1720g(10.4モル)、1,6-ヘキサンジアミン2800g(24.1モル)、アジピン酸1849g(12.7モル)に変えたこと以外はポリアミド樹脂(A-1)の合成と同様にして、ポリアミド樹脂(A-3)を得た。
 得られたポリアミド樹脂(A-3)の極限粘度[η]は0.9dl/g、融点(Tm)は295℃、ガラス転移温度(Tg)は75℃、融解熱量(ΔH)は60J/gであった。
 1-1-4.ポリアミド樹脂(A-4)
 原料を、テレフタル酸3655g(22.0モル)、1,6-ジアミノヘキサン1312g(11.3モル)、2-メチル-1,5-ジアミノペンタン1312g(11.3モル)に変えたこと以外はポリアミド樹脂(A-1)の合成と同様にして、ポリアミド樹脂(A-4)を得た。
 得られたポリアミド樹脂(A-4)の極限粘度[η]は0.9dl/g、融点(Tm)は300℃、ガラス転移温度(Tg)は140℃、融解熱量(ΔH)は40J/gであった。
 1-1-5.ポリアミド樹脂(A-5)
 宇部興産株式会社製、UBESTA 3014Bをポリアミド樹脂(A-5)として使用した。
 このポリアミド樹脂(A-5)の極限粘度[η]は0.54dl/g、融点(Tm)は180℃、ガラス転移温度(Tg)は50℃、融解熱量(ΔH)は60J/gであった。
 1-1-6.ポリアミド樹脂(A-6)
 原料を、イソフタル酸2774g(16.7モル)、1,6-ジアミノヘキサン2800g(24.1モル)、テレフタル酸1196g(7.2モル)に変えたこと以外はポリアミド樹脂(A-1)の合成と同様にして、ポリアミド樹脂(A-6)を得た。
 得られたポリアミド樹脂(A-6)の極限粘度[η]は0.54dl/g、融点(Tm)は測定されず、ガラス転移温度(Tg)は125℃、融解熱量(ΔH)は0J/gであった。
 1-2.変性ポリオレフィン樹脂(B)の合成
 十分に窒素置換したガラス製フラスコに、ビス(1,3-ジメチルシクロペンタジエニル)ジルコニウムジクロリドを0.63mg入れ、さらにメチルアミノキサンのトルエン溶液(Al;0.13ミリモル/リットル)1.57ml、およびトルエン2.43mlを添加することにより、触媒溶液を得た。次に、十分に窒素置換した内容積2リットルのステンレス製オートクレーブに、ヘキサン912ml、および1-ブテン320mlを導入し、系内の温度を80℃に昇温した。引き続き、トリイソブチルアルミニウム0.9ミリモルおよび上記で調製した触媒溶液2.0ml(Zrとして0.0005ミリモル)をエチレンで系内に圧入し、重合反応を開始させた。エチレンを連続的に供給することにより全圧を8.0kg/cm2-Gに保ち、80℃で30分間重合を行った。少量のエタノールを系中に導入して重合を停止させた後、未反応のエチレンをパージした。得られた溶液を大過剰のメタノール中に投下することにより白色固体を析出させた。この白色固体をろ過により回収し、減圧下で一晩乾燥し、白色固体(エチレン・1-ブテン共重合体)を得た。
 上記エチレン・1-ブテン共重合体のエチレン含有量は81モル%であった。また、密度は0.860g/cmであり、MFR(ASTM D 1238、190℃、2.16kg荷重)は0.5g/10分であり、融点は35℃であった。
 得られたエチレン・1-ブテン共重合体100質量部に、無水マレイン酸1.0質量部と過酸化物(パーヘキシン25B,日本油脂社製、商標)0.04質量部とを混合した。得られた混合物を230℃に設定した2軸押出機で溶融グラフト変性することによって、変性ポリオレフィン樹脂(B)を得た。
 変性ポリオレフィン樹脂(B)の無水マレイン酸グラフト量は、0.8質量%であった。また、密度は0866g/cmであり、MFR(ASTM D 1238、190℃、2.16kg荷重)は0.27g/10分であり、融点(Tm)は35℃であった。
 1-3.その他の成分
 1-3-1.核剤(C)
 タルク(平均粒子径6μm)を核剤として用いた。
 1-3-2.滑剤
 モンタン酸ナトリウムを滑剤として使用した。
 1-3-3.着色剤
 顔料を含むマスターバッチを着色剤として用いた。
 1-3-4.強化材
 ガラス繊維(オーウェンス・コーニング社製、FT2A)を強化材として用いた。
 1-3-5.銅系の耐熱安定剤
 10質量%のヨウ化銅(I)と90質量%のヨウ化カリウムの混合物を銅系の耐熱安定剤として用いた。
 2.金属樹脂接合体の作製
 2-1.ポリアミド樹脂組成物の調製
 上記の材料を、表1に示す組成比(単位は質量部)でタンブラーブレンダーにて混合し、30mmφのベント式二軸スクリュー押出機を用いて300~335℃のシリンダー温度条件で溶融混練した。その後、混練物をストランド状に押出し、水槽で冷却させた。その後、ペレタイザーでストランドを引き取り、カットすることでペレット状のポリアミド樹脂組成物を得た。
 2-2.粗面化処理された銅部材の作製
 JIS H3100:2012に規定された合金番号C1100の銅合金板(厚み2mm)を長さ45mm、幅18mmに切断して、銅部材を作製した。脱脂後の上記銅部材を、化学エッチング剤(メック株式会社製、アマルファA-10201H)への浸漬、水洗、化学エッチング剤への浸漬をこの順に実施した。その直後に、化学エッチング剤に同部材を4分間浸漬した。次に、水洗、アルカリ洗浄(5質量% NAOH、20秒浸漬)、水洗、中和処理(5質量% HSO、20秒浸漬)、水洗、防錆処理(A-10290、1分)及び水洗をこの順で行った。
 2-3.金属樹脂接合体の作製
 粗面化処理を行った銅部材を、射出成形機(株式会社日本製鋼所製、J55-AD)に装着された小型ダンベル金属インサート金型内に設置した。次いで、金型内に上記各種ポリアミド樹脂組成物を、シリンダー温度335℃、金型温度170℃、一次射出圧90MPa、保圧80MPa、射出速度25mm/秒の条件にて射出成形して、銅部材の表面にポリアミド樹脂製の樹脂部材が接合した試験片を作製した。この試験片の銅部材と樹脂部材との接合面積は、50mmであった。
 3.評価
 得られた金属樹脂接合体を、以下の基準で評価した。
 3-1.気密性(初期)
 作製した試験片のヘリウムのリーク性を、ISO19095に準拠した方法で評価した。具体的には、上記試験片を密閉できる専用治具にセットし、密閉した空間にHeガスを0.1MPaの圧力で印加し、試験片を通過したHeガスをHeガス検出器(キャノンアネルバ株式会社製、HELEN M-222LD)にてスニファー法により測定した。検出を開始してから5分後の検出Heガス流量(リーク量)をもとに、以下の基準で気密性を評価した。
 ◎ 検出Heガス流量は1×10-6Pa・m/s以下である
 ○ 検出Heガス流量は1×10-6Pa・m/sより多く1×10-5Pa・m/s以下である
 × 検出Heガス流量は1×10-5Pa・m/sより多い
 3-2.気密性(冷熱衝撃試験(500回、1000回)後)
 作製した試験片の冷熱衝撃試験後のHeリーク性を、ISO19095に準拠した方法で評価した。具体的には、作製した試験片に対し、以下の条件による冷却および加熱サイクルで冷熱衝撃試験を行い、その後のヘリウムのリーク量を、上記初期の気密性評価と同様に測定した。冷熱衝撃試験後の気密性についても、気密性(初期)と同様の基準で気密性を評価した。
 (冷熱衝撃試験の条件)
  温度範囲:-40℃~150℃
  サイクル条件:-40℃、150℃で各30分保持の1往復を1回
  サイクル回数:500回、1000回
 3-3.流動性
 それぞれのポリアミド樹脂組成物を、幅10mm、厚み0.5mmのバーフロー金型を使用して以下の条件で射出し、金型内の樹脂組成物の流動長(mm)を測定した。
 射出成形機:株式会社ソディック・プラステック製、ツパールTR40S3A
 射出設定圧力:2000kg/cm
 シリンダー設定温度:ポリアミド樹脂の融点+10℃
 金型温度:160℃(実施例1~3、6~10、比較例1~5)、120℃(実施例4、5)
 3-4.引張強度
 それぞれのポリアミド樹脂組成物を以下の条件で射出し、厚さ4.0mmのISOダンベル型試験片TypeAを得た。
 成型機:住友重機械工業社製  SG50M3
 成型機シリンダー温度:ポリアミド樹脂の融点+10℃
 金型温度:160℃(実施例1~3、6~10、比較例1~5)、120℃(実施例4、5)
 得られた試験片を、温度23℃、窒素雰囲気下で24時間放置した。次いで、ASTMD638に準拠して、温度23℃、相対湿度50%の雰囲気下で引張試験を行い、引張強度を測定した。
 3-5.曲げ弾性率
 それぞれのポリアミド樹脂組成物を以下の条件で射出し、厚さ4.0mmのISOダンベル型試験片TypeAを得た。
 成型機:株式会社ソディック・プラステック製、ツパールTR40S3A
 成型機シリンダー温度:ポリアミド樹脂の融点+10℃
 金型温度:160℃(実施例1~3、6~10、比較例1~5)、120℃(実施例4、5)
 得られた試験片を、温度23℃、窒素雰囲気下で24時間放置した。次いで、温度23℃、相対湿度50%の雰囲気下で曲げ試験機:NTESCO社製 AB5、スパン51mm、曲げ速度12.7mm/分で曲げ試験を行い、弾性率を測定した。
 調製したポリアミド樹脂組成物の組成、金属樹脂接合体の気密性(初期)、気密性(冷熱衝撃試験後)、ならびにポリアミド樹脂組成物の流動性、引張強度および曲げ弾性率の評価結果を、表1~表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~表3から明らかなように、ポリアミド樹脂(A1)、ポリアミド樹脂(A2)所定量の変性ポリオレフィン樹脂(B)および核剤(C)を含むポリアミド樹脂組成物は、金属部材に接合したときの初期および冷熱衝撃を繰り返し与えた後の気密性に優れていた。
 本出願は、2022年9月2日出願の特願2022-140105号の優先権を主張する。当該出願の出願当初の明細書、請求の範囲および図面に記載された事項は、参照により本出願に援用される。
 本発明のポリアミド樹脂組成物によれば、ポリアミド樹脂組成物を成形してなる樹脂部材と、金属部材と、を接合したときの、所期および冷熱衝撃を繰り返し与えた後の気密性も高めることができる。そのため、本発明は、温度が変化する環境で使用され、かつガスや液体などの漏出が問題となるような環境で使用される用途、たとえば車体部品などへの金属樹脂接合体の適用可能性を広げ、金属樹脂接合体のさらなる普及に寄与すると期待される。
 100 バスバーユニット
 110 バスバー
 120 保持部材
 200 移動体
 210 機体
 220 電源
 230 駆動ユニット
 232 インバータ
 234 モータ
 235 減速機
 236 モータケース
 

Claims (14)

  1.  ポリアミド樹脂(A)と、
     変性ポリオレフィン樹脂(B)と、
     核剤(C)と、を含み、
     前記ポリアミド樹脂(A)は、
     示差走査熱量測定(DSC)で測定される融点(Tm)が280℃以上のポリアミド樹脂(A1)と、
     示差走査熱量測定(DSC)で測定される融解熱量(ΔH)が5J/g以下のポリアミド樹脂(A2)と、
     を含み、
     前記変性ポリオレフィン樹脂(B)の含有量は、前記ポリアミド樹脂(A)および前記変性ポリオレフィン樹脂(B)の合計質量に対して4.70質量%以上20.00質量%以下である、
     金属部材との接合用のポリアミド樹脂組成物。
  2.  前記変性ポリオレフィン樹脂(B)の含有量は、前記ポリアミド樹脂(A)および前記変性ポリオレフィン樹脂(B)の合計質量に対して4.70質量%以上12.50質量%以下である、
     請求項1に記載のポリアミド樹脂組成物。
  3.  銅系の耐熱安定剤の含有量は、前記ポリアミド樹脂組成物の全質量に対して0.30質量%以下である、
     請求項1または2に記載のポリアミド樹脂組成物。
  4.  前記ポリアミド樹脂(A1)は、ジカルボン酸に由来する成分単位(A1a)と、ジアミンに由来する成分単位(A1b)とを有し、
     前記ジカルボン酸に由来する成分単位(A1a)は、テレフタル酸に由来する成分単位と、イソフタル酸に由来する成分単位とを含む、
     請求項1~3のいずれか1項に記載のポリアミド樹脂組成物。
  5.  前記ポリアミド樹脂(A)は、
     示差走査熱量測定(DSC)で測定されるガラス転移温度(Tg)が70℃以下のポリアミド樹脂(A3)を含む、
     請求項1~4のいずれか1項に記載のポリアミド樹脂組成物。
  6.  前記ポリアミド樹脂(A3)は、示差走査熱量測定(DSC)で測定される融点(Tm)が200℃以下である、
     請求項5に記載のポリアミド樹脂組成物。
  7.  前記ポリアミド樹脂(A1)は、示差走査熱量測定(DSC)で測定されるガラス転移温度(Tg)が75℃以上160℃以下であり、
     前記ポリアミド樹脂(A2)は、示差走査熱量測定(DSC)で測定されるガラス転移温度(Tg)が75℃以上160℃以下である、
     請求項1~6のいずれか1項に記載のポリアミド樹脂組成物。
  8.  前記核剤(C)はタルクであり、
     前記核剤(C)の含有量は、前記ポリアミド樹脂組成物の全質量に対して0.10~5.00質量%である、
     請求項1~7のいずれか1項に記載のポリアミド樹脂組成物。
  9.  金属部材と、
     前記金属部材の表面に接合した、ポリアミド樹脂組成物を含む樹脂部材と、
     を含み、
     前記ポリアミド樹脂組成物は、
     ポリアミド樹脂(A)と、
     変性ポリオレフィン樹脂(B)と、
     核剤(C)と、を含み、
     前記ポリアミド樹脂(A)は、
     示差走査熱量測定(DSC)で測定される融点(Tm)が280℃以上のポリアミド樹脂(A1)と、
     示差走査熱量測定(DSC)で測定される融解熱量(ΔH)が5J/g以下のポリアミド樹脂(A2)と、
     を含み、
     前記変性ポリオレフィン樹脂(B)の含有量は、前記ポリアミド樹脂(A)および前記変性ポリオレフィン樹脂(B)の合計質量に対して4.70質量%以上20.00質量%以下である、
     金属樹脂接合体。
  10.  金属部材を用意する工程と、
     軟化または溶融したポリアミド樹脂組成物を前記金属部材の表面に接触させる工程と、
     前記接触したポリアミド樹脂組成物を冷却する工程と、
     を有し、
      前記ポリアミド樹脂組成物は、
     ポリアミド樹脂(A)と、
     変性ポリオレフィン樹脂(B)と、
     核剤(C)と、を含み、
     前記ポリアミド樹脂(A)は、
     示差走査熱量測定(DSC)で測定される融点(Tm)が280℃以上のポリアミド樹脂(A1)と、
     示差走査熱量測定(DSC)で測定される融解熱量(ΔH)が5J/g以下のポリアミド樹脂(A2)と、
     を含み、
     前記変性ポリオレフィン樹脂(B)の含有量は、前記ポリアミド樹脂(A)および前記変性ポリオレフィン樹脂(B)の合計質量に対して4.70質量%以上20.00質量%以下である、
     金属樹脂接合体の製造方法。
  11.  前記金属部材を用意する工程において、前記金属部材の、前記ポリアミド樹脂組成物と接合する表面を粗面化処理する、請求項10に記載の金属樹脂接合体の製造方法。
  12.  金属製のバスバーと、
     前記バスバーに接して配置され、前記バスバーを保持する保持部材と、を有するバスバーユニットであって、
     前記保持部材は、示差走査熱量測定(DSC)で測定される融点(Tm)が280℃以上のポリアミド樹脂(A1)と、示差走査熱量測定(DSC)で測定される融解熱量(ΔH)が5J/g以下のポリアミド樹脂(A2)と、を含むポリアミド樹脂(A)と、変性ポリオレフィン樹脂(B)と、核剤(C)と、を含み、
     前記変性ポリオレフィン樹脂(B)の含有量は、前記ポリアミド樹脂(A)および前記変性ポリオレフィン樹脂(B)の合計質量に対して4.70質量%以上20.00質量%以下であるポリアミド樹脂組成物の成形体を含む、
     バスバーユニット。
  13.  モータと、
     前記モータに電力を供給するインバータと、
     前記モータと前記インバータとを電気的に接続するバスバーユニットと、を有する駆動ユニットであって、
     前記バスバーユニットは、請求項12に記載のバスバーユニットである、
     駆動ユニット。
  14.  機体と、
     駆動ユニットと、を有する移動体であって、
     前記駆動ユニットは、請求項13に記載の駆動ユニットである、
     移動体。
PCT/JP2023/030938 2022-09-02 2023-08-28 ポリアミド樹脂組成物、金属樹脂接合体およびその製造方法、バスバーユニット、駆動ユニットならびに移動体 WO2024048508A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022140105 2022-09-02
JP2022-140105 2022-09-02

Publications (1)

Publication Number Publication Date
WO2024048508A1 true WO2024048508A1 (ja) 2024-03-07

Family

ID=90099917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030938 WO2024048508A1 (ja) 2022-09-02 2023-08-28 ポリアミド樹脂組成物、金属樹脂接合体およびその製造方法、バスバーユニット、駆動ユニットならびに移動体

Country Status (1)

Country Link
WO (1) WO2024048508A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057694A (ja) * 2004-08-18 2006-03-02 Koyo Seiko Co Ltd 円錐ころ軸受用保持器
JP2011195612A (ja) * 2010-03-17 2011-10-06 Sumitomo Electric Fine Polymer Inc 架橋ポリアミド樹脂成形品及びその製造方法
WO2012046517A1 (ja) * 2010-10-08 2012-04-12 株式会社オートネットワーク技術研究所 バスバーモジュール
JP2013125825A (ja) * 2011-12-14 2013-06-24 Nissan Motor Co Ltd 半導体装置
JP2014033053A (ja) * 2012-08-02 2014-02-20 Toyota Motor Corp 半導体装置及びその製造方法
WO2015011935A1 (ja) * 2013-07-26 2015-01-29 三井化学株式会社 半芳香族ポリアミド樹脂組成物およびそれを含む成型品
JP2016138163A (ja) * 2015-01-26 2016-08-04 三井化学株式会社 半芳香族ポリアミド樹脂組成物、及びそれを含む成形品
JP2019206668A (ja) * 2018-05-30 2019-12-05 三井化学株式会社 樹脂組成物および成形体、ならびに樹脂組成物の製造方法
WO2020175390A1 (ja) * 2019-02-25 2020-09-03 株式会社クラレ 防水部品およびそれを備えた電子機器、インサート成形体を用いる防水方法ならびに電子機器の防水方法
JP2021070811A (ja) * 2019-10-01 2021-05-06 ユニチカ株式会社 ポリアミド樹脂組成物ならびにそれからなる成形体および車載カメラ用部品
JP2022138952A (ja) * 2021-03-11 2022-09-26 三井化学株式会社 金属樹脂接合体

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057694A (ja) * 2004-08-18 2006-03-02 Koyo Seiko Co Ltd 円錐ころ軸受用保持器
JP2011195612A (ja) * 2010-03-17 2011-10-06 Sumitomo Electric Fine Polymer Inc 架橋ポリアミド樹脂成形品及びその製造方法
WO2012046517A1 (ja) * 2010-10-08 2012-04-12 株式会社オートネットワーク技術研究所 バスバーモジュール
JP2013125825A (ja) * 2011-12-14 2013-06-24 Nissan Motor Co Ltd 半導体装置
JP2014033053A (ja) * 2012-08-02 2014-02-20 Toyota Motor Corp 半導体装置及びその製造方法
WO2015011935A1 (ja) * 2013-07-26 2015-01-29 三井化学株式会社 半芳香族ポリアミド樹脂組成物およびそれを含む成型品
JP2016138163A (ja) * 2015-01-26 2016-08-04 三井化学株式会社 半芳香族ポリアミド樹脂組成物、及びそれを含む成形品
JP2019206668A (ja) * 2018-05-30 2019-12-05 三井化学株式会社 樹脂組成物および成形体、ならびに樹脂組成物の製造方法
WO2020175390A1 (ja) * 2019-02-25 2020-09-03 株式会社クラレ 防水部品およびそれを備えた電子機器、インサート成形体を用いる防水方法ならびに電子機器の防水方法
JP2021070811A (ja) * 2019-10-01 2021-05-06 ユニチカ株式会社 ポリアミド樹脂組成物ならびにそれからなる成形体および車載カメラ用部品
JP2022138952A (ja) * 2021-03-11 2022-09-26 三井化学株式会社 金属樹脂接合体

Similar Documents

Publication Publication Date Title
JP6423365B2 (ja) 半芳香族ポリアミド樹脂組成物およびその成型品
JP5689990B2 (ja) 平らなガラス繊維を用いた強化ポリアミド成形材料およびポリアミド成形材料によって作製された射出形成部品
JP6346181B2 (ja) 半芳香族ポリアミド樹脂組成物およびそれを含む成型品
JP5199663B2 (ja) 難燃性ポリアミド組成物
JPWO2006112205A1 (ja) 難燃性ポリアミド組成物
JP2016138163A (ja) 半芳香族ポリアミド樹脂組成物、及びそれを含む成形品
JP2006348057A (ja) ポリアミド樹脂
TW200536894A (en) Flame resistant polyamide composition and use thereof
CN110964316B (zh) 聚酰胺组合物、成型品和半芳香族聚酰胺
JP7152592B2 (ja) 難燃性ポリアミド樹脂組成物
JP2015129271A (ja) 炭素繊維強化ポリアミド樹脂組成物およびそれを成形してなる成形品
JP6234175B2 (ja) ポリアミド樹脂組成物
WO2024048508A1 (ja) ポリアミド樹脂組成物、金属樹脂接合体およびその製造方法、バスバーユニット、駆動ユニットならびに移動体
JP6458452B2 (ja) ポリアミド樹脂およびポリアミド樹脂組成物
JP2022138952A (ja) 金属樹脂接合体
JP6097203B2 (ja) ポリアミド樹脂組成物
JP2012180479A (ja) ポリアミド樹脂組成物及び成形品
JP2020152821A (ja) 半芳香族ポリアミド樹脂組成物、およびそれを含む成形体
JP2011094103A (ja) 自動車用アンダーフード部品
JP2013001836A (ja) ポリアミド溶着成形品
JP2023048367A (ja) 金属樹脂複合体およびその製造方法、ならびにポリアミド樹脂組成物
JP2016216627A (ja) ポリアミド組成物
WO2022149436A1 (ja) ポリアミド組成物、成形体、及び装置の振動又は音の伝搬を抑制する方法
WO2023120459A1 (ja) ポリアミド組成物
WO2023120460A1 (ja) ポリアミド組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860270

Country of ref document: EP

Kind code of ref document: A1